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 a b s t r a c t

Knowledge Graph Completion (KGC) aims to infer missing entities for incomplete triples. Traditional embedding-
based methods rely solely on the graph structural information, making limited use of textual semantics. Although 
emerging text-based methods, i.e., utilizing large language models (LLMs) to learn semantic information, can 
solve the aforementioned problems to some extent. They still face limitations: 1) Due to the extensive scale of 
knowledge graphs, prompt information is often lengthy, making it difficult for LLMs to focus on key information 
when processing long texts; 2) When dealing with semantically similar entities, LLMs often struggle to capture 
subtle differences between them, leading to insufficient discriminative capability and resulting in confusion. 
To address these challenges, we propose a reasoning-enhanced and interaction-corrective framework based on 
large language models for knowledge graph completion (ReaCo-KGC). First, a two-stage prompting mechanism 
is designed to enable LLMs to extract key information and reasoning processes from in-context information, 
i.e., adjacent triples, helping LLMs focus on the core content. In addition, a multi-agent re-ranking component 
that applies a turn-taking summarization strategy is proposed to refine the results and resolve confusion caused 
by semantic similarity. Moreover, we reduce the candidate set size effectively by using a lightweight model 
to eliminate irrelevant entities. Experiments on benchmark datasets FB15k-237 and WN18RR demonstrate the 
superior performance of the proposed framework, validating its effectiveness.

1.  Introduction

Knowledge Graphs (KGs) structure information as triples in the form 
(ℎ𝑒𝑎𝑑 𝑒𝑛𝑡𝑖𝑡𝑦, 𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛, 𝑡𝑎𝑖𝑙 𝑒𝑛𝑡𝑖𝑡𝑦), denoted as (𝑒ℎ, 𝑟, 𝑒𝑡). However, due to 
limitations in knowledge acquisition, constructed knowledge graphs of-
ten suffer from incompleteness and missing facts. This significantly hin-
ders their effectiveness in downstream applications, such as question 
answering (Huang et al., 2019, 2021), recommendation systems (Chen 
& Xie, 2023; Zhang et al., 2024), and semantic search (Li et al., 2025; 
Perevalov et al., 2024). To address this issue, Knowledge Graph Com-
pletion (KGC) has emerged as a critical task, aiming to predict missing 
triples and enhance the completeness and utility of KGs.

Existing KGC methods can be broadly categorized into two types: 
embed-ding-based methods (Bordes et al., 2013; Sun et al., 2019; Yang 
et al., 2015) and text-based methods (Kim et al., 2020; Wang et al., 
2021; Yao et al., 2019). Embedding-based methods rely on the struc-
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tural information of KG and perform reasoning by implicitly learning 
relational patterns such as transitivity and symmetry (Wu et al., 2023). 
These methods often overlook semantic information in text and strug-
gle to represent long-tail entities, leading to factually inconsistent pre-
dictions and poor performance. Text-based methods enhance the per-
formance of KGC by leveraging the textual descriptions of entities and 
relations. Traditional language models such as BERT and RoBERTa en-
code textual semantics to establish entity associations, capturing richer 
contextual features. Recently, Large Language Models (LLMs) like GPT 
and DeepSeek have opened new possibilities for KGC due to their pow-
erful generative and contextual learning capabilities. The mainstream 
approaches for KGC based on LLMs involve contextual learning, prompt 
engineering, and model fine-tuning (Li et al., 2024c; Liu et al., 2024; Wei 
et al., 2023). These approaches achieved considerable results, but still 
face notable limitations: 1) Due to the vast scale of knowledge graphs, 
the required prompt information increases accordingly. Having LLMs 
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process large volumes of text at once can easily lead to a loss of focus, 
resulting in information dilution. This ultimately affects the accuracy, 
coherence, and relevance of the output; 2) When dealing with seman-
tically similar entities, LLMs often fail to recognize subtle semantic dif-
ferences, resulting in indistinct entity representations. This reduces the 
discriminative accuracy of LLMs and leads to entity confusion. For exam-
ple, it is difficult to distinguish the differences among Crewe Alexandra 
F.C., Middlesbrough F.C., and Inverness Caledonian Thistle F.C. based 
solely on surface semantics; 3) Fine-tuning large language models often 
requires substantial computational resources and time, involving signif-
icant hardware costs and placing higher demands on training efficiency 
and scalability.

Considering the existing challenges, we propose a reasoning-
enhanced and interaction-corrective framework based on large language 
models for knowledge graph completion (ReaCo-KGC). This framework 
achieves knowledge graph completion through the coordinated func-
tioning of three core modules. The Knowledge Guide module mitigates 
the long-tail entity problem by providing the LLM with structured con-
textual information, including adjacent triples, relevant triples, and en-
tity long text. The module adopts a two-stage prompting strategy. In the 
first stage, the LLM extracts key information and reasoning processes 
from the context. In the second stage, the extracted core content is com-
bined with the original question to derive the final answer. This de-
sign improves the reasoning ability of LLMs in complex tasks and helps 
them focus on the key content. The Collaborative Optimizer module in-
troduces a multi-agent debate mechanism, utilizing a novel turn-taking 
summarization strategy to collaboratively refine candidate results. This 
effectively resolves confusion caused by semantic similarity. The Can-
didate Filter module employs a lightweight model to efficiently filter 
the KG’s entity set, reducing the candidate set from tens of thousands to 
just dozens, thereby significantly lowering the complexity of subsequent 
processing.

The ReaCo-KGC framework demonstrates strong plug-and-play com-
patibility and can seamlessly integrate with any base KGC model and 
mainstream LLMs. Compared to existing embedding-based methods, our 
framework leverages retrieved contextual information and the LLM’s 
knowledge base to enhance semantic richness. Compared to existing 
LLM-based methods, we employ a two-stage prompting mechanism to 
guide the LLM in extracting key information and reasoning processes 
from redundant context, significantly reducing the problem of atten-
tion dispersion. Furthermore, the multi-agent collaborative optimiza-
tion mechanism effectively reduces confusion among similar entities for 
LLMs, markedly improving the accuracy and stability of the results. Our 
main contributions can be summarized as follows:

• A two-stage prompting strategy that explicitly separates reasoning 
generation from answer extraction is proposed, guiding the LLM to 
actively extract key information and reasoning processes from the 
context, helping it focus on the core content and avoiding attention 
dilution caused by long prompts.

• A multi-agent re-ranking mechanism with turn-taking summariza-
tion is proposed, representing a novel approach to applying multi-
agent systems to knowledge graph completion. This strategy effec-
tively distinguishes semantically similar entities and significantly im-
proves discrimination accuracy.

• Experiments on FB15k-237 and WN18RR show FGC-KGC achieves 
strong performance, improving Hits@1 by 15.1% and 11.1% respec-
tively over filtering models, demonstrating its effectiveness for the 
task of KGC.

2.  Related work

This section reviews prior work on knowledge graph completion, 
large language models for KGC, and multi-agent systems, which pro-
vides the background and motivation for our proposed framework.

