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A B S T R A C T

Convolutional neural networks play a vital role in image classification, with attention mechanisms enhancing
discriminability on large datasets like ImageNet. However, challenges persist in optimizing performance for
smaller or moderate real-world datasets due to limited data availability. There is a deficiency in effectively
leveraging both channel and spatial attention for enhanced effectiveness in such scenarios. Although predefined
filters offer advantages, their integration with attention mechanisms for complementary strength remains
under-explored. In this paper, we propose the Frequency Regulated Channel-Spatial Attention (FReCSA) module
to address this challenge by leveraging the power of channel attention and spatial attention. Four subsets
and the complete ImageNet dataset, along with five additional datasets are used to evaluate FReCSA in our
experiments. Integrating the FReCSA module into ResNet50 significantly enhances the top-1 accuracy, which
is demonstrated by a 10.13% increase over the second-best on the ImageNet-40 dataset. On the other hand,
our FReCSA module introduces minimal computational and parameter overhead to the deep network in terms
of model size and computational operations, which makes FReCSA a good choice for learning tasks. The source
code of this work is available at https://github.com/CoVIS-UNT/FReCSA.
1. Introduction

Convolutional neural networks (CNNs) have revolutionized com-
puter vision, particularly image classification, as demonstrated by their
success in the ImageNet Challenge (Russakovsky et al., 2015). To
achieve satisfactory performance, a large amount of training data is
commonly required. The development of deep networks for improved
performance includes exploration of increasing network depth (He,
Zhang, Ren, & Sun, 2016; Simonyan & Zisserman, 2015) or width
(Zagoruyko & Komodakis, 2016), which in turn leads to additional
layers or channels and therefore an increased number of parameters.
Alternatively, attention (Qin, Zhang, Wu, & Li, 2021; Wang et al.,
2020) has shown promise by emphasizing informative features while
suppressing less useful ones, with the advantage of very few additional
computational operations to the existing network. Still, the requirement
for massive training datasets persists. In many real-world applications,
however, such a large amount of training data is often unavailable.
The limited training data poses a substantial challenge for deep neural
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networks (Alzubaidi et al., 2023; Brigato, Barz, Iocchi, & Denzler,
2022).

Although attention was designed to improve the encoding process
of deep networks, weighing features according to their significance
makes it a promising idea to address the requirement of large train-
ing data (Guo et al., 2022). With the extraction of more relevant,
prominent features, less data could be used to achieve competitive
performance (Hassanin, Anwar, Radwan, Khan, & Mian, 2024). While
channel attention and spatial attention have been developed, they
focus on massive datasets (e.g., ImageNet Deng et al., 2009), with less
emphasis on optimization for smaller or moderate datasets due to data
availability. There is also a deficiency in effectively harnessing both
channel attention and spatial attention to enhance overall effectiveness
in such a scenario. Additionally, studies (Chen et al., 2019; Ma, Luo, &
Yang, 2020; Ulicny, Krylov, & Dahyot, 2019) suggest that incorporating
predefined filters not only improves performance but also reduces the
number of parameters that need to be learned. This, in turn, enables
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a more data-efficient training process. However, the exploration of
integrating predefined filters with attention mechanisms to harness the
strengths of both remains under-explored.

This paper proposes a frequency-regulated attention module with
enhanced channel and spatial attention designs to address the afore-
mentioned challenge. Our channel attention module incorporates Batch
Normalization after channel embedding to accelerate learning and
enhance frequency features. The learnable individual channel scal-
ing simplifies connections and facilitates learning the contributions
of different channels that capture diverse frequency components. Our
spatial attention module leverages predefined filters to alleviate the
reliance on large datasets for training. The filter outputs are used to
modulate the input for spatial attention, enabling efficient learning of
prominent features. The design of our method is highly modulated and
can be integrated into popular deep networks with ease. Similar to
many attention modules, our module can be appended to the end of
convolution operations within each convolutional block.

