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Abstract

In semiconductor manufacturing, rapidly identifying process faults through wafer map defect recognition can significantly
improve production yield. However, annotating wafer map defect types—especially complex mixed-type defects—requires
skilled technicians and substantial time, leading to high annotation costs. To address this issue, we present a transductive
zero-shot learning method that classifies mixed-type defects using only labeled samples of single-type defects. The pre-
sented technique eliminates the need for labeled mixed-type defects by leveraging semantic information to bridge known
classes (single-type) and unknown classes(mixed-type). This directly translates to reduced time and annotation costs, as
well as faster process diagnosis in production environments. We introduce three key strategies to improve classification
accuracy: (1) collaborative optimization of the visual feature extractor and semantic embedder, (2) iterative updating of the
semantic space, and (3) progressive pseudo-labeling for retraining. Extensive experiments demonstrate that the proposed
method substantially surpasses previous transductive zero-shot learning methods, particularly on mixed-type defects.

Keywords Wafer maps - Pattern classification - Mixed-type defect patterns - Transductive zero-shot learning - Pseudo-
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classification of these defect patterns enables rapid identifi-
cation of process anomalies, which is essential for improv-
ing production yield. While manual inspection by engineers
is both time-consuming and costly, machine learning and
deep learning techniques offer a scalable and efficient alter-
native for automatic defect pattern recognition.

Early methods for wafer map defect pattern classifica-
tion primarily depended on traditional machine learning
techniques with handcrafted features (Kim and Behdinan,
2023). In recent years, deep learning, especially Convolu-
tional Neural Networks (CNNs), has emerged as the pre-
dominant approach, as it can automatically extract wafer
map features and achieve superior performance (Nakazawa
and Kulkarni, 2019). However, as manufacturing processes
grow more complex, the mixed-type defects have emerged.
Mied-type defect means multiple sigle-type defects are
simultaneously present on a wafer (Geng et al., 2023). Fig-
ure 1 displays four typical single-type defects (first row) and
mixed-type defects (second row).

Compared to single-type defects, mixed-type defect pat-
terns exhibit significantly greater complexity and diversity,
posing substantial challenges for accurate classification.
The difficulties primarily stem from three factors. First,
mixed-type defects often display high inter-class similar-
ity and significant intra-class diversity due to differences
in the composition ratio and spatial distribution of the
defects (Chen et al., 2024). Second, the morphological
characteristics of mixed-type defects are highly stochastic,
varying in location, size, and rotation angle. Furthermore,
patterns from different types of defects may overlap and
interfere with one another. This complexity hinders Convo-
lutional Neural Networks from effectively disentangling and
extracting the essential features of each defect type, leading
to a notable decline in model discriminability, particularly
when dealing with complex patterns involving three or four
mixed defects (Luo and Wang, 2023).

Although supervised learning shows promising perfor-
mance in classifying mixed-type defect wafer maps, its
effectiveness heavily depends on large quantities of labeled

Fig. 1 Several examples of defect
patterns
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samples, which pose a significant challenge due to the high
cost of annotation (Shim et al., 2021). Labeling single-type
defects is comparatively straightforward, as their defect pat-
terns are simple and well defined. By contrast, annotating
mixed-type defect wafer maps—where a sample contains
multiple defect classes—is substantially more difficult and
time-consuming due to complex and often ambiguous mor-
phologies (Wang et al., 2020). If open-set recognition tech-
niques (Liu et al., 2020; Yue et al., 2021) are used to classify
mixed-type defects—so that a model can be trained without
using mixed-type defect samples while still achieving effec-
tive classification accuracy on those defects—the labeling
costs associated with mixed-type defects could be substan-
tially reduced.

Several studies have explored open-set recognition tech-
niques to detect the presence of unseen defect types in wafer
maps (Jang et al., 2020; Jang and Lee, 2023). However,
these methods are inherently limited to identifying the pres-
ence of novel defects, rather than providing specific clas-
sifications. Bacek et al. (2025) introduced a technique based
on a contrastive loss function to classify previously unseen
defects. However, their method can classify only unseen
single-type defects and cannot handle unseen mixed-type
defects.

Although prior work has advanced wafer map defect pat-
terns classification, a clear research gap remains in effec-
tively handling mixed-type defects. Current deep-learning
models perform well on single-type defects but degrade
substantially when encountering mixed-type defects. More-
over, the methods that improve mixed-type defects clas-
sification typically demand substantial volumes of labeled
samples, and the cost of annotating mixed-type defects is
prohibitively high. Notably, the techniques that can classify
mixed-type defects without relying on such defect samples
remain predominantly uninvestigated.

In this paper, we present a Transductive Zero-Shot Learn-
ing-based Wafer Map Classification (ZSWMC) method.
The ZSWMC method can classify mixed-type defects only
using labeled single-type defect samples and unlabeled
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mixed-type defect samples during training. To tackle the
identified challenges, we introduce three key optimization
strategies: (1) collaborative optimization of the visual fea-
ture extractor and semantic embedder, (2) iterative updating
of the semantic space, and (3) progressive pseudo-label-
ing for model retraining. These strategies are designed to
enhance semantic-visual alignment and improve classifi-
cation accuracy for complex mixed-type defects in a real-
world setting.

The contributions of the proposed ZSWMC method are
summarized as follows:

1. Atransductive zero-shot learning approach is presented,
enabling the classification of mixed-type defects with-
out requiring labeled mixed-type defect wafer maps
during training.

2. The visual feature extractor and semantic embedder are
integrated into an end-to-end model for collaborative
optimization, leveraging the close semantic correlation
between single-type defects and mixed-type defects.
Furthermore, the updating strategy of semantic space
during the training process is proposed to improve clas-
sification accuracy.

3. A progressive pseudo-labeling for model retraining
strategy is employed, utilizing the progressive relation-
ships among mixed-type defects to further enhance
classification accuracy.

The structure of this paper is as follows. Section “Related
work” reviews related research on wafer map defect patterns
recognition. Section “The ZSWMC method” presents the
proposed ZSWMC methodology. Sections “Experimental
setup” and “Analysis of experimental results” describe the
experimental setup and discuss the corresponding results,
respectively. Concluding remarks are offered in “Conclu-
sion” section.

Related work
Evolution of wafer map defect patterns recognition

Initial methods for recognizing defects in wafer maps
depended mainly on conventional machine learning tech-
niques that utilized manually engineered features. For
example, (Wu et al., 2015) combined Radon transforma-
tion features with geometric attributes, employing a Sup-
port Vector Machine (SVM) for classification. Similarly,
(Cheng et al., 2022) utilized defect density, yield metrics,
and Hough transform features for rapid pattern identifica-
tion using decision trees. However, these methods were
limited by their dependence on manually designed features,

which often failed to capture high-level semantic informa-
tion present in complex defect patterns.

The rapid progress in deep learning has led to its grow-
ing application in wafer map recognition. Nakazawa and
Kulkarni (2018) were the first to apply Convolutional Neural
Networks (CNNs) to this task. Subsequent studies focused
on improving feature representation: Chen et al. (2022) inte-
grated Deep Convolutional Neural Networks (DCNNs) with
decision-level entropy, while a later work Chen et al. (2023)
incorporated an improved convolutional block attention
module to prioritize salient defect regions. Additionally, Yi
et al. (2024) combined deep features with hand-made den-
sity and Radon features, achieving higher accuracy using
modified extreme learning machines. To address the com-
mon issue of sample imbalance, To address the common
issue of imbalanced defect samples, Hyun and Kim (2020)
proposed a memory-enhanced CNN architecture with a
triplet loss function. Although these supervised methods
achieve high accuracy on single-type defects, they exhibit
two inherent limitations. First, their performance is highly
dependent on large volumes of accurately annotated sam-
ples, the acquisition of which is often prohibitively expen-
sive. Second, because these methods are primarily designed
for single-type defects, their classification accuracy deterio-
rates substantially when applied to mixed-type defects.

To tackle the classification of mixed-type defects, dedi-
cated supervised models have been developed. Wang et al.
(2020) introduced a deformable convolution network to
selectively focus on defect regions, combined with a multi-
label output layer that decomposes mixed-type defects into
constituent single-type defects using a one-hot encoding
mechanism. To tackle the confusion between certain defect
types within mixed defects, (Luo and Wang, 2023) proposed
the CWDR-Net, which leverages multi-view dynamic fea-
ture enhancement and attention mechanisms to improve
the classification accuracy of complex mixed-type defects.
Although these studies have improved the classification
accuracy of mixed-type defects, they still rely heavily on
annotated samples. The annotation cost for mixed-type
defects is substantially higher than that for single-type
defects.

