
Contents lists available at ScienceDirect

Expert Systems With Applications

journal homepage: www.elsevier.com/locate/eswa

An empirical analysis of deep learning methods for small object detection

from satellite imagery

Xiaohui Yuan a,∗, Aniv Chakravarty a, Elinor M. Lichtenberg b, Lichuan Gu c,
Zhenchun Wei d, Tian Chen d

aDepartment of Computer Science and Engineering, University of North Texas, Denton, 76207, Texas, USA
bDepartment of Biological Sciences and Advanced Environmental Research Institute, University of North Texas, Denton, 76203, Texas, USA
c School of Artificial Intelligence and Computer Science, Anhui Agricultural University, Hefei, 230009, Anhui, China
d School of Computer Science and Information, Hefei University of Technology, Hefei, 230009, Anhui, China

a r t i c l e i n f o

Keywords:
Object detection
Machine learning
Remote sensing

 a b s t r a c t

Despite a substantial body of literature on object detection, there is a notable lack of empirical studies on detect-
ing small objects. Additionally, the definition of a small object remains unclear. This paper presents a thorough
evaluation of six state-of-the-art deep learning methods for small object detection from satellite imagery. Three
public high-resolution datasets are used to understand various influential aspects and the generalization abil-
ity. Among the six methods, YOLOv11 achieves a balanced performance for localization and adaptability, while
Faster R-CNN maintains consistent detection coverage. Anchor box-based methods require extensive fine-tuning,
whereas transformer-based methods demand greater computational resources to achieve competitive results. In
addition, anchor-based methods, including SSD, Faster R-CNN, and Cascade R-CNN, are sensitive to the anchor
box size, and, for small object detection, a small to moderate size is preferred. Both deformable and RT-DETR
methods are susceptible to overfitting. RT-DETR exhibits superior detection in partial occlusion scenarios, par-
ticularly through vegetation and shadows, whereas deformable DETR struggles to identify individual small ob-
jects in dense clusters. Comparing computational efficiency with a batch size of one reveals that RT-DETR and
YOLOv11 are more training-intensive, with optimizations focused on inference. Methods such as Faster R-CNN
have a larger memory footprint but lower computational costs and time requirements.

1. Introduction

Object detection provides cues for many computer vision applica-
tions, such as object recognition and tracking movements of targets in
videos (Yuan & Sarma, 2011; Yuan et al., 2021; Zhou et al., 2017). There
are many learning-based methods developed in recent years, such as
You Only Look Once (YOLO) (Redmon et al., 2016), Single Shot Multi-
Box Detection (SSD) (Liu et al., 2016), and derivations of Region-Based
Convolutional Neural Networks (R-CNN) (Girshick et al., 2014) (e.g.,
Faster R-CNN (Ren et al., 2015) and Cascade R-CNN (Cai & Vascon-
celos, 2018)). Recent developments with transformers, e.g., detection
transformer (DETR) (Carion et al., 2020), improved object detection ac-
curacy but with a high computational overhead. However, object de-
tection methods for satellite imagery analysis face unique challenges.
Objects in satellite imagery usually have small footprints with a diverse
distribution and are distinct from terrain and morphology at different
geographical locations.

∗ Corresponding author.
 E-mail address: xiaohui.yuan@unt.edu (X. Yuan).

Small objects are usually defined by their absolute size (number
of pixels) or by their relative size in an image (Cheng et al., 2023;
Miri Rekavandi et al., 2025). Detecting the small objects is difficult be-
cause they lack discriminative features, which leads to several problems:
missing critical features, confusion with parts of larger objects, and weak
contributions to the learning process. Texture, region, and shape cues
that normally help distinguish objects from their surroundings are min-
imal or absent in small objects due to the limited pixels available for
analysis. As a result, feature extraction is often restricted to color and
context. Multiple small objects with ambiguous features in a large field
of view make the object detection task very challenging. Fig. 1 depicts an
example of a satellite image that contains small objects of interest (vehi-
cles) highlighted with green boxes. The spatial resolution of this satellite
image is 0.3m, and each car has about 150 pixels. Although vehicles are
recognizable, compared to other ground objects, e.g., buildings, they are
much smaller. Portions of large objects may resemble small targets, e.g.,
objects on roofs, increasing false detections. In addition, small objects

https://doi.org/10.1016/j.eswa.2025.131061
Received 27 July 2025; Received in revised form 12 December 2025; Accepted 29 December 2025

Expert Systems With Applications 307 (2026) 131061

Available online 2 January 2026
0957-4174/© 2026 Elsevier Ltd. All rights are reserved, including those for text and data mining, AI training, and similar technologies.

https://www.elsevier.com/locate/eswa
https://www.elsevier.com/locate/eswa
https://orcid.org/0000-0001-6897-4563

$\times $

$\times $

$(0~~1]$

1×1

512×512

10^{-4}

10^{-4}

10^3

t

AP_t

\begin {equation}AP_t = \sum _{i=1}^M\Delta R_t^i \max _{j\ge i} P_t^j , \label {eq:AP_IoU}\end {equation}

$P_t = \frac {TP_t}{TP_t+FP_t}$

$R_t = \frac {TP_t}{TP_t+FN_t}$

t

$\Delta R_t^i = R^i_t - R^{i-1}_t$

\begin {equation}AP_{\tilde {t}}=\frac {1}{10}\sum _{t=0.5}^{0.95}AP_{t}, \label {eq:AP_95}\end {equation}

$\tilde {t}$

$AP_{50:95}$

AP_{50}

$AP_{50:95}$

AP_{50}

AP_{50}

$AP_{50:95}$

AP_{50}

$AP_{50:95}$

\begin {equation}AR_{t}=\frac {1}{N}\sum _{c=1}^{N}R_{t,c}^k, \text {~~and~~} AR_{\tilde {t}}=\frac {1}{10}\sum _{t=0.5}^{0.95}AR_{t}, \label {eq:AR}\end {equation}

N

$F1$

\begin {equation}F1_{\tilde {t}}=\frac {1}{10}\sum _{t=0.5}^{0.95}{\frac {2 P_t R_t}{P_t + R_t}}. \label {eq:f1}\end {equation}

512×512

2^6

$\pm $

$\pm $

$\pm $

$_{50}$

$_{50:95}$

$_{50}$

$_{50}$

AP_{50}

AR_{50}

$AP_{50:95}$

$AR_{50:95}$

AP_{50}

AR_{50}

AP_{50}

AR_{50}

$AP_{50:95}$

$AR_{50:95}$

$F1_{50:95}$

$_{50:95}$

10^3

AP_{50}

$AP_{50:95}$

AP_{50}

$AP_{50:95}$

512×512

https://orcid.org/0009-0009-3127-9984
https://orcid.org/0000-0002-2729-4534
https://orcid.org/0000-0002-3768-8203
https://orcid.org/0000-0003-2751-6501
https://orcid.org/0000-0003-1846-3997
mailto:xiaohui.yuan@unt.edu
https://doi.org/10.1016/j.eswa.2025.131061
https://doi.org/10.1016/j.eswa.2025.131061

X. Yuan et al.

Fig. 1. Small objects (in green boxes) in an xView image.

contribute little to the overall loss in training, and models tend to favor
larger objects.

Detecting objects from images and videos is a long-standing com-
puter vision problem, and many methods have been developed in the
past decades, from sliding window strategies to deep learning meth-
ods. Several literature reviews describe the technical landscape and cur-
rent challenges (Amjoud & Amrouch, 2023). Most recently, Sun et al.
(2024) reviewed deep learning-based object detection methods, includ-
ing Convolution Neural Network-based and transformer-based methods.
Huang et al. (2023) focused on the few-shot and self-supervised learn-
ing methods that deal with learning from unlabeled data. Gui et al.
(2024) reviewed deep learning methods for object detection, emphasiz-
ing approaches addressing data and label limitations. Liu et al. (2021)
surveyed deep learning methods for small object detection from aerial
imagery. Recent taxonomic surveys on small object detection with re-
spect to video object tracking (Mirzaei et al., 2023; Xie et al., 2024)
highlight their respective challenges, while Miri Rekavandi et al. (2025)
emphasize task-specific challenges in scenarios of detecting small ships,
ranging from dataset acquisition to dynamic reflectance shifts in wa-
ter. These surveys provide a broad view of the recent technological as-
pects of object detection methods, as well as their chronological and
geographical evolution. Yet, benchmarking of these methods is missing.
In particular, evaluating how existing methods perform for the prob-
lem of detecting small but critical objects in complex and large views of
satellite imagery requires investigation. In addition, small object detec-
tion is often complicated by the lack of examples (Miri Rekavandi et al.,
2025).

In this paper, we review object detection methods for finding small
objects in remote sensing imagery and provide an empirical evaluation
to gain insights into method performance and technical challenges. We
use car detection from urban satellite images and honey bee hive detec-
tion from satellite images of agricultural lands as application scenarios.
Drawing from existing surveys and literature, we identified several top-
performing methods for evaluation. Our experiments use two public,
high-resolution satellite imagery datasets (xView (Lam et al., 2018) and
SkySat (PBC, 2018) imagery for method evaluation.

The contributions of this work include

• A review of the deep learning methods for the detection of small
objects from satellite imagery.

• An in-depth evaluation of the strengths and weaknesses of the state-
of-the-art deep learning methods for small object detection.

• A multi-faceted analysis and discussion of the problems and progress,
as well as the open challenges.

The remainder of this paper is organized as follows. Section 2 reviews
the related work on deep learning methods for object detection with a
focus on small object detection. Section 3 presents our empirical study,
including evaluation aspects and metrics. Section 4 discusses the results
from five major aspects and highlights the advantages and open issues.
Section 5 concludes this paper with a summary.

2. Related work

Recent advances in deep networks have produced many object de-
tection methods and corresponding surveys. Liu et al. (2021) reviewed
small object detection in aerial imagery, noting that shallow networks
lack sufficient feature and contextual representation. Kang et al. (2022)
examined aerial and satellite datasets, emphasizing the impact of spa-
tial resolution on average precision. Li et al. (2022) summarized remote
sensing detectors and highlighted challenges posed by extreme aspect
ratios (e.g., roads, bridges). Amjoud and Amrouch (2023) categorized
detectors into anchor-based, anchor-free, and transformer-based fami-
lies, while Li et al. (2023) provided a detailed review of transformer de-
tectors, stressing the scalability of Deformable DETR (Zhu et al., 2021).
Zou et al. (2023) presented a 20-year historical overview, and Gui et al.
(2024) underscored the difficulty of building general-purpose models,
advocating task-specific designs.

Several surveys also emphasize evaluation. Huang et al. (2023) re-
viewed few-shot and self-supervised detection, observing heavy reliance
on pre-trained backbones and benchmarks such as ImageNet and COCO.
Cheng et al. (2023) benchmarked methods across large-scale datasets,
including anchor-free and transformer-based architectures, and noted
the difficulty of detecting small, oriented targets in satellite imagery
(e.g., DOTA (Xia et al., 2018)). Sun et al. (2024) compared CNN and
transformer approaches from region proposal to end-to-end frameworks,
but most results are drawn from general-purpose datasets like Pascal
VOC, MS COCO, ImageNet, and Cityscapes.

Other studies address persistent small-object challenges. Xie et al.
(2024) showed that augmentation offers only modest gains due to weak
feature representation. Taxonomic surveys on detection and tracking
highlight the importance of deep and transfer learning for small ob-
jects (Mirzaei et al., 2023). Miri Rekavandi et al. (2025) benchmarked
deep models on objects as small as 16-32 pixels across street-view, MS
COCO, and ShipRSImageNet, but their satellite analysis focused mainly
on boats, leaving broader land-based evaluations underexplored. These
findings reinforce the domain-specific difficulties of satellite imagery.

Table 1 summarizes the top object detection methods, outlining their
architectures, resource requirements, training speed, and accuracy. One-
stage detectors such as YOLO and SSD demand fewer computational re-
sources, making them suitable for edge or mobile devices, and many
variants specifically target efficient deployment. In contrast, Faster R-
CNN and Cascade R-CNN offer strong online processing speed, while
YOLO and RT-DETR balance longer training times with competitive in-
ference rates. Given sufficient training data, transformer-based models
(e.g., Deformable DETR, RT-DETR) and YOLO methods typically deliver
the highest accuracy.