The main contributions of this work include

• a simplified channel attention design incorporating Batch Normal-
ization and individual channel scaling,

• a frequency-modulated spatial attention design integrating prede-
fined filters via local-local spatial interaction,

• an improved deep network that leverages the complementary
power of both attention modules for smaller or moderate datasets.

The rest of this paper is organized as follows: Section 2 provides
a review of related work, primarily focusing on attention mechanisms
and predefined filters. Section 3 describes our proposed method in
detail. Section 4 presents the experimental results with a discussion.
Section 5 concludes and summarizes the article.

2. Related work

To increase the volume of data for training deep network models,
synthetic data is often created and employed using different tech-
niques. Variational autoencoders (VAEs) (Kingma & Welling, 2013)
employ an encoder network to generate a probability distribution over
the latent space from the input image and use a decoder network
to randomly sample and generate the output. Generative adversarial
networks (GANs) (Goodfellow et al., 2014) train a generator to produce
synthetic data that is difficult to distinguish and a discriminator to dif-
ferentiate between the generated and real data. However, there remains
a substantial domain gap between synthetic and real images (Man &
Chahl, 2022). Training purely on synthetic data would not improve
testing performance on real data (Tsirikoglou, Eilertsen, & Unger,
2020). It is inferior and much less data-efficient when trained from
scratch, and there is also performance degradation during fine-tuning
compared to real data (He et al., 2022).

To enhance recognition performance, researchers have explored
increased network depth or width, leading to more layers or chan-
nels. Using small filter sizes, VGGNet (Simonyan & Zisserman, 2015)
extends its depth beyond 16 convolutional layers, GoogLeNet (Szegedy
et al., 2015) surpasses 20 convolutional layers, and ResNet (He et al.,
2016) exceeds 50 convolutional layers due to its residual design. All
of these contribute significantly to the improvement; however, fur-
ther increasing depth leads to marginal gains, even with the large
dataset ImageNet. Increased width (Zagoruyko & Komodakis, 2016) is
alternatively explored, resulting in substantial computational cost and
constrained depth. The increase in depth or width also results in a
significant growth in parameters, posing a higher risk of overfitting and
greater demand for data volume.

Alternatively, attention mechanisms emphasize the most informa-
tive features for enhanced discriminability. They are typically designed
as an add-on module with a sigmoid control gate for recalibration
through multiplication. Residual Attention Network (Wang et al., 2017)
directly computes the 3D attention map. It adopts an encoder–decoder
2 
style with multiple downsampling (max-pooling), residual units, and
upsampling, followed by two 1 × 1 convolutions. To reduce overhead,
the decomposition of attention along the channel or spatial axis is
subsequently investigated.

Channel attention recalibrates channels based on their importance,
which is implemented through either fully connected or simplified con-
nections with respect to channel interactions. For the fully connected
style, the ‘Squeeze-and-Excitation’ (SE) module from SENet (Hu, Shen,
& Sun, 2018b) is widely adopted in various works, including Cao, Xu,
Lin, Wei, and Hu (2019), Li, Wang, Hu, and Yang (2019), Park, Woo,
Lee, and Kweon (2018), Qin et al. (2021), Woo, Park, Lee, and Kweon
(2018), Zhang, Zu, Lu, Zou, and Meng (2022) and Zhuang et al. (2023).
This module incorporates a squeeze operation for channel embedding
using global average pooling (GAP) and an excitation operation for
channel dependency modeling, through two fully connected layers (FC)
with dimension reduction. For modifications made during the adop-
tion, BAM (Park et al., 2018) introduces Batch Normalization (Ioffe
& Szegedy, 2015) between the FC layers. CBAM (Woo et al., 2018)
includes more information through global max and average pooling.
KNets (Li et al., 2019) incorporate more convolution branches with
different kernel sizes for a ‘Selective Kernel’ (SK) strategy. GCNet (Cao
et al., 2019) instead explores long-range dependencies for channel
embedding, with LayerNorm (Ba, Kiros, & Hinton, 2016) between the
FC layers. FcaNet (Qin et al., 2021) incorporates additional frequencies
into channel embedding, including the lowest frequencies (-LF) or
selected frequencies through a two-step process (-TS). GSoP-Net (Gao,
Xie, Wang, & Li, 2019) alternatively captures channel correlations using
the covariance matrix, which involves pairwise location dependencies
across channels and is employed between channel reduction and row-
wise convolution. On the other hand, simplified connections receive
limited exploration. SRM (Lee, Kim, & Nam, 2019) recalibrates individ-
ual channels for style-related tasks, exploring style information through
channel mean and variance. It uses separate learnable weighting pa-
rameters for summation, serving as channel encoding before Batch
Normalization. ECA-Net (Wang et al., 2020) introduces a local cross-
channel interaction through 1D convolution to enhance the efficiency
of the SE module. It reveals the unnecessary nature of modeling depen-
dencies across all channels and the adverse effect of channel dimension
reduction.