2.1.  Knowledge graph completion

Current KGC approaches can be broadly categorized into two main 
types: embedding-based methods and text-based methods. Embedding-
based knowledge graph completion methods learn low-dimensional vec-
tor representations of entities and relations by leveraging geometric 
or mathematical constraints to capture semantic and structural infor-
mation in knowledge graphs. Classic methods include: TransE (Bor-
des et al., 2013) interprets relations as “translations” in the vector 
space. For a valid triple (ℎ, 𝑟, 𝑡), the embedding vectors should satisfy 
𝐡 + 𝐫 ≈ 𝐭. DistMult (Yang et al., 2015) models symmetric relations via 
matrix factorization, making it suitable for scenarios requiring symme-
try. RotatE (Sun et al., 2019) employs rotational embeddings in complex 
space, modeling relations by rotating the head entity’s embedding. Text-
based knowledge graph completion methods utilize natural language 
processing techniques to enrich semantic information through textual 
descriptions and integrate pre-trained language models to improve per-
formance. Examples include: KG-BERT (Yao et al., 2019) applies the 
BERT model to process triples and their textual descriptions, evaluating 
triple plausibility via semantic information. StAR (Wang et al., 2021), 
a structure-aware relational reasoning model, enhances reasoning accu-
racy and robustness by combining structural information with textual 
descriptions via contrastive learning. MTL-KGC (Kim et al., 2020) intro-
duces a multi-task learning approach for knowledge graph completion, 
combining link prediction, relation prediction and relevance ranking 
to better learn relational patterns and handle lexical similarity inter-
ference. Currently, embedding-based methods have obvious advantages 
in efficiency and scalability, making them suitable for fast completion 
of large-scale knowledge graphs. However, they have limitations in ex-
pressing complex semantics and handling edge entities. In contrast, text-
based methods fully leverage rich linguistic semantic information, im-
proving the accuracy and robustness of completion, but they often face 
high computational costs and challenges in semantic matching.

2.2.  LLMs for KGC

Compared to traditional text models that establish entity associa-
tions by encoding textual semantics, the use of LLMs to assist KGC has 
emerged as a promising research direction in text-based methods. For 
LLMs, a typical approach involves ICL (Brown et al., 2020), where ex-
plicit instructions and examples are provided to guide the model’s be-
havior. This method has demonstrated strong performance across vari-
ous language understanding and generation tasks (Rae et al., 2021; Wei 
et al., 2022). Leveraging their powerful in-context learning and seman-
tic comprehension capabilities, LLMs offer a novel paradigm for knowl-
edge graph completion (Li et al., 2024a; Zhu et al., 2024). For instance, 
the KC-GenRe framework (Wang et al., 2024a) employs knowledge con-
straints to guide LLMs in semantically re-ranking candidate entities, ef-
fectively integrating generative capabilities with structured knowledge 
to accomplish completion tasks. Similarly, KICGPT (Wei et al., 2023) 
utilizes the few-shot and zero-shot learning abilities of LLMs to achieve 
outstanding KGC performance without fine-tuning. However, due to the 
large scale of knowledge graphs, the amount of prompt information re-
quired increases accordingly, and having LLMs process a large amount 
of text at once can easily cause them to lose focus on the key points. 
The Chain-of-Thought (CoT) technique effectively alleviates this issue 
by introducing explicit reasoning steps. The CoT method proposed in 
Wei et al. (2022b) significantly improves performance on complex tasks 
by generating reasoning chains in the form of “hypothesis-derivation-
conclusion.” Subsequent improvements, such as Zero-shot CoT (Kojima 
et al., 2022), eliminate the need for task-specific examples, while Auto-
CoT (Zhang et al., 2022) optimizes the reasoning process through au-
tomated question clustering and example generation. By incorporating 
explicit reasoning steps, CoT not only enhances the stability of reason-
ing but also helps LLMs concentrate on the key content, making the 
reasoning process more logical and coherent.

Expert Systems With Applications 301 (2026) 130496 

2 



T. Jiang et al.

2.3.  Multi-agent systems

In recent years, the development of communicative agents has at-
tracted widespread attention. These agents are typically powered by 
LLMs and aim to facilitate more efficient and productive interactions 
and collaborations. Different agents can autonomously communicate 
and negotiate to collectively solve more complex tasks. The multi-agent 
communication paradigm shows potential synergy in KGC tasks: cur-
rent KGC research primarily focuses on using a single LLM to gener-
ate results through one-time forward reasoning. When handling entities 
with highly similar semantics, it is often difficult to capture subtle dif-
ferences, leading to insufficient discrimination ability and resulting in 
confusion. In contrast, the dynamic communication mechanism among 
multiple agents can effectively capture fine-grained semantic differences 
between similar entities through multi-perspective collaborative verifi-
cation and distributed consensus decision-making, thereby improving 
discrimination accuracy and the robustness of completion results. Camel 
(Li et al., 2023) proposed a role-playing cooperative agent framework 
that enables agents to autonomously collaborate on solving complex 
tasks. MAD (Liang et al., 2024) employed multi-agent debate frame-
works in other scenarios (e.g., translation and arithmetic problems) and 
achieved improved results. SPP (Wang et al., 2024b) proposed an alter-
native approach called self-collaboration, where a single LLM prompted 
with multiple personality descriptions enables inter-agent communica-
tion. RoCo (Mandi et al., 2024) introduced a novel framework aimed 
at enhancing multi-robot collaboration by leveraging multiple LLMs to 
improve coordination and strategic planning among robots. However, 
there remains a lack of mature research applying multi-agent systems to 
knowledge graph completion tasks. This paper proposes a multi-agent 
system where internal agents are also based on LLMs but are further 
endowed with distinct role descriptions. Through a turn-taking summa-
rization strategy for interaction, our system demonstrates preliminary 
potential in KGC tasks.

3.  Methodology

This section presents the design of our proposed ReaCo-KGC frame-
work, including its three main components: Candidate Filter, Knowledge 
Guidance, and Collaborative Optimizer.

3.1.  Concept and task definition

A knowledge graph can be represented as a set of triples 𝐺 =
{(ℎ, 𝑟, 𝑡)}, where 𝐸 and 𝑅 denote the set of entities and the set of re-
lations in the graph 𝐺, respectively. Here, ℎ ∈ 𝐸 represents the head 
entity, 𝑡 ∈ 𝐸 represents the tail entity, and 𝑟 ∈ 𝑅 represents the relation 
between them. Given an incomplete triple (ℎ, 𝑟, ?) or (?, 𝑟, 𝑡) as a query, 
the goal of knowledge graph completion is to predict the missing entity 
(denoted by ?). KGC models typically need to score all possible entities 
as candidates for the missing entity and rank all entities in descending 
order based on their scores, so as to select the most likely missing entity.

3.2.  Overview

The ReaCo-KGC framework is illustrated in Fig. 1. This framework 
consists of three core modules: Candidate Filter, Knowledge Guidance, 
and Collaborative Optimizer. Taking the tail entity prediction task as 
an example, the framework operates as follows: Given an input query 
triple (𝑒ℎ, 𝑟, ?), where 𝑒ℎ denotes the head entity, r represents the rela-
tion, and ? indicates the tail entity to be predicted. First, the lightweight 
model in the Candidate Filter module computes confidence scores for 
all candidate triples (𝑒ℎ, 𝑟, 𝑒𝑖) corresponding to each entity 𝑒𝑖 ∈ 𝐸 in the 
KG. Based on these scores, it generates a preliminary ordered candi-
date entity set: 𝐶𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝐸𝑛𝑡𝑖𝑡𝑖𝑒𝑠 = [𝑒1, 𝑒2,… , 𝑒𝑛−1, 𝑒𝑛]. Next, the Knowl-
edge Guidance module retrieves structured prompts, including relevant 

triples, adjacent triples, and entity long text descriptions. These struc-
tured prompts are converted into natural language through semantic 
mediator in the prompt engineering component to facilitate LLM com-
prehension. Leveraging ICL capabilities, the LLM extracts rich semantic 
information from the prompts while employing CoT reasoning to output 
both a ranking rationale and potential new entities that may have been 
overlooked by the Candidate Filter. The LLM then performs a combined 
re-ranking of the candidate entities and new entities, producing an op-
timized ordered set: 𝑅𝑒𝑜𝑟𝑑𝑒𝑟𝑒𝑑 𝐶𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒 = [𝑒′1, 𝑒

′
2,… , 𝑒′𝑛−1, 𝑒

′
𝑛]. Finally, 

the Collaborative Optimizer employs a turn-taking summarization strat-
egy to orchestrate multi-agent discussions. Through iterative delibera-
tion and positional refinement, it further optimizes the reordered candi-
date, ultimately outputting the final ranked list: 𝑂𝑝𝑡𝑖𝑚𝑖𝑧𝑒𝑑 𝐶𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒 =
[𝑒′′1 , 𝑒

′′
2 ,… , 𝑒′′𝑛−1, 𝑒

′′
𝑚].