Despite extensive surveys on object detection, few directly address
small object detection in remote sensing imagery. Recent attention has
shifted to transformers and hybrid CNN-transformer models due to ap-
plications such as urban and agricultural analysis. However, satellite im-
agery introduces sharper performance-accuracy trade-offs (Kang et al.,
2022), exposing the limits of current methods. Moreover, the definition
of a “small” object remains inconsistent across studies. This paper fills
these gaps by providing a systematic empirical evaluation of state-of-
the-art small object detection methods for satellite imagery.

3. Small object detection and analysis

3.1. Small object detection from remote sensing images

Small objects are often decided by the number of pixels represent-
ing the object or by the object size relative to the image size (Cheng
et al., 2023; Miri Rekavandi et al., 2025). For example, the MS COCO
dataset defines small objects as the ones with less than 32×32 pixels
(i.e., about 1,000 pixels) (Lin et al., 2014), in which the image size is
about 640×480. In remote sensing applications, these objects may be
represented by one pixel or a small cluster of pixels, depending on the

Expert Systems With Applications 307 (2026) 131061

2

X. Yuan et al.

Table 1
Taxonomy of object detection methods. E2E: End-to-End; Anch: Anchor; RP: Region Proposal; Attn: Attention;
MS: multi-scale; Res: Computing resource for training; Spd: Training Speed; Acc: Accuracy; L: Low; M: Medium;
H: High.

 Network Structure & Component
 Method Year Stage Anch. RP Attn MS Res Spd Acc
 YOLOv11 (Jocher & Qiu, 2024) 2024 One ✓ ✓ L M H
 FFCA-YOLO (Zhang et al., 2024) 2024 One ✓ L M H
 SSD (Liu et al., 2016) 2016 One ✓ L H L
 FocusDet (Shi et al., 2024) 2024 One M M M
 Faster R-CNN (Ren et al., 2015) 2016 Two ✓ ✓ ✓ H H H
 Cascade R-CNN (Cai & Vasconcelos, 2018) 2018 Two ✓ ✓ ✓ H H H
 DETR (Carion et al., 2020) 2020 E2E ✓ ✓ H L M
 Def. DETR (Zhu et al., 2021) 2020 E2E ✓ ✓ H M H
 RT-DETR (Zhao et al., 2024) 2024 E2E ✓ ✓ H M H

Fig. 2. Example of small objects in xView (left) and SkySat (right).

spatial resolution of the satellite imagery. The count of pixels provides
a quantifiable means of classifying small objects. Alternatively, a small
object can be decided based on the size of the object relative to the im-
age size (Nguyen et al., 2020). A ratio of 0.1 or smaller is often used
as the criterion (Xie et al., 2024). The rationale for using relative size
is rooted in the limited receptive field of deep networks. To meet the
network’s expectation of the input size, images are downsampled or re-
sized, which reduces the relatively smaller object represented by fewer
pixels. Such downsampling also occurs within the network layers via a
pooling operation or when the stride of convolutions is greater than one.

Despite numerous recent studies, the definition of small objects re-
mains ambiguous and often subjective. Compared to large objects, the
features extracted from small objects are limited, making them prone to
misclassification and highly susceptible to noise and distortions. Such
problems are particularly evident in remote sensing image analysis,
where the vast number and diversity of objects make small targets less
significant for detection (Miri Rekavandi et al., 2025). In addition, the
spatial resolution of remote sensing imagery varies greatly from cen-
timeters to kilometers. Hence, an object may appear large or small in
images of different spatial resolutions. Unlike object detection in au-
tonomous driving or action recognition, tiling is used to make images
computationally processable. By creating small tiles, we increase the ra-
tio of objects and image sizes, which makes the relative size inappropri-
ate. Therefore, the count of pixels is more suitable for classifying small
objects in remote sensing applications.

Fig. 2 illustrates images of xView and SkySat. The spatial resolution
of xView and SkySat is 0.3m and 0.5m, respectively. Both images are
rescaled for visualization. The count of pixels of cars is less than 150.
There are even smaller objects, less than 10 pixels. However, those ob-
jects are hardly recognizable by humans and, hence, are excluded from
the detection task. Another type of small object used in this study is
honey bee hives, which appear in SkySat images and are represented
with bounding boxes consisting of 15 pixels or less.

3.2. Deep learning method selection

Based on our review, we identify a group of representative methods
for empirical evaluation. Given that most methods were developed for

generic object detection tasks instead of targeting small object detection,
one criterion of our selection is the key performance factors, including
accuracy and robustness. As reported in the surveys, a widely used per-
formance metric is mean average precision (mAP), and the commonly
used datasets include VOC (2007 and 2012) and MS COCO.

Another factor we consider in the selection of methods is the net-
work architecture, which could have a significant impact on the de-
tection of small objects in satellite imagery. For instance, the use of
high-level features with low spatial resolution often leads to the loss
of fine-grained details, and, hence, struggles with small object detec-
tion (Lin et al., 2017). In general, object detection methods consist of a
structured pipeline that transforms an input image into object classifica-
tions and localizations. The key components include feature extraction,
region proposal, and object classification. In the region proposal, the an-
chor technique is often used to specify bounding boxes (i.e., anchors),
which helps detect objects of varying sizes and aspect ratios by predefin-
ing a set of bounding boxes at different locations in an image. Besides
region proposal, single-shot methods (a.k.a., one-stage methods) per-
form object localization and classification in a single pass by predicting
bounding boxes and class labels from the input image. However, single-
shot methods could result in lower accuracy for detecting small objects.

We identified the following methods that demonstrated superior
performance across the aforementioned three datasets (Amjoud & Am-
rouch, 2023): YOLO, SSD, Faster R-CNN, Cascade R-CNN, Real-Time
DEtection TRansformer (RT-DETR), deformable DETR, and two meth-
ods specifically designed for small object detection: FocusDet (Shi et al.,
2024) and feature enhancement, fusion and context aware YOLO (FFCA-
YOLO) (Zhang et al., 2024). In addition, these methods are represen-
tative of feature extraction, region proposal generation, and network
structure.

3.3. Overview of the selected methods

In R-CNNs, features are extracted from bounding boxes using a CNN,
followed by classification to detect objects. Faster R-CNN (Girshick,
2015) uses a region proposal network (RPN) that employs a sliding win-
dow to generate reference boxes (a.k.a. anchors). It enhances the feature
extraction of small, fixed-sized objects. Cascade R-CNN (Cai & Vasconce-
los, 2018) is a multi-stage approach with multiple bounding box regres-
sion heads and uses the pooling operations to extract fixed-size feature
maps during the refinement process of proposals from regression. The
model resamples its proposal distribution for each stage to avoid im-
balances between its positive and negative samples at larger threshold
values. Cascaded R-CNN balances noise sensitivity and detection degra-
dation through regressors. Each stage consists of a regressor that refines
its bounding box on the resampled distribution. The IoU threshold in-
creases per stage on the regressors. This is done to account for alignment
and localization degradation observed from iterative regression under
higher IoU thresholds. The stage-wise regressor optimization minimizes
overfitting and provides more precise bounding boxes.

Expert Systems With Applications 307 (2026) 131061

3

X. Yuan et al.

SSD (Liu et al., 2016) provides a lightweight backbone-head struc-
ture and uses the grid to locate potential objects. Predictions are made
at each scale to account for objects of various sizes, where multi-scale
feature maps are generated using progressively smaller convolutional
kernels. Predefined anchor boxes are passed over the image in a slid-
ing window fashion over the grid to establish the position and aspect
ratio of the object to the anchor box. This is followed by alignment and
localization refinements through center offsets to improve localization.
SSD faces challenges in detecting small objects due to the loss of feature
information from excessive downscaling of feature maps. Also, having
predefined anchor boxes may lead to issues with objects that do not
conform to the predefined box.

The YOLO methods frame object detection as a regression problem,
using a single convolutional network for object location and prediction.
Recent YOLO methods, including YOLOv11 (He et al., 2025), make use
of cross-stage attention with center point prediction on objects. These
methods optimize cross-stage partial (CSP) connections (Wang et al.,
2020) using convolutions of small kernel size (e.g., 2) for improved gra-
dient flow and reduced computational overhead. Additional integration
of features from shallow layers into deeper layers maintains multi-scale
feature representation during downscaling. This allows for a small re-
ceptive field to improve localization in small object detection. Another
improvement is the addition of the cross-stage partial with spatial at-
tention (CSPSA) block after the fast spatial pyramid pooling (SPPF) to
improve the retention of regions of interest for objects of varying sizes
and positions.

RT-DETR (Zhao et al., 2024) uses deformable attention with set hy-
brid multi-scale interactions to dynamically adjust the receptive field.
The intra-scale feature interactions are self-attention-based, while the
inter-scale cross interactions are through convolution-based feature fu-
sion. Such inter- and intra-scale interactions benefit in detecting small
objects with improved local feature representations and contextual in-
formation.

Deformable DETR (Zhu et al., 2021) uses a spatial attention module
based on deformable convolutions (Dai et al., 2017), which dynamically
samples each location at different offsets. The decoder consists of multi-
scale deformable attention and self-attention modules for improved ob-
ject separation. The multi-scale feature integration through cross-scale
interactions aggregates feature maps and enables fine-grained feature
extraction.

FocusDet (Shi et al., 2024) implements bottom focus-PAN that con-
siders the entire feature map for fusion, while the feature enhancement,
fusion, and context-aware YOLO (FFCA-YOLO) (Zhang et al., 2024) im-
plements dynamic channel-wise feature re-weighting. Both methods ex-
tend YOLOv5.

3.4. Empirical evaluation method

Our empirical study includes experiments for the use of anchor boxes
for region proposal generation, the model architecture, and method-
specific techniques. In addition, we evaluate the adaptability of the com-
pared methods when different datasets are used for training and testing
the models.

3.4.1. Evaluation aspects
Anchor boxes, when used in SSD and R-CNNs, involve size and as-

pect ratio, which decide the range of the detectable object size. A small
anchor box allows less distraction from nearby objects, whereas a large
anchor box enables the detection of large objects. In our experiments,
we evaluate both the size and aspect ratio. We also evaluate the trained
models for the detection of medium and large objects. To get the range
of the object size, we compute the minimum and maximum sizes of the
annotated objects and use them as references for deciding the anchor
box size. A factor of two is used to set the range. A similar strategy
is used to decide the range. Fig. 3 (a) depicts the histograms of object
size (number of pixels) of all classes and of the small objects (cars) in

Fig. 3. The distribution of object size (number of pixels) and aspect ratio of
bounding boxes of the xView dataset. The x-axis in (a) is on a log scale. The blue
bars depict the distribution of all objects, and the red bars show the distribution
of small objects.

the xView dataset, respectively. The overall distribution of the object
size distribution is positively skewed, indicating that most datasets have
small objects in bin 6, which represents roughly 403 pixels. The number
of object instances that fall under the selection for cars to roughly 5%
of the overall size of objects in the dataset. Hence, we focus on keeping
the anchor box sizes within 403 pixels. Fig. 3 (b) shows the histogram of
the aspect ratio of all objects from the xView dataset. The aspect ratio is
computed by dividing the shorter side by the longer side of the anchor
box, and its range is (0 1]. Overall, the distribution of the histogram is
negatively skewed with a peak at the bin containing aspect ratios in the
range of 0.7 to 0.8 and a substantial increase from 0.4. Implying most of
the small objects have a slightly rectangular bounding box. We set our
anchor boxes to the aspect ratios in the range from 0.7 to 0.8 to better
align with the small objects.

Using anchor boxes, region proposals are generated by RPNs in both
Faster R-CNN and Cascade R-CNN. The RPNs use thresholds to decide if
a proposal is plausible, which influences the quality of the proposals and
the number of proposals. A small threshold often yields a large number
of proposals, but could produce many weakly supported ones, which
contribute to false positive detections. However, a large threshold en-
forces a strict criterion but will probably lead to missed detections (i.e.,
false negatives). Our study evaluates the performance of the models us-
ing different thresholds. Our region proposal thresholds start at 0.5 with
an increment of 0.1 to 0.9.