To alleviate the data annotation bottleneck, weakly-super-
vised paradigms like self-supervised and few-shot learning
have been presented. In self-supervised learning, Liao et al.
(2022) incorporated self-supervised reconstruction train-
ing into the classification task, which effectively utilized
pixel-level information from wafer maps, greatly enhanc-
ing classification accuracy. The Wafer Map Deep Cluster-
ing (WMDC) model, proposed by Xu et al. (2024), learns
general representations through unsupervised pre-training.
Using a prototype metric loss, it extracts semantic features
of defect categories, effectively enhancing recognition
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accuracy when transferred to tasks with scarce labeled data.
Kahng and Kim (2021) introduced a general self-supervised
training framework utilizing noise-contrastive estimation,
demonstrating its effectiveness in improving model perfor-
mance under label scarcity. Both Kim and Kang (2021) and
Kwak et al. (2023) adopted contrastive learning strategies.
Kim and Kang (2021) employed a Dirichlet Process Mixture
model to dynamically generate pseudo-labels for some sam-
ples used in subsequent self-supervised training. Kwak et
al. (2023) designed a new loss function that integrates label
information from the pre-training phase, thereby learning
representations that are better suited to classification tasks.
To handle mixed-type defects, Wang et al. (2024) introduced
a masked autoencoder-based framework, enabling few-shot
classification of complex mixed-type defects.

In the realm of few-shot learning, Geng et al. (2021) inte-
grated few-shot learning with self-supervised learning to
tackle data imbalance and improve utilization of unlabeled
data. However, their method is still limited to single-type
defect classification. Liang et al. (2024) proposed a few-
shot learning approach for mixed-type defects, employing a
masked autoencoder for unsupervised feature learning and a
dynamic multi-loss mechanism to enlarge inter-class differ-
ences and minimize intra-class variation, thereby improving
mixed-type defect classification accuracy. However, these
weakly-supervised methods primarily focus on learning
features from data and cannot classify previously unseen
defects during training.

Detection of unseen defect types

The increasing complexity of chip manufacturing neces-
sitates the identification of novel and unseen defect types.
Zhao et al. (2024) proposed an incremental learning-based
online detection method, PIRB, which is capable of detect-
ing unseen defects. Alawieh et al. (2020) proposed a deep
selective learning model incorporating a rejection mecha-
nism, enabling the model to refrain from making classifica-
tions under conditions of high uncertainty. Although these
methods effectively signal the presence of a novel defect,
they cannot identify its type of defect. The method proposed
in Baek et al. (2025) introduced a contrastive loss func-
tion to classify previously unseen defects, which can rec-
ognize a novel single-type defect. However, it is limited to
single-type defect scenarios and cannot classify mixed-type
defects.

Many studies employ semantic segmentation to classify
mixed-type defects. Yan et al. (2023) employed semantic
segmentation to decompose mixed-type defects into their
constituent single-type defect components. Chiu and Chen
(2021) and Kim et al. (2022) classify mixed-type defects by
using labeled single-type defects as training samples. Chiu

@ Springer

and Chen (2021) integrated mask R-CNN with rotation data
augmentation to enhance classification accuracy on single-
type defects, enabling precise classification and localization
of defects within mixed-type wafer maps through transfer
learning. Kim et al. (2022) proposed a novel single-stage
detector that directly learns features from single-type
defects and generalizes to mixed-type defects detection via
multi-scale feature transfers. Although these semantic seg-
mentation methods do not require labeled mixed-type defect
samples, they still depend on extensive pixel-level annota-
tions of single-type defects, necessitating precise defect
boundary labeling, which also results in high annotation
costs.

Zero-shot learning for defect recognition

Zero-Shot Learning (ZSL) offers a promising alternative by
eliminating the need for pixel-level annotations of unseen
classes. The principle of ZSL involves utilizing the high-
level semantic information, such as attribute or class descrip-
tor vectors, to facilitate the identification of unseen classes
during the training (Lampert et al., 2009). Mainstream ZSL
methods learn an embedding function that maps both visual
features and semantic descriptors into a shared latent space,
where classification is performed via similarity metrics.

Kim and Shim (2024) pioneered the application of ZSL
to classify unseen single-type defects in wafer maps. How-
ever, their method does not address the classification of
unseen mixed-type defects. Our proposed method aims to
solve this problem through ZSL.

In ZSL, the major challenge is the domain shift prob-
lem (Wan et al., 2021), where distributional discrepancies
between seen and unseen classes degrade model perfor-
mance. To mitigate the issue of domain shift, researchers
have proposed transductive zero-shot learning methods.
These methods leverage labeled samples from seen classes
and unlabeled samples from unseen classes for model train-
ing, optimizing the embedding function, and improving the
model’s capacity for generalization. Some representative
transductive zero-shot methods, such as VSC (Wan et al.,
2021), QFSL (Song et al., 2018), Bi-VAEGAN (Wang et
al., 2023), AD3C-FGN (Zhang et al., 2023), and TFVAE-
GAN (Narayan et al., 2020), have shown effectiveness in
improving classification accuracy for unseen classes.

Our work extends zero-shot learning to the classifica-
tion of mixed-type defects by treating labeled single-type
defects as seen classes and unlabeled mixed-type defects
as unseen classes, significantly reducing the annotation
cost for mixed-type defects. However, conventional trans-
ductive zero-shot learning methods suffer from subopti-
mal performance due to the separate optimization of visual
feature extraction and semantic embedding, which leads
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to significant differences between the visual spaces and
semantic spaces. To overcome this limitation, the proposed
ZSWMC method leverages the close semantic relationships
between single-type and mixed-type defects, integrating
visual feature extraction and semantic embedding for co-
optimization, and iteratively updating the semantic space to
bridge the gap. The close semantic relationships mean that
mixed-type defects are combinations of single-type defects.
For example, a scratch defect typically exhibits a thin-line
shape, whereas a center defect is characterized by a solid-
circle appearance. The mixed-type defect C+S (Center
+ Scratch) displays both thin-line and solid-circle attri-
butes in the wafer maps. Furthermore, the proposed method
employs a progressive pseudo-labeling and retraining strat-
egy to fully leverage unlabeled samples, further enhancing
classification accuracy.

The ZSWMC method

The ZSWMC method first requires the definition of the
semantic center vectors for all single-type and mixed-type
defects based on expert knowledge. These vectors function
as training targets for the model and serve as the basis for
distinguishing between different defects. When classify-
ing wafer map defect categories, the classification model
extracts visual features from wafer maps and embeds them
into the semantic space to generate semantic vectors. The
defect category of each wafer map is determined via calcu-
lating the cosine similarity between its semantic vector and
the predefined semantic center vectors. The workflow of the
ZSWMC method is shown in Fig. 2, comprising four steps.

The first step involves denoising wafer maps from seen
classes to preserve the primary defect features. Initially,
the seen class contains only samples of single-type defects.
The ZSWMC method uses a window threshold (Wang and
Chen, 2019) to reduce the noise in wafer maps. The denois-
ing procedure is described in Sect. “Dataset”.
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Fig. 2 The workflow of the ZSWMC Method

The second step employs an end-to-end collaborative
optimization strategy to jointly optimize the feature extrac-
tor and semantic embedder. The feature extractor extracts
visual features from input samples, while the semantic
embedder maps these visual features into semantic space to
generate semantic vectors.

The third step updates the semantic space by recalculat-
ing all semantic center vectors to minimize the mapping
bias of the visual feature vectors. In Fig. 2, colored triangles
(A) in the semantic space represent the semantic center vec-
tors of different defect categories.

The fourth step implements a progressive pseudo-label-
ing and retraining strategy. During this step, mixed-type
defect wafer maps are assigned pseudo-labels, and a sub-
set of high-confidence pseudo-labeled samples is selected
and combined with seen class samples to retrain the model.
The specific operations involved in each step are elaborated
upon in the subsequent sections.

End-to-end model collaborative optimization

This step utilizes the close semantic correlation between
single-type and mixed-type defects to integrate the visual
feature extractor and semantic embedder into an end-to-end
model for collaborative optimization.

Problem formulation

The matrix z € {0,1,2}™*™ represents a wafer map
sample, where 0 denotes background, 1 signifies a good
die, and 2 indicates a bad die. The set of seen classes
Ds = {(zi,yi,cy,)}Y, consists of labeled single-type
defect wafer maps, where x; denotes the i-th wafer map, y;
specifies its defect category represented as an integer, c,,
is the semantic center vector of the defect category y;, and
N indicates the quantity of seen class samples. The unseen
class set D, = {x; }jle contains all unlabeled mixed-type

defect wafer maps, where x; represents the j-th wafer map,
and M denotes the quantity of unseen class samples.

