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Current multispectral object detection methods often retain extraneous background or noise during feature fu-
sion, limiting perceptual performance. To address this, we propose a feature fusion framework based on cross-
modal feature contrastive and screening strategy, diverging from conventional approaches. The proposed method
adaptively enhances salient structures by fusing object-aware complementary cross-modal features while sup-
pressing shared background interference. Our solution centers on two novel, specially designed modules: the
Mutual Feature Refinement Module (MFRM) and the Differential Feature Feedback Module (DFFM). The MFRM
enhances intra- and inter-modal feature representations by modeling their relationships, thereby improving cross-
modal alignment and discriminative power. Inspired by feedback differential amplifiers, the DFFM dynamically
computes inter-modal differential features as guidance signals and feeds them back to the MFRM, enabling adap-
tive fusion of complementary information while suppressing common-mode noise across modalities. To enable
robust feature learning, the MFRM and DFFM are integrated into a unified framework, which is formally formu-
lated as an Iterative Relation-Map Differential Guided Feature Fusion mechanism, termed IRDFusion. IRDFusion
enables high-quality cross-modal fusion by progressively amplifying salient relational signals through iterative
feedback, while suppressing feature noise, leading to significant performance gains. In extensive experiments on
FLIR, LLVIP and M?FD datasets, IRDFusion achieves state-of-the-art performance and consistently outperforms
existing methods across diverse challenging scenarios, demonstrating its robustness and effectiveness. Code will
be available at https://github.com/61s61min/IRDFusion.git.

1. Introduction tency. In contrast, multimodal detection usually involves heterogeneous

sources such as images, texts, LIDAR point clouds, or audio [4,5], where

Multispectral object detection employs data from multiple spectral
bands, such as visible and infrared light, for object recognition and lo-
calization. It is widely applied in autonomous driving and video surveil-
lance tasks in poor weather conditions (e.g. darkness, fog, rain or snow).
Compared to single-spectrum data, multispectral data can more compre-
hensively reflect the spectral characteristics of the object and its back-
ground, thereby significantly improving the robustness and accuracy of
detection. It is worth noting that multispectral object detection is differ-
ent from general multimodal object detection. Multispectral detection
focuses on information captured from different spectral bands of the
optical sensor system (e.g., RGB and infrared) [1-3], where the modali-
ties are physically correlated and often exhibit strong structural consis-
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the modalities differ not only in physical characteristics but also in se-
mantic representation, requiring more complex alignment and fusion
strategies.

Although current multispectral object detection approaches have
achieved significant progress by exploring cross-modal fusion strate-
gies, several intrinsic limitations still remain. Modality-specific recon-
struction methods (e.g., SCFR [6]) try to preserve unique information,
but they often overlook redundant background features that are simul-
taneously present in both modalities, thereby weakening the discrim-
inability of fused representations. Transformer-based approaches (e.g.,
DAMSDet [7], ICAFusion [2]) have attempted to capture global comple-
mentary information and address misalignment, but their heavy reliance
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Fig. 1. Comparison of the fusion structures between our method and existing methods.

on stacked attention blocks introduces high computational burden and
excessive parameterization, which restricts scalability and real-time ap-
plicability. Alignment-driven strategies (e.g., CAGT [8]) mitigate spatial
misalignment at the region level, yet they are less effective in filtering
modality-shared noise, leading to fused features that remain contami-
nated by background artifacts.

These limitations highlight a fundamental challenge: How can we
preserve complementary, object-aware cross-modal structures while
simultaneously suppressing modality-shared redundant background,
without introducing unnecessary complexity? To better understand this
challenge, we reinterpret multispectral fusion from a modeling perspec-
tive. RGB and IR features naturally exhibit both shared structural pat-
terns (e.g., object contours, scene layout) and complementary modality-
specific cues (e.g., thermal contrast, color texture). Traditional methods
typically attempt to integrate these features through a single-step fu-
sion function, implicitly assuming that complementary information can
be extracted in one pass. However, this assumption rarely holds under
complex imaging conditions. In practice, salient complementary cues
are often weak, noisy, or partially missing in one modality; modality-
shared background interference frequently dominates; and the relation-
ship between modalities varies spatially and dynamically. We formu-
late multispectral fusion as an iterative refinement problem rather than
a one-shot operation. Instead of executing a fixed fusion step, we view
multispectral fusion as a progressive optimization process. At each it-
eration, the model jointly considers: the current RGB/IR feature rep-
resentations, and a differential guidance signal capturing cross-modal
discrepancies from the previous iteration.

This differential signal selectively highlights modality-unique,
object-aware cues while suppressing common-mode background re-
sponses. Feeding this signal back into the next iteration enables the
model to progressively amplify informative complementary structures
and progressively filter redundant noise. This reinterpretation naturally
leads to an iterative fusion framework capable of handling complex
cross-modal interactions more effectively than single-pass approaches.

Motivated by this formulation, we propose IRDFusion as illustrated
in Fig. 1(c), an Iterative Relation-Map Differential Guided Fusion frame-
work that integrates two mutually reinforcing components: (1) the Mu-
tual Feature Refinement Module (MFRM), which enhances intra- and
inter-modal semantic relations, and (2) the Differential Feature Feed-
back Module (DFFM), which extracts, weights, and reinjects differential
cues as guidance to steer the fusion process. Through repeated interac-
tion between these two modules, IRDFusion progressively strengthens
salient complementary features while suppressing shared background
noise, resulting in highly discriminative and well-aligned fused repre-
sentations.

We conduct extensive experiments on FLIR, LLVIP, and M3FD
datasets, demonstrating that IRDFusion consistently outperforms exist-
ing methods across all metrics and challenging scenarios. Ablation stud-
ies further validate the effectiveness of both iterative refinement and
differential feedback mechanisms. Beyond quantitative results, qualita-
tive visualizations show that IRDFusion noticeably reduces both false
detections and missed detections by recovering weak complementary
cues that previous methods typically overlook.