In transformer-based methods such as YOLOv11, RT-DETR, and de-
formable DETR, attention is used instead of anchor boxes and region
proposals. Without specifying a geometric shape, attention highlights
the freeform regions of interest by assigning greater weights to the image
pixels of the target objects. Using different parameters (e.g., sampling
points and decoder heads), we alter the generation of the attention maps
to compare the model performance. In addition, we analyze the behav-
ior of attention through weights and key reference points obtained from
the trained models during inference. In particular, we use the number of
sampling points as 4, 8, 16, and 32 for deformable DETR and RT-DETR
in the model training. A greater number of sampling points could offer
an improved detection for small objects. The number of decoder atten-
tion heads depends on the complexity of the tasks. In general, a large
number of heads offers more aspects and features to capture nuanced

Expert Systems With Applications 307 (2026) 131061

4

X. Yuan et al.

relationships. The typical number of heads for transformer-based meth-
ods such as deformable DETR and RT-DETR is 8. Increasing the number
of heads could lead to an improvement in small object detection because
each head captures features from different parts of the image. Hence, we
evaluate deformable DETR, RT-DETR, and YOLOv11 using 4, 8, and 16
decoder heads. To isolate the impact of the number of sampling points
and decoder heads on the attention, we use 8 sampling points in the
evaluation of decoder heads and use 8 decoder heads in the evaluation
of the sampling points.

Feature fusion is the process of combining feature representations
from different layers to make comprehensive feature maps. An approach
used to incorporate feature fusion with multi-scale is the feature pyra-
mid network (FPN) (Lin et al., 2017) that takes an image at a single
scale and generates refined feature maps at different scales. The bottom-
up pathway of FPN consists of forward-passing convolutional layers
that downscale feature maps to obtain high-level semantic information.
The top-down pathway upsamples the higher-level feature maps in the
pyramid to the same scales as the bottom-up pathway with the near-
est neighbor algorithm. The lateral connections fuse the feature maps
from the bottom-up and top-down pathways at respective scales on the
same level. This is achieved using a 1 × 1 convolution for channel re-
duction and element-wise addition, which helps the lower-level maps
compensate for the lack of semantic information from the higher lev-
els obtained from the top-down pathway. We evaluate multi-scale and
feature fusion for Faster R-CNN, Cascade R-CNN, YOLOv11, deformable
DETR, and RT-DETR by training the methods with and without the FPN
module in the backbone and using single feature maps at size 512 × 512
pixels. Removing the FPN module in the backbone of the method ar-
chitectures removes multi-scale feature representations during the fea-
ture extraction process into a single feature map from the convolutional
networks. Faster R-CNN and Cascade R-CNN are trained for 5000 itera-
tions. YOLOv11, deformable DETR, and RT-DETR are trained for 28,320,
56,580, and 75,450 iterations, respectively.

Generalization of the methods for small objects is evaluated by fine-
tuning the trained models through transfer learning. The source dataset
is the xView trained on 75% of the data. The target dataset is the SkySat,
with 80% of the images used for fine-tuning the models and the remain-
ing for validation. The dataset is evaluated with 6-fold cross-validation
and setting hyperparameters from Table 5. We change the number of
iterations of YOLOv11, SSD, RT-DETR, Faster R-CNN, Cascade R-CNN,
and deformable DETR to 1477, 10,000, 9,500, 5,000, 5,000, and 6875,
respectively. Due to the limited number of training samples of SkySat,
we freeze the backbone layers. We evaluate the generalization ability
by comparing the number of detected objects against the ground truth
and the overlap of the bounding boxes with the targets. The SkySat im-
ages usually have a lower resolution and fewer bee hives in rural set-
tings. However, there are cases, such as bee farms and temporary hold-
ing fields, that have large clusters of hives. These objects have varying
shapes and intensities, making it challenging to derive distinct patterns
that distinguish them from the surroundings.

3.4.2. Datasets
In this study, we conduct evaluations using three datasets: satellite

imagery datasets: xView (Lam et al., 2018), SkySat (PBC, 2018), and
Dataset of Object deTection in Aerial images (DOTA) (Ding et al., 2021).
Both are high-resolution satellite imagery. Table 2 summarizes the key
properties of the two datasets.

xView provides a publicly accessible satellite imagery dataset cap-
turing diverse scenes with a spatial resolution of 0.3m and 8-channel
multispectral satellite images for object detection. The images include
objects of 60 classes in different sizes, from which we select the ones
that fit our definition of small objects based on the number of pixels of
the largest objects in that class. The number of pixels is limited to fewer
than 1,000. An example is shown in the left panel of Fig. 2. SkySat offers
0.5-meter spatial resolution, 4-channel satellite images with high tem-
poral coverage. Besides urban coverage, it provides a wide coverage of

Table 2
Data properties. Channels are CB: Coastal Blue; R: Red; G:
Green; B: Blue; Y: Yellow; RE: Red Edge; NIR: Near Infrared;
Pan: Panchromatic.

 Spatial Area
 Dataset Resolution (m) Channels coverage (km)
 xView 0.3 CB, B, G, Y, R, 1400

 RE, NIR1, NIR2
 SkySat 0.5 B, G, R, NIR, Pan 66
 DOTA 0.01–3.2 B, G, R varied

Table 3
Size and distribution of classes in the xView dataset that meet the
criterion of small objects.
 Classes of Num. of Num. of Object size (pixels)
 small objects Image Objects min median max
 Small Car 691 423,092 20 130 957
 Passenger Vehicle 203 5900 20 130 735
 Pickup Truck 207 2008 102 180 700
 Utility Truck 354 7264 14 198 840

rural lands. One of the unique objects in rural lands is honey bee hives,
which are typically small, with a size of approximately 15 pixels in the
SkySat images. DOTA consists of a variety of aerial images having dif-
ferent spatial resolutions for their satellite imagery. Small vehicles are
the smallest and most prevalent class within the dataset, with 242,276
instances having object sizes within 1,000 pixels.

Table 3 reports the size and distribution of the four classes of the
xView dataset, which consists of objects with a size less than 1,000 pix-
els. These classes include Small Car, Passenger Vehicle, Pickup Truck,
and Utility Truck. The Small Car class is a generic class that includes
specific vehicle types but is not clearly differentiable. The number of
images is the count of images that contain at least one object of the
class. In many cases, an image contains small objects of more than one
class. Hence, the total number of images of all classes is greater than the
number of xView images listed in Table 2. The number of objects is the
count of the small objects of each class in all images. Object size lists the
minimum, maximum, and median size (number of pixels) of the objects
in each class. It shows the Small Car class has the largest dynamic range
in size.

3.4.3. Evaluation metrics
Determining the right metrics for evaluating these methods requires

consideration of how well the bounding boxes localize on the object
and provide the correct classification. Average Precision (AP) captures
the precision of object detection across a range of confidence thresh-
olds. As a model outputs predicted bounding boxes with class labels
and confidence scores, AP measures how well these predictions match
the ground-truth.

Fig. 4 illustrates how the IoU threshold at 50% considers evaluating
detected bounding boxes. Consider an image consisting of five small ve-
hicles, annotated with bounding boxes in green. The object detection
method predicts multiple bounding boxes, along with their respective
confidence values, which range from 0 to 1. Fig. 4 (a) depicts 13 bound-
ing boxes sorted in descending order of confidence along with their re-
spective IoU scores. The IoU threshold is used to decide how well a
prediction aligns with the ground truth. A prediction is considered a
true positive (TP) if it has the correct class label and overlaps with the
ground-truth (measured with IoU) above a threshold represented in red.
If multiple bounding boxes meet the criteria for a single ground truth,
then the highest confidence score detection is marked as TP. This en-
forces penalization for duplicate bounding boxes per ground truth. Pre-
dictions that fail to match any ground truth or are duplicate detections
of the same object are counted as false positives (FP), shown in blue.
False negatives (FN) are obtained from misses in detection, where there

Expert Systems With Applications 307 (2026) 131061

5

X. Yuan et al.

Fig. 4. AP/AR calculation at threshold 50. (a) Detected small objects, where
GT: green, TP: red, FP: cerulean. The confidence is shown on the left. (b) PR
curve in blue with filled area underneath.

is no overlap between the predictions and ground truths. A precision-
recall (PR) curve is plotted through different confidence values. An AP
score across different thresholds is weighted with recall to account for
the number of detections with precision. The AP score at an IoU thresh-
old 𝑡, denoted with 𝐴𝑃𝑡, is calculated based on the area under the curve
through Riemann summation:

𝐴𝑃𝑡 =
𝑀
∑

𝑖=1
Δ𝑅𝑖

𝑡 max
𝑗≥𝑖

𝑃 𝑗
𝑡 , (1)

where 𝑃𝑡 =
𝑇𝑃𝑡

𝑇𝑃𝑡+𝐹𝑃𝑡
, and 𝑅𝑡 =

𝑇𝑃𝑡
𝑇𝑃𝑡+𝐹𝑁𝑡

, are precision and recall at a
threshold 𝑡, respectively. Δ𝑅𝑖

𝑡 = 𝑅𝑖
𝑡 − 𝑅𝑖−1

𝑡 , is the change.
The area under the PR curve, such as in Fig. 4(b), represents the

trade-off between precision and recall across all confidence thresholds.
A large AP indicates that the model accurately and consistently detects
objects across various sizes and positions, with fewer FPs and missed
detections. When multiple IoU thresholds are used, e.g., from 0.50 to
0.95 in an increment of 0.05, AP is computed as follows:

𝐴𝑃𝑡 =
1
10

0.95
∑

𝑡=0.5
𝐴𝑃𝑡, (2)

where ̃𝑡 indicates a threshold range, which varies from 0.50 to 0.95 with
a step size of 0.05 across 10 thresholds. Fig. 5 illustrates the categoriza-
tion of TPs and FPs from the detected bounding boxes across different
IoU thresholds. As the IoU threshold increases, the condition for TPs
becomes stricter, resulting in fewer TPs and an increase in FP. At the
threshold of 75, only two bounding boxes meet the requirement (dis-
played in red), while at the threshold of 95, all boxes fail to meet the
criterion. 𝐴𝑃50∶95 emphasizes balance and consistency.

Fig. 5 presents the precision-recall curves for the example image
across different IoU thresholds ranging from 0.50 to 0.95 in increments

Fig. 5. PR Curve at IoU thresholds from 0.50 to 0.95 in steps of 0.05.

of 0.05. Solid lines represent the scores of precision and recall, rang-
ing from 0 to 1.0. As the IoU threshold becomes stricter, the number
of TP reduces, leading to drops in both precision and recall limits. The
decrease in precision and recall scores is also visible with the shrinking
of the PR curve at the higher thresholds. In this scenario, any threshold
higher than 0.85 has no bounding boxes satisfying the criteria to be a
TP and labeled as FPs. Additionally, the lack of TP around ground truths
increases FNs, thereby reducing recall scores. While the lower threshold
values yield higher AP scores due to more lenient matching, calculating
the average across all thresholds provides a more comprehensive score
that accounts for imbalances in the overall distribution of scores.

𝐴𝑃50 signifies at least 50% overlap with the ground truth. While
𝐴𝑃50∶95 provides an integrative view of detection across a range of IoU
thresholds, 𝐴𝑃50 highlights the trade-off between sensitivity and local-
ization. For example, a high 𝐴𝑃50 with a low 𝐴𝑃50∶95 indicates that
the method struggles to localize its detections accurately. Conversely,
a low 𝐴𝑃50 with a high 𝐴𝑃50∶95 indicates fewer detections with more
precise bounding boxes. Similarly, we report the average recall (AR) as
follows:

𝐴𝑅𝑡 =
1
𝑁

𝑁
∑

𝑐=1
𝑅𝑘
𝑡,𝑐 , and 𝐴𝑅𝑡 =

1
10

0.95
∑

𝑡=0.5
𝐴𝑅𝑡, (3)

where 𝑁 represents the number of classes at threshold t and top k
(k=100) proposals.

Besides AP and AR metrics, we also report the 𝐹1 score that computes
the harmonic mean of precision and recall over a range of IoU thresholds
as follows:

𝐹1𝑡 =
1
10

0.95
∑

𝑡=0.5

2𝑃𝑡𝑅𝑡
𝑃𝑡 + 𝑅𝑡

. (4)

4. Results and discussion

4.1. Experimental settings

The raw images from the xView and SkySat are cropped into tiles
(images) of size 512 × 512. If the image size is a multiple of 512 in both
height and width, the tiles are cropped without overlaps. Otherwise, we
compute the number of tiles by rounding the division of the height (or
width) by 512 to the larger integer and perform cropping accordingly.
Hence, overlaps between tiles are allowed. This ensures the complete
coverage of the image by the cropped tiles with a relatively small over-
lap. For each dataset, the processed images are split into two parts, with
70% for training and the rest for validation. Table 4 lists the volume
of cropped images. We conducted 6-fold cross-validation and report the
average performance in our experiments. The number of training images
and validation images is per fold in cross-validation. Image augmenta-
tion is applied through random flipping with a probability of 50%.

