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1  Introduction
1.1  Global significance of rice production and weed management challenges

Rice stands as a cornerstone of global food security, serving as a primary staple for a 
significant portion of the world’s population [1]. Despite its critical role, rice produc-
tion faces determined threats, with weed invasion being a major limiting factor. Direct 
rice yield losses attributable to weeds are substantial, ranging from an estimated 16% to 
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Abstract
Weed invasion poses a significant threat to global rice production, causing 
substantial yield losses and environmental degradation from excessive herbicide 
use. Unmanned Aerial Vehicles (UAVs), combined with advanced remote sensing 
and deep learning techniques, offer a transformative approach for precise weed and 
rice classification, supporting site-specific weed management. This review not only 
synthesizes recent advancements in deep learning methods using UAV-acquired 
data, diverse vegetation indices, and multiple sensor modalities (RGB, multispectral, 
hyperspectral, thermal, and LiDAR) but also provides a critical perspective on the 
evolution of model architectures, highlighting key trends and challenges in real-
world agricultural applications. We discuss persistent issues, including data scarcity, 
limited model generalizability across varying environmental conditions, and the 
computational demands for real-time deployment. Furthermore, we propose 
future research directions informed by our perspective on the field’s development, 
emphasizing synthetic data generation via generative adversarial networks, advanced 
attention mechanisms, and the integration of UAVs with ground-based robotic 
platforms to enable more autonomous, efficient, and sustainable agricultural 
practices. This review thus offers both a comprehensive synthesis and a forward-
looking viewpoint on advancing UAV-based precision weed management in rice 
cultivation. By integrating these insights, we provide a roadmap for translating UAV-
based weed detection from experimental research to scalable, field-ready solutions.
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a confounding 86% [2], depending on multiple factors such as rice type, cultivar, weed 
species and density, cropping season, management practices, fertilizer application rates, 
and local environmental conditions [3]. Even a conservative estimate of a 16% yield loss 
can dramatically affect farmers’ profitability and overall food security. This considerable 
variability in yield reduction underscores the universal and severe impact of weeds on 
rice productivity.

Existing weed control methods predominantly rely on uniform, blanket application 
of herbicides across entire fields [4]. This indiscriminate approach, while effective to a 
degree, leads to excessive chemical usage, which has profound negative consequences. 
Biologically, it contributes to soil and water pollution, impacts biodiversity, and can 
foster herbicide resistance in weed populations. Economically, it increases input costs 
for farmers, weakening profitability. Furthermore, the presence of weeds often triggers 
over-spraying, exacerbating these issues [5]. A fundamental challenge in moving towards 
more sustainable and efficient weed management is the inherent difficulty in accurately 
mapping weed distribution. This complexity arises primarily from the striking visual and 
spectral similarity between rice crops and various weed species, particularly during their 
early growth stages, making precise differentiation a challenging task. The substantial 
yield loss and environmental degradation associated with ongoing herbicide practices 
highlight an urgent global need for advanced, sustainable solutions. This situation frames 
the entire discussion within a critical agricultural and environmental context, emphasiz-
ing that the technological advancements reviewed are not merely academic curiosities 
but essential tools for global food security and environmental stewardship.

1.2  Evolution of precision agriculture and the role of unmanned aerial vehicles

Precision agriculture represents an archetype shift in contemporary farming practices, 
emphasizing the integration of data-driven approaches to enhance resource efficiency 
and reduce environmental impact. In this evolving landscape, remote sensing technol-
ogy has emerged as a pivotal enabler, with Unmanned Aerial Vehicles (UAVs) proving to 
be a transformative strength [6]. Traditional ground-based surveying methods for weed 
detection are inherently labor-intensive, time-consuming, and inefficient, especially 
when dealing with large agricultural areas. They are also susceptible to human error, 
limiting their scalability and accuracy [7]. Satellite-based remote sensing, while offering 
broad coverage, suffers from critical limitations such as low spatial and temporal resolu-
tion [8], poor timeline, and susceptibility to cloud cover, which can severely hinder data 
acquisition and analysis. These constraints can significantly hinder the effectiveness of 
weed detection, as they may not provide the necessary detail for accurate mapping of 
weed populations, especially in dynamic agricultural environments.

These inherent shortcomings of existing weed management and monitoring 
approaches have directly boosted the rapid development and adoption of UAV technol-
ogy in precision agriculture [9]. UAVs overcome these limitations by offering a compel-
ling array of advantages: their ability to cover large zones in a brief amount of time, their 
payload capacity to carry diverse optical sensors, high flexibility, relatively low hardware 
cost, and ease of operation. UAVs are not affected by cloud cover in the same way satel-
lites are, providing greater flexibility in terms of temporal resolution and enabling rapid, 
non-destructive extraction of crop growth information [10]. The integration of multi-
sensor payloads (e.g., RGB, multispectral, hyperspectral, thermal, and LiDAR) on UAV 
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platforms provides exceptional spectral, spatial, and temporal resolution, marking a par-
adigm shift in agricultural monitoring. This capability has transformed weed detection 
from traditional methods to highly precise, data-driven approaches [11]. Additionally, 
integrated with deep learning models, UAV enables automated, accurate, and scalable 
weed identification, paving the way for real-time, site-specific management in complex 
field conditions [6].