In summary, our main contributions are as follows:

e A Mutual Feature Refinement Module (MFRM) is proposed to en-
hance modal-specific features of object candidates between two
modalities, ensuring robust feature alignment.

¢ Inspired by the feedback differential amplifier circuits, a Differen-
tial Feature Feedback Module (DFFM) is proposed to calculate com-
plementary discriminative features between the two modalities and
simultaneously filters redundant information.

e The MFRM and DFFM are jointly optimized to effectively integrate
discriminative complementary information from different modalities
through a dynamic differential relationship map feedback mecha-
nism, which provides a new strategy for progressive multispectral
feature fusion.

e The proposed method IRDFusion, building on MFRM and DFFM,
achieves state-of-the-art performance on the FLIR, LLVIP and M?FD
datasets.

The rest of this paper is organized as follows: Section 2 reviews
related work on multispectral object detection, summarizing existing
methods and their advantages and limitations; Section 3 describes the
details of our proposed method, including the model architecture and
key techniques; Section 4 presents experimental results, comparing the
performance of our method with existing approaches; Section 5 con-
cludes the paper and discusses future research directions.

2. Related work
2.1. Object detection

Object detection is a fundamental task in the field of computer vi-
sion, primarily categorized into one-stage and two-stage detectors. One-
stage detectors, such as YOLO [9], and RetinaNet [10], perform direct
regression on feature maps, achieving high detection speeds. Methods
like DETR [11] further simplify the detection pipeline by directly re-
gressing object center points or employing Transformers for end-to-end
detection. In contrast, two-stage detectors, such as R-CNN [12] and FPN
[13], first generate candidate regions and then perform refined classi-
fication and bounding box regression, typically achieving higher accu-
racy. Moreover, detection methods can be divided into anchor-based
and anchor-free approaches. Anchor-based methods, such as YOLO and
RetinaNet, rely on predefined anchor boxes for object prediction, while
anchor-free methods, such as FCOS [14], locate object center points
or boundary points directly, reducing reliance on anchor box design
and lowering computational complexity. Recent improvements on the
DETR framework, such as DINO [15], further enhance performance and
training efficiency through contrastive denoising training and improved
query selection.

Beyond detection architectures, learning robust feature representa-
tions is critical for handling challenges such as severe occlusion and
scale variation. Recent advancements in related fine-grained recogni-
tion tasks have demonstrated effective strategies for this purpose. For in-
stance, dynamic spatial interaction [16] and attentive multi-granularity
perception [17] have proven beneficial for refining object features.
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Furthermore, adaptive task decoupling [18] and content-adaptive oc-
clusion handling [19] offer valuable insights for suppressing interfer-
ence in crowded or occluded scenarios. In our research, we select the
DETR framework due to its end-to-end training capability, simplified
detection pipeline, and effective global context modeling, which en-
hances detection performance, especially in complex scenes.

2.2. Multispectral feature fusion for detection

Multispectral Object Detection combines RGB and thermal modali-
ties to improve detection performance in complex scenarios. Early stud-
ies such as ConvNet [1] introduce a multispectral pedestrian dataset
and significantly reduce detection errors through an ACF-based exten-
sion method. IAF R-CNN [20] incorporates an illumination-aware mech-
anism and a multitask learning framework, enhancing robustness under
varying lighting conditions.

In terms of feature alignment and modality fusion, AR-CNN [21]
proposes a region feature alignment module and features reweighting
method to address weak alignment, improving multimodal fusion. Sim-
ilarly, MCHE-CF [22] introduces multiscale homogeneity enhancement
and confidence fusion, improving modality complementarity through a
channel attention mechanism. LG-FAPF [23] improves discrimination
and fusion by aggregating features with locality guidance and pixel-
level fusion. MMA [24] proposes an explicit features modulation method
guided by masks, significantly improving the performance of multi-task
learning in object detection and box-level segmentation, especially un-
der scale variations and occlusion. SPA and AFA [25] improve the qual-
ity of feature fusion in multispectral pedestrian detection through the
scale-aware permutated attention mechanism with adjacent-branch fea-
ture aggregation module, effectively reducing the miss rate for small
pedestrians.

Despite these advances, many fusion methods still face two core
challenges, echoing insights from oriented object detection: effectively
suppressing modality-shared background while preserving salient com-
plementary object features, and achieving adaptive feature integration
without excessive complexity. Analogous to how DFDet [26] leverages
contextual priors and SFRNet [27] refines discriminative features for
oriented detection, multispectral fusion can benefit from task-specific
module designs that explicitly model both commonality and comple-
mentarity between modalities.

In the context of Transformer and attention-based fusion methods,
CFT [28] utilizes self-attention mechanisms for inter-modality inter-
action, while ICAFusion [2] employs iterative cross-attention to re-
duce model complexity and improve performance. TFDet [29] intro-
duce object awareness and attention mechanisms, significantly im-
proving detection accuracy and background suppression. For redun-
dant information suppression, RISNet [30] minimizes redundancy be-
tween RGB and IR images, optimizing complementary fusion and
improving detection performance. LGADet [31] improves inference
speed by utilizing a lightweight backbone and an anchor-free detec-
tion framework and employs a hybrid attention mechanism to enhance
accuracy.

Finally, PIAFusion [32] proposes a progressive image fusion net-
work based on illumination awareness, which adaptively optimizes in-
frared and visible light image fusion under varying lighting conditions
while preserving object and texture details. GAFF [33] employs atten-
tion mechanisms to dynamically weigh and fuse multispectral features,
significantly improving detection accuracy with low computational
cost.

In contrast, our proposed IRDFusion model introduces a novel re-
lational differential feedback mechanism for feature fusion. Specifi-
cally, IRDFusion first strengthens semantic information across modali-
ties, while simultaneously emphasizing discriminative differential cues.
It then extracts and feeds back inter-modal differences as guidance sig-
nals, thereby amplifying complementary object features and suppress-
ing redundant background information. Through this iterative feedback
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process, IRDFusion progressively refines cross-modal alignment, lead-
ing to enhanced accuracy and robustness compared to existing fusion
approaches.