3.3.  Candidate filter

In KGC tasks, common evaluation methods rely on ranking mecha-
nisms, requiring the model to assess the plausibility of each entity in the 
knowledge graph as a potential substitute for the missing entity in the 
query triple. However, due to the extremely large number of entities in 
the knowledge graph, directly using LLMs to score and rank each entity 
is both computationally expensive and practically infeasible.

Inspired by Li et al. (2024b), Wei et al. (2023), we employ a base 
KGC model to initialize the scoring and ranking of entities in the knowl-
edge graph. Formally, we represent the ranked entity list scores as 
𝐶𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒 𝑆𝑐𝑜𝑟𝑒 as follows:
𝐶𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒 𝑆𝑐𝑜𝑟𝑒 = [𝑆1, 𝑆2,… , 𝑆𝑘],

𝑤ℎ𝑒𝑟𝑒 𝑆𝑖 = max 𝑓𝑟(𝑒ℎ, 𝑒𝑖) or 𝑓𝑟(𝑒𝑖, 𝑒𝑡), 𝑖 ∈ {1,… , 𝑘} (1)

Where 𝑓𝑟 represents the scoring function of the KGC model under re-
lation, 𝑒ℎ and 𝑒𝑡 denote the head and tail entities in a triple, 𝑒𝑖 is a 
candidate entity from the knowledge graph.

3.4.  Knowledge guidance

This section presents Knowledge Guidance, an optimized strategy for 
KGC tasks that leverages large language models’ ICL and CoT capabili-
ties. The framework comprises four key components: Relevant and Ad-
jance Triples Retrieval, Entity Long Text Retrieval, Semantic Mediator, 
and Preliminary Reasoning. Specifically, the module retrieves relevant 
and adjacent triples to provide contextualized relational information, 
while long-text entity descriptions are incorporated to supply more de-
tailed semantic cues. These retrieved contexts and descriptions are then 
transformed into natural language prompts and encoded as inputs to the 
LLM. Finally, the model is guided to analyze the contextual informa-
tion and long-text descriptions of different similar entities through Pre-
liminary Reasoning, capturing subtle semantic differences among them. 
This integrated methodology demonstrably enhances the performance 
of LLMs in KGC applications.

3.4.1.  Relevant and adjacent triples retrieval
In KGs, entity attributes are represented in the form of structured 

triples. Entities sharing the same relation in triples typically possess sim-
ilar attributes, while triples containing the same entity can provide addi-
tional relevant information. For example, in the triples (Barack Obama, 
born_in, Honolulu) and (Barack Obama, spouse, Michelle Obama), al-
though the relations differ, both center on the entity “Barack Obama”. 
The first triple provides birthplace information, and the second offers 
family relationship details. For each query (𝑒ℎ, 𝑟, ?), we construct two 
types of triples from the KG: relevant triples and adjacent triples. The 
definition of 𝑅𝑒𝑙𝑒𝑣𝑎𝑛𝑡 𝑇 𝑟𝑖𝑝𝑙𝑒𝑠 is as follows:
𝑅𝑒𝑙𝑒𝑣𝑎𝑛𝑡 𝑇 𝑟𝑖𝑝𝑙𝑒𝑠 =

{

(𝑒′ℎ, 𝑟, 𝑒
′
𝑡) ∈ 𝐷𝑡𝑟𝑎𝑖𝑛 ∪𝐷𝑣𝑎𝑙𝑖𝑑 ∣ 𝑒′ℎ, 𝑒

′
𝑡 ∈ 𝐸

}

(2)

Where 𝐷𝑡𝑟𝑎𝑖𝑛 and 𝐷𝑣𝑎𝑙𝑖𝑑 represent the sets of knowledge graph triples in 
the training set and validation set, respectively, while E denotes the set 
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Fig. 1. An illustration of the ReaCo-KGC framework.

of entities in the knowledge graph. By providing triples that share the 
same relation r as the query, we enable the LLM to better comprehend 
the semantic meaning of the query. The definition of 𝐴𝑑𝑗𝑎𝑐𝑒𝑛𝑡 𝑇 𝑟𝑖𝑝𝑙𝑒𝑠
is as follows:
𝐴𝑑𝑗𝑎𝑐𝑒𝑛𝑡 𝑇 𝑟𝑖𝑝𝑙𝑒𝑠 =

{

(𝑒′ℎ, 𝑟, 𝑒
′
𝑡) ∈ 𝐷𝑡𝑟𝑎𝑖𝑛 ∪𝐷𝑣𝑎𝑙𝑖𝑑 ∣ 𝑒′ℎ, 𝑒

′
𝑡 ∈ 𝐸

}

∪
{

(𝑒′ℎ, 𝑟
′, 𝑒ℎ) ∈ 𝐷𝑡𝑟𝑎𝑖𝑛 ∪𝐷𝑣𝑎𝑙𝑖𝑑 ∣ 𝑟′ ∈ 𝑅, 𝑒′ℎ ∈ 𝐸

}

(3)

Where 𝑅 represents the set of relations in the knowledge graph. By pro-
viding additional triples associated with the query’s head entity 𝑒ℎ, we 
supply the LLM with richer contextual information.

3.4.2.  Entity long text retrieval
In mainstream knowledge graphs, entities are typically represented 

as numerical or textual IDs. For instance, the entity “Jeremy Irons” is 
uniquely identified by the ID “/m/016ywr”. Such structured formats 
pose challenges for the effective processing by LLMs. To fully leverage 
the semantic understanding capabilities of LLMs, this study adopts a 
text-based KGC entity representation approach by establishing a one-
to-one correspondence between entity textual IDs and their long-text 
descriptions. The relevant descriptions can be retrieved based on the 
unique textual IDs of entities. This method transforms abstract IDs in 
knowledge graphs into semantically rich textual information, enhanc-
ing the model’s comprehension of entity meanings while providing ad-
ditional contextual information, thereby improving the model’s perfor-
mance in entity prediction tasks. For entities in the FB15K-237 and 
WN18RR datasets, the study employs the same textual IDs and long text 
descriptions as used in KGBERT (Yao et al., 2019).

3.4.3.  Semantic mediator
Entities and relations in knowledge graphs are organized as triples, 

while large language models require natural language input. To convert 
structured triples into natural language, semantic mediator incorporates 
a unified prompt template that transforms both relevant and adjacent 
triples into demonstration text following standardized formatting. Con-
currently, entity long text was reformatted into structured entity de-
scriptions.

In addition to demonstration text, task instructions were incorpo-
rated into the semantic mediator to explicitly inform the large language 
model that its objective is to rank candidate answers based on plau-
sibility. The model’s feedback was then verified to ensure proper un-
derstanding of task requirements. Finally, the query triple (𝑒ℎ, 𝑟, ?) was 
converted into query text using the same format as demonstration text 
through the prompt template. These textual components were system-
atically organized and sequentially fed into the large language model 
for interaction while continuously monitoring its feedback, with imple-
mentation details illustrated in Fig. 2.