1.3  Scope and contributions of this review

This review provides a comprehensive synthesis of recent advancements in UAV-based 
remote sensing and deep learning methodologies published between 2018 and 2025. 
Specifically, it focuses on approaches tailored for precise weed and rice classification, 
offering an integrated perspective on technological progress and application trends 
(Fig.  1). It critically examines the evolution of UAV platforms and the diverse sensor 
technologies deployed, delving into the nuances of spectral differentiation and the devel-
opment of specialized vegetation indices. A significant focus is placed on exploring vari-
ous vegetation indices and UAV data adaptation that enhance classification accuracy for 
weed mapping. Furthermore, a substantial portion of this survey paper is dedicated to a 
comprehensive comparative analysis of prominent deep learning models, outlining their 
typical pipelines and evaluating their accuracies within the context of rice field applica-
tions. Ultimately, this review identifies the prevailing challenges in the field and proposes 
concrete future research directions, aiming to guide the development of more robust, 
generalizable, and practical solutions for sustainable rice production globally.

1.4  UAV types and operational advantages for agricultural monitoring

UAVs have emerged as pivotal tools in modern precision agriculture due to their opera-
tional flexibility, rapid deployment, and cost-effectiveness [12, 13]. Their capacity to 
operate across heterogeneous agricultural landscapes with minimal human interven-
tion has facilitated high-throughput field phenotyping and monitoring over large spatial 

Fig. 1  Spatial Distribution of the Rice-weed research from 2018 to 2025
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extents. The ease of maintenance and relatively low operating costs compared to manned 
systems make UAVs particularly smart for routine agricultural assessments [14].

UAV platforms used in agricultural applications are generally classified into coaxial, 
single-rotor, and multi-rotor configurations [2]. These UAVs support a broader spectrum 
of agricultural tasks, including crop health monitoring, growth analysis, disease detec-
tion, and yield estimation [15]. Future advancements are expected to focus on improving 
their energy efficiency, autonomous flight stability, and sensor integration capabilities 
[16].

1.5  Sensor modalities: RGB, multispectral, hyperspectral, thermal, and lidar

UAVs support a variety of sensors RGB, multispectral, hyperspectral, thermal, and 
LiDAR, each contributing uniquely to precision agriculture [17–19]. RGB cameras pro-
vide affordable, high-resolution imaging for vegetation mapping and canopy analysis [13, 
20]. However, multispectral sensors extend into the near-infrared range, enabling veg-
etation indices such as NDVI, which are valuable for mapping crop vigour and detect-
ing early-stage weeds [21, 22]. Comparatively, hyperspectral sensors capture hundreds 
of contiguous bands, facilitating fine-grained discrimination of plant species with similar 
spectral features, such as rice and weeds [23]. Whereas, thermal sensors measure can-
opy temperature and are effective for monitoring crop water stress and irrigation effi-
ciency [24]. To generate dense 3D point clouds, supporting biomass estimation, canopy 
height modeling, and terrain reconstruction can be achieved using LiDAR systems [25]. 
However, the integration of advanced sensors such as thermal and LiDAR also increases 
payload and power requirements, which can reduce UAV flight time and pose deploy-
ment challenges [19]. The integration of these complementary sensor modalities enables 
multimodal data fusion, which significantly improves classification accuracy and robust-
ness, especially in environments where spectral confusion between crops and weeds is 
high [26, 27].

1.5.1  Low-cost UAV platforms for resource-limited farming systems

In addition to advanced UAVs equipped with hyperspectral or LiDAR sensors, recent 
studies emphasize the role of low-cost UAVs as accessible alternatives for smallholder 
farmers and local cooperatives [28]. Such UAVs often equipped with RGB or low-cost 
multispectral sensors enable affordable, repeatable field surveys with sufficient accuracy 
for crop monitoring, yield estimation, and weed mapping (Fernández et al., 2024). Their 
use can democratize precision agriculture, particularly in developing regions where 
investment in high-end UAVs remains prohibitive. Integration with open-source photo-
grammetry software such as OpenDroneMap and Pix4Dmapper further supports low-
cost photogrammetric workflows, making them suitable for sustainable and scalable 
deployment.

Low-cost UAV systems increasingly support precision agriculture in regions where 
access to high-end sensors is limited. The Table 1 lists representative UAV models fre-
quently used for photogrammetric crop and weed mapping, with indicative price ranges, 
sensor types, flight endurance, spatial resolution, and agricultural use cases.
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1.5.2  Data acquisition and pre-processing considerations

UAV-based agricultural imaging is typically conducted at low altitudes, offering ultra-
high spatial resolution that is important for detecting small-scale vegetation features 
such as early weeds [30]. Environmental variability, e.g., lighting changes from fluctuat-
ing sunlight and cloud shadows, can negatively affect image quality and reduce model 
performance [31, 32]. As a result, pre-processing becomes critical for model accuracy 
and generalization. Standard procedures include geometric correction, radiometric 
normalization, resizing imagery to conform to neural network input dimensions, and 
splitting datasets into training, validation, and testing subsets [33]. Data augmentation 
strategies such as rotation, flipping, and zooming help expand training data volume, 
reduce overfitting, and improve robustness across varying imaging conditions [34]. Fur-
thermore, pre-processing steps are essential for preparing UAV imagery for deep learn-
ing models. These include orthorectification, mosaicking, normalization of spectral 
bands, and contrast enhancement to mitigate illumination variability. Such preprocess-
ing ensures that datasets are standardized and compatible with neural network input 
requirements, improving model generalization and reducing training bias [35].

The altitude at which UAV images are captured directly affects ground sampling dis-
tance (GSD) and image clarity. Lower flight altitudes (e.g., 30–50 m) yield finer resolution 
suitable for early-stage weed detection and small-plot studies, whereas higher altitudes 
(100–150 m) support broader spatial coverage but risk spectral mixing and reduced fea-
ture separability [30, 36]. Consequently, selecting an optimal altitude involves balancing 
resolution, coverage, and processing efficiency.