3. The proposed method
3.1. Problem formulation

Let F,, F, € ROH*W denote the feature maps extracted from the vis-
ible and thermal modalities. Conventional fusion approaches, such as
MBNet [30] and ICAFusion [2], typically learn a static, one-shot map-
ping function as Eq. (1):

Fiused = F(F,, F) €Y

While differential-based methods like MBNet [30] leverage differen-
tial features for modality weighting, they treat the difference computa-
tion as a terminal step, failing to re-utilize this signal to refine the input
representation. Distinct from prior open-loop differential and one-shot
fusion methods, IRDFusion reformulates multispectral feature fusion as
an iterative closed-loop optimization process. It transforms the differ-
ence from a static weight into a dynamic guidance signal G*~1, which
optimizes subsequent iterations through a feedback mechanism, as for-
mulated in Eq. (2):

FO  _po

(k—1)
fused ~ ° IRDFusion (FU’ F.G )’ )

where G*~D encodes cross-modal discrepancies. By injecting this signal
back into the loop, the framework acts as a differential feedback ampli-
fier, progressively enhancing object-aware structures while attenuating
common-mode background noise.

3.2. Architecture

As shown in Fig. 2, the model first employs a dual-branch back-
bone to extract features from both RGB and thermal modalities, while
the proposed IRDFusion module is utilized to progressively fuse cross-
modal features. IRDFusion enhances feature representations by am-
plifying inter-modal differences and leveraging them as guidance sig-
nals to steer the fusion process step by step. The fused representa-
tions are subsequently processed by a Simple Feature Pyramid (SFP)
neck [34], followed by a Transformer Encoder, and finally fed into
the multiple parallel detection heads of Co-DETR. The detection head
design remains consistent with Double-Co-DETR [34]. This architec-
ture effectively integrates complementary cross-modal cues, leading
to substantially improved detection performance under challenging
conditions.

3.3. Mutual feature refinement module (MFRM)

The Mutual Feature Refinement Module (MFRM) is designed to en-
hance the feature representations between two modalities, thereby im-
proving cross-modal consistency and discriminative capability. Its core
idea is to leverage the self-attention matrix of a single modality to inter-
act with the weighted Value features of both modalities within a Trans-
former structure. In this way, MFRM amplifies cross-modal representa-
tions and produces more informative fused features. Specifically, as il-
lustrated in Fig. 3, the features of the two modalities are first projected
through distinct weight matrices W to generate Query, Key, and Value
matrix. These vectors are then processed through self-attention, as de-
scribed in Eq. (3), to obtain the corresponding attention matrices A4;,
i € {v,1} for each modality.

0. k.. V)] = Fy - (W W w]
(oK)

€]
Vd

A; = Softmax
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Fig. 2. The architecture of our detection pipeline.
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where F; represents the input features of the RGB or IR modalities, re-
spectively. Q;, K;, V; denote the query, key, and value matrices, - repre-
sents matrix multiplication, while Wiq, Wi", W' are the weight matrices
for linear transformation and A; represents the attention matrix, and d
represents the feature dimension.

Unlike standard cross-attention in ICAFusion [2]. ICAFusion per-
forms cross-attention via (Q,, - K,T ), which risks structural misalign-
ment when modalities diverge significantly. In contrast, MFRM adopts a
structure-preserving strategy: it leverages the self-attention map of the
primary modality (Q, - K,[) to aggregate the Value features of the aux-
iliary modality. This ensures that complementary cues are integrated
without disrupting the intrinsic spatial topology of the primary modal-
ity. MFRM preserves the structural topology of the primary modality.
To integrate complementary cues, we fuse the Value vectors from both
branches using an adaptive weighting mechanism. This mechanism dy-
namically scales the fusion ratio based on input characteristics. Finally,
the fused features are obtained by applying the self-attention matrix
to these refined Value vectors. This process is formally expressed in
Eq. (3.3):

’

F =A,V,+A,V)

U
’

F =A0,+4V,) (C))

where F/ is the final fused features, A; represents the attention matrix
and i € {t,v}.

During the fusion of the Value vectors, we introduce a learnable pa-
rameter in Eq. (5), drawing inspiration from [35]. This parameter allows
the model to adaptively adjust the fusion process, improving robustness
by enabling the model to scale the feature fusion based on the char-
acteristics of the input data. This adaptive mechanism contributes to
improved performance and greater flexibility in feature alignment.

Ai=exp (Agy - Apy) —exp (A - Aa) + Aiigri € {011} (5)

where 4, and 4, are the fusion weights for the modalities, controlled by
learnable vectors A, 4,5, 4«1, Ay and the initial weight 4,

3.4. Differential feature feedback module (DFFM)

The Differential Feature Feedback Module (DFFM) introduces a
closed-loop feedback mechanism to amplify inter-modal differences. In-
spired by differential feedback amplifier circuits, DFFM leverages inter-
modal differential features as guidance signals for dynamic cross-modal
fusion. As illustrated in the lower part of Fig. 3, taking the RGB branch as
an example, the differential features between the RGB and IR modalities
are first computed, with a learnable parameter g introduced to adap-
tively control their contribution. The resulting differential features are
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then weighted and fed back into the RGB features, amplifying inter-
modal difference signals and guiding the MFRM in extracting discrim-
inative cues from the other modality. Through iterative feedback, the
DFFM progressively enhances complementary information while filter-
ing redundant noise, leading to more robust and adaptive cross-modal
representations. To provide an intuitive explanation of these differential
features, we analyze the internal mechanism mathematically. Merely
subtracting features may be physically opaque; however, by expanding
the subtraction using the fusion process from the MFRM, we reveal that
the differential signal is actually derived from the interaction between
attention maps and value vectors as Eq. (6):