Spatial attention recalibrates features based on their spatial impor-
tance, which is implemented through local-only, local-local, or local–
global interactions. Local-only interaction typically employs convolu-
tion to capture local importance. BAM (Park et al., 2018) employs two
dilated convolutions (3 × 3) on reduced channels, with channel atten-
tion in parallel through summation. CBAM (Woo et al., 2018) similarly
applies a 7 × 7 convolution on the concatenated features through max
and average pooling along the channel axis, with channel attention
first. The GE module (Hu, Shen, Albanie, Sun, & Vedaldi, 2018) in-
tegrates a series of strided depthwise convolutions (3 × 3) to achieve
a large spatial extent for subsequent redistribution. All these methods
incorporate Batch Normalization. Furthermore, HPA (Zhuang et al.,
2023) employs a predefined high-pass filter on individual channels to
facilitate learning spatial attention, resulting in additional channels to
be concatenated and explored by the SE module for channel attention.
For local-local interaction, Non-Local Network (Wang, Girshick, Gupta,
& He, 2018) adopts the self-attention mechanism to capture long-
range dependencies. This is achieved by computing pairwise relations
between all spatial positions within the non-local block. CCNet (Huang,
Wang et al., 2019) simplifies pairwise relations through two consec-
utive Criss-Cross (CC) modules for semantic segmentation, with each
module considering the dependencies between each pixel and the pixels
along its horizontal and vertical paths. SimAM (Yang, Zhang, Li, & Xie,
2021) introduces a simple attention module design to highlight dis-
tinctive values from spatial surroundings. It normalizes squared zero-
centered data values based on channel variance, using a predefined
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Fig. 1. The structure of our proposed FReCSA module.
energy function with no learnable parameters. For local–global interac-
tion, the SGE module (Li, Li, & Yang, 2022) explores local–global spatial
similarity within channel groups. This module is implemented through
global average pooling, element-wise multiplication, and a simplified
version of Batch Normalization with less learnable parameters.