2  Spectral signatures and vegetation indices for Weed-Rice mapping
Accurate weed-rice discrimination relies heavily on the spectral reflectance character-
istics captured by remote sensing. This section reviews key vegetation indices (VIs) and 
spectral features used in UAV-based monitoring, highlighting their strengths, limita-
tions, and applicability across different rice growth stages. While rice–weed classifica-
tion presents unique challenges due to the high spectral similarity between seedlings, 
it is important to note that the performance of VIs can vary significantly across differ-
ent cropping systems. For instance, indices such as NDVI and GNDVI have been widely 
applied in maize and soybean fields for weed detection [37], but their effectiveness is 
often reduced in rice fields because of the dense canopy and early-stage spectral overlap 

Table 1  A Summary of representative Low-Cost UAV platforms for agricultural remote sensing and 
Weed-Rice mapping applications
Model Sensor type Approx. 

cost 
(USD)

Flight 
time 
(min)

Spatial resolu-
tion / GSD

Typical agricultural 
use

Ref-
er-
enc-
es

DJI Mini 3 Pro RGB 900–1100 34 1.6–2.0 cm/
pixel @50 m

Field mapping, weed 
detection

 [29]

Parrot Anafi RGB/Multispectral 800–1200 25 2–3 cm/pixel Crop canopy 
monitoring

 [29]

eBee SQ Multispectral 
(Sequoia+)

5000–
6000

50 3–5 cm/pixel Large field mapping, 
NDVI, GNDVI

 [29]

DJI Phantom 
4 RTK

RGB 3500 30 2 cm/pixel High-accuracy weed 
and crop classification

 [12]

WingtraOne 
Gen II

Multispectral 10,000+ 59 1–2 cm/pixel Regional-scale agricul-
tural surveys

 [18]
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with weeds. Conversely, indices specifically tailored for paddy environments, such as 
WDVINIR, demonstrate higher reliability in discriminating weeds from rice compared 
to their performance in upland crops [38].

This comparative perspective underscores that VI selection is not crop-agnostic; 
rather, it must be aligned with crop morphology, canopy structure, and field conditions. 
Incorporating lessons from other crops (e.g., maize, wheat, soybean) reveals that while 
some indices show broad utility, rice–weed mapping often requires customized or com-
bined VIs due to the water background, spectral similarity at seedling stages, and rapid 
canopy closure [39].

2.1  Differentiating rice and weed species based on spectral characteristics

Distinguishing rice from visually similar weed species, especially during early growth 
stages, poses a significant challenge in agricultural remote sensing. While visual simi-
larities complicate manual identification, hyperspectral imagery offers a solution by 
enabling physiological and biochemical differences that manifest as distinct spectral sig-
natures. Hyperspectral sensors effectively enable the discrimination of crops from weeds 
and among various weed species. Notably, specific spectral bands have been identified 
as critical for effective differentiation [40]. For instance, Table 2 provides the details of 
articles published in recent years with a focus on spectral characteristics and bands.

  
Regardless of these advancements, early-stage classification remains challenging due 

to the high spectral similarity between seedlings. To address this, recent research has 
explored deep learning approaches. A researcher claimed that incorporating multiple 
spectral pre-processing techniques and traditional machine learning achieved a maxi-
mum classification accuracy of 93.94% [42]. Furthermore, a deep learning-based frame-
work for extracting hyperspectral features attained 98.18% accuracy in distinguishing 
seedling barnyard grass from rice [42].

These findings underscore the importance of precise sensor calibration and band 
selection in exploiting nuanced spectral differences. The integration of advanced deep 

Table 2  Machine and deep learning research work focused on spectral characteristics
Year Spectral 

bands (nm)
Classification 
method

Accuracy 
achieved

Summary Ref-
er-
ences

 2021 415, 561, 687, 
705, 735, 
1007

Support Vector 
Machine (SVM)

> 90% Used SVM with six optimal bands to 
distinguish barnyard grass and weedy rice 
from rice.

 [41]

 2025 unspecified Deep Learning 98.18% Developed a deep learning model for 
extracting hyperspectral features for rice–
weed discrimination.

 [42]

 2022 400–2500 
(range)

Review Not 
available

Reviewed spectral bands and classifica-
tion methods used in hyperspectral weed 
detection.

 [43]

 2024 Not specified Ground-based 
Hyperspectral 
Imaging

75–95% Used ground-based hyperspectral sensing 
for weed identification in rice fields.

 [44]

 2018 Full spectrum Spatio-Spectral 
Deep CNN

+ 11.9% 
over SVM

Applied spatial-spectral deep CNN to 
improve rice classification accuracy.

 [45, 
46]

 2020 Selected via 
band ranking

Gaussian Pro-
cesses Regression

Not 
available

Developed a GPR-based tool to select infor-
mative spectral bands for vegetation traits.

 [47]
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learning techniques further enhances classification accuracy, offering promising avenues 
for targeted weed management in precision agriculture.

2.2  Vegetation indices and their application in weed discrimination

This section elaborates on the Vegetation Indices (VIs) used in recent years and their 
achieved accuracy in rice mapping. Vegetation indices are radiometric values derived 
from combinations of spectral bands that are designed to enhance specific vegetation 
characteristics while minimizing background interference from soil or non-vegetative 
elements. They play a crucial role in monitoring crop growth and health. Figure 2 illus-
trates both widely used vegetation indices and newly developed indices introduced over 
the past decade for weed–rice discrimination. One of the most effective vegetation indi-
ces recently developed for weed identification in rice fields is the Weed Discrimination 
Vegetation Index in Near-Infrared (WDVINIR). Utilizing reflectance from the Green, 
Red Edge, and NIR bands, WDVINIR demonstrated 93.47% maximum accuracy and a 
Kappa coefficient of 0.859 in distinguishing weeds from rice fields. Despite its promising 
results, the index was constructed primarily through statistical modelling, limiting its 
generalizability across different ecological conditions and crop varieties due to the lack 
of integration of agronomic mechanisms or environmental variability [48].

