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Introduction

The advancement of Industry 4.0 has catalyzed a paradigm 
shift towards data-driven intelligence and digital twin tech-
nologies in industrial manufacturing (Xie et al., 2022; Feng 
et al., 2023a). Within this broader context, the semiconductor 
manufacturing industry presents a critical domain where the 
rapid and accurate diagnosis of production anomalies is par-
amount for yield enhancement. Specifically, the automated 
recognition of defect patterns from wafer maps—a task 
analogous to vibration-based gear wear monitoring (Feng et 
al., 2023b) or to surface degradation assessment using dig-
ital-twin techniques (Feng et al., 2023a)—serves as a vital 
tool for pinpointing process faults.

In semiconductor manufacturing, after dies are fabri-
cated on the wafer, a Chip Probing (CP) test is performed 
to electrically test each die before dicing. Defective dies 
are marked, generating wafer maps that visually represent 
their spatial distribution (Jang et al., 2019). Based on these 
spatial distribution characteristics, wafer map defect pat-
terns are categorized into 9 distinct types. Each defect type 
represents a different issue that may arise during the manu-
facturing process  (Liu and Chien, 2013). Automating the 
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Abstract
In semiconductor manufacturing, rapidly identifying process faults through wafer map defect recognition can significantly 
improve production yield. However, annotating wafer map defect types—especially complex mixed-type defects—requires 
skilled technicians and substantial time, leading to high annotation costs. To address this issue, we present a transductive 
zero-shot learning method that classifies mixed-type defects using only labeled samples of single-type defects. The pre-
sented technique eliminates the need for labeled mixed-type defects by leveraging semantic information to bridge known 
classes (single-type) and unknown classes(mixed-type). This directly translates to reduced time and annotation costs, as 
well as faster process diagnosis in production environments. We introduce three key strategies to improve classification 
accuracy: (1) collaborative optimization of the visual feature extractor and semantic embedder, (2) iterative updating of the 
semantic space, and (3) progressive pseudo-labeling for retraining. Extensive experiments demonstrate that the proposed 
method substantially surpasses previous transductive zero-shot learning methods, particularly on mixed-type defects.
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classification of these defect patterns enables rapid identifi-
cation of process anomalies, which is essential for improv-
ing production yield. While manual inspection by engineers 
is both time-consuming and costly, machine learning and 
deep learning techniques offer a scalable and efficient alter-
native for automatic defect pattern recognition.

Early methods for wafer map defect pattern classifica-
tion primarily depended on traditional machine learning 
techniques with handcrafted features  (Kim and Behdinan, 
2023). In recent years, deep learning, especially Convolu-
tional Neural Networks (CNNs), has emerged as the pre-
dominant approach, as it can automatically extract wafer 
map features and achieve superior performance (Nakazawa 
and Kulkarni, 2019). However, as manufacturing processes 
grow more complex, the mixed-type defects have emerged. 
Mied-type defect means multiple sigle-type defects are 
simultaneously present on a wafer (Geng et al., 2023). Fig-
ure 1 displays four typical single-type defects (first row) and 
mixed-type defects (second row).

Compared to single-type defects, mixed-type defect pat-
terns exhibit significantly greater complexity and diversity, 
posing substantial challenges for accurate classification. 
The difficulties primarily stem from three factors. First, 
mixed-type defects often display high inter-class similar-
ity and significant intra-class diversity due to differences 
in the composition ratio and spatial distribution of the 
defects  (Chen et al., 2024). Second, the morphological 
characteristics of mixed-type defects are highly stochastic, 
varying in location, size, and rotation angle. Furthermore, 
patterns from different types of defects may overlap and 
interfere with one another. This complexity hinders Convo-
lutional Neural Networks from effectively disentangling and 
extracting the essential features of each defect type, leading 
to a notable decline in model discriminability, particularly 
when dealing with complex patterns involving three or four 
mixed defects (Luo and Wang, 2023).

Although supervised learning shows promising perfor-
mance in classifying mixed-type defect wafer maps, its 
effectiveness heavily depends on large quantities of labeled 

samples, which pose a significant challenge due to the high 
cost of annotation (Shim et al., 2021). Labeling single-type 
defects is comparatively straightforward, as their defect pat-
terns are simple and well defined. By contrast, annotating 
mixed-type defect wafer maps—where a sample contains 
multiple defect classes—is substantially more difficult and 
time-consuming due to complex and often ambiguous mor-
phologies (Wang et al., 2020). If open-set recognition tech-
niques (Liu et al., 2020; Yue et al., 2021) are used to classify 
mixed-type defects—so that a model can be trained without 
using mixed-type defect samples while still achieving effec-
tive classification accuracy on those defects—the labeling 
costs associated with mixed-type defects could be substan-
tially reduced.

Several studies have explored open-set recognition tech-
niques to detect the presence of unseen defect types in wafer 
maps  (Jang et al., 2020; Jang and Lee, 2023). However, 
these methods are inherently limited to identifying the pres-
ence of novel defects, rather than providing specific clas-
sifications. Baek et al. (2025) introduced a technique based 
on a contrastive loss function to classify previously unseen 
defects. However, their method can classify only unseen 
single-type defects and cannot handle unseen mixed-type 
defects.

Although prior work has advanced wafer map defect pat-
terns classification, a clear research gap remains in effec-
tively handling mixed-type defects. Current deep-learning 
models perform well on single-type defects but degrade 
substantially when encountering mixed-type defects. More-
over, the methods that improve mixed-type defects clas-
sification typically demand substantial volumes of labeled 
samples, and the cost of annotating mixed-type defects is 
prohibitively high. Notably, the techniques that can classify 
mixed-type defects without relying on such defect samples 
remain predominantly uninvestigated.

In this paper, we present a Transductive Zero-Shot Learn-
ing-based Wafer Map Classification (ZSWMC) method. 
The ZSWMC method can classify mixed-type defects only 
using labeled single-type defect samples and unlabeled 

Fig. 1  Several examples of defect 
patterns
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mixed-type defect samples during training. To tackle the 
identified challenges, we introduce three key optimization 
strategies: (1) collaborative optimization of the visual fea-
ture extractor and semantic embedder, (2) iterative updating 
of the semantic space, and (3) progressive pseudo-label-
ing for model retraining. These strategies are designed to 
enhance semantic-visual alignment and improve classifi-
cation accuracy for complex mixed-type defects in a real-
world setting.

The contributions of the proposed ZSWMC method are 
summarized as follows: 

1.	 A transductive zero-shot learning approach is presented, 
enabling the classification of mixed-type defects with-
out requiring labeled mixed-type defect wafer maps 
during training.

2.	 The visual feature extractor and semantic embedder are 
integrated into an end-to-end model for collaborative 
optimization, leveraging the close semantic correlation 
between single-type defects and mixed-type defects. 
Furthermore, the updating strategy of semantic space 
during the training process is proposed to improve clas-
sification accuracy.

3.	 A progressive pseudo-labeling for model retraining 
strategy is employed, utilizing the progressive relation-
ships among mixed-type defects to further enhance 
classification accuracy.

The structure of this paper is as follows. Section “Related 
work” reviews related research on wafer map defect patterns 
recognition. Section  “The ZSWMC method” presents the 
proposed ZSWMC methodology. Sections  “Experimental 
setup” and “Analysis of experimental results” describe the 
experimental setup and discuss the corresponding results, 
respectively. Concluding remarks are offered in “Conclu-
sion” section.

Related work

Evolution of wafer map defect patterns recognition

Initial methods for recognizing defects in wafer maps 
depended mainly on conventional machine learning tech-
niques that utilized manually engineered features. For 
example, (Wu et al., 2015) combined Radon transforma-
tion features with geometric attributes, employing a Sup-
port Vector Machine (SVM) for classification. Similarly, 
(Cheng et al., 2022) utilized defect density, yield metrics, 
and Hough transform features for rapid pattern identifica-
tion using decision trees. However, these methods were 
limited by their dependence on manually designed features, 

which often failed to capture high-level semantic informa-
tion present in complex defect patterns.

The rapid progress in deep learning has led to its grow-
ing application in wafer map recognition. Nakazawa and 
Kulkarni (2018) were the first to apply Convolutional Neural 
Networks (CNNs) to this task. Subsequent studies focused 
on improving feature representation: Chen et al. (2022) inte-
grated Deep Convolutional Neural Networks (DCNNs) with 
decision-level entropy, while a later work Chen et al. (2023) 
incorporated an improved convolutional block attention 
module to prioritize salient defect regions. Additionally, Yi 
et al. (2024) combined deep features with hand-made den-
sity and Radon features, achieving higher accuracy using 
modified extreme learning machines. To address the com-
mon issue of sample imbalance, To address the common 
issue of imbalanced defect samples, Hyun and Kim (2020) 
proposed a memory-enhanced CNN architecture with a 
triplet loss function. Although these supervised methods 
achieve high accuracy on single-type defects, they exhibit 
two inherent limitations. First, their performance is highly 
dependent on large volumes of accurately annotated sam-
ples, the acquisition of which is often prohibitively expen-
sive. Second, because these methods are primarily designed 
for single-type defects, their classification accuracy deterio-
rates substantially when applied to mixed-type defects.