Expert Systems With Applications 307 (2026) 131061

6

X. Yuan et al.

Table 4
Experimental data for training and validation.

 Number of Images Number of Images
 Dataset Raw Processed Training Validation
 xView 1413 9054 7545 1,509
 SkySat 34 66 55 11
 DOTA 1869 7,148 4,765 2,383

Table 5
Network hyperparameters after fine-tuning using Optuna. Learning Rate
(LR): 10−4; Batch Size (BS); Range of Anchor Box Size (RABS) starting
from 10; number of queries (NQ); Decay: 10−4; Iteration (Itr.): 103.
 Method LR BS RABS NQ Decay Mom. Itr.
 Range (min) 0.1 1 10 50 0.001 0.7 –
 Range (max) 100 32 400 400 100 0.99 –
 SSD 7.00 32 300 – 0.139 0.8 20
 Fas. R-CNN 38.10 16 90 – 0.0285 0.90 270
 Cas. R-CNN 91.00 16 90 – 0.0279 0.90 270
 YOLOv11 1.01 8 – – 5 0.89 94
 RT-DETR 7.68 3 – 300 9.88 0.92 252
 Def. DETR 1.19 4 – 228 55.70 0.90 252
 FFCA-YOLO 100 16 – – 50 0.97 29
 FocusDet 100 16 – – 50 0.97 59

SSD is trained for 20,000 iterations with learning steps at 6000 and
8,000. It has seven layers, with a spatial resolution of the feature maps
decreasing by a factor of 2 from 26. The stride per layer is calculated
by dividing the image size by the size of the feature map at each layer.
Faster R-CNN and Cascade R-CNN have feature pyramid network mod-
ules with multi-scale incorporated to enhance the feature maps extracted
by the backbone. The region proposal threshold is 0.5, and anchors equal
to or greater than the threshold are considered to contain valid objects.
Faster R-CNN is trained for 10,000 iterations, and Cascade R-CNN is
trained for 20,000 iterations. FFCA-YOLO was trained for 100 epochs,
and FocusDet was trained for 200 epochs. Both methods were trained
on the xView dataset with a batch size of 16.

Optuna (Akiba et al., 2019) is used to fine-tune the models for small
object detection through Bayesian optimization. Table 5 summarizes the
hyperparameters of the compared methods after fine-tuning. The first
two rows are the lower and upper limits of the search space in the tun-
ing process. The dashes indicate non-existent parameters for the meth-
ods. For example, YOLOv11 determines the number of queries based
on the feature maps; hence, the number of queries is omitted. Label-
studio (Tkachenko et al., 2020–2025) is used for annotating the SkySat
dataset. The SSD and YOLO methods use VGG-16 and C3k2 as back-
bones, respectively, while the rest use ResNet-50 as the backbone.

4.2. Anchor box size

Among the anchor-based methods, Faster R-CNN and Cascade R-CNN
utilize anchor boxes to generate region proposals through RPN modules
for object detection. The RPN creates an anchor box for each aspect ratio
at each location and scale of the feature maps. Similarly, SSD generates
an anchor box of an aspect ratio across each feature map.

Table 6 reports the average AP, AR, and F1 of various aspect ratios at
an anchor box size of 90, together with the standard deviation in paren-
theses. Following the distribution of aspect ratio shown in Fig. 3(b), we
evaluate the methods using aspect ratios from 0.55 to 0.95. We use a set
of three aspect ratios to create anchor boxes that balance between cover-
age in capturing diverse shapes and additional computational overhead.
For example, in the case of 0.65± 0.1, three aspect ratios are used: 0.55,
0.65, and 0.75. We calculate the AP, AR, and F1 using the final bounding
boxes obtained from the anchor-based methods. The best and second-
best scores are highlighted in boldface and underline, respectively. In
addition, the best scores from each method in italics provide further
detail.

Table 6
AP, AR, and F1 using different aspect ratios.

 Aspect 50 50:95
 Method ratio AP AR F1 AP AR F1

 0.65 57.40 70.74 66.42 21.27 32.51 31.13
±0.1 (2.57) (3.95) (1.42) (0.80) (1.54) (0.50)

 Faster 0.75 56.57 71.38 65.77 20.73 32.52 30.58
 R-CNN ±0.1 (1.87) (2.61) (0.66) (0.42) (0.73) (0.37)

 0.85 57.57 72.27 65.88 21.97 33.16 30.84
±0.1 (1.51) (2.70) (0.53) (0.12) (0.61) (0.41)
 0.65 51.90 67.94 59.83 19.90 31.58 28.89
±0.1 (1.77) (2.70) (1.13) (0.67) (1.13) (0.44)

 Cascade 0.75 51.83 67.87 59.94 19.33 32.28 28.88
 R-CNN ±0.1 (1.96) (2.40) (1.18) (0.74) (0.28) (0.38)

 0.85 52.80 68.02 59.65 19.90 31.59 28.74
±0.1 (1.95) (2.60) (1.28) (0.78) (1.09) (0.51)
 0.65 7.67 15.97 16.00 1.93 4.03 5.67
±0.1 (5.42) (11.20) (11.30) (1.37) (3.43) (4.01)
 0.75 9.27 24.09 21.10 2.23 7.93 7.07

 SSD ±0.1 (2.23) (3.86) (3.33) (0.61) (1.48) (1.29)
 0.85 9.63 21.22 22.49 2.43 7.13 7.87
±0.1 (3.08) (6.56) (0.14) (0.84) (2.50) (0.12)

For each method, aspect ratios in the range of 0.75 to 0.95, i.e.,
0.85±0.1, yield the best performance. This is quite consistent for all
three methods. However, the performance difference is small, especially
for Faster R-CNN and Cascade R-CNN. This could be attributed to the
regression head used in both methods. SSD, on the other hand, is more
influenced by different aspect ratios. While 0.75±0.1 yields higher AR
scores, the slightly lower AP score indicates a greater number of false
positives from the background classes. Additionally, the F1 score dis-
parity in SSD is more pronounced with greater sensitivity, portraying a
lower balance of precision and recall at lower aspect ratios. In the rest
of our experiments, aspect ratios of 0.75, 0.85, and 0.95 are used to
maintain consistent performance across the anchor-based methods.

Table 7 reports the AP, AR, and F1 of the three methods using dif-
ferent anchor box sizes. The max size represents the upper limit of the
anchor box size. In our experiments, the anchor box size varies from 10
to the upper limit. We conduct 6-fold cross-validation and report the
average and standard deviation. As shown in the table, Faster R-CNN
and Cascade R-CNN yield better results with a smaller anchor box size
at 90, whereas SSD achieves better performance when using a larger
anchor box size (300 or 400). However, the performance of SSD is sig-
nificantly worse than the two R-CNN methods, and the average AP, AR,
and F1 are less than one-fifth of those of the R-CNNs. Despite smaller
anchor boxes often achieving a better performance, the differences are
small.

The significant disparity of AP50 and AP50∶95 indicates that all three
methods face localization and misalignment issues. While the R-CNN
methods are more consistent with localization, there is a drop in AP
from 300 to 400 due to the number of objects with sizes greater than
300 being in the minority, as shown in Fig. 3(a). Also, large anchor
boxes often lead to a loose fit to the objects, resulting in decreased per-
formance. Their F1 scores are less than ARs, indicating a higher rate
of false positives, which in turn causes lower precision. While SSD has
consistent detections at a lower anchor box size of 90, the rate of in-
crease of AR is greater than F1, indicating a more significant impact
from misalignment and false positives.

4.3. Region proposal

Table 8 reports the average AP, AR, and F1 of Faster R-CNN and Cas-
cade R-CNN by varying the threshold for the region proposal network
from 0.5 to 0.9. Both Faster R-CNN and Cascade R-CNN achieve their
best performance at a threshold of 0.5, which generates more positive
proposals. Compared to Cascade R-CNN, Faster R-CNN exhibits better

Expert Systems With Applications 307 (2026) 131061

7

X. Yuan et al.

Table 7
AP, AR, and F1 using different anchor box sizes.

 Max 50 50:95
 Method size AP AR F1 AP AR F1

 90 61.65 73.99 69.44 23.32 35.78 32.97
 (3.22) (3.09) (2.07) (1.30) (1.77) (1.09)

 200 60.48 74.33 68.26 22.05 34.80 31.51
 Faster (2.75) (3.45) (1.69) (1.08) (1.59) (0.88)
 R-CNN 300 60.75 74.06 68.55 22.25 34.95 31.86

 (3.02) (3.00) (1.81) (1.28) (1.51) (1.05)
 400 59.83 74.11 68.08 21.80 34.90 31.56

 (2.94) (2.97) (1.97) (1.04) (1.49) (0.93)
 90 55.60 70.31 63.22 21.53 33.93 30.71

 (2.12) (3.09) (1.29) (0.90) (1.55) (0.68)
 200 53.93 69.63 62.12 20.07 32.33 29.24

 Cascade (2.29) (3.15) (1.21) (0.90) (1.56) (0.59)
 R-CNN 300 53.80 69.81 62.05 20.10 32.33 29.19

 (2.41) (3.14) (1.43) (1.11) (1.56) (0.70)
 400 53.53 69.45 61.56 19.87 32.03 28.89

 (2.46) (3.25) (1.59) (1.02) (1.71) (0.83)
 90 10.43 22.31 22.45 2.58 7.52 7.69

 (1.95) (3.72) (4.95) (0.45) (1.11) (1.49)
 200 10.00 23.46 21.67 2.43 7.95 7.35

 SSD (2.26) (4.44) (3.76) (0.51) (1.43) (1.17)
 300 13.15 27.61 25.89 3.35 9.07 9.16

 (1.37) (2.66) (2.62) (0.30) (0.99) (0.94)
 400 13.35 29.09 26.85 3.28 10.17 9.41

 (2.75) (4.49) (3.42) (0.71) (1.63) (1.27)

Table 8
AP, AR, and F1 using different thresholds for region proposal.

 50 50:95
 Method Thres. AP AR F1 AP AR F1

 0.5 61.65 73.99 69.44 23.32 35.78 32.97
 (3.22) (3.09) (2.07) (1.30) (1.77) (1.09)

 0.6 57.87 72.17 68.01 21.73 33.67 32.17
 Faster (3.16) (2.69) (1.72) (1.10) (1.18) (0.75)
 R-CNN 0.7 58.10 72.18 68.10 21.97 33.67 32.24

 (2.31) (2.84) (1.19) (0.78) (1.13) (0.39)
 0.8 57.10 71.48 67.93 20.67 32.23 32.17

 (2.74) (2.37) (1.40) (0.78) (0.78) (0.51)
 0.9 56.10 71.56 68.18 19.97 32.07 32.37

 (1.91) (2.55) (1.38) (0.85) (1.18) (0.70)
 0.5 55.60 70.31 63.22 21.53 33.93 30.71

 (2.12) (3.09) (2.07) (0.90) (1.55) (0.68)
 0.6 54.90 70.33 56.84 21.47 33.27 25.16

 Cascade (1.96) (3.04) (1.33) (0.86) (1.39) (0.81)
 R-CNN 0.7 54.83 70.11 56.14 21.33 33.03 24.72

 (2.08) (2.92) (1.54) (0.90) (1.35) (1.07)
 0.8 53.63 69.76 61.59 20.70 32.57 29.85

 (3.32) (3.87) (2.73) (1.42) (1.95) (1.40)
 0.9 52.90 68.91 60.64 20.40 32.20 29.33

 (3.34) (3.76) (2.78) (1.61) (1.98) (1.51)

performance with an AP50 of 61.65 and AR50 of 73.99, which is about
10% and 5% improvement, respectively.