We establish a mapping from wafer maps to the semantic
attribute space. Let f(-; 6) denote the visual feature extrac-
tor parameterized by 6y, and g(-;6,) denote the semantic
embedder parameterized by 6,. Given an input wafer map
x; from a seen class, its semantic vector &; is obtained by:

ai = g(f(ws;05);0,) (1)

The training objective is to jointly learn the parameters
{0¢,0,4} such that the semantic vector &; closely approxi-
mates its corresponding semantic center vector. Let y; be
the defect type of wafer map x;, and let c,, be the semantic
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center vector for defect type y;. This objective is achieved
by minimizing the Mean Squared Error (MSE) loss between
4; and c,, across a batch of N samples:

N
1 A
Luse = + > 1A = ey 13 2
i=1
where || - ||2 denotes the L2-norm. To mitigate overfitting,

the loss function £ comprises the MSE loss and an L2 regu-
larization term:

L= Luse + A (107113 + [16,13)

L2 Regularization

3)

By minimizing £, the model encourages the semantic
vectors to align with their corresponding semantic center
vectors while constraining the complexity of 0 and 0, to
improve generalization.

During the test phase, the model first generates the
semantic vector of the sample x;: 8; = g(f(z)). It then
computes the cosine similarity between &; and all seman-
tic center vectors. The semantic center vector exhibiting the
highest similarity is selected, and its corresponding defect
type is assigned to x;:

ay - Cp
max
1<k<K |ag]|2]lck 2

Ys = arg “4)

In Eq. 4, K represents the number of defect categories,
including seen and unseen classes. The y; is the predicted
defect type of the sample z, the symbol denotes the dot
product, and ¢, represents the semantic center vector of the
defect type k.

Collaborative optimization architecture

The architecture for collaborative optimization is illus-
trated in Fig. 3. We employ the convolutional layers of
ResNet-18 (He et al., 2016) as the visual feature extractor
f(-;0y) and a single fully connected(FC) layer as the seman-
tic embedder g(+; 8,). During the preliminary training stage,
we leverage the set of seen classes D, which contains only

single-type defect wafer maps with ground-truth labels, to
jointly learn the parameters 6y and 6.

The reason that we use a single FC layer as the semantic
embedder g is threefold. First, the ResNet-18 backbone pro-
duces a 512-dimensional feature vector from its penultimate
layer, providing a high-level visual representation that aligns
with the abstraction level of the target semantic attributes.
A single linear transformation is therefore sufficient to map
between these two high-level spaces. Second, the single FC
layer, which contains only 512 x 20 + 20 = 10, 260 param-
eters, significantly reduces the model complexity and miti-
gates the risk of overfitting compared to a deeper network.
Finally, since the target semantic space is low-dimensional
(20 dimensions) and does not require a highly non-linear
mapping, a single FC layer has been widely adopted and
proven effective in analogous attribute learning tasks (Xu et
al., 2022; Li et al., 2023; Xian et al., 2018).

A standard approach in zero-shot learning involves a
two-stage training procedure, where the visual feature
extractor and semantic embedder are optimized in sequence.
This approach can be formalized using the following two
independent objectives:

Stage 1: min Las (f(@i;05),yi) (5

f
Stage 2: H;in Lembed <g(f(xu ef); 01})7 Cy'i) (6)

Here, L. is a standard classification loss (e.g., cross-
entropy) used to pre-train the visual feature extractor

f, yielding parameters 6 . Subsequently, the loss function
Lembed (.., MSE) is applied to train the semantic embed-
der g, optimizing 6, while keeping 0 ¢ fixed. This training
paradigm arises from the semantic discrepancy between
seen and unseen classes. The underlying rationale is that
jointly optimizing 6 and 6, could lead the learned feature
space to overfit the seen classes, consequently compromis-
ing its generalization capability to unseen classes.

In wafer map defect classification, mixed-type defects
are formed by combining multiple single-type defects. This
inherent relationship allows their visual and semantic fea-
tures to be derived from the features of their constituent

R ) : 3 ‘ ) \ \ @ ‘ A) A )
| | A
L ) A A
Seen Feature Visual feature Semantic Semantic Semantic
class (D) extractor (f) vector V Embedder (g) vector space

Fig. 3 Collaborative optimization for feature extractor and semantic embedder
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single-type components. Therefore, we collaboratively
optimize the parameters ¢; and 6, by minimizing a unified
objective function:

N
o1
%171912 N le ||9(f(33u 6}“)5 99)

—cy Iz + A (1615 + 194112)

(M

This collaborative optimization strategy encourages the
visual feature extractor f to learn representations that are
inherently aligned with the semantic attribute space. Con-
sequently, when the model is transferred to classify unseen
mixed-type defects, both the visual feature extractor and
semantic embedder are already tuned to the constituent
components of the mixed-type defects. This enables more
accurate projection of mixed-type defect patterns into
the semantic space, ultimately enhancing classification
performance.

Update semantic space

In Sect. “End-to-end model collaborative optimization”, both
f and g are trained on sample of the seen class (single-type
defect wafer maps) by Eq. 7. The classification accuracy is
high for seen class samples but significantly decreases when

o A
e A
" A
= A
(2) update 1"':‘“ As
\ semantic space
N
2 o\
.\
%
¢
A

Fig.4 The schematic diagram of updating semantic space

classifying unseen class samples (mixed-type defect wafer
maps). To improve classification precision, we propose the
semantic space updating strategy comprising three steps, as
illustrated in Fig. 4.

Map visual feature vectors

The first step maps all visual feature vectors in visual space
V into semantic space .A;, generating the semantic vectors
via the semantic embedder g. Formally, for a visual feature
vector v; € V extracted by f, its corresponding semantic
vector a; in semantic space A; is obtained by a; = g(v;).

As shown in Fig. 4, the visual space V contains visual
feature vectors of wafer map samples, extracted by the
visual feature extractor f. In this space, samples from differ-
ent defect categories are represented by colored circles (e),
while the colored stars (%) denote the visual center of each
category, computed as the mean of all its sample vectors. In
the semantic space A1, colored triangles (A) represent the
semantic center vectors of different defect categories. Ini-
tially, the semantic space .4, contains only these semantic
center vectors. After semantic vectors are generated, a new
semantic space A5 is constructed, where colored diamonds
(#) represent semantic vectors corresponding to different
defect categories.

Update the semantic center vectors

The second step involves iteratively updating the seman-
tic space, where the semantic center vectors within 45
are updated. We adopt the core concept of manifold learn-
ing (Tenenbaum et al., 2000; Roweis and Saul, 2000; Bel-
kin and Niyogi, 2003): when the semantic vectors of certain
samples share a local manifold structure with a semantic
center vector, those samples are likely to belong to the same
defect type. The principle for updating semantic center vec-
tors is illustrated in the A5 of Fig. 4. The arrows (—) on
the triangles (A) indicate the update direction, moving the
semantic center vectors toward the centroid of their nearest
m semantic vectors. Specifically, each semantic center vec-
tor is updated to be the average of its nearest m semantic
vectors.

For each semantic center vector Cg) at iteration ¢, we iden-
tify its m nearest semantic vectors from the set {a; }}* . Let

Nm(c,(f)) denote the indices of these m nearest neighbors:

Non (@) = {iy,ig, ... im | a; € m-NN of ¢{”'} (8)
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. t
The semantic center vector C;C )

is then updated as the mean
of its m nearest semantic vectors:

1
t+1 Z
C’(“ = m % ©)

FENm ()

This update process moves each semantic center vec-
tor toward the dense region of its corresponding mani-
fold, making the semantic vector closer to its semantic
center vector. After the update, the semantic vectors

in A, are removed, generating a new semantic space
T(t+1) _ .+ (t+1) (t+1)
AU = {ej Sk )

,Cy containing
updated semantic center vectors.

only

Retrain semantic embedder

During the collaborative optimization step, we first obtain
an initial semantic embedder g that maps visual feature vec-
tors to corresponding semantic vectors. In the third step, the
semantic embedder must be retrained to accommodate the
updated semantic center vectors. In the retraining process,
the parameters of the visual feature extractor f are kept
fixed, while the semantic embedder is optimized according
to the objective function:

1N
min — Z ‘ cg“)
0, N — (10)
. 2 2
—9(vi; 0g)ll5 + Allbgl5
(t+1) . .
where ¢y, is the updated semantic center vector corre-
sponding to defect type y; of sample 4, and A\ denotes the
regularization coefficient. The first term in Eq. 10 reduces
the discrepancy between the semantic vectors and the
refined semantic centroids, whereas the second term miti-
gates the overfitting by regularizing parameters 6.

Steps 1 through 3 are repeated until the semantic embed-
der g converges or the predefined maximum iteration count
T is achieved. This iterative process progressively refines
the semantic space to better align with the data manifold,
thereby improving the classification accuracy for both the
seen and unseen classes.