To tackle the classification of mixed-type defects, dedi-
cated supervised models have been developed. Wang et al. 
(2020) introduced a deformable convolution network to 
selectively focus on defect regions, combined with a multi-
label output layer that decomposes mixed-type defects into 
constituent single-type defects using a one-hot encoding 
mechanism. To tackle the confusion between certain defect 
types within mixed defects, (Luo and Wang, 2023) proposed 
the CWDR-Net, which leverages multi-view dynamic fea-
ture enhancement and attention mechanisms to improve 
the classification accuracy of complex mixed-type defects. 
Although these studies have improved the classification 
accuracy of mixed-type defects, they still rely heavily on 
annotated samples. The annotation cost for mixed-type 
defects is substantially higher than that for single-type 
defects.

To alleviate the data annotation bottleneck, weakly-super-
vised paradigms like self-supervised and few-shot learning 
have been presented. In self-supervised learning, Liao et al. 
(2022) incorporated self-supervised reconstruction train-
ing into the classification task, which effectively utilized 
pixel-level information from wafer maps, greatly enhanc-
ing classification accuracy. The Wafer Map Deep Cluster-
ing (WMDC) model, proposed by Xu et al. (2024), learns 
general representations through unsupervised pre-training. 
Using a prototype metric loss, it extracts semantic features 
of defect categories, effectively enhancing recognition 

1 3



Journal of Intelligent Manufacturing

and Chen (2021) integrated mask R-CNN with rotation data 
augmentation to enhance classification accuracy on single-
type defects, enabling precise classification and localization 
of defects within mixed-type wafer maps through transfer 
learning. Kim et al. (2022) proposed a novel single-stage 
detector that directly learns features from single-type 
defects and generalizes to mixed-type defects detection via 
multi-scale feature transfers. Although these semantic seg-
mentation methods do not require labeled mixed-type defect 
samples, they still depend on extensive pixel-level annota-
tions of single-type defects, necessitating precise defect 
boundary labeling, which also results in high annotation 
costs.

Zero-shot learning for defect recognition

Zero-Shot Learning (ZSL) offers a promising alternative by 
eliminating the need for pixel-level annotations of unseen 
classes. The principle of ZSL involves utilizing the high-
level semantic information, such as attribute or class descrip-
tor vectors, to facilitate the identification of unseen classes 
during the training (Lampert et al., 2009). Mainstream ZSL 
methods learn an embedding function that maps both visual 
features and semantic descriptors into a shared latent space, 
where classification is performed via similarity metrics.

Kim and Shim (2024) pioneered the application of ZSL 
to classify unseen single-type defects in wafer maps. How-
ever, their method does not address the classification of 
unseen mixed-type defects. Our proposed method aims to 
solve this problem through ZSL.

In ZSL, the major challenge is the domain shift prob-
lem (Wan et al., 2021), where distributional discrepancies 
between seen and unseen classes degrade model perfor-
mance. To mitigate the issue of domain shift, researchers 
have proposed transductive zero-shot learning methods. 
These methods leverage labeled samples from seen classes 
and unlabeled samples from unseen classes for model train-
ing, optimizing the embedding function, and improving the 
model’s capacity for generalization. Some representative 
transductive zero-shot methods, such as VSC (Wan et al., 
2021), QFSL  (Song et al., 2018), Bi-VAEGAN  (Wang et 
al., 2023), AD3C-FGN (Zhang et al., 2023), and TFVAE-
GAN  (Narayan et al., 2020), have shown effectiveness in 
improving classification accuracy for unseen classes.

Our work extends zero-shot learning to the classifica-
tion of mixed-type defects by treating labeled single-type 
defects as seen classes and unlabeled mixed-type defects 
as unseen classes, significantly reducing the annotation 
cost for mixed-type defects. However, conventional trans-
ductive zero-shot learning methods suffer from subopti-
mal performance due to the separate optimization of visual 
feature extraction and semantic embedding, which leads 

accuracy when transferred to tasks with scarce labeled data. 
Kahng and Kim (2021) introduced a general self-supervised 
training framework utilizing noise-contrastive estimation, 
demonstrating its effectiveness in improving model perfor-
mance under label scarcity. Both Kim and Kang (2021) and 
Kwak et al. (2023) adopted contrastive learning strategies. 
Kim and Kang (2021) employed a Dirichlet Process Mixture 
model to dynamically generate pseudo-labels for some sam-
ples used in subsequent self-supervised training. Kwak et 
al. (2023) designed a new loss function that integrates label 
information from the pre-training phase, thereby learning 
representations that are better suited to classification tasks. 
To handle mixed-type defects, Wang et al. (2024) introduced 
a masked autoencoder-based framework, enabling few-shot 
classification of complex mixed-type defects.

In the realm of few-shot learning, Geng et al. (2021) inte-
grated few-shot learning with self-supervised learning to 
tackle data imbalance and improve utilization of unlabeled 
data. However, their method is still limited to single-type 
defect classification. Liang et al. (2024) proposed a few-
shot learning approach for mixed-type defects, employing a 
masked autoencoder for unsupervised feature learning and a 
dynamic multi-loss mechanism to enlarge inter-class differ-
ences and minimize intra-class variation, thereby improving 
mixed-type defect classification accuracy. However, these 
weakly-supervised methods primarily focus on learning 
features from data and cannot classify previously unseen 
defects during training.

Detection of unseen defect types

The increasing complexity of chip manufacturing neces-
sitates the identification of novel and unseen defect types. 
Zhao et al. (2024) proposed an incremental learning-based 
online detection method, PIRB, which is capable of detect-
ing unseen defects. Alawieh et al. (2020) proposed a deep 
selective learning model incorporating a rejection mecha-
nism, enabling the model to refrain from making classifica-
tions under conditions of high uncertainty. Although these 
methods effectively signal the presence of a novel defect, 
they cannot identify its type of defect. The method proposed 
in Baek et al. (2025) introduced a contrastive loss func-
tion to classify previously unseen defects, which can rec-
ognize a novel single-type defect. However, it is limited to 
single-type defect scenarios and cannot classify mixed-type 
defects.

Many studies employ semantic segmentation to classify 
mixed-type defects. Yan et al. (2023) employed semantic 
segmentation to decompose mixed-type defects into their 
constituent single-type defect components. Chiu and Chen 
(2021) and Kim et al. (2022) classify mixed-type defects by 
using labeled single-type defects as training samples. Chiu 
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The second step employs an end-to-end collaborative 
optimization strategy to jointly optimize the feature extrac-
tor and semantic embedder. The feature extractor extracts 
visual features from input samples, while the semantic 
embedder maps these visual features into semantic space to 
generate semantic vectors.

The third step updates the semantic space by recalculat-
ing all semantic center vectors to minimize the mapping 
bias of the visual feature vectors. In Fig. 2, colored triangles 
(▲) in the semantic space represent the semantic center vec-
tors of different defect categories.

The fourth step implements a progressive pseudo-label-
ing and retraining strategy. During this step, mixed-type 
defect wafer maps are assigned pseudo-labels, and a sub-
set of high-confidence pseudo-labeled samples is selected 
and combined with seen class samples to retrain the model. 
The specific operations involved in each step are elaborated 
upon in the subsequent sections.

End-to-end model collaborative optimization

This step utilizes the close semantic correlation between 
single-type and mixed-type defects to integrate the visual 
feature extractor and semantic embedder into an end-to-end 
model for collaborative optimization.

Problem formulation

The matrix x ∈ {0, 1, 2}m×n represents a wafer map 
sample, where 0 denotes background, 1 signifies a good 
die, and 2 indicates a bad die. The set of seen classes 
Ds = {(xi, yi, cyi)}N

i=1 consists of labeled single-type 
defect wafer maps, where xi denotes the i-th wafer map, yi 
specifies its defect category represented as an integer, cyi  
is the semantic center vector of the defect category yi, and 
N  indicates the quantity of seen class samples. The unseen 
class set Du = {xj}M

j=1 contains all unlabeled mixed-type 
defect wafer maps, where xj  represents the j-th wafer map, 
and M  denotes the quantity of unseen class samples.