A large RPN threshold often results in fewer proposed regions that
satisfy the criterion, thereby reducing the number of positives and low-
ering classification accuracy. This is exhibited by the discernible de-
crease in 𝐴𝑃50 and 𝐴𝑅50 from Faster R-CNN as the threshold increases
from 0.5 to 0.9. However, the drop in performance is less significant in
𝐴𝑃50∶95 and 𝐴𝑅50∶95 compared to 𝐴𝑃50 and 𝐴𝑅50. While 𝐴𝑃50 and 𝐴𝑅50
decrease when larger thresholds are used, 𝐴𝑃50∶95 and 𝐴𝑅50∶95 remain
consistent, indicating a shift towards the more localized predictions with
large thresholds. Faster R-CNN achieves a better F1 score compared to
Cascade R-CNN. However, at a stricter RPN threshold of 0.9, AR50:95
drops below 𝐹150∶95, indicating weaker localization compared to lower
thresholds. Faster R-CNN has more consistent F1 compared to Cascade
R-CNN due to proportional linear shifts in precision and recall.

Table 9
AP, AR, and F1 using different numbers of sampling points.

 Samp. 50 50:95
 Method pts AP AR F1 AP AR F1

 4 67.47 77.90 77.22 27.65 38.80 36.07
 (2.91) (3.40) (1.74) (1.26) (1.72) (0.97)

 RT-DETR 8 68.20 78.31 72.97 28.15 39.22 36.48
 (3.06) (3.44) (1.85) (1.14) (1.77) (1.04)

 16 61.67 73.07 67.84 24.24 34.97 32.94
 (2.13) (2.96) (0.93) (0.88) (1.11) (0.35)

 32 64.90 75.58 70.46 26.57 37.57 34.93
 (3.51) (3.68) (2.27) (1.61) (1.89) (1.24)

 4 50.70 75.48 86.39 18.90 36.52 46.71
 (2.55) (3.48) (0.66) (1.13) (1.63) (0.66)

 8 62.20 74.35 85.79 23.43 36.45 46.09
 (2.72) (2.93) (0.20) (1.05) (1.55) (0.27)

 Def. 16 60.13 75.28 86.14 22.60 35.27 46.33
 DETR (2.55) (1.57) (0.52) (1.12) (1.60) (0.36)

 32 62.32 75.28 86.36 23.52 36.42 46.54
 (2.87) (3.48) (0.57) (1.08) (1.64) (0.59)

Cascade R-CNN is more consistent than Faster R-CNN, as its perfor-
mance drop at larger thresholds is negligible, and it achieves the second-
best AR50∶95 at a threshold of 0.5. This can be attributed to the cascaded
modules that refine across multiple thresholds. The cascaded decoders
used for refinement also inject more hypotheses through resampling at
each head based on the refined proposals. Such refinement also leads to
uneven PR curves and inconsistencies in the F1 score. Overall, restrict-
ing the region proposal network to more localized proposals hinders the
learning process by ignoring partial proposals.

4.4. Attention mechanism

Deformable DETR, RT-DETR, and YOLOv11 leverage attention with
variable and fixed numbers of sampling points. Table 9 reports the aver-
age AP and AR of deformable DETR and RT-DETR at different sampling
points. Both methods use eight decoder attention heads. The influence
of the number of sampling points is inconsistent between the two meth-
ods. RT-DETR is more sensitive to the number of sampling points due
to its receptive field coverage across multiple decoder layers. The wider
receptive field allows the method to detect more objects, resulting in
better AR compared to deformable DETR. When the number of sam-
pling points is 8, both methods produce better results across AP, AR,
and F1. RT-DETR achieves the best and second-best results at 8 and 4,
respectively. Yet, increasing the number of sampling points incurs more
computational overhead without additional benefits and a drop in F1
scores.

The number of decoder heads is another factor of attention. Table 10
reports the average AP, AR, and F1 by changing the number of heads
while keeping the number of sampling points at 8. Unlike DETR meth-
ods, YOLOv11 uses fixed grid-based sampling from each attention head
to process queries. Hence, YOLOv11 is not included in Table 9.

Among the three methods, RT-DETR achieves the best performance
using 8 decoder heads (highlighted with boldface fonts in Table 9). The
RT-DETR employs Hungarian matching instead of NMS, enabling im-
proved performance at lower thresholds, as indicated by the number of
decoder heads. The large difference in both AP and AR across different
decoder heads suggests that RT-DETR is more sensitive to the number
of heads, exhibiting a greater standard deviation. Deformable DETR ex-
hibits similar behavior to RT-DETR due to its sparse attention. However,
deformable DETR has the best balance between precision and recall,
with higher F1 scores among the three methods and stability compara-
ble to YOLOv11. YOLOv11 provides more precise and consistent detec-
tions with the same number of heads. A larger number of decoder heads
results in little performance gain.

Expert Systems With Applications 307 (2026) 131061

8

X. Yuan et al.

Table 10
AP, AR, and F1 using different numbers of decoder attention heads.

 # of 50 50:95
 Method Heads AP AR F1 AP AR F1

 4 63.67 74.79 69.42 25.63 36.73 34.13
 (3.77) (4.15) (2.68) (2.08) (2.39) (1.72)

 RT-DETR 8 68.20 78.31 72.97 28.15 39.22 36.48
 (3.06) (3.44) (1.85) (1.14) (1.77) (1.04)

 16 58.03 72.04 65.44 22.53 34.80 31.44
 (6.19) (4.98) (3.97) (3.10) (2.82) (2.46)

 4 60.33 73.12 85.89 22.70 35.13 46.16
 (2.64) (3.31) (0.55) (1.07) (1.45) (0.40)

 Def. 8 62.20 74.35 85.79 23.43 36.45 46.09
 DETR (2.72) (2.93) (0.20) (1.05) (1.55) (0.27)

 16 60.53 73.42 86.03 22.77 35.30 46.14
 (2.68) (3.28) (0.50) (1.22) (1.50) (0.36)

 4 67.33 76.54 72.56 28.53 39.07 36.73
 (2.65) (3.39) (1.27) (1.03) (1.60) (0.47)

 YOLO 8 67.23 76.48 72.61 28.57 39.13 36.81
 v11 (2.68) (3.36) (1.42) (0.92) (1.51) (0.51)

 16 67.30 76.46 72.53 28.53 39.10 36.81
 (2.60) (3.29) (1.43) (1.01) (1.56) (0.48)

Overall, a smaller number of decoder heads, e.g., 8 or 4, benefits
the detection of small objects. Many decoder heads may lead to frag-
mented feature representations that result in a drop in AR, indicating a
decrease in valid detections. A balance between the number of sampling
points and decoder heads helps avoid extraneous computation costs and
performance drop.

4.5. Single- and multi-scale features

Table 11 reports the average AP, AR, F1, and standard deviations
from methods that have single and multi-scale functionality through
implementations of the pyramid network modules. In the case of using
single-scale features, FPN modules are removed from the network. Using
single-scale features, Faster R-CNN achieves the best performance with
the least difference in F1 scores from multi-scale, which is attributed
to its independent local feature refinement of each region by the RPN
and ROI modules. However, comparing the performance of each method
when single- and multi-scale features are used, implementing multi-
scale features demonstrates an unarguable advantage. Using multi-scale
and feature fusion by FPN enhances the detection of small objects, re-
sulting in increased performance across all methods. Among all cases,
YOLOv11 using multi-scale features (i.e., FPN) yields the best perfor-
mance.

It is interesting to note that YOLOv11 and the DETR methods have at
least a 20% boost in performance from using multi-scale feature fusion.
While adding multi-scale and feature fusion techniques allows better
detection of small objects, the amount of improvement varies, as shown
in Table 11.

4.6. Performance comparison and model generalization

We conduct a quantitative and qualitative performance comparison
of all six methods. Besides a performance comparison using xView data,
our study includes method generalization via transfer learning using
SkySat data. The number of backbone layers that are frozen is reported
for each method when applying the trained weights for fine-tuning the
SkySat dataset. Models are trained using xView examples; the same mod-
els are then applied to the validation sets of xView and SkySat for per-
formance comparison and understanding the generalization ability. In
addition, we report the computational costs in terms of the number of
parameters, memory usage, and time. Each method is trained with its
best combination of hyperparameters as shown in Table 12. SSD has its
range of anchor box sizes set to 300, while the R-CNN methods have

Table 11
AP, AR, and F1 using single and multi-scale.

 50 50:95
 Scale Method AP AR F1 AP AR F1

 Faster 43.90 63.74 54.40 13.77 25.55 22.56
 R-CNN (0.86) (2.00) (1.19) (0.69) (0.12) (1.00)

 Single Cascade 6.10 23.86 17.64 1.23 6.03 4.50
 scale R-CNN (0.24) (1.69) (0.31) (0.05) (0.62) (0.12)

 YOLOv11 1.60 3.42 4.25 0.43 0.9 1.17
 (1.44) (3.23) (2.71) (0.36) (0.88) (0.80)

 Def. DETR 12.93 38.45 53.50 2.67 11.10 17.96
 (1.72) (1.96) (1.28) (0.37) (0.86) (0.48)

 RT-DETR 19.30 38.52 31.46 4.70 12.53 10.32
 (4.53) (3.61) (4.13) (1.59) (2.35) (2.13)

 Faster 56.80 71.74 66.07 20.93 32.83 30.79
 R-CNN (0.92) (2.98) (0.15) (0.41) (1.22) (0.27)
 Cascade 47.93 65.16 41.20 17.97 29.57 15.76

 Multi- R-CNN (2.12) (2.52) (1.44) (0.86) (1.19) (0.73)
 scale YOLOv11 63.47 75.19 70.40 26.27 37.93 34.92

 (1.74) (3.31) (1.14) (0.79) (1.48) (0.35)
 Def. DETR 58.63 71.93 84.96 20.70 32.63 43.07

 (3.50) (3.42) (0.31) (1.15) (1.74) (0.27)
 RT-DETR 61.70 73.88 67.78 24.50 36.07 33.08

 (2.37) (3.07) (1.12) (0.82) (1.36) (0.39)

Table 12
Network hyperparameters. RABS: Range of Anchor Box Size.

 Sampling Decoder Itr. Frozen
 Method RABS points heads (103) layers
 SSD 300 – – 20 13
 Fas. R-CNN 90 – – 270 49
 Cas. R-CNN 90 – 270 49
 FocusDet 326 - - 59 10
 FFCA-YOLO 326 - - 29 10
 YOLOv11 – 8 8 94 10
 RT-DETR – 8 8 252 13
 Def. DETR – 8 8 252 49

their range of anchor box sizes set to 90. The methods that use atten-
tion have the number of sampling points and decoder heads set to 8.
The number of iterations of training across the methods is represented
in the scale of 103.

Table 13 reports the average AP, AR, and F1 using the three datasets.
The standard deviations are also reported in parentheses. In our exper-
iments, models are trained from scratch using the xView dataset. For
DOTA and SkySat datasets, fine-tuning the trained models (from xView)
is performed due to the limited examples. The DOTA dataset has more
examples than the SkySat dataset, which demonstrates an advantage in
the refined models. The methods are in a descending order according to
the AP and AR results of the xView dataset.

Among all six methods, YOLOv11 achieves the best performance, ex-
hibiting the 9 best and 6 second-best scores out of 18 (AP, AR, and F1
combined). Its standard deviation is small and comparable to the other
methods, which demonstrates consistent performance. RT-DETR yields
a very competitive performance with 1 best and 7 second-best scores. In
addition, Deformable DETR and Faster R-CNN produce good results in
several cases. Overall, when there are a large number of training exam-
ples, e.g., the xView dataset, models with satisfactory performance can
be created from YOLOv11 and transformer-based methods. The margin
between the best and the second best is, although distinct, insignificant.

The results using DOTA and SkySat datasets demonstrate the trans-
ferability and generalization ability of the methods. In these experi-
ments, models are trained using the xView dataset and fine-tuned with
the examples of DOTA and SkySat. The overall performance of the meth-
ods using the DOTA dataset is comparable to the results of the mod-
els trained using the xView dataset. The fine-tuned YOLOv11 models
achieved a better performance than the ones trained with the xView
dataset, for example, 𝐴𝑃50 improves by 2.7% and 𝐴𝑃50∶95 improves by

Expert Systems With Applications 307 (2026) 131061

9

X. Yuan et al.

Table 13
AP, AR, and F1 for small object detection. The backbone network of YOLOv11
and SSD is C3k2 and VGG-16, respectively. The rest methods use ResNet-50 as
the backbone network. The number of parameters is in millions.