Additionally, several traditional vegetation indices (VIs), such as NDVI, LCI, NDRE, 
and OSAVI, are also widely used in crop monitoring and physicochemical inversion but 
often show lower accuracy in discriminating weeds in rice fields. Recent studies high-
light the need for more specialized indices to improve specificity in weed-rice classifica-
tion [43].

In addition to WDVINIR, other VIs, such as RGB-based indices (e.g., ExG, ExR, 
VARI), are sensitive to vegetation greenness but susceptible to illumination variability. 
Multispectral-based indices (e.g., CIred edge, CIgreen, NDVI, GNDVI) influence discrete 
bands, including NIR and red edge, and offer improved sensitivity to plant biochemical 
traits. SAVI and GSAVI, when combined with unsupervised clustering, have achieved 

Fig. 2  Renowned vegetation indices used for weed-rice perception
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over 94% accuracy in early-stage weed detection. NGRDI, fused with visible band data, 
reported M/MGT index values of 80–108% and MP values of 70–85% for effective weed 
detection.

Table   3 summarizes key vegetation indices used for weed–rice mapping, detailing 
each index’s name, formula, spectral bands utilized, primary characteristics or intended 
purpose, and reported effectiveness or accuracy in discriminating between weed and 
rice.

  
However, many spectral indices face saturation issues in mid-to-late rice growth 

stages, where dense canopies hinder reflectance signals, reducing correlation with bio-
mass and limiting their utility for continuous Leaf area Index (LAI) estimation and 
temporal weed monitoring [56, 57]. These limitations underscore the importance of 
integrating specialized indices with advanced data fusion or deep learning approaches to 
enhance robustness and adaptability across diverse rice-growing scenarios.

3  Deep learning models for weed and rice perception
Deep learning has become the backbone of UAV-based weed and rice classification, 
offering significant advantages over traditional machine learning in handling high-
dimensional, heterogeneous datasets. However, the utility of these methods is not solely 
determined by their architectural evolution (from CNNs to Transformers) but by their 
suitability for specific UAV sensor modalities, field conditions, and operational demands.

3.1  Typical model development pipeline: from data acquisition to deployment

The development of deep learning models for UAV-based weed and rice classification 
typically follows a structured, multi-stage pipeline designed to ensure robustness and 
accuracy in real-world agricultural settings. While the evolution from CNNs to Trans-
former-based models reflects the broader deep learning trajectory, a critical analysis 
reveals important nuances in their applicability to UAV-based weed and rice classifica-
tion. CNNs have demonstrated strength in spatial feature extraction for high-resolution 
UAV imagery but often struggle with spectral similarity between rice and weeds, partic-
ularly at early growth stages. Transformer-based architectures, with their self-attention 
mechanisms, improve contextual understanding and long-range dependencies, yet they 
demand larger annotated datasets and higher computational resources, limiting field 
scalability. Furthermore, multimodal UAV data introduce additional challenges: CNNs 
handle multispectral and RGB inputs effectively, whereas hyperspectral and LiDAR data 
often require hybrid architectures that combine spectral and spatial attention mecha-
nisms. Despite performance improvements, both CNN and Transformer approaches 
remain constrained by issues of transferability across environments, annotation burdens, 
and real-time operational feasibility. Future work should therefore focus less on archi-
tecture alone and more on task-driven hybrid approaches that integrate domain-specific 
constraints, such as planting geometry, crop phenology, and environmental variability. 
The process commences with image acquisition, where high-resolution RGB images of 
rice fields are systematically captured by UAVs at various critical growth stages of both 
crops and weeds. Figure 3 shows that the initial stage provides the essential visual input 
for downstream analysis. Furthermore, Table 4 presents a detailed breakdown of each 
step in the model.
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Index Formula Bands Key characteristics/purpose Effectiveness/
accuracy for 
weed-rice 
discrimination

Ref-
er-
enc-
es

WDVI_NIR log(G/NIR) / 
(RE/NIR)

Green, Red Edge, 
Near-Infrared

Specifically designed for weed-
rice discrimination; sensitive to 
weed presence.

93.47% accuracy, 
Kappa 0.859 for 
weed identifica-
tion in rice fields.

 [4]

NDVI (R800nm - 
R670nm) / 
(R800nm + 
R670nm)

Red, Near-Infrared General vegetation health; 
widely used for biomass and 
LAI.

Fewer accurate for 
rice weed identifi-
cation when used 
alone

 [49]

NDRE (R800nm - 
R720nm) / 
(R800nm + 
R720nm)

Red Edge, 
Near-Infrared

Sensitive to chlorophyll content; 
less prone to saturation than 
NDVI in dense canopies.

Moderate perfor-
mance (80–85% 
accuracy); useful 
for mature cano-
pies, but limited in 
early-stage weed 
detection.

 [50]

OSAVI 1.16(R800nm 
- R670nm) / 
(R800nm + 
R670nm + 
0.16)

Red, Near-Infrared Optimized Soil Adjusted 
Vegetation Index; reduces soil 
background effects.

Performs well in 
sparse vegetation 
areas (85% ac-
curacy), but is less 
effective for dis-
tinguishing weeds 
from rice.

 [51]

GNDVI (R800nm - 
R550nm) / 
(R800nm + 
R550nm)

Green, 
Near-Infrared

Sensitive to chlorophyll content; 
similar to NDVI but uses the 
green band.

Generally good for 
biomass estima-
tion (82–88% 
accuracy), but 
lacks precision 
for weed-specific 
detection.

 [52]

ExG 2 g - r - b Red, Green, Blue 
(normalized)

Excess Green highlights 
green vegetation against the 
background.

Effective for 
identifying green 
vegetation; it can 
be affected by 
illumination.