We establish a mapping from wafer maps to the semantic 
attribute space. Let f(·; θf ) denote the visual feature extrac-
tor parameterized by θf , and g(·; θg) denote the semantic 
embedder parameterized by θg. Given an input wafer map 
xi from a seen class, its semantic vector âi is obtained by:

âi = g(f(xi; θf ); θg)� (1)

The training objective is to jointly learn the parameters 
{θf , θg} such that the semantic vector âi closely approxi-
mates its corresponding semantic center vector. Let yi be 
the defect type of wafer map xi, and let cyi  be the semantic 

to significant differences between the visual spaces and 
semantic spaces. To overcome this limitation, the proposed 
ZSWMC method leverages the close semantic relationships 
between single-type and mixed-type defects, integrating 
visual feature extraction and semantic embedding for co-
optimization, and iteratively updating the semantic space to 
bridge the gap. The close semantic relationships mean that 
mixed-type defects are combinations of single-type defects. 
For example, a scratch defect typically exhibits a thin-line 
shape, whereas a center defect is characterized by a solid-
circle appearance. The mixed-type defect C+S (Center 
+ Scratch) displays both thin-line and solid-circle attri-
butes in the wafer maps. Furthermore, the proposed method 
employs a progressive pseudo-labeling and retraining strat-
egy to fully leverage unlabeled samples, further enhancing 
classification accuracy.

The ZSWMC method

The ZSWMC method first requires the definition of the 
semantic center vectors for all single-type and mixed-type 
defects based on expert knowledge. These vectors function 
as training targets for the model and serve as the basis for 
distinguishing between different defects. When classify-
ing wafer map defect categories, the classification model 
extracts visual features from wafer maps and embeds them 
into the semantic space to generate semantic vectors. The 
defect category of each wafer map is determined via calcu-
lating the cosine similarity between its semantic vector and 
the predefined semantic center vectors. The workflow of the 
ZSWMC method is shown in Fig. 2, comprising four steps.

The first step involves denoising wafer maps from seen 
classes to preserve the primary defect features. Initially, 
the seen class contains only samples of single-type defects. 
The ZSWMC method uses a window threshold (Wang and 
Chen, 2019) to reduce the noise in wafer maps. The denois-
ing procedure is described in Sect. “Dataset”.

Fig. 2  The workflow of the ZSWMC Method
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single-type defect wafer maps with ground-truth labels, to 
jointly learn the parameters θf  and θg.

The reason that we use a single FC layer as the semantic 
embedder g is threefold. First, the ResNet-18 backbone pro-
duces a 512-dimensional feature vector from its penultimate 
layer, providing a high-level visual representation that aligns 
with the abstraction level of the target semantic attributes. 
A single linear transformation is therefore sufficient to map 
between these two high-level spaces. Second, the single FC 
layer, which contains only 512 × 20 + 20 = 10, 260 param-
eters, significantly reduces the model complexity and miti-
gates the risk of overfitting compared to a deeper network. 
Finally, since the target semantic space is low-dimensional 
(20 dimensions) and does not require a highly non-linear 
mapping, a single FC layer has been widely adopted and 
proven effective in analogous attribute learning tasks (Xu et 
al., 2022; Li et al., 2023; Xian et al., 2018).

A standard approach in zero-shot learning involves a 
two-stage training procedure, where the visual feature 
extractor and semantic embedder are optimized in sequence. 
This approach can be formalized using the following two 
independent objectives:

Stage 1: min
θf

Lcls (f(xi; θf ), yi) � (5)

Stage 2: min
θg

Lembed

(
g(f(xi; θ̂f ); θg), cyi

)
� (6)

Here, Lcls is a standard classification loss (e.g., cross-
entropy) used to pre-train the visual feature extractor 
f , yielding parameters θ̂f . Subsequently, the loss function 
Lembed (e.g., MSE) is applied to train the semantic embed-
der g, optimizing θg while keeping θ̂f  fixed. This training 
paradigm arises from the semantic discrepancy between 
seen and unseen classes. The underlying rationale is that 
jointly optimizing θf  and θg could lead the learned feature 
space to overfit the seen classes, consequently compromis-
ing its generalization capability to unseen classes.

In wafer map defect classification, mixed-type defects 
are formed by combining multiple single-type defects. This 
inherent relationship allows their visual and semantic fea-
tures to be derived from the features of their constituent 

center vector for defect type yi. This objective is achieved 
by minimizing the Mean Squared Error (MSE) loss between 
âi and cyi  across a batch of N samples:

LMSE = 1
N

N∑
i=1

∥âi − cyi
∥2

2� (2)

where ∥ · ∥2 denotes the L2-norm. To mitigate overfitting, 
the loss function L comprises the MSE loss and an L2 regu-
larization term:

L = LMSE + λ
(
∥θf ∥2

2 + ∥θg∥2
2
)

︸ ︷︷ ︸
L2 Regularization

� (3)

By minimizing L, the model encourages the semantic 
vectors to align with their corresponding semantic center 
vectors while constraining the complexity of θf  and θg to 
improve generalization.

During the test phase, the model first generates the 
semantic vector of the sample xt: ât = g(f(xt)). It then 
computes the cosine similarity between ât and all seman-
tic center vectors. The semantic center vector exhibiting the 
highest similarity is selected, and its corresponding defect 
type is assigned to xt:

yt = arg max
1≤k≤K

ât · ck

∥ât∥2∥ck∥2
� (4)

In Eq.  4, K represents the number of defect categories, 
including seen and unseen classes. The yt is the predicted 
defect type of the sample xt, the symbol  denotes the dot 
product, and ck represents the semantic center vector of the 
defect type k.

Collaborative optimization architecture

The architecture for collaborative optimization is illus-
trated in Fig.  3. We employ the convolutional layers of 
ResNet-18  (He et al., 2016) as the visual feature extractor 
f(·; θf ) and a single fully connected(FC) layer as the seman-
tic embedder g(·; θg). During the preliminary training stage, 
we leverage the set of seen classes Ds, which contains only 

Fig. 3  Collaborative optimization for feature extractor and semantic embedder
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classifying unseen class samples (mixed-type defect wafer 
maps). To improve classification precision, we propose the 
semantic space updating strategy comprising three steps, as 
illustrated in Fig. 4.

Map visual feature vectors

The first step maps all visual feature vectors in visual space 
V  into semantic space A1, generating the semantic vectors 
via the semantic embedder g. Formally, for a visual feature 
vector vi ∈ V  extracted by f , its corresponding semantic 
vector ai in semantic space A1 is obtained by ai = g(vi).

As shown in Fig. 4, the visual space V  contains visual 
feature vectors of wafer map samples, extracted by the 
visual feature extractor f . In this space, samples from differ-
ent defect categories are represented by colored circles (•), 
while the colored stars (⋆) denote the visual center of each 
category, computed as the mean of all its sample vectors. In 
the semantic space A1, colored triangles (▲) represent the 
semantic center vectors of different defect categories. Ini-
tially, the semantic space A1 contains only these semantic 
center vectors. After semantic vectors are generated, a new 
semantic space A2 is constructed, where colored diamonds 
(♦) represent semantic vectors corresponding to different 
defect categories.

Update the semantic center vectors

The second step involves iteratively updating the seman-
tic space, where the semantic center vectors within A2 
are updated. We adopt the core concept of manifold learn-
ing (Tenenbaum et al., 2000; Roweis and Saul, 2000; Bel-
kin and Niyogi, 2003): when the semantic vectors of certain 
samples share a local manifold structure with a semantic 
center vector, those samples are likely to belong to the same 
defect type. The principle for updating semantic center vec-
tors is illustrated in the A2 of Fig. 4. The arrows (→) on 
the triangles (▲) indicate the update direction, moving the 
semantic center vectors toward the centroid of their nearest 
m semantic vectors. Specifically, each semantic center vec-
tor is updated to be the average of its nearest m semantic 
vectors.

For each semantic center vector c(t)
k  at iteration t, we iden-

tify its m nearest semantic vectors from the set {ai}N
i=1. Let 

Nm(c(t)
k ) denote the indices of these m nearest neighbors:

Nm(c(t)
k ) = {i1, i2, . . . , im | ai ∈ m-NN of c(t)

k }� (8)

single-type components. Therefore, we collaboratively 
optimize the parameters θf  and θg by minimizing a unified 
objective function:

min
θf ,θg

1
N

N∑
i=1

∥g(f(xi; θf ); θg)

− cyi
∥2

2 + λ
(
∥θf ∥2

2 + ∥θg∥2
2
)� (7)

This collaborative optimization strategy encourages the 
visual feature extractor f  to learn representations that are 
inherently aligned with the semantic attribute space. Con-
sequently, when the model is transferred to classify unseen 
mixed-type defects, both the visual feature extractor and 
semantic embedder are already tuned to the constituent 
components of the mixed-type defects. This enables more 
accurate projection of mixed-type defect patterns into 
the semantic space, ultimately enhancing classification 
performance.

Update semantic space

In Sect. “End-to-end model collaborative optimization”, both 
f  and g are trained on sample of the seen class (single-type 
defect wafer maps) by Eq. 7. The classification accuracy is 
high for seen class samples but significantly decreases when 

Fig. 4  The schematic diagram of updating semantic space
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min
θg

1
N

N∑
i=1

∥∥∥c(t+1)
yi

−g(vi; θg)∥2
2 + λ∥θg∥2

2

� (10)

where c(t+1)
yi  is the updated semantic center vector corre-

sponding to defect type yi of sample i, and λ denotes the 
regularization coefficient. The first term in Eq. 10 reduces 
the discrepancy between the semantic vectors and the 
refined semantic centroids, whereas the second term miti-
gates the overfitting by regularizing parameters θg.