On the other hand, the incorporation of predefined filters in CNNs
has been explored, which can be implemented through direct replace-
ment, integration within, or as an add-on component with respect to
existing learnable filters. For direct replacement, Deep Hybrid Net-
works (Oyallon, Belilovsky, & Zagoruyko, 2017) substitute learnable
convolutions in the initial layers with predefined filters derived from
wavelet transformations, demonstrating that it can be data-hungry to
rely solely on learnable filters. Harmonic Networks (Ulicny et al., 2019)
replace learnable convolution filters with Discrete Cosine Transform
filters within the harmonic block across more layers. Additionally,
Batch Normalization is applied to enhance high-frequency components
with small magnitudes. For integration within, OctConv (Chen et al.,
2019) incorporates a low-pass filter into the original convolution,
which generates additional low-frequency features in reduced resolu-
tion, allowing convolution within and between the new and original
features. This process helps in learning the latter, which is ultimately
retained for the last layer. For the add-on component, the Multi-level
Wavelet CNN (Liu, Zhang, Lian, & Zuo, 2019) incorporates discrete
wavelet transform during the downsampling stage, generating low-
and high-frequency bands to ease the learning burden, with expanded
channel numbers followed by channel reduction. High-frequency resid-
ual learning (Cheng, Xiao, Wang, Huang, & Zhang, 2020) employs
a dual network strategy for small networks, which leverages low-
frequency features from an auxiliary network using low-resolution
input to facilitate the learning of high-frequency information. Anti-
aliasing (AA) (Zhang, 2019) integrates a low-pass filter after dense
computation in the downsampling process to mitigate aliasing artifacts
from high-frequency signals and therefore enhance feature learning.

3. Frequency regulated channel-spatial attention

Our proposed Frequency Regulated Channel-Spatial Attention
(FReCSA) module consists of two key components: a simplified channel
attention module and a frequency-regulated spatial attention module.
Fig. 1 illustrates the overview of our FReCSA module, where each
component recalibrates the input feature map through multiplication
in a sequential order.

3.1. Simplified channel attention

Given the input feature map 𝐹 ∈ R𝐶×𝐻×𝑊 , our channel attention
module learns to infer the 1D channel attention map 𝐴 ∈ R𝐶×1×1 for
channel recalibration. This module adopts simplified channel connec-
tions and comprises four steps: (1) channel embedding, (2) normaliza-
tion, (3) scaling, and (4) recalibration. The structure of our channel
attention module is illustrated in Fig. 2.
3 
Channel Embedding. Global Average Pooling (GAP) is applied to
generate the channel descriptor 𝑃 ∈ R𝐶×1×1:

𝑃 = GAP(𝐹 ), (1)

where 𝐹 denotes the input feature map. The pooling operation aggre-
gates feature responses across all locations (𝐻×𝑊 ) within one channel
into a single value to capture the global distribution. Therefore, the 𝑐th
channel of the descriptor 𝑃 represents an average value of that channel:

𝑃𝑐 =
1

𝐻 ×𝑊

𝐻
∑

𝑖=1

𝑊
∑

𝑗=1
𝐹𝑐 (𝑖, 𝑗), (2)

where 𝐹𝑐 (𝑖, 𝑗) refers to the feature value at the spatial location (𝑖, 𝑗) in
the 𝑐th channel of the input feature map.

Normalization. Different channels that capture various frequen-
cies (Hinton, Krizhevsky, & Sutskever, 2012; Zeiler & Fergus, 2014)
could exhibit diverse characteristics. This diversity may lead to signif-
icant variations in the magnitude of the channel descriptor (e.g., high-
frequency features are usually sparse), posing challenges in the subse-
quent steps of learning the relative contributions of channels. Instead of
directly applying the channel descriptor, we incorporate Batch Normal-
ization (BN) to obtain the normalized channel descriptor 𝐵 ∈ R𝐶×1×1:

𝐵 = BN(𝑃 ), (3)

where 𝑃 denotes the channel descriptor from the previous step. The
normalization value for the 𝑐th channel, represented as 𝐵𝑐 , is calculated
as follows:

𝐵𝑐 =
𝑃𝑐 − 𝑃𝑐

√

𝜎(𝑃𝑐 ) + 𝜀
× 𝛾 + 𝛽, (4)

where 𝑃𝑐 refers to the 𝑐th channel of the channel descriptor 𝑃 , 𝑃𝑐
denotes the mean of 𝑃𝑐 , 𝜎(𝑃𝑐 ) computes the standard deviation of 𝑃𝑐 ,
while 𝛾 and 𝛽 are the scaling parameter and bias for enhanced repre-
sentation power, which take an initial value of 1 and 0, respectively.