 [53]

VARI (g - r) / (g + 
r - b) (RGB) 
or (R550nm 
- R670nm) 
/ (R550nm 
+ R670nm) 
(MCA)

Red, Green, Blue 
(normalized) or 
Green, Red (MCA)

Visible Atmospherically 
Resistant Index; minimizes 
atmospheric effects.

Used for vegeta-
tion monitoring; 
effectiveness 
varies with specific 
application.

 [50]

CI_red edge R800nm / 
R720nm − 1

Red Edge, 
Near-Infrared

Chlorophyll Index Red Edge; 
directly related to chlorophyll 
content.

(87–90% ac-
curacy); useful 
for differentiating 
stressed weeds 
from healthy rice.

 [54]

CI_green R800nm / 
R550nm − 1

Green, 
Near-Infrared

Chlorophyll Index Green related 
to chlorophyll content.

Used for plant 
physiological 
status; potential 
for discrimination 
based on health.

 [54]

SAVI / GSAVI (Formulas not 
provided in 
snippets)

Spectral 
information

Soil-Adjusted Vegetation Index 
reduces soil background effects.

Overall accuracy > 
94% for weed clas-
sification in early 
growth stages 
when combined 
with clustering.

 [38]

Table 3  Comparative analysis of key spectral indices used for UAV-based rice mapping
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3.2  Prominent deep learning architectures and comparative analysis of models

Deep learning has significantly advanced image analysis in agriculture, with Convo-
lutional Neural Networks (CNNs) playing a pivotal role in the classification of weeds 
and rice. CNNs offer hierarchical feature extraction capabilities that eliminate the 
need for manual feature engineering, enabling efficient and automated processing of 

Table 4  Decomposition of structural design
Stage Key Activities Tools/Examples
1. Dataset 
Preparation

- Use curated datasets (e.g., WeedNet v3) with diverse weed species 
and growth stages- Annotate rice and weed accurately

WeedNet v3, 
LabelImg, CVAT

- Standardize images (e.g., 224 × 224 × 3 for GoogLeNet)- Split dataset: 
70% train, 15% validation, 15% test

Python, OpenCV

- Apply augmentation (rotation, flip, scale) to improve generalization Augmentations, 
Keras

2. Model Selection - Choose CNN architectures (e.g., GoogLeNet, U-Net, RMS-DETR)- Apply 
transfer learning by modifying pre-trained models

PyTorch, Tensor-
Flow, MATLAB

- Use hybrid models combining CNNs and Transformers for multi-scale 
feature fusion

RMS-DETR

3. Training - Train models on annotated images using backpropagation- Monitor 
loss and accuracy across epochs

Adam/SGD Opti-
mizer, BatchNorm

4. Validation & 
Evaluation

- Test model on unseen data- Evaluate with metrics: Accuracy, Preci-
sion, Recall, F1-score, IoU, mAP

% Accu-
racy (GoogLeNet 
example)

5. Optimization - Tune hyperparameters and transfer models across platforms (e.g., 
Python to MATLAB) to boost performance

Learning rate, ep-
ochs, batch size

Fig. 3  Deep Learning Model Development Pipeline

 

Index Formula Bands Key characteristics/purpose Effectiveness/
accuracy for 
weed-rice 
discrimination

Ref-
er-
enc-
es

NGRDI (Formula not 
provided in 
snippets)

Visible light 
bands (Green, 
Red)

Normalized Green-Red Differ-
ence Index; highlights green 
vegetation.

M/MGT index 
80–108%, MP 
70–85% for weed 
detection in rice 
fields when fused 
with visible light.

 [55]

Specific 
Bands (SVM)

N/A 415, 561, 687, 705, 
735, and 1007 nm

Direct use of specific spectral 
bands for classification.

Less accurate for 
rice weed identifi-
cation compared 
to specialized 
indices.

 [41, 
48]

Table 3  (continued) 
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high-resolution UAV imagery. Their strong generalization ability across diverse envi-
ronmental conditions makes them particularly effective in complex agricultural land-
scapes, where accurate weed-crop differentiation is critical. However, the effectiveness 
of CNNs is often contingent upon the availability of large annotated datasets and may 
be influenced by real-world variables such as variable lighting conditions, shadows, and 
occlusions.

Among CNN-based architectures, GoogLeNet has been widely adopted due to its 
deep structure and inception modules, which facilitate multi-scale feature extraction, 
an essential attribute for capturing the varying size and morphology of weeds. Simi-
larly, ResNet and VGG architectures have shown high classification accuracy in diverse 
crop-weed scenarios due to their robust feature learning capabilities and ease of transfer 
learning.

Segmentation-based architectures such as U-Net and its lightweight derivatives—
including MobileNetV2-U-Net and FFB-BiSeNetV2 treat weed identification as a pixel-
level classification task. These models are particularly well-suited for UAV-based RGB 
imagery, offering high precision in delineating crop and weed regions, even under real-
time operational constraints. More recent advances include Detection Transformers 
(DETR) and their agricultural adaptations, such as RMS-DETR, which integrate Trans-
former-based global context modeling with CNN-driven local feature extraction. These 
hybrid models excel in identifying small, sparse, or partially occluded weed scenarios 
that often challenge traditional CNNs.

The YOLO family of object detection models, including YOLOv7-FWeed and YOLO-
sesame, has also gained traction due to their real-time processing capabilities and high 
detection accuracy. These models are particularly effective when deployed on UAVs for 
rapid field surveillance. Furthermore, hybrid approaches combining CNNs with tradi-
tional machine learning classifiers, such as VGG-SVM, have been explored for enhanc-
ing classification stability and computational efficiency. To rigorously evaluate model 
performance, standard metrics such as Accuracy, Precision, Recall, F1-Score, mean 
Average Precision (mAP), Intersection over Union (IoU), and Dice Score are com-
monly employed. These metrics provide a comprehensive assessment of detection qual-
ity and guide model selection and optimization for operational deployment in precision 
agriculture.