Steps 1 through 3 are repeated until the semantic embed-
der g converges or the predefined maximum iteration count 
T is achieved. This iterative process progressively refines 
the semantic space to better align with the data manifold, 
thereby improving the classification accuracy for both the 
seen and unseen classes.

The complete process for the semantic space updating is 
shown in Algorithm 1. Lines 3 to 7 perform the update of 
semantic center vectors, and line 9 optimizes the semantic 
embedder according to Eq.  10. The algorithm ends when 
g̃ converges or when the T is achieved. At this point, the 
final g̃ and Ã are designated as the semantic embedder and 
semantic space, respectively.

The semantic center vector c(t)
k  is then updated as the mean 

of its m nearest semantic vectors:

c(t+1)
k = 1

m

∑

j∈Nm(c(t)
k

)

aj � (9)

This update process moves each semantic center vec-
tor toward the dense region of its corresponding mani-
fold, making the semantic vector closer to its semantic 
center vector. After the update, the semantic vectors 
in A2 are removed, generating a new semantic space 
Ã(t+1) = {c(t+1)

1 , c(t+1)
2 , . . . , c(t+1)

K } containing only 
updated semantic center vectors.

Retrain semantic embedder

During the collaborative optimization step, we first obtain 
an initial semantic embedder g that maps visual feature vec-
tors to corresponding semantic vectors. In the third step, the 
semantic embedder must be retrained to accommodate the 
updated semantic center vectors. In the retraining process, 
the parameters of the visual feature extractor f  are kept 
fixed, while the semantic embedder is optimized according 
to the objective function:

Algorithm 1  Iterative Optimization
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Progressive pseudo-labeling and retraining

In mixed-type defects, two-mixed defects are coupled from 
single-type defects, while three-mixed defects are formed 
from two-mixed defects by incorporating an additional 
single-type defect. Therefore, there is a progressive rela-
tionship among the defects. After training the model with 
labeled single-type defects, we observed that it achieved the 
highest accuracy in recognizing two-mixed defects. Hence, 
we propose a progressive pseudo-labeling and retraining 
strategy, as detailed in Algorithm 2.

Table 1  Attribute information of wafer maps
att1: Solid_circle att11: Over_90%_defective
att2: Dense att12: Random_patterns
att3: Cluster_without_center att13: Chemical_mechani-

cal_polishing
att4: Localized_cluster att14: Particles
att5: Thin_line_shape att15: Human errors
att6: Symmetric_to_rotation att16: Deposition
att7: located_near_an_edge att17: Rapid_thermal_annealing
att8: Annular_shaped att18: Photo_lithography
att9: Multiple_appearance att19: Lay-wise_misalignment
att10: No_defect att20: Uneven cleaning

Algorithm 2  Pseudo-Labeling

First, the model classifies all mixed-type defect wafer 
maps in Du, selects the wafer maps with pseudo-labels 
indicating two-mixed defects, and places them into the set 
C2 (Line 3). The samples in C2 with classification confi-
dence exceeding threshold τ  are then filtered into the set 
P2 (Line  4). These samples with pseudo-labels in P2 are 
transferred from Du to Ds (Lines 5–7). Subsequently, the 
procedures described in Sects.  “End-to-end model col-
laborative optimization” and “Update semantic space” are 
repeated to retrain the model (Line 8), sequentially assigning 
pseudo-labels to three-mixed and four-mixed defect wafer 
maps. During this progressive pseudo-labeling process, a 

high-confidence threshold is used to ensure the quality of 
the pseudo-labels, gradually optimizing the model’s classi-
fication ability for mixed-type defects.

Experimental setup

Dataset

The experiments are conducted on the MixedWM38 data-
set (Wang et al., 2020), which contains 38 defect categories: 

9 single-type defects, 13 two-mixed defects, 12 three-mixed 
defects, and 4 four-mixed defects. Most defect catego-
ries contain 1000 samples, except for Nearfull defect 
samples (866), Random samples (149), and C+EL+S sam-
ples (2000). In the experiments, the C+EL+S samples are 
downsampled to 1000, while the sample counts of all other 
categories remain unchanged. During model training, only 
single-type defect wafer maps have ground truth labels. The 
dataset is partitioned into training, validation, and test sub-
sets with a ratio of 70, 15, and 15%, respectively. The 9 
single-type defects were designated as labeled seen classes, 
while the 29 mixed-type defects were treated as unlabeled 
unseen classes.

We utilize a window threshold (Wang and Chen, 2019) to 
reduce noise in the wafer maps. For each wafer map, a 3 × 3 
sliding window is centered on each defective die to calcu-
late the proportion of defective dies within the window. If 
this proportion falls below a specified threshold value, the 
central die is reclassified as defect-free. In contrast, when 
the proportion exceeds the threshold, the central die remains 
defective. In the ZSWMC experiments, the threshold value 
is set to 4/9. Furthermore, all wafer maps are resized to a 
dimension of 224 × 224 pixels to conform to the input spec-
ifications of the ResNet-18 architecture.
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g, mapping the visual feature vectors into a 20-dimensional 
semantic space to generate corresponding semantic vectors. 
After the fully connected layer, the function sigmoid is used 
to constrain each element of the semantic vector to the range 
[0,1]. In Fig. 5a, the residual network contains four layers. 
The structure of each layer is illustrated in Fig. 5b, and the c 
presents the structure of residual block.

Parameter settings for the zero-shot learning

Our model was trained on a computational node featuring 
8 CPUs, 30 GB of RAM, and an NVIDIA A10 GPU. The 
Stochastic Gradient Descent (SGD) optimizer was utilized 
with a batch size of 64, configured with an initial learning 
rate of 0.01, a momentum of 0.9, and a weight decay(i.e. 
λ) of 1 × 10−2 to regularize the model and prevent overfit-
ting. Instead of a fixed learning rate, we utilized a cosine 
annealing scheduler(Loshchilov and Hutter, 2017) (with the 
cycle half-length Tmax set to 100 and the minimum learning 
rate ηmin set to 1 × 10−5)over the 100 training epochs for 
each iteration on the single-type defects dataset Ds. This 
scheduler dynamically decreases the learning rate from its 
initial value to nearly zero following a cosine curve, which 
facilitates more stable convergence and helps escape subop-
timal local minima. For updating the semantic center vec-
tor, the count of nearest neighbors, represented by m, is 50. 
These hyperparameters were determined through a litera-
ture review and preliminary experiments.

In the progressive pseudo-labeling and retraining strat-
egy, not all mixed-type defect wafer maps are assigned 
pseudo-labels for model retraining. We select the samples 
with high-confidence pseudo-labels. For this purpose, we set 
specific thresholds τ  for different mixed-type defects: 0.994 

The ZSWMC method uses 20 attributes, as presented in 
Table 1. These attributes are derived from the 17 attributes 
presented in Kim and Shim (2024) and are further refined 
through multiple discussions with wafer fab technicians. 
We found that the original 17 attributes were insufficient 
for accurately describing and distinguishing mixed-type 
defects. To address this limitation, we introduced three 
additional attributes to capture features that are essential 
to identify complex mixed-type defects. Thus, our attribute 
selection is primarily based on domain knowledge, without 
incorporating additional process information or employing 
feature selection algorithms.

The 20-dimensional semantic center vectors correspond-
ing to each defect type are detailed in Table 2. For example, 
the central defect type is characterized by a circular defect 
pattern (attribute 1) and symmetry (attribute 6), with defec-
tive dies clustered in a localized area of the wafer (attribute 
4). In addition, the central defect type is typically caused by 
issues related to chemical mechanical polishing (attribute 
13) or deposition (attribute 16) during manufacturing. Con-
sequently, the semantic center vector for the central defect 
type assigns a value of 1 to attributes 1, 4, 6, 13, and 16, 
while all remaining attributes are assigned a value of 0.

Model selection and parameter setting

We employ the convolutional layers of ResNet-18 as the 
visual feature extractor f , which outputs a 512-dimensional 
visual feature vector. The overall model architecture is illus-
trated in Fig. 5a. To accommodate the single-channel input 
of wafer map data, we modified the first convolutional layer 
(Conv1) to accept an input format of 224 × 224 × 1. A sin-
gle fully connected layer serves as the semantic embedder 

Fig. 5  Modified ResNet-18 architecture diagram
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(including Conv1, Layer1, Layer2, and Layer3). Only the 
Layer4 and the semantic embedder g are fine-tuned. All 
fine-tuning experiments employ the SGD optimizer with a 
momentum of 0.9, a weight decay (i.e. λ) of 1 × 10−3, and 
a batch size of 16. The initial learning rate is 1 × 10−3, and 
a cosine annealing scheduler (the cycle half-length Tmax set 
to 50 and the minimum learning rate ηmin set to 1 × 10−6) is 
used over 50 training epochs. This strategy drives the learn-
ing rate to decrease smoothly as training progresses, forcing 
the model to make only minor parameter updates in the later 
stages, thus effectively mitigating the risk of overfitting on 
the small-scale dataset.