G, =F, - pF,
= A,(V, + A, V) — BA,V, + 4,V,)
= (A, - BLADYV, — (BA, — A, AV,
= Co-nVo = C-uVi

©

where G _, represents the difference features of the IR modality relative
to the RGB modality. Based on the derivation above, we can identify
the term C,_,) as the Relation Map Difference. This term indicates that
IRDFusion does not simply perform pixel-wise subtraction; instead, it
implicitly learns a differential attention map. This map highlights spe-
cific spatial regions where the structural relationships between the two
modalities diverge. Finally, this structural difference signal is processed
through a multi-layer perceptron (MLP) and normalization layers as
Eq. (7) before being used to refine the input features for the next it-
eration:

FD = - PO+ o MLP(IN(G, ) )
)
FoD _

t

where a and yu are learnable parameters. M LP and LN denote MLP
layer and Layer Normalization, respectively. F,.“‘) refers to the output
features of the kth iteration of MFRM layer , while F,.(k“) denotes the
input features for the (k + 1)th iteration of MFRM layer. It is worth men-
tioning that the thermal image feature F, is fixed during the feature
refinement for the RGB image branch.

DFFM serves as a dynamic closed-loop amplifier. Unlike static dif-
ference maps of MBNet, DFFM extracts inter-modal discrepancies and
actively feeds them back as guidance signals to iteratively refine the
feature representation, progressively suppressing common-mode noise
while enhancing salient object details.

3.5. Loss function

In this work, we adopt the CoDetr loss, as in [34], for train-
ing. The CoDetr loss function integrates multiple components to op-
timize classification and localization performance. The main detec-
tion head (CoDINOHead [15]) uses Quality Focal Loss for classifica-
tion, effectively addressing class imbalance issues, and uses L1 Loss
and GloU Loss for bounding box regression and localization accuracy,
respectively.

In addition to the main detection head, CoDetr also includes three
auxiliary detection heads. The RPN Head [36] applies Cross Entropy
Loss for object-background classification and utilizes L1 Loss to refine
bounding box proposals. The ROI Head [36] adopts Cross Entropy Loss
for category prediction and employs GIloU Loss to improve the pre-
cision of bounding box regression. The Bbox Head [36] utilizes Fo-
cal Loss for classification, GIoU Loss for regression, and Cross-Entropy
Loss for centerness prediction, contributing to improved detection
accuracy.

This comprehensive loss design strikes a balance between robust
classification and precise localization. The auxiliary detection heads
complement the main detection head, further improving overall detec-
tion performance.
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4. Experiments
4.1. Implementation details

We use the double-co-detr framework from [34] for our experiments.
All experiments are carried out using PyTorch on a system equipped
with an Intel i7-9700 CPU, 64 GB of RAM, and a Nvidia RTX 3090 GPU
(24 GB of memory). The image input size is set to 640 x 640, and the data
augmentation is followed by the v1 version from [34], with all other
settings remaining consistent with those in the original paper. In the
final experiments, the FLIR and LLVIP datasets are trained for 12 epochs,
while the M?FD dataset is trained for 36 epochs. In the ablation studies,
NiNfusion is used as the baseline, and all experiments are trained for
12 epochs with a batch size of 1 with the same settings. Our code and
model will be released for reproducing our results.

4.2. Dataset and evaluation metric

FLIR [37]: FLIR is a high-quality dataset for multispectral object de-
tection, consisting of paired IR and RGB images. It is primarily used in
autonomous driving and surveillance applications. FLIR includes object
categories such as “person”, “car”, and “bicycle”. With detailed anno-
tations, it is particularly suitable for research on cross-modal fusion be-
tween infrared and visible light modalities.

LLVIP [38]: LLVIP focuses on pedestrian detection in low-light con-
ditions. LLVIP contains paired RGB and IR images and is specifically
designed to address the challenges of multispectral pedestrian detection
in low-light scenarios. It is widely used for research on multimodal data
fusion methods in low-illumination environments.

MS3FD [39]: It includes 4200 infrared and visible light aligned image
pairs collected under various environments such as different lighting,
seasons, and weather scenarios. It encompasses six typical categories in
automated driving and road surveillance. M?FD is partitioned according
to an 8:2 training/testing split as provided in [40].

Mean Average Precision (mAP): The COCO mAP (mean average
precision) evaluation metric is a standard for assessing object detec-
tion models. The mean AP is calculated across all classes and IoU
thresholds (from 0.5 to 0.95, in increments of 0.05), offering a com-
prehensive evaluation of detection accuracy and localization preci-
sion. mAP50 measures AP at IoU = 0.5, focusing on sufficient over-
lap, while mAP75 evaluates AP at IoU = 0.75, requiring stricter
localization.

4.3. State-of-the-art comparison

4.3.1. Comparison on the FLIR dataset

As shown in Table 1, our method achieves the best mAP50 while
maintaining competitive mAP75, improving the baseline by 3.5% and
surpassing DAMSDet by 1.7%, demonstrating its superior detection ca-
pability at lower IoU thresholds. For mAP75 and overall mAP, although
slightly below the best-performing method, our approach still improves
the baseline by 4.0% and 3.8%, respectively, indicating robust perfor-
mance across stricter evaluation criteria. These gains stem from the core
design of IRDFusion: the MFRM reinforces semantic features while sup-
pressing redundant background, and the DFFM dynamically extracts and
feeds back inter-modal differences to guide fusion. This iterative feed-
back progressively amplifies complementary object information and fil-
ters common-mode noise, enhancing both cross-modal alignment and
discriminative power.

4.3.2. Comparison on the LLVIP dataset

As shown in Table 2, our method also achieves the best perfor-
mance across all three metrics, with improvements of 0.4%, 2.4%, 1.4%
in mAP50, mAP75 and overall mAP compared to the baseline, and
gains of 0.5%, 4.0%, 1.3% over DAMSDet [7]. These improvements
demonstrate the effectiveness of IRDFusion in pedestrian detection: by
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Table 1

Comparison on the FLIR dataset. The bold text represents the best
result, and the underlined text represents the second best result. ‘-’ is
used to indicate papers that have been published on arXiv but have
not been officially published yet.