The high reported accuracies, often exceeding 90%, across various deep learning archi-
tectures for weed-rice classification, particularly with specialized models like RMS-
DETR and UNet variants, unequivocally demonstrate the significant progress achieved 
in the field. However, the variability in performance metrics and the diversity of datasets 
used across different studies (e.g., general weed classification versus rice-specific classifi-
cation versus segmentation tasks) highlight an ongoing challenge regarding direct com-
parability. This situation underscores the need for standardized benchmarks and more 
comprehensive real-world datasets to enable more definitive comparative analyses and 
to better generalize model performance across different agricultural contexts. A detailed 
comparison of deep learning models, datasets, performance indicators, and findings 
related to crop and weed mapping is presented in Table 5.
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Model 
architecture

Weed/
crop 
target

Data source/sensor Key 
performance

Specific findings/context Ref-
er-
ences

Vision 
Transformers

Beet, 
parsley, 
spinach, 
weed

RGB Images Accuracy: 97% Effective in multi-species weed 
classification using high-level 
feature extraction

 [58, 
59]

YOLOv7-FWeed Soybean 
vs. weed

UAV RGB imagery Accuracy: 93.07%; Real-time detection with 
strong accuracy-performance 
trade-off

 [60, 
61]

ConvNets with 
SLIC Superpixel

Soybean 
vs. weed

RGB (SLIC 
segmentation)

Accuracy: 98.33% Combines spatial context with 
CNNs for enhanced feature 
localization

 [62]

Mask R-CNN Cotton 
vs. weed

UAV or ground RGB Unavailable Instance segmentation capa-
bility suitable for overlapping 
objects

 [63]

Improved 
U-Net

General 
weed 
segmen-
tation

UAV RGB imagery Accuracy 84.29% High segmentation accuracy 
in a complex background with 
class imbalance

 [64]

Various Deep 
Learning Mod-
els (AlexNet, 
GoogLeNet, 
InceptionV3, 
Xception)

General 
crop/
weed 
classes

RGB images Accuracy: 97.7% Comparative study show-
ing strong generalization of 
deeper models

 [65, 
66]

Deep Belief 
Networks

Rice 
weeds

Fusion features Recognition Rate: 
91.13%

Utilizes fusion features for 
improved recognition.

 [67]

Fine-tuned 
DenseNet + 
SVM

Weeds 
(Echi-
nochloa 
colona, 
Cyperus 
diffor-
mis), 
Healthy 
Rice

Natural field condition 
images

Micro F1 score: 
99.29%

High performance in real-
world conditions.

 [68]

WeedDet Weeds 
in paddy 
fields

(Not specified) Mean Average 
Precision: 94.1%, 
FPS: 24.3

Exceptional accuracy and 
impressive inference time.

 [69]

Deformable 
DETR

Barnyard 
grass/
Rice

UAV Remote Sensing 
Imagery

mAP50: 0.775 Improved over the original 
DETR, but less than RMS-DETR.

 [70, 
71]

Anchor DETR Barnyard 
grass/
Rice

UAV Remote Sensing 
Imagery

mAP50: 0.755 Lower performance compared 
to RMS-DETR.

 [72]

CNN LVQ Weeds 
(Soy-
bean, 
Grass, 
Broad-
leaf )

UAV Imagery Overall Accuracy: 
99.44%

High accuracy after hyperpa-
rameter refinement.

 [73]

VGG-16 Cotton 
weed

(Not specified) Accuracy: 95.4% Baseline CNN can have lower 
accuracy with large datasets.

 [74]

ResNet-101 Cotton 
weed

(Not specified) Accuracy: 97.1% High-performing CNN.  [75]

DenseNet-121 Cotton 
weed

(Not specified) Accuracy: 96.9% High-performing CNN.  [76, 
77]

XceptionNet Cotton 
weed

(Not specified) Accuracy: 96.1% High-performing CNN.  [78, 
79]

Table 5  Performance metrics of deep learning models for UAV-based weed and rice differentiation 
and some for other crops
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4  Challenges and future research directions
Despite the remarkable advancements in UAV-based remote sensing and deep learn-
ing for weed and rice classification, several significant challenges persist, necessitating 
focused future research to transition these technologies from experimental success to 
widespread practical application. One key area for future development is the integration 
of mechanized farming features, such as row spacing and planting patterns, into existing 
weed detection models. Incorporating these features can provide valuable spatial con-
text, enabling models to better distinguish crops from weeds, particularly in structured 
farming systems. By leveraging row alignment and inter-row spacing, models can reduce 
false positives and improve precision in weed localization. This integration also offers 
practical benefits for precision agriculture, as it allows automated weed management 
systems to align detection outputs with machinery operations, enhancing operational 
efficiency.

Future research should focus on developing hybrid approaches that combine spec-
tral, textural, and mechanized farming information, as well as validating these methods 
across diverse crop types, growth stages, and field conditions. Addressing these chal-
lenges will facilitate the transition of UAV-based weed detection systems from experi-
mental studies to scalable, field-ready applications.

4.1  Present accuracies of DL, ML and vis

A review of accuracy trends from 2018 to 2025 (Fig. 4) reveals deep learning’s increasing 
dominance, with a significant rise in accuracy post-2020. Vegetation indices show steady, 
moderate improvements, and machine learning accuracy has seen a sharp increase due 
to the integration of hybrid models like DenseNet + SVM. This highlights the growing 
refinement and superiority of deep learning in remote sensing-based crop-weed clas-
sification. Vegetation Indices (VIs) often outperform traditional Machine Learning 
(ML) methods like SVMs and DBNs in weed–rice discrimination, with indices such as 
WDVI_NIR, SAVI/GSAVI, and CI_red edge achieving higher or comparable accuracies 
above 90%, especially in specific field conditions.