Evaluation criteria

In Generalized zero-shot learning (GZSL), a unified seman-
tic space encompassing both seen and unseen classes must 
be constructed, where test samples must be classified within 
this comprehensive space. This imposes higher demands on 
the model, requiring simultaneous handling of all seen and 
unseen classes. GZSL is suited for meeting the demands of 
open-world applications. In contrast, Traditional Zero-Shot 
Learning (TZSL) constructs a specific semantic space tai-
lored to particular testing tasks. For example, when the test 
task involves only the detection of single-type defects, the 
semantic space contains only the semantic center vectors of 
single-type defects. By narrowing the discrimination scope, 
TZSL reduces classification difficulty, making it more suit-
able for validating a model’s zero-shot transfer capability 
in specific constrained scenarios. To evaluate the ZSWMC 
method, experiments are conducted under both General-
ized Zero-Shot Learning (GZSL) and Traditional Zero-Shot 
Learning (TZSL) settings.

In the experiments, the overall accuracy is adopted as the 
performance metric for the ZSWMC model:

M = TP + TN

TP + TN + FP + FN
� (11)

for two-mixed defects, 0.986 for three-mixed defects, and 
0.975 for four-mixed defects. We take two-mixed defects 
as an example to explain how the threshold is determined. 
After training the model on single-type defects, we classify 
all mixed-type defects using this model. For each wafer map 
predicted as two-mixed defects, a cosine similarity score 
exists between the wafer map and the semantic centroid 
vector corresponding to the predicted label. We select the 
top 20% of two-mixed defect wafer maps with the high-
est similarity scores as pseudo-label samples. The minimum 
cosine similarity within this subset is set as the threshold 
for two-mixed defects. After incorporating the two-mixed 
defect samples with pseudo-labels into model training, we 
apply the same procedure sequentially to determine thresh-
old values for three-mixed and four-mixed defects.

The confidence threshold decreases from two-mixed to 
four-mixed defects because it is correlated with the com-
plexity of mixed-type defects. As more single-type defects 
appear within a mixed defect, the increasing complexity 
reduces the cosine similarity between a wafer map and its 
semantic center vector. Since our method selects the top 
20% of samples exhibiting the highest similarity within 
each mixed-type defect category, the minimum similarity 
(threshold τ  ) within the selected subset naturally decreases 
from two-mixed to four-mixed defects.

Parameter settings during the fine-tuning stage

To enable a fair comparison with few-shot learning and self-
supervised/semi-supervised approaches, the model is fine-
tuned using a small set of mixed-type defect samples with 
ground-truth labels. Specifically, five samples are randomly 
chosen from each mixed-type defect category to construct 
the fine-tuning training set. To mitigate sampling random-
ness, this fine-tuning procedure is independently repeated 
five times, with the average performance and standard devi-
ation being reported.

For the fine-tuning configuration, we freeze the weights 
of the shallow and middle layers of the visual feature extrac-
tor f  obtained from pre-training on single-type defect data 

Table 3  Comparison with zero-shot learning methods (mean ± std, %)
Method GZSL TZSL

Ms Mmixed H Ms Mmixed H
ZSWMC 97.82 ± 0.15 75.09 ± 0.42 84.96 ± 0.28 98.32 ± 0.12 76.67 ± 0.38 86.16 ± 0.24
VCL (Wan et al. 2021) 95.67 ± 0.31 28.34 ± 1.25 43.73 ± 0.87 96.58 ± 0.28 30.28 ± 1.18 46.11 ± 0.79
CDVSc (Wan et al. 2021) 96.21 ± 0.26 33.68 ± 1.12 49.89 ± 0.76 97.39 ± 0.22 36.38 ± 1.05 52.97 ± 0.68
BMVSc (Wan et al. 2021) 96.04 ± 0.29 41.04 ± 0.98 57.51 ± 0.65 97.11 ± 0.25 43.57 ± 0.92 60.15 ± 0.58
WDVSc (Wan et al. 2021) 96.73 ± 0.24 28.82 ± 1.31 44.41 ± 0.91 97.89 ± 0.21 30.73 ± 1.24 46.78 ± 0.83
QFSL (Song et al. 2018) 95.46 ± 0.33 24.55 ± 1.42 39.06 ± 0.95 96.72 ± 0.29 27.17 ± 1.35 42.42 ± 0.86
Bi-VAEGAN (Wang et al. 2023) 97.53 ± 0.17 60.08 ± 0.85 74.36 ± 0.51 98.02 ± 0.14 61.74 ± 0.78 75.76 ± 0.45
AD3C-FGN (Zhang et al. 2023) 97.61 ± 0.16 42.93 ± 0.92 59.63 ± 0.61 98.09 ± 0.13 42.93 ± 0.86 59.72 ± 0.54
TFVAEGAN (Narayan et al. 2020) 94.62 ± 0.35 34.17 ± 1.08 50.21 ± 0.72 96.07 ± 0.31 34.17 ± 1.02 50.41 ± 0.65
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Analysis of experimental results

Comparison and analysis of results

We implemented several representative transductive zero-
shot learning methods (Wan et al., 2021; Song et al., 2018; 
Wang et al., 2023; Zhang et al., 2023; Narayan et al., 2020) 
and applied them to wafer map classification, comparing 
their performance with that of the ZSWMC method. In the 
experiments, all methods treated single-type defect wafer 
maps as seen classes and mixed-type defects as unseen 
classes. Each experiment was conducted five times with 
random initialization of model weights and sample order. 
Table 3 demonstrates the results of mean ± standard devia-
tion. The best performance is shown in bold, while the sec-
ond-best is indicated in italics.

The results in Table  3 demonstrate that the ZSWMC 
method outperforms other methods across every metric. Its 
superiority is evident from two key statistical perspectives: 
first, the mean performance of ZSWMC across all metrics is 
higher than other methods; second, the low standard devia-
tions (e.g., ±0.42% for Mmixed under GZSL) observed 
across all five independent runs indicate that the perfor-
mance of ZSWMC is stable.

The precision, recall, and F1-score for single-type, two-
mixed, three-mixed, and four-mixed defects are presented 
in Fig.  6. All reported values correspond to the averages 
obtained from five independent experimental trials. As 
illustrated, the model achieves performance close to 90% 
for two-mixed defects, with all three metrics maintained at a 
high level. This validates the feature generalization capabil-
ity of the ZSWMC method when handling unseen classes. 
For three-mixed defects, the model attains an F1-score 
above 70%. Even in the most challenging scenario involv-
ing four-mixed defects, it achieves an F1-score exceeding 
40%.

To validate the efficacy of the ZSWMC method, we com-
pare it with several similar approaches  (Chiu and Chen, 
2021; Kim et al., 2022; Geng et al., 2021; Liang et al., 
2024). All comparative results are the mean ± standard devi-
ation over five independent runs. Chiu and Chen (2021) and 
Kim et al. (2022) also utilize single-type defects as training 
samples to classify mixed-type defects, which aligns with 
our zero-shot learning objective. As shown in the first three 

	● TP (True Positives) The count of positive instances that 
the model accurately classifies as positive.

	● TN (True Negatives) The count of negative instances 
that the model accurately classifies as negative.

	● FP (False Positives) The count of negative instances 
that the model misclassifies as positive.

	● FN (False Negatives) The count of positive instances 
that the model misclassifies as negative.

We compute Ms for the overall accuracy of single-type 
defects and Mtmixed for mixed-type defects, using their 
harmonic mean H as the final performance metric:

H = 2 × Ms × Mmixed

Ms + Mmixed
� (12)

Furthermore, to provide a more comprehensive evaluation, 
the precision, recall, and the F1-score are also used:

Precision = TP

TP + FP
� (13)

Recall = TP

TP + FN
� (14)

F1-score = 2 × Precision × Recall
Precision + Recall

� (15)

Method Ms Mmixed H
ZSWMC 97.82 ± 0.15 75.09 ± 0.42 84.96 ± 0.28
 Chiu and Chen (2021) 97.73 ± 0.18 68.79 ± 0.65 80.75 ± 0.38
 Kim et al. (2022) 96.21 ± 0.25 50.28 ± 0.92 66.04 ± 0.51
ZSWMC (fine-tune) 98.28 ± 0.12 85.72 ± 0.35 91.57 ± 0.22
 Geng et al. (2021) 97.43 ± 0.16 82.45 ± 0.48 89.32 ± 0.30
 Liang et al. (2024) 94.94 ± 0.28 83.78 ± 0.42 89.01 ± 0.33

Table 4  Comparison with other 
methods (mean ± std, %)

 

Fig. 6  Impact of defect complexity on performance metrics
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such samples as ZSWMC, and the method that incorporates 
mixed-type defect samples as ZSWMC (fine-tune).