3.4.4.  Preliminary reasoning
The chain-of-thought reasoning strategy was first proposed in Wei 

et al. (2022b), with its core idea being to guide the model to simulate 
the human step-by-step thinking process of “question →reasoning steps 
→answer,” thereby improving the reasoning ability for multi-step com-
plex tasks. Inspired by this, we introduce a key module called Prelim-
inary Reasoning in the proposed framework. The overall workflow of 
this module is shown in Fig. 3. This module adopts a hybrid reasoning 
paradigm that integrates the advantages of CoT and ICL. Unlike the orig-
inal chain-of-thought prompting method, it does not require providing 
step-by-step few-shot reasoning chain examples; and unlike traditional 
zero-shot reasoning methods, this module leverages contextual informa-
tion from the Relevant triples, Adjacent triples, Candidate entities, and 
Entity description, significantly enhancing the logical coherence of the 
reasoning chain.

The module adopts a two-stage prompting strategy to extract rea-
soning and the final answer separately. In the first stage, the input ques-
tion 𝑥 is first modified into a prompted format 𝑥′, using the following 
template: Q: [X]. A: [T]. Where [X] is the placeholder for the original 
question, and [T] is the placeholder for the manually written trigger 
sentence, used to guide the model to generate the reasoning chain. For 
example, if we use “provide the reason for your ranking.” as the trigger 
sentence, the prompt becomes: Q: [question content]. A: [provide the 
reason for your ranking]. Then, the constructed prompt is input into the 
language model to generate the subsequent reasoning sentence 𝑧.
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Fig. 2. Illustration of a multi-round interaction with the LLM. Send the task 
instruction to the LLM to clarify the primary objective; send the query text, 
which is the triplet to be completed; and separately send the demonstration text 
and entity description to provide contextual information.

In the second stage, the reasoning sentence 𝑧 generated in the first 
step and the original prompt 𝑥 are used together to extract the final 
answer from the language model. Specifically, the following three com-
ponents are concatenated into a new prompt: [X] [Z] [A]. Where [X]
is the question from the first prompt, [Z] is the reasoning sentence gen-
erated in the first stage, and [A] is a trigger sentence used to guide the 
language model to output the final answer. For example, use “Output 
the sorted order of candidate answers using the format [most possible 
answer ∣ second possible answer ∣ …∣ least possible answer].” as the 
prompt sentence. Through prompt sentence, we constrain the format of 
the final result output by the LLMs, facilitating subsequent processing.

Due to the context length limitations of LLMs in reasoning tasks, 
we cannot directly use all tens of thousands of entities in the knowl-
edge graph as candidates for ranking. To address this, we first introduce 
a Candidate Filter to select the top-n most relevant entities from the 
complete set E, forming an initial candidate set: 𝐶𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒 𝐸𝑛𝑡𝑖𝑡𝑖𝑒𝑠 =
[𝑒1, 𝑒2,… , 𝑒𝑛−1, 𝑒𝑛]. While this strategy effectively alleviates the context 
window pressure on the LLM, it introduces a new challenge: the correct 
answer entity may not be included in the Candidate Entities, thereby 
impacting the final ranking accuracy. To overcome this limitation, the 
framework incorporates a dynamic generation module. While the LLM 
performs ranking inference, it is encouraged to leverage contextual in-
formation and its rich internal knowledge base to generate an additional 
set of potential entities: 𝑁𝑒𝑤 𝐸𝑛𝑡𝑖𝑡𝑖𝑒𝑠 = [𝑒𝑛𝑡𝑖𝑡𝑦1, 𝑒𝑛𝑡𝑖𝑡𝑦2,… , 𝑒𝑛𝑡𝑖𝑡𝑦𝑘]. By 

integrating this module, we dynamically generate contextually relevant 
candidate entities that extend beyond the scope of the base model’s fil-
tering. The generated new entities are then merged with the candidate 
entities set to form a dynamically expanded candidate pool, defined as 
follows:

𝜀dynamic =
[

𝑒(𝑙)1 , 𝑒(𝑙)2 ,… , 𝑒(𝑙)𝑚
]

= 𝑓llm
(

𝑞, 𝑐(𝑞)𝑒 , 𝑑(𝑞)
)

∪ Candidate Entities[0 ∶ 𝑛] (4)

Where 𝑞, 𝑐(𝑞)𝑒 , and 𝑑(𝑞) denote the question, entity description, and 
demonstration text.

3.5.  Collaborative optimizer

In our work, we observe that LLMs may encounter several issues 
when performing candidate entities re-ranking tasks. Since the training 
data of LLMs contains inherent bias information such as historical texts 
and social media content, this can lead to biased outputs during the 
re-ranking process. In addition, when dealing with entities that have 
highly similar semantics, LLMs often struggle to capture subtle differ-
ences between them, resulting in insufficient discrimination ability and 
leading to confusion. To mitigate the bias and similar entity confusion of 
a single large model, The Collaborative Optimizer is proposed for refin-
ing candidate entity rankings. Specifically, the Top-M high confidence 
𝐶𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝐸𝑛𝑡𝑖𝑡𝑖𝑒𝑠 = [𝑒′1, 𝑒

′

2,… 𝑒′𝑛−1, 𝑒
′
𝑚] are extracted from the LLM’s ini-

tial ranking results and combine them with the original query context 
to form a task input for the multi-agent module. The multi-agent team 
discusses the task, evaluates the ranking positions of candidate entities 
within the task, and advances reasonably justified candidates to higher 
positions. After multiple rounds of deliberation among the agents, the 
system produces: 𝑂𝑝𝑡𝑖𝑚𝑖𝑧𝑒𝑑 𝐶𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒 = [𝑒′′1 , 𝑒

′′
2 ,… , 𝑒′′𝑛−1, 𝑒

′′
𝑚].

3.5.1.  LLM-based agent
Agents serve as one of the most critical components in our multi-

agent evaluation module. Here, each individual LLM is treated as an 
autonomous agent, tasked with generating its own response based on 
the provided prompts. The responses from other agents are embedded 
into the prompt template as chat history. Once the agents are config-
ured, multi-agent debate is initiated: Each agent autonomously receives 
responses from other agents. Agents sequentially provide their own rea-
soned replies. Notably, the entire process operates without human in-
tervention.

3.5.2.  Role playing
Each agent is endowed with a unique persona. This meticulous de-

sign ensures that every agent focuses on a distinct perspective or brings 
specific expertise. In this way, collective evaluation benefits from a more 
comprehensive viewpoint, capturing nuances and subtleties that might 
be overlooked by a single perspective. We primarily draw this idea from 
the insight that “there are a thousand Hamlets in a thousand people’s 
eyes,” meaning each individual has their own unique interpretation or 
perspective, especially in the evaluation of complex reasoning tasks. 
Therefore, diverse role definitions are also essential for the multi-agent 
evaluation module. Although all agents share a common prompt tem-
plate, we replace the role descriptions with diversified role prompts, 
assigning different role personalities to different agents.

3.5.3.  Communication strategy
The communication strategy determines how to maintain and ma-

nipulate the chat history among agents, which is crucial for effective 
interaction in a multi-agent system. Different communication strategies 
can be viewed as distinct approaches to managing and processing chat 
records, thereby influencing information exchange and interaction out-
comes among agents. Inspired by Chan et al. (2023), we adopt a turn-
taking summarization strategy, as illustrated in Fig. 4. In each round 𝑡 of 
debate with 𝑘 agents, when agent 𝑗 takes its turn, it generates response: 
ℎ𝑗𝑡 = agent𝑗 (𝐻𝑡−1 ⊕ [ℎ1𝑡 ,… , ℎ𝑗−1𝑡 ]) (5)
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Fig. 3. Preliminary Reasoning flowchart.