Furthermore, deep learning models, particularly CNN LVQ, DenseNet + SVM, and 
customized CNN architectures (Fig.  5), consistently achieved the highest accuracies 
(over 98%) in weed-rice discrimination, outperforming traditional machine learning 
methods like SVM and Deep Belief Networks (around 90% accuracy). While vegetation 
indices such as WDVI_NIR, SAVI/GSAVI, and CI_red edge also showed strong perfor-
mance (above 90%), they generally trailed behind deep learning.

Model 
architecture

Weed/
crop 
target

Data source/sensor Key 
performance

Specific findings/context Ref-
er-
ences

Customized 
CNN

Cotton 
weed

(Not specified) Accuracy: 98.3% Outperformed other CNNs in 
the specific cotton weed task.

 [80]

One-class 
classifier

Weeds Unsupervised UAV 
data

Accuracy: Up to 
90%

Reduces the need for manual 
annotation.

 [81, 
82]

Swin 
Transformer

Maize 
and 
Weed

UAV multispectral Accuracy: 97.8% Strong spectral-spatial atten-
tion and generalization in 
dense canopy

 [83]

EfficientFormer Mixed 
crops

UAV RGB imagery Accuracy: 96.5% Lightweight architecture suit-
able for edge deployment

 [84]

Table 5  (continued) 
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4.2  Data availability, annotation, and generalizability issues

A fundamental challenge in the development of robust deep learning models is their 
“data-starving” nature. Training these models to achieve high accuracy and reliability 
requires vast quantities of high-quality, meticulously labeled data [33]. The acquisition 
and annotation of such datasets in real-world agricultural environments are inherently 
time-consuming, labor-intensive, and costly. Furthermore, many publicly available data-
sets, while valuable, may not fully capture the immense diversity and variability encoun-
tered in actual field conditions, such as different rice varieties, weed species, growth 
stages, soil types, and environmental factors [34]. Currently, no unified dataset exists for 
rice-weed differentiation.

This data scarcity and lack of representativeness directly impact the generalizability 
of trained models. Models developed and validated in one specific environment (e.g., a 
particular region, a single rice cultivar, or a narrow range of growth stages) frequently 
exhibit a noticeable decrease in recognition accuracy when applied to different field 
datasets or under varying environmental conditions. Real-world images are also perpet-
ually affected by dynamic environmental factors, including illumination variations (e.g., 
direct sunlight, overcast conditions), shadows cast by clouds or surrounding objects, and 
occluded leaves due to dense canopy cover [85]. These factors are major obstructions to 
accurate vegetation analysis and can lead to significant errors in weed detection, further 
limiting model robustness.

To address this, future research must prioritize the acquisition of more diverse and 
representative datasets and the development of robust data collection strategies. Syn-
thetic data generation through methods like Generative Adversarial Networks (GANs) 
offers an effective approach to augment real datasets, especially in cases where cer-
tain weed types or growth stages are underrepresented [86]. Domain adaptation tech-
niques offer significant potential for improving model performance across diverse field 
conditions.

Fig. 4  Trend of implementation of DL, VIs and ML from 2018 to 2025
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4.3  Environmental factors and real-time processing constraints

The dynamic and often unpredictable nature of agricultural environments poses insis-
tent challenges for UAV-based weed classification. Unpredictable weather conditions, 
including fluctuating cloud cover, wind, and varying sunlight intensity, directly impact 
the quality of image acquisition and subsequently affect the performance and reliability 
of classification algorithms. Furthermore, real farm environments are inherently com-
plex, characterized by the presence of small-sized, occluded, and densely distributed 
weed instances, which complicates the discrimination process [87].

To improve classification accuracy, recent models have integrated complex architec-
tures and multi-scale feature extraction techniques (e.g., RMS-DETR), yet this often 
increases computational load and slows down inference speeds [88]. This trade-off is 
critical, especially for real-time applications such as UAV-guided precision spraying, 
where rapid response is required. Thus, there is a growing need for lightweight, compu-
tationally efficient models capable of fast, in-field performance [89].

Fig. 5  Comparison of a Deep learning b Vegetation Indices c Machine Learning

 



Page 16 of 21Ahmad et al. Discover Agriculture             (2026) 4:8 

4.3.1  Computational infrastructure and data management constraints

UAV-based image acquisition generates large data volumes that require robust com-
putational resources for preprocessing, model training, and inference. High-resolution 
orthomosaics, particularly from multispectral and hyperspectral sensors, demand 
high-performance computing (HPC) or GPU-enabled servers. For operational scalabil-
ity, cloud-based solutions (e.g., Google Earth Engine, AWS, or Microsoft Azure) offer 
viable alternatives, though their cost may limit accessibility for small-scale farmers [90, 
91]. Establishing data management pipelines covering compression, tiling, and metadata 
indexing is essential to optimize processing time and maintain reproducibility.

4.4  Integration with robotic systems and variable-rate application

The ultimate goal of UAV-based weed detection is not limited to mapping but extends 
to actionable outcomes in site-specific weed management (SSWM). Precision spraying 
systems rely on accurate weed maps to guide herbicide application, thereby reducing 
chemical usage and environmental impact [92]. Deep learning models provide technical 
support for these applications, yet achieving seamless integration with robotic systems 
remains a challenge.

This integration requires synchronized operations between UAVs and ground-based 
sprayers, as well as real-time communication protocols, robust georeferencing, and deci-
sion-making control systems [93]. Transitioning from detection to action is a multidisci-
plinary challenge that involves image analysis, robotics, and networked communication 
infrastructure.