 50 50:95
 Data Method AP AR F1 AP AR F1

 YOLOv11 69.47 78.60 73.97 29.58 40.30 37.63
 (3.07) (3.47) (1.81) (1.40) (1.78) (1.04)

 RT-DETR 68.20 78.31 72.97 28.15 39.22 36.48
 (3.06) (3.44) (1.85) (0.73) (1.77) (1.04)

 Def. DETR 62.20 74.35 85.79 23.43 36.45 46.09
 (2.72) (2.93) (0.20) (1.05) (1.55) (0.27)

 xView Faster 61.65 73.99 69.44 23.32 35.78 32.97
 R-CNN (3.22) (3.22) (2.07) (1.30) (1.77) (1.09)
 Cascade 55.60 70.31 63.22 21.53 33.93 30.71
 R-CNN (2.12) (3.09) (2.07) (0.90) (1.55) (0.68)
 SSD 13.15 27.61 25.89 3.35 9.07 9.16

 (1.37) (2.66) (2.62) (0.30) (0.99) (0.94)
 FFCA-YOLO 63.57 74.43 69.40 25.33 35.80 33.59

 (2.57) (3.31) (1.52) (0.90) (1.47) (0.64)
 FocusDet 11.37 34.16 22.80 8.50 11.20 7.28

 (4.04) (7.12) (5.50) (0.87) (2.62) (1.91)
 YOLOv11 71.30 76.47 76.18 36.80 44.10 48.29

 (2.20) (2.55) (0.99) (1.21) (1.57) (0.67)
 RT-DETR 68.46 75.80 72.67 32.97 41.73 43.77

 (1.32) (2.38) (0.48) (0.75) (1.40) (0.13)
 Def. DETR 63.50 72.55 89.41 25.73 35.60 53.99

 (1.87) (2.45) (0.48) (0.85) (1.22) (0.46)
 DOTA Faster 65.00 73.62 69.66 29.73 38.73 41.59

 R-CNN (1.59) (2.46) (0.92) (0.84) (1.40) (0.55)
 Cascade 67.80 75.17 73.44 33.90 42.10 46.04
 R-CNN (2.06) (2.79) (1.55) (0.92) (1.43) (0.78)
 SSD 5.30 17.76 14.23 1.43 6.23 4.60

 (0.45) (0.64) (0.69) (0.17) (0.29) (0.23)
 FFCA-YOLO 38.43 54.67 45.60 15.57 26.47 21.00

 (0.58) (1.31) (0.87) (0.24) (0.87) (0.41)
 FocusDet 11.73 31.65 22.69 3.10 11.93 7.71

 (0.70) (0.72) (0.63) (0.08) (0.37) (0.19)
 YOLOv11 14.75 38.63 23.91 5.33 14.30 8.89

 (10.91) (19.01) (9.87) (4.83) (8.33) (4.75)
 RT-DETR 11.78 24.67 18.01 5.53 25.48 9.92

 (7.81) (35.82) (10.18) (3.50) (19.51) (6.33)
 Def. DETR 4.65 16.67 11.70 1.46 6.60 4.66

 (4.67) (14.84) (11.25) (1.57) (5.07) (4.37)
 SkySat Faster 14.63 22.44 27.12 4.20 7.70 9.46

 R-CNN (7.78) (14.02) (11.93) (1.61) (4.00) (3.07)
 Cascade 6.67 16.97 15.76 1.73 5.57 5.14
 R-CNN (1.19) (5.99) (5.68) (0.33) (2.29) (1.92)
 SSD 0.43 6.32 3.07 0.18 2.07 1.06

 (0.45) (9.30) (2.64) (0.21) (3.02) (0.97)
 FFCA-YOLO 14.37 47.60 23.94 4.80 16.23 9.94

 (6.79) (26.47) (9.23) (1.55) (6.26) (2.63)
 FocusDet 0.15 2.23 1.42 0.03 0.52 0.41

 (1.23) (1.17) (0.62) (0.01) (0.06) (0.12)

24.4%. The standard deviations are in a similar range to the models
trained with the xView dataset. However, the evaluation results using
the SkySat show a significantly lower performance. For example, 𝐴𝑃50
of YOLOv11 reduces to 14.75% and 𝐴𝑃50∶95 reduces to 5.33%. This
is attributed to the small dataset for model fine-tuning. As shown in
Table 4, the SkySat dataset contains 55 training images, which is about
one percent of the training size of the DOTA. FFCA-YOLO exhibits a bit
better performance. Given that the target application of SkySat is de-
tecting bee boxes, which is quite different from the application of the
xView dataset, the generalization ability of all methods is limited. Ad-
ditionally, the training data size clearly has a significant impact on the
fine-tuned models.

Fig. 6 depicts six exemplary images of xView, SkySat, and DOTA with
the ground truth marked with green boxes. The results are shown in
Figs. 7–9, in which the predictions are depicted with red boxes. Because
detections are depicted with the ground truth (green boxes), in the case
of an ideal detection, the detection (red boxes) completely occludes the

Fig. 6. Exemplary images of xView (top), DOTA (middle), and SkySat (bottom).

ground truth. Any offset of detections and the ground truth indicates
disagreements and localization errors.

In the two xView cases (as shown in Fig. 7), YOLOv11 exhibits su-
perior performance in object detection and localization, which misses
three objects in the top case and detects all in the bottom case. RT-DETR
and Deformable DETR demonstrate excellent results with fewer missed
detections. However, the detections face greater localization errors in
the correct detections, as depicted by the misalignment of the red boxes
(the detections) and the green boxes (the ground truth) underneath in
the top case. False positives exist in the result of RT-DETR, as shown in
the bottom case. The anchor-based methods, including SSD and R-CNN-
based methods, face greater difficulty and generate many false positive
detections and misses. SSD struggles the most to maintain alignment
with its detections due to the usage of predefined anchor boxes, which
is evident from the large number of misaligned detections.

Similar patterns can be observed in the results of DOTA and SkySat
images, as shown in Figs. 8 and 9. However, as we have a much smaller
number of examples of the SkySat images, we observe a significant num-
ber of missing detections, especially in the case of densely clustered
small objects, as shown in the top cases of Fig. 9. Deformable DETR
completely misses all objects in the top case. R-CNN-based methods ap-
pear to have more detections, but many of the detections are false pos-
itives. RT-DETR, on the other hand, fails to detect the small objects in
the bottom case. Again, this signifies the importance of the volume of
training examples, especially for the transformer-based methods. Fig. 10
depicts the zoom-in view of a failure case of each method. The cases for
YOLOv11, FFCA-YOLO, Faster R-CNN, and FocusDet are dominated by
missed detections. The cases for Cascade R-CNN and Drformable DETR
are primarily false detections. The cases for SSD and RT-DETR are mix-
tures of false and missed detections.

Table 14 reports the model size and computational resources, in-
cluding VRAM size, GPU floating-point operations, and time used by
the six methods. The model size is represented by the number of param-

Expert Systems With Applications 307 (2026) 131061

10

X. Yuan et al.

Fig. 7. Results of small object detection on xView. Green and red boxes represent ground truth and detections, respectively.

Table 14
Computational efficiency.

 Para. VRAM (GB) GPU (GFLOPs) Time (s)
 Method # (M) Train Infer Train Infer Train Infer
 YOLOv11 25.37 4.15 0.69 607.66 55.73 56,104 44
 RT-DETR 67.75 9.02 2.51 931.86 298.50 67,345 19
 Def. DETR 40.95 3.59 1.56 785.69 324.11 46,500 59
 Fas. R-CNN 41.29 10.31 0.54 387.70 245.11 590 36
 Cas. R-CNN 69.09 18.99 0.90 441.51 262.26 1507 83
 SSD 24.18 16.77 0.28 525.29 175.08 2261 235
 FFCA-YOLO 7.13 2.72 1.01 31.60 15.80 9,211 13
 FocusDet 2.33 16.70 2.96 14.70 7.40 8,796 9

eters in millions, while the other three are represented by memory size,
computation cost, and the time taken for training and inference per im-
age. The memory is the peak GPU VRAM utilization of the method for

processing a single 512 × 512 image with a batch size of 1 for compar-
ison. The training and inference times are the total time taken to train
the model in seconds. Our experiments are conducted on a system with
an RTX 4090 GPU with 24GB of VRAM, an Intel i9 CPU, 64GB of mem-
ory, and Ubuntu. The compared methods are programmed with Python
3.8, PyTorch 2.4.2, and CUDA 11.8.

Among the methods compared, YOLOv11 and SSD stand out for their
relatively small parameter sizes of around 25 million, making them par-
ticularly attractive for edge deployments such as satellites, drones, or
ground stations where onboard memory is limited. In contrast, RT-DETR
and Cascade R-CNN require parameter counts in the upper 60 million
range due to their additional decoder layers and detection heads, which
place a heavier demand on storage and computational resources. Param-
eter size is a critical factor in deployment, as smaller models not only
reduce storage requirements but also allow for more efficient execution
on devices with restricted resources.

Expert Systems With Applications 307 (2026) 131061

11

X. Yuan et al.

Fig. 8. Results of small object detection on DOTA. Green and red boxes represent ground truth and detections, respectively.

While SSD benefits from its compact size, it suffers from a high train-
ing memory footprint, which makes on-device training less practical.
Nevertheless, its inference memory footprint is relatively small, which
makes SSD useful for holding pre-trained models tailored to detecting
small objects of consistent shapes. In contrast, two-stage detectors such
as Faster R-CNN and Cascade R-CNN require substantial memory during
training because of the large number of proposals generated by the RPN.
Transformer-based approaches, e.g., RT-DETR and Deformable DETR,
shift the burden to inference, consuming more memory because of cross-
and self-attention mechanisms. YOLOv11 strikes a middle ground, re-
quiring only 4.15 GB for training and 0.69 GB for inference, while De-
formable DETR asks for a smaller training memory usage at 3.59 GB.
These characteristics make YOLOv11 and Deformable DETR particularly
suitable for edge devices that must handle both training and inference
within strict memory limits.

The computational cost also plays a decisive role in determining de-
ployment strategies. Transformer-based models are the most expensive
in terms of GPU operations, with RT-DETR and Deformable DETR re-
quiring 931.86 and 785.69 GFLOPs, respectively, during training. Their
inference costs are similarly high, at 298.50 and 324.11 GFLOPs, com-
pared to convolutional models. By contrast, R-CNN and SSD methods
achieve faster training despite their larger memory footprints. Faster
R-CNN, for instance, completes training in 590 seconds, followed by
Cascade R-CNN at 1507 seconds. Inference times, however, converge
more closely across methods. RT-DETR delivers the fastest inference
at 19 seconds, while Faster R-CNN follows at 36 seconds. YOLOv11,
though slower to train, is optimized for inference with a relatively fast
44-second runtime. Cascade R-CNN incurs additional delays due to its
complex detection heads, while SSD is hindered by its reliance on ex-
tensive pre- and post-processing.

Expert Systems With Applications 307 (2026) 131061

12

X. Yuan et al.

Fig. 9. Results of small object detection on SkySat. Green and red boxes represent ground truth and detections, respectively.

These trade-offs highlight distinctions between real-time and offline
use. For real-time deployment, such as onboard processing in satellites
or drones, fast inference and efficient memory use are paramount. RT-
DETR is particularly well-suited in this setting, combining rapid infer-
ence with high detection accuracy. YOLOv11 provides a balanced al-
ternative, especially when modest memory and reliable inference are
required without the need for frequent fine-tuning. SSD may also be vi-
able in real-time scenarios when a pre-trained model is sufficient, but
its limitations in on-device retraining make it less flexible. On the other
hand, for offline or batch analysis conducted at ground stations, resource
constraints are less restrictive, allowing heavier models to be used. Cas-
cade R-CNN and Faster R-CNN become more viable in such settings,
as their longer training times and higher memory requirements can be
absorbed by high-performance hardware. Similarly, transformer-based
models like RT-DETR and Deformable DETR excel in offline analysis,
where their computationally intensive architectures are supported by

dedicated GPUs, and their fast inference speeds help accelerate large-
scale data processing.

4.7. Discussion

Anchor-based detectors can identify small objects when anchor sizes
and aspect ratios are finely tuned, but this dependence limits their flex-
ibility. Misaligned anchors lead to false positives and missed detections,
especially in cluttered scenes, and stride constraints in models like SSD
further trade off spatial detail for efficiency. Because these methods rely
on dataset-specific anchor priors and strong gradient responses, they
show limited generalizability across domains.