The results demonstrate that the Mmixed of ZSWMC is 
85.72 ± 0.35%, surpassing the few-shot learning methods 
Geng et al. (2021); Liang et al. (2024). Furthermore, com-
pared to the accuracy of 75.09% achieved by the ZSWMC 
without labeled mixed-type defect samples, the ZSWMC 
utilizing few-shot learning improves accuracy by 10.63%. 
These results indicate that the ZSWMC method can signifi-
cantly improve classification performance with minimally 
labeled samples.

For a comprehensive assessment of the ZSWMC(fine-
tune) method, a comparative analysis is conducted against 
several state-of-the-art self-supervised and semi-supervised 
learning approaches   (Baek et al., 2025; Kahng and Kim, 
2021; Kim and Kang, 2021; Kwak et al., 2023; Wang et al., 
2024). For fairness, all methods are trained on the same set 
of samples.

The results are summarized in Table 5. All reported values 
are expressed as the mean ± standard deviation, where the 
best results are emphasized in bold. For single-type defects 
recognition, all methods exhibited comparable performance 
because they were trained on single-type defect samples. For 
the recognition of mixed-type defects, the ZSWMC(fine-
tune) method achieved an accuracy of 85.72%, significantly 
outperforming the other methods by margins ranging from 
4.81% (vs. Kwak et al. (2023)) to 13.29% (vs. Kahng and 
Kim (2021)).

In terms of the overall performance metric H, the 
ZSWMC(fine-tune) method ranked first with a score of 
91.57%, benefiting from its superior performance on both 
single-type and mixed-type defects. Among the remaining 
techniques,  Kwak et al. (2023) obtained the highest overall 
score of 87.98% due to its relatively better performance on 
Mmixed, although it still exhibited a gap of 3.59% compared 

rows of Table 4, when no labeled mixed-type defects are 
available, the ZSWMC method achieves better performance 
compared to the methods in Chiu and Chen (2021) and Kim 
et al. (2022).

Because the ZSWMC method do not require any labeled 
mixed-type defect samples, its classification accuracy is 
lower than that of few-shot learning approaches in Geng et 
al. (2021) and Liang et al. (2024). However, when supple-
mented with a small number of labeled mixed-type defect 
samples, the ZSWMC method outperforms few-shot learn-
ing methods in classification accuracy.

The comparison results between ZSWMC and the meth-
ods in Geng et al. (2021) and Liang et al. (2024) are shown 
in the last three rows of Table 4. For fair comparison, our 
ZSWMC method and the compared methods were evaluated 
using five labeled samples per mixed-type defect as training 
samples. To indicate whether mixed-type defect samples 
are included during training, we denote the method without 

Table 6  Ablation study on EECO, SU, and PL
EECO SU PL Mall Mmixed Ms M2 M3 M4

✗ ✗ ✗ 48.62 27.91 97.69 44.35 15.83 8.50
✓ ✗ ✗ 49.69 (+1.07) 31.57 (+3.66) 97.13 (−0.56) 52.88 (+8.53) 16.58 (+0.75) 8.82 (+0.32)
✗ ✓ ✗ 53.52 (+4.90) 40.27 (+12.36) 96.28 (−1.41) 60.72 (+16.37) 27.26 (+11.43) 14.52 (+6.02)
✗ ✗ ✓ 50.12 (+1.50) 29.76 (+1.85) 97.42 (−0.27) 47.82 (+3.47) 17.57 (+1.74) 10.41 (+1.91)
✓ ✓ ✗ 62.96 (+14.34) 53.47 (+25.56) 96.95 (−0.74) 68.23 (+23.88) 44.33 (+28.50) 28.50 (+20.00)
✓ ✗ ✓ 51.33 (+2.71) 35.17 (+7.26) 97.09 (−0.6) 58.26 (+13.91) 25.43 (+9.6) 15.64 (+7.14)
✓ ✓ ✓ 80.31 (+31.69) 75.09 (+47.18) 97.82 (+0.13) 89.42 (+45.07) 69.42 (+53.59) 43.25 (+34.75)

Fig. 7  Impact of attribute on performance metrics

 

Method Ms Mmixed H
ZSWMC(fine-tune) 92.8 ± 0.12 87.72  ± 0.53 97.57 ± 0.22
 Baek et al. (2025) 97.95 ± 0.13 77.52 ± 0.70 86.55 ± 0.47
 Kahng and Kim (2021) 98.10 ± 0.11 72.43 ± 0.80 83.33 ± 0.55
 Kim and Kang (2021) 98.05 ± 0.12 76.84 ± 0.65 86.18 ± 0.42
 Kwak et al. (2023) 97.88 ± 0.13 80.91 ± 0.48 87.98 ± 0.38
 Wang et al. (2024) 97.92 ± 0.16 74.15 ± 0.72 84.29 ± 0.51

Table 5  Performance comparison 
with semi-supervised/self-super-
vised learning methods (mean ± 
std, %)
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defects, mixed-type defects, single-type, two-mixed, three-
mixed, and four-mixed defects.

The experimental results reveal several key insights. 
First, while the integration of all three strategies yields a 
substantial performance gain for mixed-type defects, their 
individual application leads to a slight decrease in(Ms). This 
is due to a shift in the feature-learning objective. The base-
line model optimizes for discriminative features directly 
aligned with single-type ground-truth labels. In contrast, the 
introduction of EECO, SU, or PL guides the model to learn 
more localized and interpretable attributes that enhance 
cross-category generalization, which may come at a minor 
cost to the sharp inter-class separation beneficial for single-
type recognition.

Second, all three strategies contribute significantly to the 
classification of mixed-type defects (Mmixed), with which 
the baseline model struggles. When applied individually, 
EECO, SU, and PL improve Mmixed by 3.66%, 12.36%, 
and 1.85%, respectively. Their combination is most effec-
tive, resulting in a notable improvement of 47.18% over 
baseline.

Third, the SU strategy emerges as the single most impact-
ful component. Its single application provides the largest 
individual gain (12.36% in Mmixed). Furthermore, adding 
SU to the combination of EECO and PL brings an additional 
39.92% improvement in Mmixed.

Finally, the PL strategy alone shows a limited effect 
(1.85% improvement). This is likely because, without the 
robust feature representations enabled by EECO and SU, the 
initial model generates noisy pseudo-labels, which in turn 
provide limited guidance for effective model refinement.

Moreover, to validate the effectiveness of a single FC 
layer as the semantic embedder g, we compared the clas-
sification performance of semantic embedders with differ-
ent depths. Specifically, we evaluated three architectures: 
(1) a single FC layer (512→20), (2) two FC layers (512→

to the ZSWMC(fine-tune) method. These results indicate 
that, even with only a small number of mixed-type defect 
samples, the ZSWMC (fine-tune) method preserves strong 
single-type defects recognition performance while achiev-
ing a clear advantage in mixed-type defects recognition.

To evaluate the presented 20 attributes, we compared 
them with the original 17 attributes from Kim and Shim 
(2024) under identical experimental conditions. As shown 
in Fig.  7, our method shows significant improvements 
in all evaluation metrics. The accuracy for single-type 
defects(Ms) increased from 96.87% to 97.82%. The most 
notable improvement was observed in mixed-type defects, 
where the accuracy (Mmixed) rises from 59.84% to 75.09%, 
yielding a gain of over 15 percentage points. The harmonic 
mean (H) also improves from 73.96 to 84.96%. These results 
demonstrate that the extended attributes capture more dis-
criminative features for mixed-type defects.

Ablation study

To ensure the statistical reliability of the results, all ablation 
studies reported in this section were conducted over five 
independent runs. The reported results are the mean of these 
five runs.

Component analysis

We conduct a comprehensive ablation study under GZSL 
to evaluate the contributions of the three proposed optimi-
zation strategies: End-to-End Collaborative Optimization 
(EECO), Semantic Space Update (SU), and Progressive 
Pseudo-Labeling (PL). A baseline model incorporating 
none of these strategies serves as our starting point, with its 
results detailed in the first row of Table 6. The six M metrics 
from left to right correspond to test data encompassing all 

Fig. 8  Effect of semantic embedder depth 
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on mixed-type defects, thereby confirming its effectiveness 
as the semantic embedder for our task.

To evaluate how the sample size of single-type defects 
affects the recognition performance for mixed-type defects, 
we conducted an ablation study. Although the original 
dataset contains nine single-type defects, we found that 
the Normal, Nearfull, and Random categories do not 
serve as constituent components of any mixed-type defects. 
Therefore, we removed these three single-type defects from 
the training set, retained the remaining six, and further 
examined how reducing the number of single-type defect 
categories influences performance.