Fig. 4. Communication strategy of speaking and summarizing in sequence.

Where 𝐻𝑡−1 denotes the accumulated history from all previous rounds, 
and [ℎ1𝑡 ,… , ℎ𝑗−1𝑡 ] denotes the outputs of agents 1,… , 𝑗 − 1 in the cur-
rent round 𝑡. The operator ⊕ represents the concatenation of history 
and predecessors’ outputs. The debating agents take turns generating 
responses based on their current observations in a predetermined or-
der. When it is a debating agent’s turn to speak, we directly concate-

nate the previous remarks of other agents into its chat history. The 
agent may then supplement the discussion by referencing others’ ar-
guments, raise questions, or express its own viewpoints. After multiple 
rounds of discussion, all agents’ remarks are collectively submitted to 
the summarizer, which evaluates and synthesizes them to produce the 
𝑂𝑝𝑡𝑖𝑚𝑖𝑧𝑒𝑑 𝐶𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒 = [𝑒′′1 , 𝑒

′′
2 ,… , 𝑒′′𝑛−1, 𝑒

′′
𝑚].

Expert Systems With Applications 301 (2026) 130496 

6 



T. Jiang et al.

4.  Experiment

This section describes the experimental setup, datasets, baselines, 
and evaluation metrics, followed by experimental results and ablation 
studies to validate the effectiveness of our framework.

4.1.  Datasets

We systematically evaluate the proposed method using two widely 
adopted KGC benchmark datasets FB15k-237 and WN18RR. FB15k-237 
is an optimized subset of the Freebase knowledge graph (Bollacker 
et al., 2008), a structured, encyclopedia-like database covering multi-
dimensional entity relationships across domains such as celebrities, or-
ganizations, films, and sports. To enhance model reasoning capabilities, 
the original dataset underwent specialized processing where inverse re-
lations that could introduce prediction bias were removed. Inverse re-
lations are pairs of relations in which the head and tail entities are 
swapped. For instance, the inverse relation pair (Academy Award for 
Best Director, award/award_nominee, Christopher Nolan) and (Christo-
pher Nolan, award_nominee/award, Academy Award for Best Director) 
was reduced to a single relation, keeping only one direction. The de-
tailed process for handling inverse relations can be referred to refer-
ence (Toutanova & Chen, 2015), and the processed dataset is adopted in 
this manuscript, ensuring only the most challenging 237 relation types 
were retained in the final dataset. WN18RR, an improved version of the 
WordNet lexical semantic network (Miller, 1995), focuses on morpho-
logical relationships in English vocabulary (e.g., synonymy, antonymy, 
hypernymy). By eliminating test-set leakage issues present in the WN18 
dataset, it provides a more rigorous evaluation benchmark. Detailed 
statistics for these datasets, including entity scale, relation diversity, and 
triple distribution, are presented in Table 1.

4.2.  Metrics

We employ widely used evaluation metrics: Hits@k (k = 1, 3, 10) 
and MRR (Mean Reciprocal Rank) to assess the performance of our 
proposed method. Hits@k measures the proportion of query triples 
where the ground-truth entity is ranked among the top k positions. 
MRR calculates the average reciprocal rank of the ground-truth enti-
ties across all queries. Higher values for these metrics indicate better
performance.

4.3.  Baselines

We compare our framework with four categories of baseline meth-
ods: (1) Embedding-based methods, including TransE (Bordes et al., 
2013), DistMult (Yang et al., 2015), RotatE (Sun et al., 2019), Com-
plEx (Trouillon et al., 2016), TuckER (Balazevic et al., 2019), CompGCN 
(Vashishth et al., 2019), HAKE (Zhang et al., 2020) and HittER (Chen 
et al., 2021); (2) Text-based methods, such as KG-BERT (Yao et al., 
2019), StAR (Wang et al., 2021), MTL-KGC (Kim et al., 2020) and 
CoLE (Liu et al., 2022); (3) Fine-tuning methods, including KGR (Li 
et al., 2024b), GS-KGC (Yang et al., 2025), CSProm-KG-CD (Li et al., 
2024a) and FtG (Liu et al., 2025); (4) Training-free methods, including 
DeepSeek (Zhu et al., 2024), KICGPT (Wei et al., 2023). Note that LLM-
based methods are categorized into two types: Fine-tuning methods and 
Training-free methods.

Table 1 
Statistical information of the dataset.
 Dataset  #Entities  #Relations  #Train  #Valid  #Test
 FB15k-237  14,541  237  272,115  17,535  20,466
 WN18RR  40,943  11  86,835  3034  3134

4.4.  Implementation details

In our framework, we select RotatE as the filtering KGC model and 
DeepSeek (DeepSeek-v3; DeepSeek-v2.5) along with Qwen (Qwen2.5-
72B-Instruct) as the LLMs. Although the proposed method is compatible 
with various embedding models, we prioritize lightweight base models 
for efficiency. The hyperparameters of RotatE align with those in Sun 
et al. (2019). For the LLMs used in this study, we employ third-party APIs 
with default parameter settings, including: temperature, top-p, presence 
penalty and frequency penalty.

4.5.  Experimental results

The experimental results are shown in Table 2. As can be seen, the 
proposed ReaCo-KGC framework achieves state-of-the-art performance 
on most metrics for the FB15k-237 and WN18RR datasets.

On the FB15k-237 dataset, our model achieves the best overall per-
formance to date, with an MRR of 0.466, significantly outperforming all 
baseline methods. Although the Hits@1 score (0.392) is slightly lower 
than that of KGR (0.400), this is because the KGR method primarily re-
lies on a fine-tuned large language model to select the entity with the 
highest confidence. As a result, KGR demonstrates particular advantages 
in the Hits@1 metric. In contrast, our proposed Collaborative Optimizer 
module performs global optimization on the candidate entity list and 
adjusts the overall ranking. Consequently, our model achieves scores of 
0.466 for MRR, 0.496 for Hits@3, and 0.630 for Hits@10, all exceeding 
KGR’s corresponding scores of 0.456, 0.476, and 0.569.

On the WN18RR dataset, our model also achieves outstanding per-
formance, reaching state-of-the-art levels across all evaluation metrics: 
the MRR is 0.607, while Hits@1, Hits@3, and Hits@10 reach 0.539, 
0.646, and 0.751, respectively. Compared with the strongest competi-
tor, KICGPT (Hits@3 = 0.620, Hits@10 = 0.716), existing approaches 
tend to suffer from information dilution when LLMs process large vol-
umes of context at once. In contrast, our Knowledge Guide module ex-
tracts key information and generates reasoning processes from the con-
text, thereby enhancing the LLM’s reasoning ability in complex tasks 
and helping it focus on the most relevant content. As a result, our model 
achieves significant improvements across all metrics, with Hits@3 and 
Hits@10 increasing by more than 2.6% and 3.5%, respectively.

Overall, the experimental results show that our proposed frame-
work delivers highly consistent and stable performance across differ-
ent datasets. On one hand, the relatively small performance gaps be-
tween Hits@1, Hits@3, and Hits@10 demonstrate the robustness and 
adaptability of our ranking strategy. On the other hand, unlike meth-
ods such as KGR that focus solely on selecting the best entity, our ap-
proach introduces a multi-agent collaboration mechanism to globally 
optimize the ranking of candidate entities. Additionally, through the 
use of Knowledge Guide for semantic-aware design, we fully exploit the 
LLM’s ability to understand entity context, enabling more precise re-
lation modeling and semantic reasoning. Furthermore, the Preliminary 
Reasoning module encourages the inclusion of novel candidate entities, 
overcoming the limitations of initial rankings from base models and sig-
nificantly expanding the candidate space. Together, these design inno-
vations contribute to our model’s superior performance across multiple 
datasets, demonstrating its broad applicability and high value in real-
world knowledge graph completion tasks.