R-CNN methods improve localization by refining region proposals
before classification, and their adaptive RoI pooling generally enhances
generalization. However, their performance drops in scenes with many
small, densely clustered objects. Fixed-size RoI pooling distorts tiny

Expert Systems With Applications 307 (2026) 131061

13

X. Yuan et al.

Fig. 10. Zoom-in view of a failure case of each method. Green and red boxes represent ground truth and detections, respectively.

features, suppressing true positives through NMS, as seen in both high-
resolution and lower-resolution datasets. Cascade R-CNN aggravates this
sensitivity because each stage depends on the quality of the previous
one; poor RPN proposals for small objects propagate errors, causing ei-
ther excessive or missed detections.

Anchor-free methods avoid handcrafted anchors by predicting boxes
from center points or queries. YOLOv11 improves small-object align-
ment through task-aligned and distribution focal loss but remains sensi-
tive to domain shifts. DETR-based models eliminate anchors using set-
based prediction and multiscale attention. Deformable DETR improves
generalization via sparse, multi-level sampling but can mishandle adja-
cent objects, leading to missed detections during Hungarian matching.
RT-DETR addresses these issues with adaptive query refinement, though
reducing the query for efficiency increases vulnerability to noisy gradi-
ents in cluttered backgrounds.

Occlusion and shadows challenge detections by introducing mislead-
ing edges. Attention-based models mitigate this by leveraging context.
YOLOv11’s localized attention helps isolate unobstructed regions but
struggles without long-range dependencies. Deformable DETR’s sparse
sampling recovers visible cues but often overlooks occluded objects in
dense scenes. RT-DETR is more robust due to its adaptive queries, which
better separate partially visible objects from background textures.

Post-processing plays a central role in many methods. Non-maximum
suppression in anchor-based and hybrid detectors removes redundant
boxes but can inadvertently eliminate true detections in crowded re-
gions. Although DETR-based models avoid it through Hungarian match-
ing, matching becomes costly and unstable when objects lie extremely
close to one another, resulting in miss-detections in dense clusters.

In summary, the employment of multiscale attention, context inte-
gration, and anchor-free prediction (e.g., variants of YOLO and DETR)
offers a balance of robustness, generalization, and small-object sensitiv-
ity across diverse remote-sensing imagery. For applications with vari-
able object scales or domain shifts, anchor-free and transformer-based
detectors are preferable because the mismatched anchors often cause
performance drops. When dealing with dense clusters of small objects,
methods with high spatial fidelity, such as anchor-free designs, tend to
outperform heavy cascades that amplify proposal errors. For imagery af-
fected by occlusion or shadows, contextual or adaptive-query reasoning

recovers signals from partially visible objects, which makes such meth-
ods (e.g., deformable and RT-DETR variants) better suited. In addition,
post-processing is an important design choice. Tuning NMS thresholds
or stabilizing Hungarian matching helps avoid misdetections, especially
in dense clusters.

5. Conclusion

This paper presents an empirical evaluation of deep learning meth-
ods for small object detection from satellite imagery. Small objects are
represented with a few pixels, and their detection faces great challenges
due to the lack of descriptive features. Drawing from existing surveys
and literature, we identified top-performing methods and conducted
a thorough empirical evaluation using xView, DOTA, and SkySat im-
ages. In addition to a comparison across all methods using two different
datasets, we investigate the impact of the choice of parameters and key
components, including anchor box size, region proposal thresholds, at-
tention mechanism, and feature fusion. We also compare the computa-
tional efficiency across models.

In our evaluation, YOLOv11 demonstrates a balance between per-
formance and localization. Anchor-based models such as SSD, Faster
R-CNN, and Cascade R-CNN remain highly sensitive to anchor box
size, often requiring extensive fine-tuning to adapt to different object
scales. While the inclusion of attention mechanisms and multi-scale
feature representations enhances detection accuracy, these improve-
ments come with diminishing returns relative to the computational
cost. Transformer-based models, particularly RT-DETR and Deformable
DETR, highlight both the promise and limitations of attention-driven
designs. RT-DETR performs robustly under conditions of partial obstruc-
tion from vegetation or shadows, whereas Deformable DETR struggles
with dense clusters of small objects and shows a higher susceptibility to
dataset-specific overfitting. These findings point to a trade-off: anchor-
based approaches demand careful design and tuning of prior assump-
tions, while transformer-based methods require substantially greater
computational resources. Memory efficiency also remains uneven across
architectures: SSD and R-CNN variants exhibit heavier memory foot-
prints during training despite shorter runtimes, whereas attention-based
models incur higher computational costs but deliver faster inference,

Expert Systems With Applications 307 (2026) 131061

14

X. Yuan et al.

with RT-DETR and YOLOv11 achieving inference times of 19s and 44s,
respectively, close to Faster R-CNN’s 36s.

The development of small object detection methods is moving to-
ward hybrid architectures that integrate the strengths of convolutional
backbones with attention mechanisms. YOLOv11 exemplifies this by in-
corporating attention into an efficient single-stage framework, while RT-
DETR demonstrates how transformers can be optimized for faster infer-
ence without prohibitive computational costs. A second trend lies in
improving efficiency through model compression, pruning, and quan-
tization, which will be crucial for edge deployments on satellites and
drones where resources are severely constrained. Additionally, emerg-
ing research is exploring task-specific optimizations, such as context-
aware modules for dense object scenes and adaptive feature selection
mechanisms for small-scale structures. Finally, the field is shifting to-
ward multi-modal and cross-domain learning, where detectors can lever-
age complementary sources such as multispectral imagery.

In addition, the development of small object detection is likely to
be shaped by advances in foundation models and large-scale pretrain-
ing. Current detectors are still limited by their reliance on task-specific
architecture and labeled datasets, which can constrain generalization
across domains. Foundation models trained on vast amounts of multi-
modal data, including images, text, and video, offer a pathway to richer
feature representations that may better capture the subtle cues of small
objects. Self-supervised learning approaches are also gaining traction,
enabling models to learn from large pools of unlabeled data and reduc-
ing dependence on costly annotations. This trend could be particularly
transformative for small object detection, where annotated examples are
often scarce and expensive.

Ultimately, small object detection is moving toward a paradigm that
blends efficiency, generalization, and multimodal reasoning. The con-
vergence of foundation models, hybrid architectures, and cross-domain
learning will likely define the next generation of detectors, making them
more robust to environmental variability and across platforms ranging
from satellites and drones to large-scale ground systems.

CRediT authorship contribution statement

Xiaohui Yuan: Concept, Experiment, Validation, Writing
manuscript, Resource.; Aniv Chakravarty: Concept, Software de-
velopment, Experiment, Writing manuscript.; Elinor M. Lichtenberg:
Validation, Writing manuscript.; Lichuan Gu: Validation, Writing
manuscript.; Zhenchun Wei: Validation, Writing manuscript.; Tian
Chen: Validation, Writing manuscript.

Data availability

Data will be made available on request.

Declaration of competing interest

The authors declare that they have no known competing financial
interests or personal relationships that could have appeared to influence
the work reported in this paper.

References

Akiba, T., Sano, S., Yanase, T., Ohta, T., & Koyama, M. (2019). Optuna: A next-generation
hyperparameter optimization framework. In The 25th ACM SIGKDD international con-
ference on knowledge discovery & data mining (pp. 2623–2631).

Amjoud, A. B., & Amrouch, M. (2023). Object detection using deep learning, CNNs and
vision transformers: A review. IEEE Access, 11, 35479–35516.

Cai, Z., & Vasconcelos, N. (2018). Cascade r-CNN: Delving into high quality object de-
tection. In 2018 IEEE/CVF Conference on computer vision and pattern recognition (pp.
6154–6162).

Carion, N., Massa, F., Synnaeve, G., Usunier, N., Kirillov, A., & Zagoruyko, S. (2020). End-
to-end object detection with transformers. In 16th European conference proceedings, part
i (pp. 213–229). Glasgow, UK.

Cheng, G., Yuan, X., Yao, X., Yan, K., Zeng, Q., Xie, X., & Han, J. (2023). Towards large-
scale small object detection: Survey and benchmarks. IEEE Transactions on Pattern Anal-
ysis and Machine Intelligence, 45(11), 13467–13488.

Dai, J., Qi, H., Xiong, Y., Li, Y., Zhang, G., Hu, H., & Wei, Y. (2017). Deformable convo-
lutional networks. In IEEE international conference on computer vision (pp. 764–773).

Ding, J., Xue, N., Xia, G.-S., Bai, X., Yang, W., Yang, M., Belongie, S., Luo, J., Datcu, M.,
Pelillo, M., & Zhang, L. (2021). Object detection in aerial images: A large-scale bench-
mark and challenges. IEEE Transactions on Pattern Analysis and Machine Intelligence,
(pp. 1–1).

Girshick, R. (2015). Fast r-CNN. In IEEE international conference on computer vision (pp.
1440–1448).

Girshick, R., Donahue, J., Darrell, T., & Malik, J. (2014). Rich feature hierarchies for accu-
rate object detection and semantic segmentation. In 2014 IEEE Conference on computer
vision and pattern recognition (pp. 580–587).

Gui, S., Song, S., Qin, R., & Tang, Y. (2024). Remote sensing object detection in the deep
learning era-a review. Remote Sensing, 16(2).

He, L.-h., Zhou, Y.-z., Liu, L., Cao, W., & Ma, J.-h. (2025). Research on object detection
and recognition in remote sensing images based on YOLOv11. Scientific Reports, 15(1),
14032.

Huang, G., Laradji, I., Vázquez, D., Lacoste-Julien, S., & Rodríguez, P. (2023). A survey
of self-supervised and few-shot object detection. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 45(4), 4071–4089.

Jocher, G., & Qiu, J. (2024). Ultralytics YOLO11. https://github.com/ultralytics/
ultralytics.

Kang, J., Tariq, S., Oh, H., & Woo, S. S. (2022). A survey of deep learning-based
object detection methods and datasets for overhead imagery. IEEE Access, 10,
20118–20134.

Lam, D., Kuzma, R., McGee, K., Dooley, S., Laielli, M., Klaric, M., Bulatov, Y., & Mc-
Cord, B. (2018). xview: Objects in context in overhead imagery. arXiv preprint
arXiv:1802.07856.

Li, Y., Miao, N., Ma, L., Shuang, F., & Huang, X. (2023). Transformer for object de-
tection: Review and benchmark. Engineering Applications of Artificial Intelligence, 126,
107021.

Li, Z., Wang, Y., Zhang, N., Zhang, Y., Zhao, Z., Xu, D., Ben, G., & Gao, Y. (2022). Deep
learning-based object detection techniques for remote sensing images: A survey. Re-
mote Sensing, 14(10).

Lin, T.-Y., Dollár, P., Girshick, R., He, K., Hariharan, B., & Belongie, S. (2017). Feature
pyramid networks for object detection. In IEEE conference on computer vision and pattern
recognition (pp. 936–944).

Lin, T.-Y., Maire, M., Belongie, S., Hays, J., Perona, P., Ramanan, D., Dollár, P., & Zitnick,
C. L. (2014). Microsoft COCO: Common objects in context. In ECCV (pp. 740–755).
Cham.

Liu, W., Anguelov, D., Erhan, D., Szegedy, C., Reed, S., Fu, C.-Y., & Berg, A. C.
(2016). Ssd: Single shot multibox detector. In ECCV (pp. 21–37). Springer, Cham
(vol. 9905).

Liu, Y., Sun, P., Wergeles, N., & Shang, Y. (2021). A survey and performance evaluation
of deep learning methods for small object detection. Expert Systems with Applications,
172, 114602.

Miri Rekavandi, A., Xu, L., Boussaid, F., Seghouane, A.-K., Hoefs, S., & Bennamoun, M.
(2025). A guide to image- and video-based small object detection using deep learn-
ing: Case study of maritime surveillance. IEEE Transactions on Intelligent Transportation
Systems, 26(3), 2851–2879.

Mirzaei, B., Nezamabadi-pour, H., Raoof, A., & Derakhshani, R. (2023). Small object de-
tection and tracking: A comprehensive review. Sensors, 23(15).

Nguyen, N.-D., Do, T., Ngo, T. D., & Le, D.-D. (2020). An evaluation of deep learning meth-
ods for small object detection. Journal of Electrical and Computer Engineering, 2020(1),
3189691.

PBC, P. L. (2018). Planet application program interface: In space for life on earth. https:
//api.planet.com.