Methods Year Source mAP50 mAP75 mAP
GAFF [33] 2021 CVPR 72.9 329 36.6
CFT [28] 2021 - 78.7 35.5 40.2
MFPT [41] 2023 TITS 80.0 - -

LRAF-Net [42] 2023 TNNLS 80.5 - 42.8
ICAFusion [2] 2024 PR 79.2 36.9 41.4
MMEN [43] 2024 TCSVT 80.8 - -

RSDet [44] 2024 - 81.1 - 41.4
UniRGB-IR [45] 2024 - 81.4 40.2 44.1
YOLOXCPCF [46] 2024 TITS 82.1 41.2 44.6
SCFR [6] 2024 TITS 82.3 35.7 -

GM_DETR [47] 2024 CVPR 83.9 42.6 45.8
MMPedestron [48] 2024 ECCV 86.4 - -

DAMSDet [7] 2024 ECCV 86.6 48.1 49.3
Fusion-Mamba [49] 2025 TMM 849 45.9 47.0
Baseline 2025 - 84.8 44.0 46.9
Ours 2025 - 88.3 48.0 50.7

Table 2

Comparison on the LLVIP dataset. The bold text represents the best
result, and the underlined text represents the second best result.

Methods Year Source mAP50 mAP75 mAP
CFT [28] 2021 - 97.5 72.9 63.6
CSAA [50] 2023 CVPR 94.3 66.6 59.2
LRAF-Net [42] 2023 TNNLS 97.9 - 66.3
UniRGB-IR [45] 2024 - 96.1 72.2 63.2
YOLOXCPCF [46] 2024 TITS 96.4 75.4 65.2
MMEFN [43] 2024 TCSVT 97.2 - -

GM_DETR [47] 2024 CVPR 97.4 81.4 70.2
SCEFR [6] 2024 TITS 97.5 - -

MS_DETR [51] 2024 TITS 97.9 76.3 66.1
DAMSDet [7] 2024 ECCV 97.9 79.1 69.6
ICAFusion [2] 2024 PR 98.4 76.2 64.5
Fusion-Mamba [49] 2025 TMM 97.0 - 64.3
Baseline 2025 - 98.0 80.7 69.5
Ours 2025 - 98.4 83.1 70.9

Table 3

Comparison on the M?FD dataset. The bold text represents
the best result, and the underlined text represents the sec-
ond best result.

Methods Year Source mAP50  mAP
TarDAL [39] 2022 CVPR 80.5 54.1
CDDFusion [52] 2023  CVPR 81.1 54.3
IGNet [53] 2023 MM 81.5 54.5
DAMSDet [7] 2024 ECCV 80.2 52.9
MMEN [43] 2024  TCSVT  86.2 -

ICAFusion [2] 2024 PR 90.8 60.9
Fusion-Mamba [49] 2025 TMM 88.0 61.9
Baseline 2025 - 87.1 58.2
Ours 2025 - 90.8 61.9

reinforcing semantic structures and leveraging differential cues, the
framework enhances feature alignment and preserves discriminative in-
formation, particularly under challenging conditions such as occlusion
or crowding, leading to more accurate detection.

4.3.3. Comparison on the MPFD dataset

As presented in Table 3, our method attains the highest performance
across all metrics, matching the best model in overall mAP while achiev-
ing a 2.8% improvement in mAP50. Compared to the baseline, both
metrics increase by 3.7%. This improvement reflects the capability of
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IRDFusion to progressively refine cross-modal features: the MFRM con-
solidates cross-modal information, and the DFFM emphasizes comple-
mentary differences, enabling the model to effectively suppress noise
and enhance discriminative cues, which is particularly beneficial in com-
plex multi-spectral scenarios.

4.4. Ablation studies

4.4.1. Different modules

We conducted ablation studies using CoDetr with NiNfusion as the
baseline (first row in Table 4) to evaluate the contributions of the pro-
posed modules.

MFRM Module: Introducing the MFRM module led to substantial
improvements in all metrics for the “bicycle” and “person” categories,
with the most pronounced gains observed for “bicycle”. This suggests
that features corresponding to “bicycle” are not prominent in either
modality individually; by amplifying and fusing complementary fea-
tures from both modalities, MFRM significantly enhances their represen-
tation, thereby improving detection performance. Notably, the growth
rate for the “bicycle” category is the largest among all classes.

While the MFRM significantly improves overall detection, the “car”
category exhibits a specific decline in high-IoU (e.g. MAP75) metrics.
Detailed analysis reveals a trade-off inherent to the MFRM design. The
module aggregates global contextual information for reinforcing seman-
tic consistency. While this effectively highlights the semantic regions of
objects, it inadvertently induces a “feature over-smoothing” effect. As
visualized in Fig. 4, this aggregation process effectively acts as a low-
pass filter. For rigid objects like cars that require sharp boundary defini-
tions, high-frequency edge details are blurred by fusing them with sur-
rounding background textures, such as shadows or metallic reflections
in RGB images. This results in spatial ambiguity at object boundaries,
where the feature gradient becomes indistinct compared to the raw in-
put. Consequently, while the regression head can correctly classify the
object, it struggles to achieve the pixel-perfect localization required for
mAP75. Despite this localized drawback, the overall metrics (mAP50,
mAP75, and mAP) increase by 1.5%, 2.0%, and 1.7% respectively, val-
idating the overall efficacy of the object detection performance under
the DFFM-guided MFRM collaborative optimization framework.

DFFM Module: Upon incorporating the DFFM module, all metrics
substantial gains overall, despite slight declines in specific categories,
confirming that differential feature feedback effectively guides the fu-
sion of relevant cross-modal features. The “bicycle” category again
shows the largest gains, with mAP50, mAP75 and mAP increasing by
9.9%, 6.2%, 8.8%, respectively, while the “person” category improves
by 0.3%, 8.6%, 4.1%. These results indicate that DFFM is particularly
effective for objects that are visually blurred or weakly represented in
both modalities, as it selectively reinforces critical features while sup-
pressing redundant information.