4.6.  Ablation studies

In this experiment, we conducted ablation studies on the proposed 
framework using the FB15k-237 and WN18RR datasets to validate the 
effectiveness of each component. The experimental results are presented 
in Table 3.

To validate the effectiveness of Preliminary Reasoning module, we 
removed it in the ablation study (w/o Preliminary Reasoning). The re-
sults show a performance decline, demonstrating the importance of the 
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Table 2 
Comparison results on FB15k-237 and WN18RR. Best results are in bold, and the second best are underlined. The same large language 
model (DeepSeek-V3) is employed for the training-free methods.
 Models  FB15k-237  WN18RR

 MRR  Hits@1  Hits@3  Hits@10  MRR  Hits@1  Hits@3  Hits@10
 Embedding-based methods
 TransE (NeurIPS2013 (Bordes et al., 2013))  0.279  0.198  0.376  0.441  0.243  0.043  0.441  0.532
 DistMult (ICLR2015 (Yang et al., 2015))  0.241  0.155  0.263  0.419  0.430  0.390  0.440  0.490
 ComplEx (ICML2016 (Trouillon et al., 2016))  0.247  0.158  0.275  0.428  0.440  0.410  0.460  0.510
 RotatE (ICLR2019 (Sun et al., 2019))  0.338  0.241  0.375  0.533  0.476  0.428  0.492  0.571
 TuckER (EMNLP2019 (Balazevic et al., 2019))  0.358  0.266  0.394  0.544  0.470  0.443  0.482  0.526
 CompGCN (ICLR2019 (Vashishth et al., 2019))  0.355  0.264  0.390  0.535  0.479  0.443  0.494  0.546
 HAKE (AAAI2020 (Zhang et al., 2020))  0.346  0.250  0.381  0.542  0.497  0.452  0.516  0.582
 HittER (EMNLP2021 (Chen et al., 2021))  0.344  0.246  0.380  0.535  0.496  0.449  0.514  0.586
 Text-based methods
 KG-BERT (arXiv2019 (Yao et al., 2019))  –  –  –  0.420  0.216  0.041  0.302  0.524
 StAR (WWW2021 (Wang et al., 2021))  0.296  0.205  0.322  0.482  0.401  0.243  0.491  0.709
 MTL-KGC (COLING2020(Kim et al., 2020))  0.267  0.172  0.298  0.458  0.331  0.203  0.383  0.597
 CoLE (CIKM2022(Liu et al., 2022))  0.387  0.293  0.426  0.570 0.585 0.532  0.607  0.689
 LLM-based methods
 Training-free methods
 DeepSeek-V3𝑧𝑒𝑟𝑜−𝑠ℎ𝑜𝑡 (WWW2024 (Zhu et al., 2024))  –  0.107  –  –  –  0.103  –  –
 DeepSeek-V3𝑜𝑛𝑒−𝑠ℎ𝑜𝑡 (WWW2024 (Zhu et al., 2024))  –  0.189  –  –  –  0.128  –  –
 KICGPT (EMNLP2023 (Wei et al., 2023))  0.430  0.347  0.471 0.597  0.544  0.443 0.620 0.716
 Fine-tuning methods
 GS-KGC (INFFUS2025 (Yang et al., 2025))  –  0.280  0.426  –  –  0.346  0.516  –
 CSProm-KG-CD (EACL2024 (Li et al., 2024a))  0.372  0.288  0.410  0.530  0.559  0.508  0.578  0.660
 FtG (COLING2025 (Liu et al., 2025))  0.392  0.321  0.413  0.542  –  –  –  –
 KGR (arXiv2024 (Li et al., 2024b)) 0.456  0.400 0.476  0.569  0.520  0.495  0.520  0.550
 ReaCo-KGC  0.466 0.392  0.496  0.630  0.607  0.539  0.646  0.751

Table 3 
Experimental results for ablation studies.
 Ablation  FB15k-237  WN18RR

 MRR  Hits@1  Hits@3  Hits@10  MRR  Hits@1  Hits@3  Hits@10
 FGC-KGC  0.464  0.391  0.493  0.629  0.607  0.539  0.646  0.751
 w/o Preliminary Reasoning  0.430  0.347  0.471  0.597  0.544  0.443  0.620  0.716
 w/o Knowledge Guide  0.395  0.308  0.435  0.578  0.402  0.299  0.458  0.609
 w/o Collaborative Optimizer  0.450  0.360  0.497  0.629  0.597  0.512  0.654  0.752

preliminary reasoning strategy proposed in Section 3.4.4. By incorpo-
rating structured reasoning, the LLM is guided to perform context sum-
marization and logical structuring, enabling more accurate prediction 
of missing triples.

To validate the effectiveness of Knowledge Guide module, we re-
moved it in the ablation study (w/o Knowledge Guide). Without pro-
viding any contextual information, the LLM was directly tasked with 
re-ranking candidate entities. The experimental results exhibited a sig-
nificant drop, confirming the critical role of the knowledge guide in-
troduced in Section 3.4. Providing rich contextual information enables 
the LLM to better understand entities and relations, thereby reducing 
hallucination.

To validate the effectiveness of Collaborative Optimizer module, we 
removed it in the ablation study (w/o Collaborative Optimizer). The re-
sults revealed a substantial decrease in Hits@1, highlighting the effec-
tiveness of leveraging multi-agent interactions to optimize entity rank-
ing. The collaboration among multiple agents enables more precise po-
sitioning of top-ranked candidate answers.

4.7.  Analysis on preliminary reasoning

To further validate the effectiveness and generalizability of the Pre-
liminary Reasoning module in our framework, we conducted systematic 
experiments on LLMs of varying scales, including Deepseek-V3 (671B), 
Deepseek-V2.5 (236B), and Qwen2.5 (72B). As shown in Fig. 5, the 
x-axis represents the four evaluation metrics: MRR, Hits@1, Hits@3, 
and Hits@10, while the y-axis indicates the corresponding metric val-

ues. Higher values represent better performance. after introducing the 
Preliminary Reasoning module, all three models achieved performance 
improvements to varying degrees across all evaluation metrics on the 
FB15k-237 datasets, clearly demonstrating the general positive impact 
of the preliminary reasoning strategy on ranking tasks.

In terms of specific metrics, the Preliminary Reasoning module sig-
nificantly enhanced Hits@10 in particular. For instance, Deepseek-V3’s 
Hits@10 improved from approximately 0.58 to 0.63, indicating the 
model’s stronger ability to distinguish among candidate entities in over-
all ranking. Moreover, the improvements in MRR and Hits@3 were also 
notable, further showing that the automatically generated CoT can ef-
fectively guide the model toward more structured semantic reasoning, 
thereby improving the overall ranking quality.

It is worth noting that the performance gains show a clear positive 
correlation with model scale. Deepseek-V3 (671B), being the largest 
model, exhibited the most substantial improvements across all metrics. 
While Qwen2.5 (72B) also benefited from the Preliminary Reasoning 
module, the gains were relatively limited, especially in Hits@1. This 
suggests that smaller-scale models still face challenges in generating 
logically coherent and semantically consistent chains of thought, align-
ing with prior research (Wei et al., 2022b), which posits that Chain-
of-Thought reasoning is an emergent capability associated with larger 
model sizes.

The Preliminary Reasoning module effectively enhances LLMs un-
derstanding of complex semantic relations, and demonstrates stronger 
reasoning and ranking performance, especially in large models, making 
it highly valuable for high-quality knowledge graph completion tasks.
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Fig. 5. Experimental results of models of different sizes after incorporating preliminary reasoning.