4.5  Emerging technologies and methodologies

Several emerging technologies have been highlighted in this systematic review, which 
shows promise in addressing the challenges described below:

 1.	   Synthetic data generation: GANs can generate realistic plant imagery to augment 
existing datasets and help reduce reliance on labor-intensive annotation [94, 95].

   2.	    Advanced deep learning techniques: Attention mechanisms, which allow 
models to prioritize salient features in the imagery, can improve the discrimination of 
visually similar crops and weeds [96].

    3.	    Unsupervised and semi-supervised learning: These techniques reduce 
dependence on labeled data by leveraging large volumes of unlabeled imagery for 
training [97].

    4.	    Multi-modal data acquisition and fusion: Integrating RGB, multispectral, 
hyperspectral, thermal, and LiDAR data provides a richer representation of the field 
environment, enhancing detection accuracy and robustness [90].

    5.	    Edge deployment and real-time optimization: Lightweight models optimized 
for real-time inference on edge devices (e.g., onboard UAV systems or field-side 
processors) can support in-situ decision-making and reduce latency [89, 92].  

     
Emerging technologies present transformative opportunities for UAV-based weed and 

rice classification, yet their application remains in its infancy. Generative adversarial net-
works (GANs) and diffusion models can generate realistic synthetic UAV datasets, allevi-
ating annotation burdens and enhancing model robustness across varied environments. 
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Advanced attention mechanisms, including Swin Transformers and spectral–spatial 
attention modules, are particularly promising for handling the high dimensionality 
of multispectral and hyperspectral UAV data, enabling more precise discrimination 
between rice and spectrally similar weeds. Federated and transfer learning approaches 
can further support cross-regional generalizability while mitigating the challenges of 
data scarcity and privacy restrictions in agricultural research. Finally, the integration of 
UAV platforms with ground-based robotics (e.g., autonomous sprayers) and edge com-
puting frameworks offers a pathway toward real-time, autonomous weed management 
systems. Together, these emerging methodologies not only extend beyond traditional 
deep learning pipelines but also chart a roadmap for scaling UAV-based weed detection 
from experimental studies to operational agricultural practice.

Synthetic data generation methods such as generative adversarial networks (GANs), 
diffusion models, and variational autoencoders (VAEs) offer promising solutions to 
overcome annotation bottlenecks and improve model robustness. While GANs have 
been widely applied and are relatively mature, diffusion models and VAEs are emerging 
as mainstream approaches, capable of producing more stable and diverse synthetic UAV 
datasets that enhance training and generalization in rice–weed classification tasks.

The conjunction of these advanced architectures, methodologies, and multi-modal 
sensor strategies offers a path toward robust, autonomous, and scalable weed man-
agement systems. Future research should focus on bridging the laboratory field divide 
through integrated, adaptive systems capable of delivering real-time solutions in 
dynamic agricultural landscapes.

4.6  Socioeconomic barriers and farmer resistance to UAV adoption

Despite proven agronomic benefits, adoption of UAV-based precision agriculture tech-
nologies remains limited in many regions. Key reasons include the high initial cost of 
equipment, lack of technical training, and uncertainty about return on investment [98]. 
Cultural factors and risk aversion also contribute to resistance, particularly among tra-
ditional farmers accustomed to manual practices. Moreover, the perceived complexity 
of UAV operation, data interpretation, and regulatory compliance act as deterrents [99]. 
Overcoming these barriers requires targeted extension programs, financial incentives, 
and demonstration projects that emphasize the practical and economic benefits of UAV-
assisted weed management.

5  Conclusions
Weed infestation in rice farming remains a major threat to crop yield and sustainability, 
especially due to the environmental and economic costs of conventional herbicide use. 
UAVs, equipped with advanced sensors and deep learning, offer a powerful solution for 
precise weed-rice classification and site-specific weed management. UAV-based systems 
surpass traditional and satellite methods through superior spatial-temporal resolution 
and sensor versatility, enabling accurate discrimination of spectrally similar vegetation. 
Deep learning models such as RMS-DETR and U-Net variants have achieved high classi-
fication accuracy, especially when coupled with data fusion techniques. However, practi-
cal implementation faces key challenges: deep learning’s need for large, labeled datasets, 
environmental variability affecting image quality, limited model generalizability, and 
the computational demands of real-time deployment. Future research should prioritize 
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synthetic data generation (e.g., GANs), attention-based and lightweight models, unsu-
pervised learning, multi-modal data fusion (especially thermal and LiDAR), and edge 
computing. Expanding dataset diversity and optimizing for real-time performance will 
be essential for deploying robust, scalable, and sustainable weed management systems in 
rice agriculture. Beyond technical improvements, UAV-based deep learning offers tangi-
ble economic and environmental benefits. Field trials demonstrate potential reductions 
of up to 40% in herbicide use and 25% in operational costs through site-specific spraying 
[93, 100]. Moreover, timely detection of weed stress supports improved resource allo-
cation, contributing to higher yields and sustainability. These outcomes highlight the 
broader socioeconomic impact of integrating UAV technologies into precision agricul-
ture systems. This review underscores a critical path forward for robust weed and crop 
discrimination, advocating for a paradigm shift towards data-efficient learning (weakly/
semi-supervised, self-supervised) to alleviate annotation bottlenecks. Enhanced model 
performance will stem from multi-modal and temporal data fusion, yielding richer 
insights. Crucially, the practical deployment of these solutions demands lightweight AI 
architectures for edge computing and seamless robotics integration, enabling autono-
mous field operations. Finally, standardized benchmarking datasets are indispensable to 
drive consistent evaluation and rapid advancements in the field.
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