The experiment used two different test sets. Test Set A 
(Purified Set), which contains only mixed-type defects 
whose constituent single-type defects all appear in the 
training set. Test Set B (Full Set) includes all 29 mixed-
type defect categories. For example, if the training samples 

256→20), and (3) three FC layers (512→256→128→20). 
All models were trained in identical settings and evaluated 
in the same test set. The corresponding results are presented 
in Fig. 8.

The experimental results demonstrate that although 
increasing the depth of the semantic embedder slightly 
improves performance on single-type defects—likely due 
to overfitting to their data distribution—it substantially 
degrades generalization to mixed-type defects. This is evi-
denced by a clear decline in mixed-type defect accuracy 
and harmonic mean accuracy as network depth increases. 
Thus, employing deeper FC layers as the semantic embed-
der can affect the model’s capability in classifying mixed-
type defects. In contrast, a single FC layer achieves the best 
overall generalization, maintaining high single-type defect 
recognition accuracy while delivering superior performance 

Fig. 10  Impact of pseudo-label selection 
ratio
 

Fig. 9  Effect of single-type defect 
categories
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discard combinations were: (1) Center, Donut; (2) 
Edge_loc, Loc; (3) Edge_ring, Scratch; (4) Cen-
ter, Edge_loc; (5) Donut, Scratch.

For the scenario with 3 single-type defect catego-
ries, we randomly selected three categories to discard. 
The five combinations of discards were: (1) Center, 
Edge_loc, Donut; (2) Loc, Scratch, Edge_ring; 
(3) Center,Scratch, Edge_ring; (4) Donut, Loc, 
Edge_loc; (5) Center, Loc, Scratch.

On Test Set A (Purified Set), as the number of training 
categories decreased from six to three, the model accu-
racy significantly increased from 75.22 to 91.83%. This 
improvement indicates that within a constrained task scope, 
reducing the defect categories enables the model to concen-
trate more effectively on learning discriminative features, 
thereby improving classification performance.

A different trend was observed on Test Set B (Full Set), 
which highlights the limitation of the ZSWMC method. 

include only the Center, Loc, and Scratch single-type 
defects, then Test Set A will consist of the four correspond-
ing mixed-type defect categories: C+L, C+S, L+S and 
C+L+S.

Figure 9 demonstrates the influence of single-type defect 
categories on model performance. The six single-type defect 
categories referred to in the experiments are Center, Loc, 
Donut, Scratch, Edge_loc, and Edge_ring. When 
constructing training sets with 5, 4, and 3 single-type defect 
categories, we employed a random discarding strategy and 
averaged the results over five independent random experi-
ments to ensure statistical reliability.

For the scenario with 5 single-type defect categories, 
we respectively discarded one category in each of the 
five experiments: Center, Donut, Loc, Edge_ring, 
Scratch.

For the scenario with 4 single-type defect categories, 
we randomly selected two categories to discard. The five 

Fig. 12  Impact of neighbor count 
(m)
 

Fig. 11  Impact of regularization 
coefficient (λ)
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Sensitivity analysis of hyperparameters

In the PL strategy, the top 20% of wafer maps with the high-
est similarity scores are assigned pseudo-labels for model 
retraining. To verify the optimality of the 20% selection 
ratio, experiments were performed using selection ratios 
varying from 10 to 50%. The results are shown in Fig 10.

As shown in the figure, the model accuracy (Mall) 
increased steadily as the selection ratio rose from 10% to 
15%, reaching a peak accuracy of 80.31% at 20%. Beyond 
this point, increasing the selection ratio led to a notable 

When the number of training defect categories decreased 
from six to three, the model accuracy dropped from 75.22 
to 30.94%. This result illustrates a key premise of our 
approach: the model’s ability to recognize mixed-type 
defects is fundamentally bounded by its knowledge of 
single-type defects. It can accurately identify mixed-type 
defects composed solely of known single-type defects, but 
it cannot generalize to those containing unknown.

Fig. 13  Visualization of multi-stage 
semantic space evolution
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Visualization and semantic correlation analysis

Visualization analysis of semantic space

The visualization analysis was performed to intuitively 
demonstrate the performance of the model from different 
perspectives. Figure  13 shows the t-SNE visualizations 
comparing three strategies:S1 (EECO only), S2 (EECO + 
SU), and S3 (EECO + SU + PL). We visualize checkpoints 
at training epochs 10, 30 and 100 for each strategy.

In Fig.  13, the differently colored triangles (▲) repre-
sent distinct semantic center vectors, while the circles (•) 
in different colors indicate different semantic vectors. The 
Figure clearly demonstrates the dynamic optimization of 
the semantic space under different strategies. The semantic 
vectors in the initial state (Fig. 13a) exhibit an unstructured, 
random distribution, indicating that the model has not yet 
learned discriminative features.

Under S1 (EECO only), the samples gradually aggregate 
by epoch 10 (Fig. 13b). As training progresses (Fig. 13c and 
d), several large clusters emerge, but the category bound-
aries remain blurred, and the intra-class structure is loose. 
This reveals the limitation of S1 in achieving fine-grained 
classification.

S2(EECO + SU) brings about a remarkable improve-
ment. By epoch 10 (Fig.  13e ), it already exhibits tighter 
clustering than S1. By epoch 30 (Fig. 13f ), the inter-class 
separation and intra-class cohesion increase noticeably. By 
epoch 100 (Fig. 13g), the semantic space is well structured 
with clear decision boundaries, demonstrating the benefit of 
updating semantic center vectors.

S3 (EECO + SU+PL) produces even faster clustering 
and clearer inter-class separation by epoch 10 (Fig.  13h) 
and epoch 30 (Fig. 13i). The final state (Fig. 13j ) displays 
highly cohesive clusters. Compared to S2 (Fig.  13g), the 
class clusters under S3 are internally more compact, and the 
margins between clusters are larger and more distinct. This 
indicates that the supervisory signals from pseudo-labels 
guide the model to learn more refined semantic features, 
thereby improving the overall semantic-space structure and 
yielding superior classification performance.

To quantitatively evaluate the semantic space under dif-
ferent strategies, we compute three clustering metrics:

	● Metric 1: Intra-class cohesion Measures intra-class 
compactness, computed as the average cosine distance 
between all sample pairs within a class. A lower value 
indicates higher similarity and better cohesion within 
the class. 

decline in performance, with accuracy dropping to 79.16% 
at 25%, 77.24% at 30%, and eventually to 68.43% at 50%. 
This degradation occurs because the incorporation of too 
many pseudo-labeled samples lowers the reliability of the 
label and introduces additional noise into the training pro-
cess. These results confirm that a 20% selection ratio pro-
vides the optimal accuracy in our method.

We evaluated the model’s sensitivity to two key hyper-
parameters: the regularization coefficient λ and the num-
ber of neighbors m. Figure 11 illustrates how the accuracy 
Mall varies with λ. The model exhibits a clear inverted-U 
relationship with respect to λ. When λ is too small (e.g., 
0.0001), weak regularization cannot prevent overfitting to 
noise in the training data, restricting the model’s capacity 
to generalize to mixed-type defects. As λ increases to the 
optimal value of 0.01, the model reaches its peak perfor-
mance of 80.31%. However, when λ becomes excessively 
large (e.g., 0.1), the overly strong regularization hinders 
effective learning, causing underfitting and a corresponding 
performance drop. These findings underscore the necessity 
of appropriately adjusting the regularization hyperparam-
eter in the proposed method.

Figure 12 illustrates the influence of the neighbor counts 
m on Mall during the update of the semantic center vec-
tors. When m is small (e.g., 5 or 10), the limited number 
of samples used to compute the semantic center vectors 
makes the results susceptible to noise and instability, lead-
ing to low accuracy. As m increases to the optimal value of 
50, the semantic center vectors become more reliable, bet-
ter capturing the essential characteristics of each defect type 
and achieving the maximum accuracy of 80.31%. It should 
be noted that Mall remains above 79% in a broad range of 
m = 20 to m = 200, demonstrating the substantial robust-
ness of our method to the choice of m.

Comprehensive sensitivity analyses on the regularization 
coefficient λ and the number of neighbors m reveal that our 
method exhibits favorable properties around its key hyper-
parameters. Both the pseudo-label ratio and λ exhibit a dis-
tinct "inverted-U" sensitivity, confirming that high-quality 
pseudo-label filtering and an appropriate regularization 
strength are crucial for optimal performance. Meanwhile, 
the model maintains stable performance across a broad 
range of m values, demonstrating the robustness of the 
semantic center updating strategy.

Table 7  Quantitative evaluation of clustering quality
Strategy Metric 1 ↓ Metric 2 ↑ Metric 3 ↑
S1 (EECO only) 0.352 0.418 0.191
S2 (EECO + SU) 0.241 0.583 0.428
S3 (EECO + SU + PL) 0.158 0.724 0.613
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 where µk and µl are the mean semantic vectors for classes 
Ck and Cl,respectively. The centroid for a given class Ck is 
calculated as:µk = 1

|Ck|
∑

i∈Ck
ai, where ai is the semantic 

vector of the i-th sample.