Scaling. The batch-normalized channel descriptor 𝐵 may not be
ideal to directly recalibrate each channel of the input feature map 𝐹 ,
particularly in the absence of a substantial amount of data. Therefore,
we introduce a learnable scaling parameter 𝑉 ∈ R𝐶×1×1, where each
channel is assigned a unique scaling factor. These factors are initialized
as 0 but can be easily learned to acquire suitable amplitudes. They
can take positive values for amplification and negative values for
attenuation before the Sigmoid function. This scaling process leads to
the scaled channel descriptor 𝑆 ∈ R𝐶×1×1:

𝑆 = 𝐵 × 𝑉 , (5)

where 𝐵 is the batch-normalized channel descriptor and 𝑉 is the
learnable scaling parameter.

Recalibration. The channel attention map 𝐴 ∈ R𝐶×1×1 is finally
obtained by applying the Sigmoid function:

𝐴 = Sigmoid(𝑆), (6)
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Fig. 2. The structure of our channel attention (CA) module.
Fig. 3. The structure of the SE module.
Fig. 4. The structure of the ECA module.
where 𝑆 refers to the scaled channel descriptor. Subsequently, the
channel-refined feature map 𝐹 ′ is achieved by recalibration:

𝐹 ′ = 𝐴 × 𝐹 , (7)

where 𝐹 represents the input feature map. Therefore, after recalibra-
tion, important channels are highlighted.

Design Distinctions. In Figs. 3 and 4, we illustrate two types of
channel connections: fully connected (e.g., the SE module Hu et al.,
2018b) and simplified connections (e.g., the ECA module Wang et al.,
2020). Our channel attention design distinguishes itself by incorporat-
ing Batch Normalization and individual channel scaling for accelerated
learning and increased flexibility. The independent channel relation-
ship aims to alleviate the learning burden. This design differs from
the fully connected connections used by the SE module, which links
all channels, and the ECA module, which employs 1D convolution to
connect nearby channels.

3.2. Frequency-regulated spatial attention

Given the input feature map 𝐹 ′ ∈ R𝐶×𝐻×𝑊 , our frequency-regulated
spatial attention module learns to infer the 2D spatial attention map
𝐴′ ∈ R𝐶×𝐻×𝑊 for spatial recalibration. This module is designed to
4 
enhance channel attention and benefit less voluminous datasets. There-
fore, we adopt a local-local interaction strategy, incorporating a pre-
defined high-pass filter to highlight spatial changes and alleviate the
learning burden. This module consists of five steps: (1) predifined
filtering, (2) local-local interaction, (3) normalization, (4) activation,
and (5) recalibration. The structure of our spatial attention module is
depicted in Fig. 5. Additional details on parameter and design selection
are provided in the ablation study, Section 4.5.

Predifined Filtering. We explore spatial information for recalibra-
tion by incorporating a predefined high-pass filter (HPF). This filter
preserves rapid changes while attenuating gradual changes, aiming
to enhance the visibility and sharpness of features, such as edges or
boundaries, without the need to learn additional parameters. The high-
frequency features 𝐻𝑖𝑔ℎ ∈ R𝐶×𝐻×𝑊 are generated within individual
channels using the high-pass filter (HPF) as:

𝐻𝑖𝑔ℎ = HPF(𝐹 ′), (8)

where 𝐹 ′ refers to the channel-refined feature map. This can be equiv-
alently achieved by employing a low-pass filter (LPF) and subtracting
the filtered signal from the original input:

𝐿𝑜𝑤 = LPF(𝐹 ′),
′ (9)
𝐻𝑖𝑔ℎ = 𝐹 − 𝐿𝑜𝑤,
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Fig. 5. The structure of our spatial attention (SA) module.
Fig. 6. The flow chart of three spatial interactions for spatial attention: (a) Local-only, (b) Local-global, and (c) Local-local.
where 𝐿𝑜𝑤 denotes the low-frequency features. In terms of implemen-
tation, we employ average pooling for the low-pass filter (LPF), and set
filter size as 7 following CBAM (Woo et al., 2018).