The complete process for the semantic space updating is
shown in Algorithm 1. Lines 3 to 7 perform the update of
semantic center vectors, and line 9 optimizes the semantic
embedder according to Eq. 10. The algorithm ends when
g converges or when the T is achieved. At this point, the
final g and A are designated as the semantic embedder and
semantic space, respectively.

Require: V, A, g _
Ensure: Optimized g, updated A
1: Initialize A+ A, g+ g
2: for iteration t =1 to T' do

3.  for each semantic center vector ¢, € A do

4: Find its m nearest neighbors in g())

5: Compute mean: ¢ % 27;1 neighbor;
6: Update ¢ < ¢

7. end for _

8:  Update A < {c | Yk}

9:  Learn g by Eq. 10

10:  if converged then

11: break

12:  end if

13: end for

14: return g, A

Algorithm 1 Iterative Optimization
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Progressive pseudo-labeling and retraining

In mixed-type defects, two-mixed defects are coupled from
single-type defects, while three-mixed defects are formed
from two-mixed defects by incorporating an additional
single-type defect. Therefore, there is a progressive rela-
tionship among the defects. After training the model with
labeled single-type defects, we observed that it achieved the
highest accuracy in recognizing two-mixed defects. Hence,
we propose a progressive pseudo-labeling and retraining
strategy, as detailed in Algorithm 2.

high-confidence threshold is used to ensure the quality of
the pseudo-labels, gradually optimizing the model’s classi-
fication ability for mixed-type defects.

Experimental setup

Dataset

The experiments are conducted on the MixedWM38 data-
set (Wang et al., 2020), which contains 38 defect categories:

Require: Dy, D,, model M, threshold

Ensure: Final model M*
1. M* <+~ M
2. for k=2to 4 do

3 Ck + {x € Dy | M*(z) predicts k-mixed}

4. Py + {z € Cy | Confidence(M*(x)) > 7}
5. Assign pseudo-labels to Py

6: Du — Du — Pk

7. D¢+ DsU Py

8  M* « Train(M*, Dy)

9: end for

10: return M*

Algorithm 2 Pseudo-Labeling

First, the model classifies all mixed-type defect wafer
maps in D,, selects the wafer maps with pseudo-labels
indicating two-mixed defects, and places them into the set
C5 (Line 3). The samples in Cy with classification confi-
dence exceeding threshold 7 are then filtered into the set
P> (Line 4). These samples with pseudo-labels in P, are
transferred from D, to Dy (Lines 5-7). Subsequently, the
procedures described in Sects. “End-to-end model col-
laborative optimization” and “Update semantic space” are
repeated to retrain the model (Line 8), sequentially assigning
pseudo-labels to three-mixed and four-mixed defect wafer
maps. During this progressive pseudo-labeling process, a

Table 1 Attribute information of wafer maps

attl: Solid circle attll: Over 90% defective
att2: Dense att]12: Random_patterns
att3: Cluster_without center

att13: Chemical_mechani-
cal_polishing

att14: Particles

att]15: Human errors

att16: Deposition

att]7: Rapid_thermal annealing
att18: Photo_lithography

att19: Lay-wise_misalignment

att4: Localized cluster

att5: Thin_line shape

att6: Symmetric_to_rotation
att7: located near an_edge
att8: Annular_shaped

att9: Multiple_appearance

att10: No_defect att20: Uneven cleaning

9 single-type defects, 13 two-mixed defects, 12 three-mixed
defects, and 4 four-mixed defects. Most defect catego-
ries contain 1000 samples, except for Nearfull defect
samples (866), Random samples (149), and C+EL+S sam-
ples (2000). In the experiments, the C+EL+S samples are
downsampled to 1000, while the sample counts of all other
categories remain unchanged. During model training, only
single-type defect wafer maps have ground truth labels. The
dataset is partitioned into training, validation, and test sub-
sets with a ratio of 70, 15, and 15%, respectively. The 9
single-type defects were designated as labeled seen classes,
while the 29 mixed-type defects were treated as unlabeled
unseen classes.

We utilize a window threshold (Wang and Chen, 2019) to
reduce noise in the wafer maps. For each wafer map,a 3 x 3
sliding window is centered on each defective die to calcu-
late the proportion of defective dies within the window. If
this proportion falls below a specified threshold value, the
central die is reclassified as defect-free. In contrast, when
the proportion exceeds the threshold, the central die remains
defective. In the ZSWMC experiments, the threshold value
is set to 4/9. Furthermore, all wafer maps are resized to a
dimension of 224 x 224 pixels to conform to the input spec-
ifications of the ResNet-18 architecture.
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att2 att3 att4 attS att6 att7 att® att9 attl0 attll  attl2 attl3 attl4 attl5 attl6 attl7  attl8 attl9  att20

attl
1
0
0
0
0
0
0
0
0
1
1
1
1
0
0
0
0
0
0
0
0
0
1
1
1
1
1
0
0
0
0
0
0
0
1
1
0
0

Name
Center
Donut

Edge loc
Edge ring
Scratch
Random
Nearfull
Normal
C+EL
C+ER

C+L

C+S

D+EL
D+ER

D+L

D+S

EL+L
EL+S
ER+L
ER+S

L+S
C+EL+L
C+EL+S
C+ER+L
C+ER+S
C+L+S
D+EL+L
D+EL+S
D+ER+L
D+ER+S
D+L+S
EL+L+S
ER+L+S
C+EL+L+S
C+ER+L+S
D+EL+L+S
D+ER+L+S

Loc

Table 2 Defect types and their semantic center vectors

Defect type
Three-mixed defects

Single-type defects
Two-mixed defects
Four-mixed defects

@ Springer



Journal of Intelligent Manufacturing

Overall Architecture

Convl Batch
64@7x7, 2 Normalization

Input Image

224x224x1 RelU

(b) Residual Network

Fig. 5 Modified ResNet-18 architecture diagram

The ZSWMC method uses 20 attributes, as presented in
Table 1. These attributes are derived from the 17 attributes
presented in Kim and Shim (2024) and are further refined
through multiple discussions with wafer fab technicians.
We found that the original 17 attributes were insufficient
for accurately describing and distinguishing mixed-type
defects. To address this limitation, we introduced three
additional attributes to capture features that are essential
to identify complex mixed-type defects. Thus, our attribute
selection is primarily based on domain knowledge, without
incorporating additional process information or employing
feature selection algorithms.

The 20-dimensional semantic center vectors correspond-
ing to each defect type are detailed in Table 2. For example,
the central defect type is characterized by a circular defect
pattern (attribute 1) and symmetry (attribute 6), with defec-
tive dies clustered in a localized area of the wafer (attribute
4). In addition, the central defect type is typically caused by
issues related to chemical mechanical polishing (attribute
13) or deposition (attribute 16) during manufacturing. Con-
sequently, the semantic center vector for the central defect
type assigns a value of 1 to attributes 1, 4, 6, 13, and 16,
while all remaining attributes are assigned a value of 0.

Model selection and parameter setting

We employ the convolutional layers of ResNet-18 as the
visual feature extractor f, which outputs a 512-dimensional
visual feature vector. The overall model architecture is illus-
trated in Fig. 5a. To accommodate the single-channel input
of wafer map data, we modified the first convolutional layer
(Convl) to accept an input format of 224 x 224 x 1. A sin-
gle fully connected layer serves as the semantic embedder

Max Pooling
3x3,2

20 dimensional
output

FCand
sigmoid

4-layer Residual Network
(layerl, layer2, layer3, layer4)

Average
Pooling

(c) Residual Block

g, mapping the visual feature vectors into a 20-dimensional
semantic space to generate corresponding semantic vectors.
After the fully connected layer, the function sigmoid is used
to constrain each element of the semantic vector to the range
[0,1]. In Fig. 5a, the residual network contains four layers.
The structure of each layer is illustrated in Fig. 5b, and the ¢
presents the structure of residual block.

Parameter settings for the zero-shot learning

Our model was trained on a computational node featuring
8 CPUs, 30 GB of RAM, and an NVIDIA A10 GPU. The
Stochastic Gradient Descent (SGD) optimizer was utilized
with a batch size of 64, configured with an initial learning
rate of 0.01, a momentum of 0.9, and a weight decay(i.e.
A) of 1 x 1072 to regularize the model and prevent overfit-
ting. Instead of a fixed learning rate, we utilized a cosine
annealing scheduler(Loshchilov and Hutter, 2017) (with the
cycle half-length T3« set to 100 and the minimum learning
rate 7min set to 1 x 10~5)over the 100 training epochs for
each iteration on the single-type defects dataset Dg. This
scheduler dynamically decreases the learning rate from its
initial value to nearly zero following a cosine curve, which
facilitates more stable convergence and helps escape subop-
timal local minima. For updating the semantic center vec-
tor, the count of nearest neighbors, represented by m, is 50.
These hyperparameters were determined through a litera-
ture review and preliminary experiments.