MFRM + DFFM module: In summary, the ablation study clearly
demonstrates that both MFRM and DFFM modules play complementary
and crucial roles in enhancing cross-modal feature fusion. MFRM pri-
marily amplifies and consolidates weak but informative features, while
DFFM guides the fusion process to emphasize relevant features and sup-
press interference, together achieving significant improvements in de-
tection performance across challenging categories. The combination of
two modules leads to overall improvements of 3.5%, 4.0%, 3.8% across
mAP50, mAP75 and mAP respectively.

4.4.2. Iteration number

We have conducted ablation experiments to investigate the effect
of the number of iterations in the DFFM module, with results summa-
rized in Table 5. Overall, the model achieves optimal performance at the
fourth iteration in terms of mAP50. Although certain categories reach
their peak performance at different iteration counts, these variations are
minor, supporting the selection of four iterations as the standard setting
for all experiments.
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RGB Infrared  Baseline = MFRM DFFM  IRDFusion

Fig. 4. Visual comparison of feature representations generated by different modules. The RGB and Infrared columns show the source modalities. The MFRM column
exhibits strong internal activation for semantic consistency but results in blurred object boundaries due to feature over-smoothing from context aggregation. In
contrast, the DFFM column captures sharp high-frequency differential cues, effectively preserving object contours. By synergizing the semantic strength of MFRM
with the boundary precision of DFFM, the IRDFusion framework (last column) compensates for spatial ambiguity, achieving both precise object localization and
robust background suppression.

RGB Infrared Baseline Iter 1 Iter 2 Iter 3 Iter 4 Iter 5 Iter 6

Fig. 5. Visualization of different iterations of IRDFusion. The red markers indicate the optimal iteration number. (For interpretation of the references to colour in
this figure legend, the reader is referred to the web version of this article.)
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Table 4
Effects of different modules.
MERM DFFM mAP50 mAP75 mAP
person car bicycle all person car bicycle all person car bicycle all
89.1 92.4 72.9 84.8 46.2 70.4 15.5 44.0 48.5 62.5 28.7 46.9
v 89.4 92.2 77.3 86.3 48.1 66.5 23.2 46.0 49.3 61.2 35.4 48.6
(+0.3) (-0.2) (+4.4) (+1.5) (+1.9) (-3.9) (+7.7) (+2.0) (+0.8) (-1.3) (+6.7) (+1.7)
4 89.7 93.2 79.5 87.5 48.1 70.7 19.2 46.0 49.5 64.2 33.9 49.2
(+0.6) (+1.0) (+6.6) (+2.7) (+1.9) (+0.3) (+3.7) (+2.0) (+1.0) (+1.7) (+5.2) (+2.3)
v v 89.4 92.6 82.8 88.3 54.8 67.6 21.7 48.0 52.6 62.2 37.5 50.7
(+0.3) (+0.2) (+9.9) (+3.5) (+8.6) (-2.8) (+6.2) (+4.0) (+4.1) (-0.3) (+8.8) (+3.8)
Table 5
Effects of different iteration numbers.
mAP50 mAP75 mAP
Iter Num
person  car bicycle  all person  car bicycle  all person  car bicycle  all
Baseline 89.1 92.4 72.9 84.8 46.2 70.4 15.5 44 48.5 62.5 28.7 46.9
1 89.0 92.8 74.5 85.4 45.5 69.5 12.9 42.6 48.1 63.2 28.4 46.6
2 89.0 93.0 75.3 85.8 48.2 70.7 15.7 44.9 49.3 63.8 30.9 48.0
3 88.8 93.0 77.2 86.3 46.3 70.6 18.0 45 48.2 63.9 32.1 48.1
4 89.4 92.6 82.8 88.3 54.8 67.6 21.7 48.0 52.6 62.2 37.5 50.7
5 86.9 91.3 80.4 86.2 46.4 66.6 19.9 44.3 47.4 61.2 35.2 47.9
6 88.8 91.7 76.5 85.7 48.8 67.9 17.2 44.7 49.6 62.3 31.1 47.7

We also provide the visualization of fused feature maps of different
iterations in Fig. 5. It is clear to observe that, when the number of itera-
tions is too low, some redundant features are not fully suppressed. Lim-
ited feedback on differential features at lower iteration prevents effec-
tive elimination of redundant or noisy information within both modal-
ities, reducing the model’s ability to integrate meaningful cross-modal
features. By the fourth iteration, the DFFM module sufficiently removes
irrelevant information while maximizing the fusion of critical features,
resulting in optimal detection performance.

Conversely, we also find that further increasing the number of it-
erations leads to performance degradation. With excessive iterations,
the differential features become progressively weakened, and inter-
actions between modalities can introduce adverse effects. In partic-
ular, the amplification of background noise increases, which inter-
feres with accurate feature integration. We attribute this decline to
the model overemphasizing differential features at the expense of ef-
fectively consolidating features, thereby undermining overall fusion
quality.

In summary, this ablation study demonstrates that an appropriate
number of iterations is crucial for balancing the suppression of irrelevant
features and the integration of meaningful cross-modal information. The
fourth iteration achieves this balance, ensuring robust and effective per-
formance across categories.

4.4.3. Ablation study of single-branch detection

We also conducted ablation experiments to evaluate the contri-
butions of each branch after integrating the IRDFusion module, as
shown in Table 6. In the RGB branch, incorporating infrared fea-
tures through IRDFusion leads to improvements across all metrics com-
pared to the baseline that relies solely on RGB features. Similarly,
in the IR branch, fusing RGB features via IRDFusion yields notable
gains in most metrics. These results demonstrate that both single-
modality branches benefit significantly from cross-modal feature inte-
gration, with the independent IR branch generally outperforms the RGB
branch.