Local-Local Interaction. To convey intensity information, we em-
ploy a local-local interaction strategy. This is achieved by exploring
the similarity score 𝑆𝑖𝑚 ∈ R𝐶×𝐻×𝑊 between the original values and
high-frequency features at corresponding locations within individual
channels, which is calculated through pointwise multiplication:

𝑆𝑖𝑚 = 𝐻𝑖𝑔ℎ × 𝐹 ′, (10)

where 𝐻𝑖𝑔ℎ refers to the high-frequency features, and 𝐹 ′ represents the
channel-refined feature map.

Normalization. High-frequency information typically exhibits
small values. To prevent the multiplication result from becoming
excessively small, Batch Normalization (BN) is employed to obtain the
normalized similarity score 𝑆′ ∈ R𝐶×𝐻×𝑊 :

𝑆′ = BN(𝑆𝑖𝑚), (11)

where 𝑆𝑖𝑚 refers to the similarity score from the previous step. Ac-
cording to Eq. (4), the normalization is performed using the mean and
standard deviation, with the scaling parameter and bias initialized as 1
and 0, respectively.

Activation. We further introduce an activation step before the
Sigmoid function for recalibration to avoid eliminating signals with
small values. We choose ReLU activation (Nair & Hinton, 2010):

ReLU(𝑥) =

{

𝑥, if 𝑥 > 0
0, if 𝑥 ≤ 0

(12)

to replace negative values with zero and allow positive values to pass
through unchanged. In this activation step, a bias term 𝑏 is included
to enhance the contrast in the output for the negative inputs. The
5 
activation feature map 𝑍 ∈ R𝐶×𝐻×𝑊 is computed as:

𝑍 = ReLU(𝑆′ + 𝑏), (13)

where 𝑆′ refers to the normalized similarity score. Bias value is inves-
tigated in the ablation study.

Recalibration. The spatial attention map 𝐴′ ∈ R𝐶×𝐻×𝑊 is finally
obtained by applying the Sigmoid function:

𝐴′ = Sigmoid(𝑍), (14)

where 𝑍 is the activation feature map from the previous step. Sub-
sequently, the spatial-refined feature map 𝐹 ′′ is achieved through
recalibration:

𝐹 ′′ = 𝐴′ × 𝐹 ′, (15)

where 𝐹 ′ represents the channel-refined feature map as input. This
spatial-refined feature map 𝐹 ′′ serves as the final output of our entire
module.

Design Distinctions. We highlight the key design differences that
distinguish our spatial attention module. In Fig. 6, we illustrate three
types of spatial interactions: local only (e.g., the GE module Hu et al.,
2018), local–global (e.g., the SGE module Li et al., 2022) and local-local
(our SA module). Our spatial attention design distinguishes itself by
incorporating a predefined high-pass filter to alleviate the learning bur-
den, as shown in the flowchart. Additionally, we establish local-local
interaction by multiplying the original and high-frequency information
at corresponding spatial locations. Our interaction differs from the
local-only interaction employed by the GE module, which is exclusively
based on convolution, and the local–global interaction used by the SGE
module, which involves the original and the global average pooling
information for multiplication.
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Fig. 7. The FReCSA module within the residual block of ResNet.
Table 1
ResNet50 architecture and with FReCSA module added.