In the progressive pseudo-labeling and retraining strat-
egy, not all mixed-type defect wafer maps are assigned
pseudo-labels for model retraining. We select the samples
with high-confidence pseudo-labels. For this purpose, we set
specific thresholds 7 for different mixed-type defects: 0.994
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for two-mixed defects, 0.986 for three-mixed defects, and
0.975 for four-mixed defects. We take two-mixed defects
as an example to explain how the threshold is determined.
After training the model on single-type defects, we classify
all mixed-type defects using this model. For each wafer map
predicted as two-mixed defects, a cosine similarity score
exists between the wafer map and the semantic centroid
vector corresponding to the predicted label. We select the
top 20% of two-mixed defect wafer maps with the high-
est similarity scores as pseudo-label samples. The minimum
cosine similarity within this subset is set as the threshold
for two-mixed defects. After incorporating the two-mixed
defect samples with pseudo-labels into model training, we
apply the same procedure sequentially to determine thresh-
old values for three-mixed and four-mixed defects.

The confidence threshold decreases from two-mixed to
four-mixed defects because it is correlated with the com-
plexity of mixed-type defects. As more single-type defects
appear within a mixed defect, the increasing complexity
reduces the cosine similarity between a wafer map and its
semantic center vector. Since our method selects the top
20% of samples exhibiting the highest similarity within
each mixed-type defect category, the minimum similarity
(threshold 7 ) within the selected subset naturally decreases
from two-mixed to four-mixed defects.

Parameter settings during the fine-tuning stage

To enable a fair comparison with few-shot learning and self-
supervised/semi-supervised approaches, the model is fine-
tuned using a small set of mixed-type defect samples with
ground-truth labels. Specifically, five samples are randomly
chosen from each mixed-type defect category to construct
the fine-tuning training set. To mitigate sampling random-
ness, this fine-tuning procedure is independently repeated
five times, with the average performance and standard devi-

(including Convl, Layerl, Layer2, and Layer3). Only the
Layer4 and the semantic embedder g are fine-tuned. All
fine-tuning experiments employ the SGD optimizer with a
momentum of 0.9, a weight decay (i.e. \) of 1 x 1073, and
a batch size of 16. The initial learning rate is 1 x 1073, and
a cosine annealing scheduler (the cycle half-length T3, set
to 50 and the minimum learning rate 7y, setto 1 x 107%)is
used over 50 training epochs. This strategy drives the learn-
ing rate to decrease smoothly as training progresses, forcing
the model to make only minor parameter updates in the later
stages, thus effectively mitigating the risk of overfitting on
the small-scale dataset.

Evaluation criteria

In Generalized zero-shot learning (GZSL), a unified seman-
tic space encompassing both seen and unseen classes must
be constructed, where test samples must be classified within
this comprehensive space. This imposes higher demands on
the model, requiring simultaneous handling of all seen and
unseen classes. GZSL is suited for meeting the demands of
open-world applications. In contrast, Traditional Zero-Shot
Learning (TZSL) constructs a specific semantic space tai-
lored to particular testing tasks. For example, when the test
task involves only the detection of single-type defects, the
semantic space contains only the semantic center vectors of
single-type defects. By narrowing the discrimination scope,
TZSL reduces classification difficulty, making it more suit-
able for validating a model’s zero-shot transfer capability
in specific constrained scenarios. To evaluate the ZSWMC
method, experiments are conducted under both General-
ized Zero-Shot Learning (GZSL) and Traditional Zero-Shot
Learning (TZSL) settings.

In the experiments, the overall accuracy is adopted as the
performance metric for the ZSWMC model:

ation being reported. _ TP+TN (11)

For the fine-tuning configuration, we freeze the weights TP+TN+FP+FN
of the shallow and middle layers of the visual feature extrac-
tor f obtained from pre-training on single-type defect data
Table 3 Comparison with zero-shot learning methods (mean =+ std, %)
Method GZSL TZSL

M; Mmized H M, Mmized H

ZSWMC 97.82+0.15 75.09+0.42 84.96+0.28 98.32+0.12 76.67+0.38 86.16+0.24
VCL (Wan et al. 2021) 95.67+£0.31 28.34+1.25 43.73+0.87 96.58+0.28 30.28+1.18 46.11+0.79
CDVSc (Wan et al. 2021) 96.21+£0.26 33.68+1.12 49.89+0.76 97.39+0.22 36.38+1.05 52.97+0.68
BMVSc (Wan et al. 2021) 96.04+0.29 41.04+0.98 57.51+0.65 97.11+0.25 43.57+0.92 60.15+0.58
WDVSc (Wan et al. 2021) 96.73+0.24 28.82+1.31 44.41+0.91 97.89+0.21 30.73+1.24 46.78+0.83
QFSL (Song et al. 2018) 95.46+0.33 24.55+1.42 39.06+0.95 96.72+0.29 27.17+1.35 42.42+0.86
Bi-VAEGAN (Wang et al. 2023) 97.53+£0.17 60.08+0.85 74.36+0.51 98.02+0.14 61.74+0.78 75.76+0.45
AD3C-FGN (Zhang et al. 2023) 97.61+0.16 42.93+0.92 59.63+0.61 98.09+0.13 42.93+0.86 59.72+0.54
TFVAEGAN (Narayan et al. 2020) 94.62+0.35 34.17+1.08 50.21+£0.72 96.07+0.31 34.17+1.02 50.41+0.65
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Defect Category

single

Fig. 6 Impact of defect complexity on performance metrics

e TP (True Positives) The count of positive instances that
the model accurately classifies as positive.

o TN (True Negatives) The count of negative instances
that the model accurately classifies as negative.

e [P (False Positives) The count of negative instances
that the model misclassifies as positive.

o FN (False Negatives) The count of positive instances
that the model misclassifies as negative.

We compute M; for the overall accuracy of single-type
defects and M;mixed for mixed-type defects, using their
harmonic mean H as the final performance metric:

_ 2 x Ms X Mmixed
Ms + Mmized

(12)

Furthermore, to provide a more comprehensive evaluation,
the precision, recall, and the F1-score are also used:

.. TP
Precision = TPTFP (13)
TP
Recall = m—m (14)

Precision x Recall
F1- =2 15
seore % Precision + Recall )

Analysis of experimental results
Comparison and analysis of results

We implemented several representative transductive zero-
shot learning methods (Wan et al., 2021; Song et al., 2018;
Wang et al., 2023; Zhang et al., 2023; Narayan et al., 2020)
and applied them to wafer map classification, comparing
their performance with that of the ZSWMC method. In the
experiments, all methods treated single-type defect wafer
maps as seen classes and mixed-type defects as unseen
classes. Each experiment was conducted five times with
random initialization of model weights and sample order.
Table 3 demonstrates the results of mean + standard devia-
tion. The best performance is shown in bold, while the sec-
ond-best is indicated in italics.

The results in Table 3 demonstrate that the ZSWMC
method outperforms other methods across every metric. Its
superiority is evident from two key statistical perspectives:
first, the mean performance of ZSWMC across all metrics is
higher than other methods; second, the low standard devia-
tions (e.g., £0.42% for M,,;z.q under GZSL) observed
across all five independent runs indicate that the perfor-
mance of ZSWMC is stable.

The precision, recall, and F1-score for single-type, two-
mixed, three-mixed, and four-mixed defects are presented
in Fig. 6. All reported values correspond to the averages
obtained from five independent experimental trials. As
illustrated, the model achieves performance close to 90%
for two-mixed defects, with all three metrics maintained at a
high level. This validates the feature generalization capabil-
ity of the ZSWMC method when handling unseen classes.
For three-mixed defects, the model attains an Fl-score
above 70%. Even in the most challenging scenario involv-
ing four-mixed defects, it achieves an Fl-score exceeding
40%.