For specific categories such as “bicycle,” the improvements are
particularly pronounced. This is because the features of “bicycle”
are relatively indistinct in either RGB or IR modalities alone, and

only through cross-modal fusion can salient object cues be suffi-
ciently enhanced for reliable detection. Conversely, for certain “per-
son” and “bicycle” instances, slight decreases in mAP75 and overall
mAP are observed, likely due to interference from background clutter
in the RGB modality, which may introduce minor noise into the fused
features.

Finally, integrating IRDFusion across both branches achieves the best
overall performance, confirming that joint fusion of RGB and IR modali-
ties produces the most robust results. However, for the “car” category, a
minor decline in mAP75 and overall mAP is observed, even compared to
the IR branch alone. This is attributed to relatively clear car contours in
the IR modality but blurred RGB features with nearby irrelevant back-
ground, causing the fusion to introduce slight misalignment and reduce
IoU. Despite these localized declines, their overall impact on the model’s
performance is negligible, underscoring the effectiveness of IRDFusion
in enhancing cross-modal feature representation through iterative dif-
ferential guidance.

4.5. Different detection frameworks

We further evaluated the adaptability of the proposed IRDFusion
module by integrating it into different detection frameworks. First, in
the anchor-based YOLOv5 framework, with NiNfusion as the baseline,
experiments were conducted on the FLIR, LLVIP, and M’FD datasets, as
shown in Table 7. Our method achieves consistent improvements across
all datasets and metrics. Specifically, on FLIR, all three metrics increase
by over 3%; on LLVIP, the improvement in mAP75 is particularly no-
table, indicating enhanced precision in pedestrian localization; and on
M3FD, while the gains are smaller, there is still measurable improve-
ment. Although YOLOVS5 is designed for real-time applications and em-
phasizes speed, the integration of IRDFusion demonstrates that its fea-
ture fusion mechanism can still provide significant accuracy gains.

Similarly, in the CoDETR framework, a DETR variant, IRDFusion
achieves substantial improvements, particularly on FLIR. On LLVIP,
the most pronounced gain is observed in mAP75, suggesting that
IRDFusion effectively enhances high-precision localization of pedes-
trians. On M?FD, mAP50 shows a notable increase, with slight im-
provements in mAP75 and overall mAP. These results indicate that the
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Table 6
The individual detection results of different branches.
Method Output mAP50 mAP75 mAP
person car bicycle all person car bicycle all person car bicycle all
RGB 76.8 86.3 61.0 74.7 25.4 51.9 10.7 29.3 34.3 50.9 22.7 36.0
Baseline IR 88.9 93.0 70.4 84.1 53.0 68.6 15.1 45.6 51.8 62.9 28.2 47.6
RGB+IR 89.1 92.4 72.9 84.8 46.2 70.4 15.5 44.0 48.5 62.5 28.7 46.9
RGB 78.5 87.1 66.2 77.2 29.4 55.5 14.4 33.1 37 53.3 25.9 38.7
(+1.7) (+0.8) (+5.2) (+2.5) (+4.0) (+3.6) (+3.7) (+3.8) (+2.7) (+2.4) (+3.2) (+2.7)
IRDFusion IR 89.5 93.0 78.2 86.9 52.4 70.3 14.7 45.8 51.7 63.5 29.9 48.4
(+0.6) (+0.0) (+7.8) (+2.8) (-0.6) (+1.7) -(0.4) (+0.2) (-0.1) (+0.6) (+1.7) (+0.8)
RGB+IR 89.4 92.6 82.8 88.3 54.8 67.6 21.7 48.0 52.6 62.2 37.5 50.7
(+0.3) (+0.2) (+9.9) (+3.5) (+8.6) (-2.8) (+6.2) (+4.0) (+4.1) (-0.3) (+8.8) (+3.8)
Table 7
Comparison on different detection frameworks.
Detector Backbone Method FLIR LLvIP M3FD
mAP50 mAP75 mAP mAP50 mAP75 mAP mAP50 mAP75 mAP
Baseline 79.9 34.6 40.2 96.8 71.2 62.7 89.1 65.8 59.8
YOLOVS  CSPDarknet ¢ 84.8 38.1 434 97.9 75.7 655  89.8 65.8 60.5
CoDetr VAT Baseline 84.8 44.0 46.9 98.0 80.7 69.5 87.1 61.1 58.2
Ours 88.3 48.0 50.7 98.4 83.1 70.9 90.8 65.4 61.9
Table 8
Comparison with different attention methods.
mAP50 mAP75 mAP
person  car bicycle  all person  car bicycle  all person  car bicycle  all
Self-Attention 88.6 91.9 79.4 86.6 49.9 67.2 31.4 49.5 50.2 62.0 38.5 50.2
Cross-Attention 90.4 93.4 76.5 86.8 51.6 71.9 22.4 48.6 51.3 65.0 34.7 50.3
IRDFusion 89.4 92.6 82.8 88.3 54.8 67.6 21.7 48.0 52.6 62.2 37.5 50.7

iterative feedback mechanism of IRDFusion, through MFRM and DFFM,
consistently strengthens cross-modal feature alignment and discrim-
inability, regardless of the underlying detection architecture.

Collectively, these experiments demonstrate that IRDFusion is highly
generalizable and robust across different frameworks and datasets. As a
plug-and-play module, it can be seamlessly integrated into both speed-
oriented frameworks like YOLOvV5 and performance-oriented frame-
works like CoDETR, consistently enhancing detection performance
through adaptive cross-modal fusion.

4.6. Comparison of alternative methods of replacement

To further validate the effectiveness of the proposed fusion design,
we conducted comparative experiments by replacing the MFRM mod-
ules with alternative mechanisms, including Cross-Attention in ICAFu-
sion [2] and standard self-attention [54] in Transformer. The results
in Table 8 indicate that, although these alternatives offer certain ad-
vantages, they still underperform compared to IRDFusion. Specifically,
When fed back into the MFRM, differential information requires both
intra-modal consistency and cross-modal alignment. Using only self-
attention or cross-attention fails to simultaneously satisfy these two re-
quirements, leading to suboptimal performance. In contrast, IRDFusion
combines MFRM and DFFM to simultaneously reinforce cross-modal
features and dynamically extract differential cues. The iterative feed-
back mechanism amplifies complementary object information while
suppressing redundant noise, leading to more stable, discriminative, and
well-aligned feature representations. These results demonstrate that the
unique design of IRDFusion is crucial for achieving superior cross-modal
fusion performance compared to conventional attention-based alterna-
tives.