ResNet-50 FReCSA-ResNet-50

conv, 7 × 7, 64, stride 2

max pool, 3 × 3, stride 2

⎡

⎢

⎢

⎣

conv, 1 × 1, 64
conv, 3 × 3, 64
conv, 1 × 1, 256

⎤

⎥

⎥

⎦

× 3

⎡

⎢

⎢

⎢

⎢

⎣

conv, 1 × 1, 64
conv, 3 × 3, 64
conv, 1 × 1, 256

FReCSA, 256

⎤

⎥

⎥

⎥

⎥

⎦

× 3

⎡

⎢

⎢

⎣

conv, 1 × 1, 128
conv, 3 × 3, 128
conv, 1 × 1, 512

⎤

⎥

⎥

⎦

× 4

⎡

⎢

⎢

⎢

⎢

⎣

conv, 1 × 1, 128
conv, 3 × 3, 128
conv, 1 × 1, 512

FReCSA, 512

⎤

⎥

⎥

⎥

⎥

⎦

× 4

⎡

⎢

⎢

⎣

conv, 1 × 1, 256
conv, 3 × 3, 256
conv, 1 × 1, 1024

⎤

⎥

⎥

⎦

× 6

⎡

⎢

⎢

⎢

⎢

⎣

conv, 1 × 1, 256
conv, 3 × 3, 256
conv, 1 × 1, 1024

FReCSA, 1024

⎤

⎥

⎥

⎥

⎥

⎦

× 6

⎡

⎢

⎢

⎣

conv, 1 × 1, 512
conv, 3 × 3, 512
conv, 1 × 1, 2048

⎤

⎥

⎥

⎦

× 3

⎡

⎢

⎢

⎢

⎢

⎣

conv, 1 × 1, 512
conv, 3 × 3, 512
conv, 1 × 1, 2048

FReCSA, 2048

⎤

⎥

⎥

⎥

⎥

⎦

× 3

Global average pool, 1000-d fc, softmax

3.3. Module integration

We illustrate the placement of our FReCSA module within the
Residual Block of ResNet (He et al., 2016) in Fig. 7, positioned similarly
to other attention methods such as SE (Hu et al., 2018b), CBAM (Woo
et al., 2018), etc. Specifically, in the Residual Block, our module is
situated on the convolutional branch after the existing convolution
operation. It sequentially derives the channel-refined feature map 𝐹 ′

and the spatial-refined feature map 𝐹 ′′ as output, given the input
feature map 𝐹 . For simplicity, Batch Normalization (BN) and ReLU
activation are omitted.

We describe the architecture of ResNet-50 and FReCSA-ResNet-
50 for the ImageNet dataset (1000 categories) in Table 1, with the
latter incorporating our proposed module. After the initial convolution,
ResNet50 comprises four convolutional stages, each consisting of 3, 4,
6, and 3 convolutional blocks, respectively. Our module is positioned
within each block after the last convolution while keeping the output
channel number unchanged.

4. Experimental results and discussion

4.1. Experiment settings and data sets

In our experiments, we utilize six datasets, including ImageNet
(Deng et al., 2009), Food-101 (Bossard, Guillaumin, & Van Gool, 2014),
Oxford-IIIT Pet (Parkhi, Vedaldi, Zisserman, & Jawahar, 2012), Caltech-
256 (Griffin, Holub, & Perona, 2007), SUN397 (Xiao, Hays, Ehinger,
Oliva, & Torralba, 2010), and MINC (Bell, Upchurch, Snavely, & Bala,
2015). ImageNet contains 1.28 million training images and 50,000
validation images of 1000 object categories. To explore scenarios with
smaller-scale training data, we create four subsets by randomly se-
lecting 40, 80, 160, and 320 training images per category, denoted
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Table 2
The number of training, Test images, and categories.

Dataset Training Test Category

ImageNet-40 40,000 50,000 1000
ImageNet-80 80,000 50,000 1000
ImageNet-160 160,000 50,000 1000
ImageNet-320 320,000 50,000 1000
ImageNet-full 1,281,167 50,000 1000
Food-101 75,750 25,250 101
Oxford-IIIT Pet 3680 3669 37
Caltech-256 7680 6400 256
SUN397 19,850 19,850 397
MINC 48,875 5750 23

Table 3
The parameters used in our experiments.