Fig. 6. Experimental results on chain-of-thought combined with in-context Learning.

4.8.  Analysis on knowledge guidance

In this experiment, we preliminarily investigated the integration of 
large language models’ ICL capability with the CoT mechanism. Specif-
ically, we systematically ablated key components of the Knowledge 
Guidance module by: (1) removing prompt engineering while retain-
ing the two-stage prompt, and (2) eliminating the two-stage prompt 
while preserving prompt engineering. As illustrated in Fig. 6, we con-
ducted a comparative evaluation of different methodologies (CoT-only, 
ICL-only, and their combination CoT+ICL) on the FB15k-237 and 
WN18RR datasets. The x-axis represents the four evaluation metrics: 
MRR, Hits@1, Hits@3, and Hits@10, while the y-axis indicates the cor-
responding metric values. Higher values represent better performance. 
As shown, the combined approach consistently outperforms the individ-
ual methods across all evaluation metrics, highlighting the complemen-
tary strengths of chain-of-thought reasoning and in-context learning.

On the FB15k-237 dataset, the combined method improves the 
Hits@1 metric by 3.2% compared to ICL, increasing from approxi-
mately 0.34 to 0.37. This indicates that the hybrid approach still brings 
some benefits in fact-based reasoning scenarios. However, since this 
dataset primarily relies on factual relationships with weaker logical 
structures, improvements in other metrics such as MRR and Hits@10 
are relatively limited–for example, Hits@10 only rises from about 0.59 
to 0.63–showing that gains are constrained by the nature of the dataset.

The advantages of the combined approach are much more prominent 
on the WN18RR dataset, which is centered around lexical semantic and 
hierarchical relations and is thus more suited to logical reasoning. The 
results show that Hits@1 increases by approximately 18%, from 0.28 
to 0.33, and MRR jumps from 0.46 to 0.60, indicating substantial per-
formance gains. Additionally, Hits@10 reaches a peak of around 0.76, 
further confirming the effectiveness of the hybrid method in complex 
reasoning tasks.

In summary, the experimental results demonstrate that integrating 
chain-of-thought reasoning with in-context learning significantly out-
performs using either method alone. This combination enhances the 
model’s generalization ability and stability across different reasoning 
tasks, especially in datasets with strong logical structures.

4.9.  Analysis on collaborative optimizer

In our study, we investigated whether the optimization of candidate 
entity rankings by multi-agents is influenced by the number of candidate 
entities. Fig. 7 illustrates the impact of varying the number of candidate 
entities on Collaborative Optimizer performance across the FB15k-237 
and WN18RR datasets. The x-axis represents different candidate entity 
settings, including 0, 5, 10, 15, and 20 entities. The y-axis shows the 
values of four evaluation metrics: MRR, Hits@1, Hits@3, and Hits@10.

On the FB15k-237 dataset, as the number of candidate entities in-
creases from 5 to 20, the Hits@1 and MRR metrics show steady improve-
ments. Specifically, Hits@1 increases from 0.36 to approximately 0.39, 
while MRR rises from 0.44 to around 0.46, indicating that the multi-
agent approach effectively enhances Top-1 ranking accuracy. However, 
Hits@3 and Hits@10 remain largely unchanged, staying around 0.49 
and 0.63, respectively. This suggests that while the multi-agent mech-
anism improves precision at the top rank, it brings limited benefit to 
broader ranking performance.

On the WN18RR dataset, the multi-agent approach achieves the best 
performance when the number of candidate entities is limited to 5. 
Hits@1 improves to about 0.54, and MRR peaks at around 0.61–both 
significantly higher than the results without the multi-agent module 
(Hits@1 at 0.51 and MRR at 0.60). However, as the number of can-
didate entities increases to 10, 15, and 20, both Hits@3 and Hits@10 
show a continuous decline–from around 0.66 and 0.75 down to 0.63 and 
0.73, respectively. This trend indicates that an excessive number of enti-
ties may introduce irrelevant information, reducing the effectiveness of 
inter-agent reasoning. Moreover, limitations in the LLM’s context win-
dow may prevent accurate identification and optimization of the correct 
target entity, further affecting overall ranking performance.

The multi-agent mechanism significantly enhances Top-1 ranking ac-
curacy, especially when the number of candidate entities is kept between 
5 and 10. However, including too many candidates does not lead to fur-
ther gains and may negatively impact broader ranking metrics such as 
Hits@3 and Hits@10. Therefore, to balance performance and efficiency, 
the optimal number of candidate entities should be limited to approxi-
mately 5-10.
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Fig. 7. The impact of different entity numbers on multi-agent.

Fig. 8. The impact of the number of candidate entities on ReaCoKGC.

4.10.  Analysis on the number of candidate entities

In our study, candidate entities were screened by the base KGC model 
(RotatE). Fig. 8 presents the impact of varying the number of candidate 
entities on the overall performance across the FB15k-237 and WN18RR 
datasets. The x-axis represents the evaluation metrics (MRR, Hits@1, 
Hits@3, and Hits@10), while the y-axis denotes the corresponding per-
formance values. Each line corresponds to a specific number of candi-
date entities, including 20, 30, 40, 50, and 60.

On the FB15k-237 dataset, all evaluation metrics exhibit a gradual 
improvement as the number of candidate entities increases from 20 to 
60. Specifically, MRR rises from 0.44 to 0.47, and Hits@1 improves from 
0.38 to 0.40, demonstrating that expanding the candidate pool helps 
the model more accurately capture the ground-truth entity. Similarly, 
Hits@3 and Hits@10 increase from 0.47 to 0.49 and from 0.58 to 0.63, 
respectively, suggesting that broader candidate coverage enhances the 
model’s overall ranking performance. However, the performance gain 
becomes marginal beyond 50 entities, indicating that the model begins 
to reach a saturation point where further increases contribute little to 
prediction accuracy.

On the WN18RR dataset, a similar trend can be observed. When the 
number of candidate entities increases from 20 to 50, MRR and Hits@1 
steadily improve–from 0.48 and 0.44 to 0.60 and 0.53, respectively–
while Hits@3 and Hits@10 rise from 0.51 and 0.58 to 0.64 and 
0.75. This indicates that expanding the candidate set improves the 
model’s ability to locate correct entities among difficult relation con-
texts. Nonetheless, when the candidate number reaches 60, only slight 
improvements are observed, while computational costs increase notably 
due to longer input sequences for the LLM.

Overall, increasing the number of candidate entities can effectively 
improve model performance at first, but excessive expansion leads to 
diminishing returns and higher inference costs. Considering both pre-
dictive accuracy and computational efficiency, we finally adopt 50 can-

didate entities in all subsequent experiments as an optimal configuration 
that maintains strong performance while avoiding unnecessary resource 
overhead.

4.11.  The limitations of the proposed approach

Although the proposed ReaCo-KGC framework demonstrates strong 
performance, it still faces limitations: the current experiments are con-
ducted under a transductive setting, where all entities and relations in 
the test phase have already appeared in the training data. This limits 
the framework’s ability to handle unseen entities and novel relations. 
That is, our current work mainly focuses on static knowledge graphs, 
without considering the temporal dynamics of real-world knowledge. 
In addition, the complex multi-stage prompting and multi-agent debate 
mechanisms introduce significant reasoning latency, making it difficult 
to apply the framework to scenarios with high real-time requirements.