To validate the efficacy of the ZSWMC method, we com-
pare it with several similar approaches (Chiu and Chen,
2021; Kim et al., 2022; Geng et al., 2021; Liang et al.,
2024). All comparative results are the mean + standard devi-
ation over five independent runs. Chiu and Chen (2021) and
Kim et al. (2022) also utilize single-type defects as training
samples to classify mixed-type defects, which aligns with
our zero-shot learning objective. As shown in the first three

Table 4 Comparison with other Method M, Momixed H

methods (mean =+ std, %)
ZSWMC 97.82+0.15 75.09+0.42 84.96+0.28
Chiu and Chen (2021) 97.73+0.18 68.79+0.65 80.75+0.38
Kim et al. (2022) 96.21+0.25 50.28+0.92 66.04+0.51
ZSWMC (fine-tune) 98.28+0.12 85.72+£0.35 91.57+0.22
Geng et al. (2021) 97.43£0.16 82.45+0.48 89.32+0.30
Liang et al. (2024) 94.94+0.28 83.78+0.42 89.01+0.33
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Table 5 Performance comparison  pMethod M, Mived H

with semi-supervised/self-super-

vised learning methods (mean + ZSWMC(fine-tune) 92.8+0.12 87.72+£0.53 97.57+0.22

std, %) Back et al. (2025) 97.95+0.13 77.52+0.70 86.55+0.47
Kahng and Kim (2021) 98.10+0.11 72.43+0.80 83.33+£0.55
Kim and Kang (2021) 98.05+0.12 76.84+0.65 86.18+0.42
Kwak et al. (2023) 97.88+0.13 80.91+0.48 87.98+0.38
Wang et al. (2024) 97.92+0.16 74.15+0.72 84.29+0.51

100 96.87 . 97.82 = ;; 22:23:: Ezgj,s) such samples as ZSWMC, and the method that incorporates
84.96 mixed-type defect samples as ZSWMC (fine-tune).

80 The results demonstrate that the M,,;;.cq of ZSWMC is
= 85.72 £ 0.35%, surpassing the few-shot learning methods
E 6 Geng et al. (2021); Liang et al. (2024). Furthermore, com-
8 pared to the accuracy of 75.09% achieved by the ZSWMC
§ without labeled mixed-type defect samples, the ZSWMC
< 40 utilizing few-shot learning improves accuracy by 10.63%.

These results indicate that the ZSWMC method can signifi-

20 cantly improve classification performance with minimally
labeled samples.

For a comprehensive assessment of the ZSWMC(fine-

Harmonic mean

Single-type

Mixed-type
Evaluation Metrics

Fig. 7 Impact of attribute on performance metrics

rows of Table 4, when no labeled mixed-type defects are
available, the ZSWMC method achieves better performance
compared to the methods in Chiu and Chen (2021) and Kim
et al. (2022).

Because the ZSWMC method do not require any labeled
mixed-type defect samples, its classification accuracy is
lower than that of few-shot learning approaches in Geng et
al. (2021) and Liang et al. (2024). However, when supple-
mented with a small number of labeled mixed-type defect
samples, the ZSWMC method outperforms few-shot learn-
ing methods in classification accuracy.

The comparison results between ZSWMC and the meth-
ods in Geng et al. (2021) and Liang et al. (2024) are shown
in the last three rows of Table 4. For fair comparison, our
ZSWMC method and the compared methods were evaluated
using five labeled samples per mixed-type defect as training
samples. To indicate whether mixed-type defect samples
are included during training, we denote the method without

Table 6 Ablation study on EECO, SU, and PL

tune) method, a comparative analysis is conducted against
several state-of-the-art self-supervised and semi-supervised
learning approaches (Baek et al., 2025; Kahng and Kim,
2021; Kim and Kang, 2021; Kwak et al., 2023; Wang et al.,
2024). For fairness, all methods are trained on the same set
of samples.

The results are summarized in Table 5. All reported values
are expressed as the mean + standard deviation, where the
best results are emphasized in bold. For single-type defects
recognition, all methods exhibited comparable performance
because they were trained on single-type defect samples. For
the recognition of mixed-type defects, the ZSWMC(fine-
tune) method achieved an accuracy of 85.72%, significantly
outperforming the other methods by margins ranging from
4.81% (vs. Kwak et al. (2023)) to 13.29% (vs. Kahng and
Kim (2021)).

In terms of the overall performance metric H, the
ZSWMC(fine-tune) method ranked first with a score of
91.57%, benefiting from its superior performance on both
single-type and mixed-type defects. Among the remaining
techniques, Kwak et al. (2023) obtained the highest overall
score of 87.98% due to its relatively better performance on
M ized, although it still exhibited a gap of 3.59% compared

EECO SU PL Man Mnized Mg Mo Ms My

X X X 48.62 2791 97.69 44.35 15.83 8.50

v X X 49.69 (+1.07) 31.57 (+3.66) 97.13 (—0.56) 52.88 (+8.53) 16.58 (+0.75) 8.82 (+0.32)

X v X 53.52 (+4.90) 40.27 (+12.36) 96.28 (—1.41) 60.72 (+16.37) 27.26 (+11.43) 14.52 (+6.02)
X X v 50.12 (+1.50) 29.76 (+1.85) 97.42 (—0.27) 47.82 (+3.47) 17.57 (+1.74) 10.41 (+1.91)
v v X 62.96 (+14.34) 53.47 (+25.56) 96.95 (—0.74) 68.23 (+23.88) 44.33 (+28.50) 28.50 (+20.00)
v X v 51.33 (+2.71) 35.17 (+7.26) 97.09 (—0.6) 58.26 (+13.91) 25.43 (+9.6) 15.64 (+7.14)
v v v 80.31 (+31.69) 75.09 (+47.18) 97.82 (+0.13) 89.42 (+45.07) 69.42 (+53.59) 43.25 (+34.75)
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to the ZSWMC(fine-tune) method. These results indicate
that, even with only a small number of mixed-type defect
samples, the ZSWMC (fine-tune) method preserves strong
single-type defects recognition performance while achiev-
ing a clear advantage in mixed-type defects recognition.

To evaluate the presented 20 attributes, we compared
them with the original 17 attributes from Kim and Shim
(2024) under identical experimental conditions. As shown
in Fig. 7, our method shows significant improvements
in all evaluation metrics. The accuracy for single-type
defects(M) increased from 96.87% to 97.82%. The most
notable improvement was observed in mixed-type defects,
where the accuracy (M,,izeq) rises from 59.84% to 75.09%,
yielding a gain of over 15 percentage points. The harmonic
mean (H) also improves from 73.96 to 84.96%. These results
demonstrate that the extended attributes capture more dis-
criminative features for mixed-type defects.

Ablation study

To ensure the statistical reliability of the results, all ablation
studies reported in this section were conducted over five
independent runs. The reported results are the mean of these
five runs.

Component analysis

We conduct a comprehensive ablation study under GZSL
to evaluate the contributions of the three proposed optimi-
zation strategies: End-to-End Collaborative Optimization
(EECO), Semantic Space Update (SU), and Progressive
Pseudo-Labeling (PL). A baseline model incorporating
none of these strategies serves as our starting point, with its
results detailed in the first row of Table 6. The six M metrics
from left to right correspond to test data encompassing all

defects, mixed-type defects, single-type, two-mixed, three-
mixed, and four-mixed defects.

The experimental results reveal several key insights.
First, while the integration of all three strategies yields a
substantial performance gain for mixed-type defects, their
individual application leads to a slight decrease in(My). This
is due to a shift in the feature-learning objective. The base-
line model optimizes for discriminative features directly
aligned with single-type ground-truth labels. In contrast, the
introduction of EECO, SU, or PL guides the model to learn
more localized and interpretable attributes that enhance
cross-category generalization, which may come at a minor
cost to the sharp inter-class separation beneficial for single-
type recognition.

Second, all three strategies contribute significantly to the
classification of mixed-type defects (M,,izeq), With which
the baseline model struggles. When applied individually,
EECO, SU, and PL improve M,,;zeq by 3.66%, 12.36%,
and 1.85%, respectively. Their combination is most effec-
tive, resulting in a notable improvement of 47.18% over
baseline.

Third, the SU strategy emerges as the single most impact-
ful component. Its single application provides the largest
individual gain (12.36% in M, ;zeq). Furthermore, adding
SU to the combination of EECO and PL brings an additional
39.92% improvement in M,,;zcq-

Finally, the PL strategy alone shows a limited effect
(1.85% improvement). This is likely because, without the
robust feature representations enabled by EECO and SU, the
initial model generates noisy pseudo-labels, which in turn
provide limited guidance for effective model refinement.

Moreover, to validate the effectiveness of a single FC
layer as the semantic embedder g, we compared the clas-
sification performance of semantic embedders with differ-
ent depths. Specifically, we evaluated three architectures:
(1) a single FC layer (512—20), (2) two FC layers (512—

Fig. 8 Effect of semantic embedder depth 100 3 3 3
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Fig. 9 Effect of single-type defect
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Fig. 10 Impact of pseudo-label selection
ratio
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256—20), and (3) three FC layers (512—256—128—20).
All models were trained in identical settings and evaluated
in the same test set. The corresponding results are presented
in Fig. 8.