Redmon, J., Divvala, S., Girshick, R., & Farhadi, A. (2016). You only look once: Unified,
real-time object detection. In 2016 IEEE Conference on computer vision and pattern recog-
nition (pp. 779–788).

Ren, S., He, K., Girshick, R., & Sun, J. (2015). Faster r-CNN: Towards real-time object
detection with region proposal networks. In Advances in neural information processing
systems. (vol. 28).

Shi, Y., Jia, Y., & Zhang, X. (2024). FocusDet: An efficient object detector for small object.
Scientific Reports, 14(1), 10697.

Sun, Y., Sun, Z., & Chen, W. (2024). The evolution of object detection methods. Engineering
Applications of Artificial Intelligence, 133, 108458.

Tkachenko, M., Malyuk, M., Holmanyuk, A., & Liubimov, N. (2020–2025). Label stu-
dio: Data labeling software. Open source software available from https://github.com/
HumanSignal/label-studio

Wang, C.-Y., Mark Liao, H.-Y., Wu, Y.-H., Chen, P.-Y., Hsieh, J.-W., & Yeh, I.-H. (2020).
Cspnet: A new backbone that can enhance learning capability of cnn. In IEEE/CVF
conference on computer vision and pattern recognition workshops (pp. 1571–1580).

Xia, G.-S., Bai, X., Ding, J., Zhu, Z., Belongie, S., Luo, J., Datcu, M., Pelillo, M., & Zhang,
L. (2018). Dota: A large-scale dataset for object detection in aerial images. In The IEEE
conference on computer vision and pattern recognition.

Xie, Y., Fei, Z., Deng, D., Meng, L., Sun, J., & Niu, F. (2024). A review of advances in
deep learning-based small object detection. In 5th international conference on computer
vision, image and deep learning (pp. 1207–1215).

Yuan, X., & Sarma, V. (2011). Automatic urban water-body detection and segmentation
from sparse ALSM data via spatially constrained model-driven clustering. IEEE Geo-
science and Remote Sensing Letters, 8(1), 73–77.

Yuan, X., Shi, J., & Gu, L. (2021). A review of deep learning methods for semantic seg-
mentation of remote sensing imagery. Expert Systems with Applications, 169, 114417.

Zhang, Y., Ye, M., Zhu, G., Liu, Y., Guo, P., & Yan, J. (2024). Ffca-yolo for small object
detection in remote sensing images. IEEE Transactions on Geoscience and Remote Sensing,
62, 1–15.

Expert Systems With Applications 307 (2026) 131061

15

http://refhub.elsevier.com/S0957-4174(25)04675-5/sbref0001
http://refhub.elsevier.com/S0957-4174(25)04675-5/sbref0001
http://refhub.elsevier.com/S0957-4174(25)04675-5/sbref0001
http://refhub.elsevier.com/S0957-4174(25)04675-5/sbref0002
http://refhub.elsevier.com/S0957-4174(25)04675-5/sbref0002
http://refhub.elsevier.com/S0957-4174(25)04675-5/sbref0003
http://refhub.elsevier.com/S0957-4174(25)04675-5/sbref0003
http://refhub.elsevier.com/S0957-4174(25)04675-5/sbref0003
http://refhub.elsevier.com/S0957-4174(25)04675-5/sbref0004
http://refhub.elsevier.com/S0957-4174(25)04675-5/sbref0004
http://refhub.elsevier.com/S0957-4174(25)04675-5/sbref0004
http://refhub.elsevier.com/S0957-4174(25)04675-5/sbref0005
http://refhub.elsevier.com/S0957-4174(25)04675-5/sbref0005
http://refhub.elsevier.com/S0957-4174(25)04675-5/sbref0005
http://refhub.elsevier.com/S0957-4174(25)04675-5/sbref0006
http://refhub.elsevier.com/S0957-4174(25)04675-5/sbref0006
http://refhub.elsevier.com/S0957-4174(25)04675-5/sbref0007
http://refhub.elsevier.com/S0957-4174(25)04675-5/sbref0007
http://refhub.elsevier.com/S0957-4174(25)04675-5/sbref0007
http://refhub.elsevier.com/S0957-4174(25)04675-5/sbref0007
http://refhub.elsevier.com/S0957-4174(25)04675-5/sbref0008
http://refhub.elsevier.com/S0957-4174(25)04675-5/sbref0008
http://refhub.elsevier.com/S0957-4174(25)04675-5/sbref0009
http://refhub.elsevier.com/S0957-4174(25)04675-5/sbref0009
http://refhub.elsevier.com/S0957-4174(25)04675-5/sbref0009
http://refhub.elsevier.com/S0957-4174(25)04675-5/sbref0010
http://refhub.elsevier.com/S0957-4174(25)04675-5/sbref0010
http://refhub.elsevier.com/S0957-4174(25)04675-5/sbref0011
http://refhub.elsevier.com/S0957-4174(25)04675-5/sbref0011
http://refhub.elsevier.com/S0957-4174(25)04675-5/sbref0011
http://refhub.elsevier.com/S0957-4174(25)04675-5/sbref0012
http://refhub.elsevier.com/S0957-4174(25)04675-5/sbref0012
http://refhub.elsevier.com/S0957-4174(25)04675-5/sbref0012
https://github.com/ultralytics/ultralytics
https://github.com/ultralytics/ultralytics
http://arxiv.org/abs/1802.07856
http://refhub.elsevier.com/S0957-4174(25)04675-5/sbref0014
http://refhub.elsevier.com/S0957-4174(25)04675-5/sbref0014
http://refhub.elsevier.com/S0957-4174(25)04675-5/sbref0014
http://refhub.elsevier.com/S0957-4174(25)04675-5/sbref0015
http://refhub.elsevier.com/S0957-4174(25)04675-5/sbref0015
http://refhub.elsevier.com/S0957-4174(25)04675-5/sbref0015
http://refhub.elsevier.com/S0957-4174(25)04675-5/sbref0016
http://refhub.elsevier.com/S0957-4174(25)04675-5/sbref0016
http://refhub.elsevier.com/S0957-4174(25)04675-5/sbref0016
http://refhub.elsevier.com/S0957-4174(25)04675-5/sbref0017
http://refhub.elsevier.com/S0957-4174(25)04675-5/sbref0017
http://refhub.elsevier.com/S0957-4174(25)04675-5/sbref0017
http://refhub.elsevier.com/S0957-4174(25)04675-5/sbref0018
http://refhub.elsevier.com/S0957-4174(25)04675-5/sbref0018
http://refhub.elsevier.com/S0957-4174(25)04675-5/sbref0018
http://refhub.elsevier.com/S0957-4174(25)04675-5/sbref0019
http://refhub.elsevier.com/S0957-4174(25)04675-5/sbref0019
http://refhub.elsevier.com/S0957-4174(25)04675-5/sbref0019
http://refhub.elsevier.com/S0957-4174(25)04675-5/sbref0020
http://refhub.elsevier.com/S0957-4174(25)04675-5/sbref0020
http://refhub.elsevier.com/S0957-4174(25)04675-5/sbref0020
http://refhub.elsevier.com/S0957-4174(25)04675-5/sbref0020
http://refhub.elsevier.com/S0957-4174(25)04675-5/sbref0021
http://refhub.elsevier.com/S0957-4174(25)04675-5/sbref0021
http://refhub.elsevier.com/S0957-4174(25)04675-5/sbref0022
http://refhub.elsevier.com/S0957-4174(25)04675-5/sbref0022
http://refhub.elsevier.com/S0957-4174(25)04675-5/sbref0022
https://api.planet.com
https://api.planet.com
http://refhub.elsevier.com/S0957-4174(25)04675-5/sbref0023
http://refhub.elsevier.com/S0957-4174(25)04675-5/sbref0023
http://refhub.elsevier.com/S0957-4174(25)04675-5/sbref0023
http://refhub.elsevier.com/S0957-4174(25)04675-5/sbref0024
http://refhub.elsevier.com/S0957-4174(25)04675-5/sbref0024
http://refhub.elsevier.com/S0957-4174(25)04675-5/sbref0024
http://refhub.elsevier.com/S0957-4174(25)04675-5/sbref0025
http://refhub.elsevier.com/S0957-4174(25)04675-5/sbref0025
http://refhub.elsevier.com/S0957-4174(25)04675-5/sbref0026
http://refhub.elsevier.com/S0957-4174(25)04675-5/sbref0026
https://github.com/HumanSignal/label-studio
https://github.com/HumanSignal/label-studio
http://refhub.elsevier.com/S0957-4174(25)04675-5/sbref0027
http://refhub.elsevier.com/S0957-4174(25)04675-5/sbref0027
http://refhub.elsevier.com/S0957-4174(25)04675-5/sbref0027
http://refhub.elsevier.com/S0957-4174(25)04675-5/sbref0028
http://refhub.elsevier.com/S0957-4174(25)04675-5/sbref0028
http://refhub.elsevier.com/S0957-4174(25)04675-5/sbref0028
http://refhub.elsevier.com/S0957-4174(25)04675-5/sbref0029
http://refhub.elsevier.com/S0957-4174(25)04675-5/sbref0029
http://refhub.elsevier.com/S0957-4174(25)04675-5/sbref0029
http://refhub.elsevier.com/S0957-4174(25)04675-5/sbref0030
http://refhub.elsevier.com/S0957-4174(25)04675-5/sbref0030
http://refhub.elsevier.com/S0957-4174(25)04675-5/sbref0030
http://refhub.elsevier.com/S0957-4174(25)04675-5/sbref0031
http://refhub.elsevier.com/S0957-4174(25)04675-5/sbref0031
http://refhub.elsevier.com/S0957-4174(25)04675-5/sbref0032
http://refhub.elsevier.com/S0957-4174(25)04675-5/sbref0032
http://refhub.elsevier.com/S0957-4174(25)04675-5/sbref0032

X. Yuan et al.

Zhao, Y., Lv, W., Xu, S., Wei, J., Wang, G., Dang, Q., Liu, Y., & Chen, J. (2024). Detrs
beat yolos on real-time object detection. In Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition (pp. 16965–16974).

Zhou, Y., Han, J., Yuan, X., Wei, Z., & Hong, R. (2017). Inverse sparse group lasso model
for robust object tracking. IEEE Transactions on Multimedia, 19, 1798–1810. https://
api.semanticscholar.org/CorpusID:5238721.

Zhu, X., Su, W., Lu, L., Li, B., Wang, X., & Dai, J. (2021). Deformable DETR: Deformable
transformers for end-to-end object detection. In International conference on learning rep-
resentations. Vienna, Austria.

Zou, Z., Chen, K., Shi, Z., Guo, Y., & Ye, J. (2023). Object detection in 20 years: A survey.
Proceedings of the IEEE, 111(3), 257–276.

Expert Systems With Applications 307 (2026) 131061

16

http://refhub.elsevier.com/S0957-4174(25)04675-5/sbref0033
http://refhub.elsevier.com/S0957-4174(25)04675-5/sbref0033
http://refhub.elsevier.com/S0957-4174(25)04675-5/sbref0033
http://refhub.elsevier.com/S0957-4174(25)04675-5/sbref0034
http://refhub.elsevier.com/S0957-4174(25)04675-5/sbref0034
https://api.semanticscholar.org/CorpusID:5238721
http://refhub.elsevier.com/S0957-4174(25)04675-5/sbref0034
https://api.semanticscholar.org/CorpusID:5238721
http://refhub.elsevier.com/S0957-4174(25)04675-5/sbref0035
http://refhub.elsevier.com/S0957-4174(25)04675-5/sbref0035
http://refhub.elsevier.com/S0957-4174(25)04675-5/sbref0035
http://refhub.elsevier.com/S0957-4174(25)04675-5/sbref0036
http://refhub.elsevier.com/S0957-4174(25)04675-5/sbref0036

	An empirical analysis of deep learning methods for small object detection from satellite imagery
	1 Introduction
	2 Related work
	3 Small object detection and analysis
	3.1 Small object detection from remote sensing images
	3.2 Deep learning method selection
	3.3 Overview of the selected methods
	3.4 Empirical evaluation method
	3.4.1 Evaluation aspects
	3.4.2 Datasets
	3.4.3 Evaluation metrics

	4 Results and discussion
	4.1 Experimental settings
	4.2 Anchor box size
	4.3 Region proposal
	4.4 Attention mechanism
	4.5 Single- and multi-scale features
	4.6 Performance comparison and model generalization
	4.7 Discussion

	5 Conclusion