Conclusion

In this paper, we propose a reasoning-enhanced and interaction-
corrective framework based on large language models for knowledge 
graph completion (ReaCo-KGC). The framework consists of three key 
components: candidate filter module performs rapid screening of candi-
date entities through lightweight embedding computations; knowledge 
guide module integrates contextual information and employs a two-
stage prompting mechanism to generate chain-of-thought reasoning, 
guiding the LLM to perform contextual summarization and logical or-
ganization; and collaborative optimizer module refines results through 
multi-agent collaborative interactions, correcting confusion caused by 
semantic similarity. Experimental results demonstrate that the ReaCo-
KGC framework, integrating these three modules, significantly improves 
knowledge graph completion performance, achieving efficient and reli-
able completion.
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In our future work, we will explore inductive and temporal knowl-
edge graph completion by leveraging the generalization and reason-
ing capabilities of large language models, enabling the framework 
to handle unseen entities and evolving facts in dynamic real-world
scenarios.
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Appendix A. 

A.1.  Interaction process

Representative samples were selected from the FB15k-237 and 
WN18RR datasets to demonstrate the complete interaction process, with 
details provided in Tables 4 and 5. 

Table 4 
Examples of interaction process on the FB15k-237 dataset.
Steps Prompt Template LLM

Responsibility 
Description

You are a good assistant to perform link prediction and sorting. Given a 
goal question and a list of candidate answers of this question. Your 
need to order these candidate answers in the list to let candiate answers 
which are more possible to be the answer of the question more prior. If 
you has known your responsibility, respond “Yes”. Otherwise, respond 
“No”. Do not output anything except “Yes” and “No”.

Yes.

Question and 
Demonstration 
Description

The goal question is: predict the tail entity [MASK] from the given 
(RoboCop, language of film of film of , [MASK]) by completing the 
sentence “what is the language of film of film of RoboCop? The answer 
is ”. To sort the candidate answers, typically you would need to refer to 
some other examples that may be similar to or related to the question. 
Part of given examples are similar to the goal question, you should 
analogy them to understand potential meaning of the goal question. 
Another part of given facts contain supplementary information, keep 
capturing these extra information and mining potential relationships 
among them to help the sorting.

Understood. I will analyze the examples, extract useful 
information, and use it to sort the candidate answers 
effectively. Please proceed with the examples.

Multiple Demonstrations Examples used to Analogy: “predict the tail entity [MASK] from the 
given (Quantum of Solace, language of film of film of , [MASK]) by 
completing the sentence ”what is the language of film of film of 
Quantum of Solace? The answer is “. The answer is Spanish Language, 
so the [MASK] is Spanish Language. Examples give supplement 
information: ”predict the tail entity [MASK] from the given (RoboCop, 
genre of film of film of , [MASK]) by completing the sentence “what is 
the genre of film of film of RoboCop? The answer is ”. The answer is 
Stop motion, so the [MASK] is Stop motion.

Understood. Continuing to process and analyze the examples 
provided.

Entity Description Here is the description of RoboCop: Sergeant Warren Reed is a fictional 
character from the film series RoboCop, RoboCop 2, RoboCop 3.

Understood. This description provides valuable context.

Preliminary Reasoning The list of candidate answers is [Russian Language,English 
Language,Japanese Language,Arabic Language,Spanish 
Language,Chinese language,Italian Language,…,Tagalog 
language,Bulgarian Language,Thai Language]. And the question is 
predict the tail entity [MASK] from the given (RoboCop, language of 
film of film of , [MASK]) by completing the sentence “what is the 
language of film of film of RoboCop? The answer is ”. Now, based on 
the previous examples, entity description, and your own knowledge and 
thinking, sort the list to let the candidate answers which are more 
possible to be the true answer of the question more prior. If you believe 
the most likely answer is not in the candidate list, you may also add 
new answers to the sorted list. Let’s think step by step.

Based on the analysis of the examples and supplementary 
information, here’s the step-by-step reasoning for sorting the 
candidate answers: 1. **Primary Evidence from Examples**: 
…2. **Pattern from Analogous Examples**: …3. 
**Supplementary Information**: …4. **Candidate 
Evaluation**: …5. **Conclusion**: The clear primary answer 
…

Final Query Output the sorted order of candidate answers using the format “[most 
possible answer | second possible answer | …| least possible answer]” 
and please start your response with “The final order:”. Do not output 
anything except the final order. Note your output sorted order should 
contain all the candidates in the list.

The final order: [English Language | Russian Language | 
Japanese Language | Arabic Language |…| Tagalog language | 
Bulgarian Language | Thai Language]
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Table 5 
Examples of interaction process on the WN18RR dataset.
Steps Prompt Template LLM

Responsibility Description You are a good assistant to perform link prediction and sorting. 
Given a goal question and a list of candidate answers of this 
question. Your need to order these candidate answers in the list 
to let candiate answers which are more possible to be the 
answer of the question more prior. If you has known your 
responsibility, respond “Yes”. Otherwise, respond “No”. Do not 
output anything except “Yes” and “No”.

Yes.

Question and Demonstration Description The goal question is: predict the tail entity [MASK] from the 
given (telephone, _verb_group of , [MASK]) by completing the 
sentence “what is the _verb_group of telephone? The answer is 
”. To sort the candidate answers, typically you would need to 
refer to some other examples that may be similar to or related 
to the question. Part of given examples are similar to the goal 
question, you should analogy them to understand potential 
meaning of the goal question. Another part of given facts 
contain supplementary information, keep capturing these extra 
information and mining potential relationships among them to 
help the sorting.

Understood. I will analyze the examples, extract useful 
information, and use it to sort the candidate answers 
effectively. Please proceed with the examples.

Multiple Demonstrations Examples used to Analogy: “predict the tail entity [MASK] 
from the given (snap, _verb_group of , [MASK]) by completing 
the sentence ”what is the _verb_group of snap? The answer is “. 
The answer is take, so the [MASK] is take. Examples give 
supplement information: ”predict the tail entity [MASK] from 
the given (telephone, _synset_domain_topic_of of , [MASK]) by 
completing the sentence “what is the _synset_domain_topic_of 
of telephone? The answer is ”. The answer is telephony, so the 
[MASK] is telephony.

Understood. Continuing to process and analyze the examples 
provided.

Entity Description Here is the description of telephone: telephone, get or try to get 
into communication (with someone) by telephone; “I tried to 
call you all night”; “Take two aspirin and call me in the 
morning”.

Understood. This description provides valuable context.

Preliminary Reasoning The list of candidate answers is [telephone,call,war 
machine,urban center,cell 
phone,…,dissolve,electronics,ring,spot,take in,work]. And the 
question is predict the tail entity [MASK] from the given 
(telephone, _verb_group of , [MASK]) by completing the 
sentence “what is the _verb_group of telephone? The answer is 
”. Now, based on the previous examples, entity description, 
and your own knowledge and thinking, sort the list to let the 
candidate answers which are more possible to be the true 
answer of the question more prior. If you believe the most 
likely answer is not in the candidate list, you may also add new 
answers to the sorted list. Let’s think step by step.

Based on the examples and supplementary information 
provided, here’s the step-by-step reasoning for sorting the 
candidate answers for the question “what is the _verb_group of 
telephone?”: 1. **Pattern Recognition from Examples**: …2. 
**Key Observations**: …3. **Priority Sorting**: - **Top 
Priority**: Verbs directly interchangeable with “telephone”: 
…4. **Remaining Candidates**: …5. **Final Sorted List** 
(most likely first): …This ordering reflects that: …

Final Query Output the sorted order of candidate answers using the format 
“[most possible answer | second possible answer | …| least 
possible answer]” and please start your response with “The 
final order:”. Do not output anything except the final order. 
Note your output sorted order should contain all the candidates 
in the list.

The final order: [call | ring | dial | call in |…| lead | statistics | 
music | weep | wed | fall down | fall]
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