The experimental results demonstrate that although
increasing the depth of the semantic embedder slightly
improves performance on single-type defects—likely due
to overfitting to their data distribution—it substantially
degrades generalization to mixed-type defects. This is evi-
denced by a clear decline in mixed-type defect accuracy
and harmonic mean accuracy as network depth increases.
Thus, employing deeper FC layers as the semantic embed-
der can affect the model’s capability in classifying mixed-
type defects. In contrast, a single FC layer achieves the best
overall generalization, maintaining high single-type defect
recognition accuracy while delivering superior performance

@ Springer
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on mixed-type defects, thereby confirming its effectiveness
as the semantic embedder for our task.

To evaluate how the sample size of single-type defects
affects the recognition performance for mixed-type defects,
we conducted an ablation study. Although the original
dataset contains nine single-type defects, we found that
the Normal, Nearfull, and Random categories do not
serve as constituent components of any mixed-type defects.
Therefore, we removed these three single-type defects from
the training set, retained the remaining six, and further
examined how reducing the number of single-type defect
categories influences performance.

The experiment used two different test sets. Test Set A
(Purified Set), which contains only mixed-type defects
whose constituent single-type defects all appear in the
training set. Test Set B (Full Set) includes all 29 mixed-
type defect categories. For example, if the training samples
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include only the Center, Loc, and Scratch single-type
defects, then Test Set A will consist of the four correspond-
ing mixed-type defect categories: C+L, C+S, L+S and
C+L+8.

Figure 9 demonstrates the influence of single-type defect
categories on model performance. The six single-type defect
categories referred to in the experiments are Center, Loc,
Donut, Scratch, Edge loc, and Edge ring. When
constructing training sets with 5, 4, and 3 single-type defect
categories, we employed a random discarding strategy and
averaged the results over five independent random experi-
ments to ensure statistical reliability.

For the scenario with 5 single-type defect categories,
we respectively discarded one category in each of the
five experiments: Center, Donut, Loc, Edge ring,
Scratch.

For the scenario with 4 single-type defect categories,
we randomly selected two categories to discard. The five

160
Number of Neighbors (m)

150 200

discard combinations were: (1) Center, Donut; (2)
Edge loc, Loc; (3) Edge _ring, Scratch; (4) Cen-
ter, Edge loc; (5) Donut, Scratch.

For the scenario with 3 single-type defect catego-
ries, we randomly selected three categories to discard.
The five combinations of discards were: (1) Center,
Edge loc, Donut; (2) Loc, Scratch, Edge ring;
(3) Center,Scratch, Edge ring; (4) Donut, Loc,
Edge loc;(5) Center, Loc, Scratch.

On Test Set A (Purified Set), as the number of training
categories decreased from six to three, the model accu-
racy significantly increased from 75.22 to 91.83%. This
improvement indicates that within a constrained task scope,
reducing the defect categories enables the model to concen-
trate more effectively on learning discriminative features,
thereby improving classification performance.

A different trend was observed on Test Set B (Full Set),
which highlights the limitation of the ZSWMC method.

@ Springer
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When the number of training defect categories decreased
from six to three, the model accuracy dropped from 75.22
to 30.94%. This result illustrates a key premise of our
approach: the model’s ability to recognize mixed-type
defects is fundamentally bounded by its knowledge of
single-type defects. It can accurately identify mixed-type
defects composed solely of known single-type defects, but
it cannot generalize to those containing unknown.

Fig. 13 Visualization of multi-stage
semantic space evolution

(e) S2: Epoch 10

(h) S3: Epoch 10
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Sensitivity analysis of hyperparameters

In the PL strategy, the top 20% of wafer maps with the high-
est similarity scores are assigned pseudo-labels for model
retraining. To verify the optimality of the 20% selection
ratio, experiments were performed using selection ratios
varying from 10 to 50%. The results are shown in Fig 10.
As shown in the figure, the model accuracy (M)
increased steadily as the selection ratio rose from 10% to
15%, reaching a peak accuracy of 80.31% at 20%. Beyond
this point, increasing the selection ratio led to a notable

(g) S2: Epoch 100
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decline in performance, with accuracy dropping to 79.16%
at 25%, 77.24% at 30%, and eventually to 68.43% at 50%.
This degradation occurs because the incorporation of too
many pseudo-labeled samples lowers the reliability of the
label and introduces additional noise into the training pro-
cess. These results confirm that a 20% selection ratio pro-
vides the optimal accuracy in our method.

We evaluated the model’s sensitivity to two key hyper-
parameters: the regularization coefficient A and the num-
ber of neighbors m. Figure 11 illustrates how the accuracy
M, varies with A. The model exhibits a clear inverted-U
relationship with respect to A\. When A is too small (e.g.,
0.0001), weak regularization cannot prevent overfitting to
noise in the training data, restricting the model’s capacity
to generalize to mixed-type defects. As A increases to the
optimal value of 0.01, the model reaches its peak perfor-
mance of 80.31%. However, when A becomes excessively
large (e.g., 0.1), the overly strong regularization hinders
effective learning, causing underfitting and a corresponding
performance drop. These findings underscore the necessity
of appropriately adjusting the regularization hyperparam-
eter in the proposed method.

Figure 12 illustrates the influence of the neighbor counts
m on M, during the update of the semantic center vec-
tors. When m is small (e.g., 5 or 10), the limited number
of samples used to compute the semantic center vectors
makes the results susceptible to noise and instability, lead-
ing to low accuracy. As m increases to the optimal value of
50, the semantic center vectors become more reliable, bet-
ter capturing the essential characteristics of each defect type
and achieving the maximum accuracy of 80.31%. It should
be noted that M,;; remains above 79% in a broad range of
m = 20 to m = 200, demonstrating the substantial robust-
ness of our method to the choice of m.

Comprehensive sensitivity analyses on the regularization
coefficient A and the number of neighbors m reveal that our
method exhibits favorable properties around its key hyper-
parameters. Both the pseudo-label ratio and A exhibit a dis-
tinct "inverted-U" sensitivity, confirming that high-quality
pseudo-label filtering and an appropriate regularization
strength are crucial for optimal performance. Meanwhile,
the model maintains stable performance across a broad
range of m values, demonstrating the robustness of the
semantic center updating strategy.

Table 7 Quantitative evaluation of clustering quality

Strategy Metric 1 | Metric 2 1 Metric 3 1
S1 (EECO only) 0.352 0.418 0.191
S2 (EECO + SU) 0.241 0.583 0.428
S3 (EECO + SU + PL) 0.158 0.724 0.613

Visualization and semantic correlation analysis
Visualization analysis of semantic space

The visualization analysis was performed to intuitively
demonstrate the performance of the model from different
perspectives. Figure 13 shows the t-SNE visualizations
comparing three strategies:S1 (EECO only), S2 (EECO +
SU), and S3 (EECO + SU + PL). We visualize checkpoints
at training epochs 10, 30 and 100 for each strategy.

In Fig. 13, the differently colored triangles (A) repre-
sent distinct semantic center vectors, while the circles (e)
in different colors indicate different semantic vectors. The
Figure clearly demonstrates the dynamic optimization of
the semantic space under different strategies. The semantic
vectors in the initial state (Fig. 13a) exhibit an unstructured,
random distribution, indicating that the model has not yet
learned discriminative features.

Under S1 (EECO only), the samples gradually aggregate
by epoch 10 (Fig. 13b). As training progresses (Fig. 13¢ and
d), several large clusters emerge, but the category bound-
aries remain blurred, and the intra-class structure is loose.
This reveals the limitation of S1 in achieving fine-grained
classification.

S2(EECO + SU) brings about a remarkable improve-
ment. By epoch 10 (Fig. 13e ), it already exhibits tighter
clustering than S1. By epoch 30 (Fig. 13f), the inter-class
separation and intra-class cohesion increase noticeably. By
epoch 100 (Fig. 13g), the semantic space is well structured
with clear decision boundaries, demonstrating the benefit of
updating semantic center vectors.

S3 (EECO + SU+PL) produces even faster clustering
and clearer inter-class separation by epoch 10 (Fig. 13h)
and epoch 30 (Fig. 131). The final state (Fig. 13j ) displays
highly cohesive clusters. Compared to S2 (Fig. 13g), the
class clusters under S3 are internally more compact, and the
margins between clusters are larger and more distinct. This
indicates that the supervisory signals from pseudo-labels
guide the model to learn more refined semantic features,
thereby improving the overall semantic-space structure and
yielding superior classification performance.

To quantitatively evaluate the semantic space under dif-
ferent strategies, we compute three clustering metrics:

e Metric 1: Intra-class cohesion Measures intra-class
compactness, computed as the average cosine distance
between all sample pairs within a class. A lower value
indicates higher similarity and better cohesion within
the class.