4.7. Visualization

As shown in Fig. 6, the baseline method employs a global feature
fusion strategy, which exhibits notable limitations in detection tasks.
Specifically, false detections (red triangles) appear in columns 1, 2, 4,
5, 6, and 7, while missed detections (pink triangles) are observed in
columns 3 and 8. These errors arise because the baseline fails to differ-
entiate between cross-modal and differential features across modalities,
relying instead on coarse global fusion. Such a strategy inadequately in-
tegrates complementary cues, leading to the omission or degradation of
critical object information and, consequently, reduced overall detection
performance.

In contrast, our proposed IRDFusion method explicitly separates
cross-modal and differential features, and leverages both types in the
fusion process. This fine-grained approach effectively suppresses redun-
dant background information while amplifying complementary cues,
significantly reducing both false and missed detections. The visualiza-
tion results thus illustrate the capability of IRDFusion to produce more
precise and discriminative cross-modal representations, further validat-
ing the importance of iterative feature fusion in enhancing multispectral
object detection performance.

4.8. Failure case

As illustrated in Fig. 7, IRDFusion exhibits limitations when detect-
ing small or heavily occluded objects. Mechanism-level analysis reveals
that these failures stem from specific breakdowns in the relation mod-
eling process.

For small objects, the limitation is primarily due to “Relation Map
Degeneration.” In deep feature maps with low spatial resolution, small
targets occupy very few pixels. This causes the attention mechanism
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Fig. 6. Sample detections of our method on FLIR, LLVIP, and M?FD datasets. The first and second rows are the input RGB and IR images, the third row is the
detection result of the baseline, and the fourth row is the detection result of our method. The red triangle markers indicate false detections of the baseline, while the
pink triangle markers indicate missed detections of the baseline. (For interpretation of the references to colour in this figure legend, the reader is referred to the web

version of this article.)

Fig. 7. False detections of our method on FLIR, LLVIP, and MFD datasets. The first and second rows are the input RGB and IR images, and the third row is the
detection result of our method. The red triangle markers indicate false detections of the IRDFusion, while the pink triangle markers indicate missed detections of the
IRDFusion. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Table 9
Speed comparison.
Detector ~ Method FPS params(M)  GFLOP
Baseline 45.3 75.4 91.0
YOLOVS s 170 1340 122.8
CoDetr Baseline 3.6 485.3 944.9
Ours 3.1 510.5 1213.5

to suffer from over-smoothing, where the relation map loses structural
distinctiveness. Consequently, the differential signal extracted by DFFM
degrades into ineffective noise rather than meaningful guidance.

For heavily occluded objects, the challenge arises from “Structural
Topology Mismatch.” Since MFRM utilizes the self-attention map of the
primary modality to aggregate features, if the primary view is domi-
nated by an occluder (e.g., a tree in RGB), it incorrectly forces the visible
target features in the auxiliary modality (e.g., a person in IR) to align
with the occluder’s structure. This misalignment leads to the suppres-
sion of valid target features. Future work will address these issues by
exploring multi-scale and deformable attention mechanisms to preserve
details and decouple target features from occlusion.

4.9. Limitations

According to the results in Table 9, it is evident that the introduc-
tion of IRDFusion leads to a trade-off between accuracy and efficiency.

10

Specifically, the parameter count increases by approximately 60M in the
YOLO framework and 25M in the CoDetr framework, accompanied by
a notable reduction in inference speed (FPS). This increase in compu-
tational complexity is primarily attributed to the iterative refinement
processes within the MFRM and DFFM.

While these metrics indicate a relatively high deployment risk for
resource-constrained edge devices, the potential for practical applica-
tion remains significant. First, in safety-critical scenarios such as au-
tonomous driving at night or surveillance under adverse weather, the
substantial gain in detection robustness often outweighs the latency
penalty. Second, from a deployment perspective, the current IRDFusion
model can serve as a high-performance “teacher” network. Its robust
cross-modal representations can be transferred to lightweight “student”
models via knowledge distillation, or optimized using network prun-
ing and TensorRT acceleration. These strategies would effectively mit-
igate the computational burden, making the proposed method feasible
for real-time applications in future iterations.

5. Conclusion

In this paper, we presented IRDFusion, a novel multispectral object
detection framework that progressively integrates cross-modal features
via an iterative feedback mechanism. By synergizing the Mutual Feature
Refinement Module (MFRM) for structure-preserving alignment and the
Differential Feature Feedback Module (DFFM) for dynamic difference
guidance, our approach effectively amplifies salient object signals while
suppressing common-mode background noise. Extensive experiments on
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FLIR, LLVIP, and M3FD datasets demonstrate that IRDFusion achieves
state-of-the-art performance, showing exceptional robustness in chal-
lenging scenarios such as low illumination and complex backgrounds.

Despite these significant performance gains, we acknowledge certain
limitations. First, the detection of extremely small or heavily occluded
objects remains a bottleneck due to potential feature over-smoothing
in attention mechanisms. Second, the iterative nature of the framework
introduces higher computational complexity and parameter overhead
compared to one-shot fusion methods, which currently poses challenges
for real-time deployment on resource-constrained edge devices.

Future work will focus on addressing these challenges to bridge the
gap between academic research and industrial application. To tackle the
deployment issue, we plan to explore model compression techniques,
such as knowledge distillation and network pruning, to significantly re-
duce computational costs while retaining the benefits of the iterative
fusion strategy. Additionally, we aim to incorporate multi-scale feature
enhancement and dynamic attention mechanisms to further improve de-
tection performance for small targets and under severe occlusion.
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