	● Metric 3: silhouette coefficient A comprehensive metric 
combining intra-class cohesion with inter-class separa-
tion, with a range of [−1, 1]. A value nearer to 1 signifies 
superior clustering quality. 

Silhouette = 1
N

N∑
i=1

s(i), s(i) = dinter(i) − dintra(i)
max {dintra(i), dinter(i)}

� (18)

 where N denotes the total sample count in dataset, s(i) rep-
resents the silhouette coefficient for the i-th sample. The 
dintra(i) is the average cosine distance between sample i and 
all other samples within its own class Ck, while dinter(i) is 
the minimum average cosine distance from sample i to sam-
ples in any other class. The max{·, ·} term in the denomi-
nator ensures s(i) falls within the interval [−1, 1]. A value 

Cohesion(Ck) = 1
|Ck| · (|Ck| − 1)

∑

i, j ∈ Ck
i ̸= j

CosineDistance(ai, aj)
� (16)

 where Ck denotes the k-th class (k = 1, 2, . . . , K, K is the 
total number of classes), |Ck| is the number of samples in 
Ck (|Ck| ≥ 2), ai and aj  are the semantic vectors of the i-th 
and j-th samples in Ck (i ̸= j). The cosine distance is defined 
as CosineDistance(·, ·) = 1 − CosineSimilarity(·, ·), 
which ranges from 0 to 2.

	● Metric 2: Inter-class separation Measures the separa-
tion between distinct classes, defined as the mean cosine 
distance between the centroids of all class pairs. A high-
er value indicates clearer boundaries between classes. 

Separation = 2
K · (K − 1)

K∑
k=1

K∑
l=k+1

CosineDistance(µk, µl)� (17)

Table 8  Semantic correlation analysis
Defect categories C D EL L ER S
Two-mixed
C + EL 0.711 0.200 0.764 0.537 0.501 0.446
C + ER 0.677 0.461 0.513 0.289 0.795 0.304
C + L 0.750 0.203 0.436 0.814 0.174 0.475
C + S 0.741 0.204 0.441 0.566 0.297 0.739
D + EL 0.315 0.632 0.771 0.412 0.722 0.321
D + ER 0.204 0.695 0.473 0.069 0.931 0.215
D + L 0.491 0.392 0.469 0.856 0.199 0.343
D + S 0.369 0.402 0.359 0.352 0.338 0.845
EL + L 0.335 0.053 0.810 0.811 0.420 0.463
EL + S 0.335 0.053 0.813 0.568 0.422 0.738
ER + L 0.316 0.484 0.413 0.413 0.836 0.313
ER + S 0.332 0.501 0.439 0.189 0.873 0.470
L + S 0.479 0.065 0.555 0.816 0.189 0.741
Three-mixed
C + EL + L 0.638 0.224 0.710 0.689 0.496 0.538
C + EL + S 0.645 0.198 0.706 0.590 0.486 0.642
C + ER + L 0.617 0.437 0.495 0.500 0.729 0.422
C + ER + S 0.624 0.465 0.500 0.385 0.776 0.410
C + L + S 0.680 0.218 0.523 0.728 0.314 0.659
D + EL + L 0.395 0.547 0.687 0.663 0.656 0.400
D + EL + S 0.412 0.544 0.684 0.502 0.638 0.614
D + ER + L 0.340 0.595 0.415 0.435 0.774 0.341
D + ER + S 0.355 0.645 0.417 0.210 0.825 0.440
D + L + S 0.550 0.366 0.528 0.721 0.321 0.666
EL + L + S 0.434 0.101 0.738 0.741 0.413 0.665
ER + L + S 0.445 0.467 0.416 0.430 0.785 0.440
Four-mixed
C + EL + L + S 0.607 0.238 0.662 0.664 0.500 0.623
C + ER + L + S 0.624 0.421 0.464 0.500 0.708 0.509
D + EL + L + S 0.452 0.505 0.618 0.628 0.591 0.584
D + ER + L + S 0.406 0.575 0.429 0.492 0.753 0.497
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method effectively captures the semantic information of 
mixed-type defects from single-type defects.

These results also reveal the relationship between the 
complexity of mixed-type defects and their constituent sin-
gle-type defects: the semantic correlation score decreases 
as the number of constituent defects increases. Two-mixed 
defects generally exhibit high correlation scores with their 
corresponding single-type defects, typically above 0.7; 
three-mixed defects fall mainly within the 0.6–0.8 range; 
and four-mixed defects drop further to the 0.5–0.7 range. 
This trend explains the model’s progressively declining 
classification performance from two-mixed to four-mixed 
defects.

Conclusion

This paper presents a wafer map classification method 
based on transductive zero-shot learning, referred to as the 
ZSWMC method. This method utilizes labeled single-type 
defect wafer maps to classify mixed-type defects, effec-
tively reducing the annotation costs for mixed-type defects. 
Before training, semantic center vectors are constructed 
based on prior knowledge, serving as both training targets 
for the model and the basis for classification. The training 
phase employs an end-to-end approach to collaboratively 
optimize the visual feature extractor and semantic embed-
der, enhancing their ability to capture intrinsic relationships 
between visual features and semantic information. Through 
iteratively updating semantic center vectors, the ZSWMC 
method improves the alignment between the visual and 
semantic spaces. Additionally, a progressive pseudo-label-
ing and retraining strategy is adopted to iteratively incorpo-
rate information from mixed-type defects, further improving 
the model’s generalization capability.

The ZSWMC method achieves superior classification 
accuracy for both seen and unseen classes compared to 
other transductive zero-shot learning methods. The ablation 
study highlights the significant advantages of the EECO, 
SU, and PL optimization strategies.

Although the ZSWMC method exhibits excellent perfor-
mance for most mixed-type defects, its classification accu-
racy for the four-mixed defect class remains relatively low. 
This limitation stems primarily from the limited precision of 
manually defined semantic attributes, which are insufficient 
to capture the complex interrelationships present in four-
mixed defects. To overcome this limitation, future research 
could explore unsupervised attribute-learning approaches, 
such as variational autoencoders or deep clustering, to 
automatically derive more accurate semantic attributes for 
mixed-type defects and further enhance model performance.

approaching 1 indicates that the sample is well aligned with 
its assigned class and clearly separated from others.
The results for the three strategies (S1–S3 at Epoch 100) 
are presented in Table 7. Metric 1 reports the average Intra-
class Cohesion across all defect categories. From S1 to S3, 
the Metric 1(Intra-class Cohesion) consistently decreases 
(0.352 → 0.241 → 0.158), indicating that each succes-
sive strategy effectively drives samples of the same class 
to cluster more tightly. Meanwhile, the Metric 2(Inter-class 
Separation) increases markedly (0.418 → 0.583 → 0.724), 
showing that class boundaries become progressively more 
distinct. The combined improvements of these two metrics 
are reflected in the steady rise of Metric 3 (Silhouette Coef-
ficient) from 0.191 to 0.613.

Specifically, S2 (EECO+SU) yields substantial improve-
ments across all metrics compared to S1 (EECO only), con-
firming that updating semantic center vectors effectively 
guides feature learning and enhances the structure of the 
semantic space. S3 (EECO+SU+PL) achieves the best over-
all performance. Its minimal Intra-class Cohesion coupled 
with maximal Inter-class Separation and Silhouette Coef-
ficient indicate that the additional supervisory signals from 
pseudo-labels allow the model to acquire more discrimina-
tive features from mixed-type defects. The high correlation 
observed between the quantitative metrics and the classifica-
tion accuracy validates the efficacy of the ZSWMC method.

Semantic correlation analysis

To verify that the ZSWMC method can effectively learn the 
semantic information of mixed-type defects from single-
type defects, we conducted a semantic correlation analysis. 
The semantic correlation score between a mixed-type defect 
category yi and a single-type defect category yj  is defined 
as follows: for each wafer map labeled as yi, its semantic 
vector is first derived using the ZSWMC method. Subse-
quently, the cosine similarity between the semantic vector 
and the semantic center vector of the single-type defect cat-
egory yj  is computed. The average cosine similarity across 
all samples in yi is used as the semantic correlation score. A 
higher score indicates a stronger semantic correlation.

Table 8 presents the results of semantic correlation anal-
ysis. All mixed-type defects are listed in the first column, 
and the remaining columns correspond to the six single-
type defects. The results show that each mixed-type defect 
exhibits the highest semantic correlation with its constitu-
ent single-type defects. For example, the two-mixed defect 
C+EL achieves scores of 0.711 with C and 0.764 with EL, 
which are substantially higher than its correlation with non-
constituent defects such as D (0.200). This pattern consis-
tently holds for three-mixed (e.g., C+EL+L) and four-mixed 
defects (e.g., C+EL+L+S), confirming that the ZSWMC 
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