@ Springer
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Table 8 Semantic correlation analysis

Defect categories C D EL L ER S
Two-mixed
C+EL 0.711 0.200 0.764 0.537 0.501 0.446
C+ER 0.677 0.461 0.513 0.289 0.795 0.304
C+L 0.750 0.203 0.436 0.814 0.174 0.475
C+S 0.741 0.204 0.441 0.566 0.297 0.739
D +EL 0.315 0.632 0.771 0.412 0.722 0.321
D+ ER 0.204 0.695 0.473 0.069 0.931 0.215
D+L 0.491 0.392 0.469 0.856 0.199 0.343
D+S 0.369 0.402 0.359 0.352 0.338 0.845
EL+L 0.335 0.053 0.810 0.811 0.420 0.463
EL+S 0.335 0.053 0.813 0.568 0.422 0.738
ER +L 0.316 0.484 0.413 0.413 0.836 0.313
ER +S 0.332 0.501 0.439 0.189 0.873 0.470
L+S 0.479 0.065 0.555 0.816 0.189 0.741
Three-mixed
C+EL+L 0.638 0.224 0.710 0.689 0.496 0.538
C+EL+S 0.645 0.198 0.706 0.590 0.486 0.642
C+ER+L 0.617 0.437 0.495 0.500 0.729 0.422
C+ER+S 0.624 0.465 0.500 0.385 0.776 0.410
C+L+S 0.680 0.218 0.523 0.728 0.314 0.659
D+EL+L 0.395 0.547 0.687 0.663 0.656 0.400
D+EL+S 0.412 0.544 0.684 0.502 0.638 0.614
D+ER+L 0.340 0.595 0.415 0.435 0.774 0.341
D+ER+S 0.355 0.645 0.417 0.210 0.825 0.440
D+L+S 0.550 0.366 0.528 0.721 0.321 0.666
EL+L+S 0.434 0.101 0.738 0.741 0.413 0.665
ER+L+S 0.445 0.467 0.416 0.430 0.785 0.440
Four-mixed
C+EL+L+S 0.607 0.238 0.662 0.664 0.500 0.623
C+ER+L+S 0.624 0.421 0.464 0.500 0.708 0.509
D+EL+L+S 0.452 0.505 0.618 0.628 0.591 0.584
D+ER+L+S 0.406 0.575 0.429 0.492 0.753 0.497
Cohesion(Cy) = fenE (‘1@' 5 Z CosineDistance(a;, a;) where py, and g are the mean sen.lantic Ve(.:tors for classe.s
i\ i C (16)  C} and Cy,respectively. The centroid for a given class Cy, is
i# ]

where Cj, denotes the k-th class (k = 1,2,..., K, K is the

total number of classes), |Cy| is the number of samples in
Ci (|Ck| > 2), a; and a; are the semantic vectors of the i-th
and j-th samples in C, (i # 7). The cosine distance is defined
as CosineDistance(-, -) = 1 — CosineSimilarity(-, -),
which ranges from 0 to 2.

® Metric 2: Inter-class separation Measures the separa-
tion between distinct classes, defined as the mean cosine
distance between the centroids of all class pairs. A high-
er value indicates clearer boundaries between classes.

K K
2
Separation = m Z Z CosineDistance (g, ter) a7
k=11=k+1
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calculated as: s, = ﬁ Zieck a;, where a; is the semantic

vector of the i-th sample.

® Metric 3: silhouette coefficient A comprehensive metric
combining intra-class cohesion with inter-class separa-
tion, with a range of [—1, 1]. A value nearer to 1 signifies
superior clustering quality.

N

. 1 . .
Silhouette = N Z s(i), s(i) =

i=1

dintcr(i) — dintra(i)
max {dintra(i)y dinter (’L)} (1 8)

where N denotes the total sample count in dataset, s(7) rep-
resents the silhouette coefficient for the i-th sample. The
dintra(?) 18 the average cosine distance between sample i and
all other samples within its own class Cj, while dinter (%) is
the minimum average cosine distance from sample i to sam-
ples in any other class. The max{-, -} term in the denomi-
nator ensures s(i) falls within the interval [—1,1]. A value



Journal of Intelligent Manufacturing

approaching 1 indicates that the sample is well aligned with
its assigned class and clearly separated from others.

The results for the three strategies (S1-S3 at Epoch 100)
are presented in Table 7. Metric 1 reports the average Intra-
class Cohesion across all defect categories. From S1 to S3,
the Metric 1(Intra-class Cohesion) consistently decreases
(0.352 — 0.241 — 0.158), indicating that each succes-
sive strategy effectively drives samples of the same class
to cluster more tightly. Meanwhile, the Metric 2(Inter-class
Separation) increases markedly (0.418 — 0.583 — 0.724),
showing that class boundaries become progressively more
distinct. The combined improvements of these two metrics
are reflected in the steady rise of Metric 3 (Silhouette Coef-
ficient) from 0.191 to 0.613.

Specifically, S2 (EECO+SU) yields substantial improve-
ments across all metrics compared to S1 (EECO only), con-
firming that updating semantic center vectors effectively
guides feature learning and enhances the structure of the
semantic space. S3 (EECO+SU+PL) achieves the best over-
all performance. Its minimal Intra-class Cohesion coupled
with maximal Inter-class Separation and Silhouette Coef-
ficient indicate that the additional supervisory signals from
pseudo-labels allow the model to acquire more discrimina-
tive features from mixed-type defects. The high correlation
observed between the quantitative metrics and the classifica-
tion accuracy validates the efficacy of the ZSWMC method.

Semantic correlation analysis

To verify that the ZSWMC method can effectively learn the
semantic information of mixed-type defects from single-
type defects, we conducted a semantic correlation analysis.
The semantic correlation score between a mixed-type defect
category ¥; and a single-type defect category y; is defined
as follows: for each wafer map labeled as y;, its semantic
vector is first derived using the ZSWMC method. Subse-
quently, the cosine similarity between the semantic vector
and the semantic center vector of the single-type defect cat-
egory y; is computed. The average cosine similarity across
all samples in y; is used as the semantic correlation score. A
higher score indicates a stronger semantic correlation.
Table 8 presents the results of semantic correlation anal-
ysis. All mixed-type defects are listed in the first column,
and the remaining columns correspond to the six single-
type defects. The results show that each mixed-type defect
exhibits the highest semantic correlation with its constitu-
ent single-type defects. For example, the two-mixed defect
C+EL achieves scores of 0.711 with C and 0.764 with EL,
which are substantially higher than its correlation with non-
constituent defects such as D (0.200). This pattern consis-
tently holds for three-mixed (e.g., C+EL+L) and four-mixed
defects (e.g., C+EL+L+S), confirming that the ZSWMC

method effectively captures the semantic information of
mixed-type defects from single-type defects.

These results also reveal the relationship between the
complexity of mixed-type defects and their constituent sin-
gle-type defects: the semantic correlation score decreases
as the number of constituent defects increases. Two-mixed
defects generally exhibit high correlation scores with their
corresponding single-type defects, typically above 0.7,
three-mixed defects fall mainly within the 0.6-0.8 range;
and four-mixed defects drop further to the 0.5-0.7 range.
This trend explains the model’s progressively declining
classification performance from two-mixed to four-mixed
defects.

Conclusion

This paper presents a wafer map classification method
based on transductive zero-shot learning, referred to as the
ZSWMC method. This method utilizes labeled single-type
defect wafer maps to classify mixed-type defects, effec-
tively reducing the annotation costs for mixed-type defects.
Before training, semantic center vectors are constructed
based on prior knowledge, serving as both training targets
for the model and the basis for classification. The training
phase employs an end-to-end approach to collaboratively
optimize the visual feature extractor and semantic embed-
der, enhancing their ability to capture intrinsic relationships
between visual features and semantic information. Through
iteratively updating semantic center vectors, the ZSWMC
method improves the alignment between the visual and
semantic spaces. Additionally, a progressive pseudo-label-
ing and retraining strategy is adopted to iteratively incorpo-
rate information from mixed-type defects, further improving
the model’s generalization capability.

The ZSWMC method achieves superior classification
accuracy for both seen and unseen classes compared to
other transductive zero-shot learning methods. The ablation
study highlights the significant advantages of the EECO,
SU, and PL optimization strategies.

Although the ZSWMC method exhibits excellent perfor-
mance for most mixed-type defects, its classification accu-
racy for the four-mixed defect class remains relatively low.
This limitation stems primarily from the limited precision of
manually defined semantic attributes, which are insufficient
to capture the complex interrelationships present in four-
mixed defects. To overcome this limitation, future research
could explore unsupervised attribute-learning approaches,
such as variational autoencoders or deep clustering, to
automatically derive more accurate semantic attributes for
mixed-type defects and further enhance model performance.
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