Parameter Value Parameter Value

Image size 224 × 224 Random scale [0.08, 1.0]
Batch size 128 Random ratio [3/4, 4/3]
Batch acc. (Im/ft) 2/1 Initial lr (Im) 0.1
SGD momentum 0.9 Ini. lr (Food/SUN) 0.0125
Weight decay 0.0001 Ini. lr (Pet/MINC/Caltech) 0.00375

as ImageNet-40, ImageNet-80, ImageNet-160, and ImageNet-320, re-
spectively, while keeping the complete validation data. The remaining
datasets, which are already limited in size, are introduced as fol-
lows. Food-101 comprises 750 training images and 250 test images
per category across 101 food categories. Oxford-IIIT Pet consists of
approximately 100 training images and 100 test images per category
within 37 categories of cats and dogs. Caltech-256 includes 30 training
and 25 test images per category across 256 object categories. SUN397
features 50 training images and 50 test images per category among
397 scene categories. MINC contains 2125 training images and 250 test
images per category within 23 material categories. Dataset information
is summarized in Table 2.

For training from scratch on ImageNet (Im) datasets, we follow
the practice regarding ResNet (He et al., 2016), with input image size
224 × 224, initial learning rate (lr) 0.1 (which decays by a factor
of 10 every 30 epochs), optimizer SGD, momentum 0.9, and weight
decay 0.0001. Data augmentation includes random horizontal flipping
as in Hinton et al. (2012), along with random scale in the range [0.08,
1.0] and random aspect ratio in the range [3/4, 4/3] as in Szegedy
et al. (2015). Experiments are conducted on 4 GPUs for 100 epochs,
with a batch size of 128 and batch accumulation of 2, following Zou,
Xiao, Yu, and Lee (2020). We use the Pytorch (Paszke et al., 2019) deep
learning framework, following its official ImageNet training example.
For fine-tuning (ft) on target datasets, we set batch accumulation as 1,
and select learning rate from {0.15, 0.115, 0.075, 0.0125, 0.00375} as
suggested by Huang, Cheng et al. (2019). We evaluate the performance
of ResNet using 50% of the training data for validation, and the selected
learning rate is 0.0125 for Food-101 and SUN397 and 0.00375 for the
other datasets. The parameters are summarized in Table 3.

4.2. ImageNet classification

We evaluate our proposed FReCSA module and the representative
approaches introduced in related work from both the perspectives of
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Table 4
Top-1 accuracy (%) on ImageNet datasets, including ImageNet-40, ImageNet-80, ImageNet-160, ImageNet-320, and ImageNet-full.

Method Training dataset size per class

40 80 160 320 Full

ResNet-50 22.56 38.58 52.33 63.52 76.00
GCNet (Cao et al., 2019) 22.03 38.04 52.78 64.88 76.93
AA (Zhang, 2019) 22.72 39.27 53.16 65.29 76.92
OctConv (Chen et al., 2019) 22.80 39.54 54.01 65.27 76.94
SKNet (Li et al., 2019) 22.87 39.96 54.34 65.74 77.09
FCA-TS (Qin et al., 2021) 23.71 40.10 54.44 66.12 77.49
Wavelet (Liu et al., 2019) 24.45 39.70 53.96 64.41 76.56
FCA-LF (Qin et al., 2021) 25.11 40.13 54.66 65.65 77.33
SRM (Lee et al., 2019) 25.94 42.01 55.56 65.65 76.97
SENet (Hu et al., 2018b) 26.06 41.41 55.58 65.88 77.20
Harmonic (Ulicny et al., 2019) 26.07 42.75 56.13 66.02 76.95
ECANet (Wang et al., 2020) 26.08 40.68 54.78 65.94 77.24
GSoPNet (Gao et al., 2019) 26.74 42.39 56.54 67.08 77.78
Simam (Yang et al., 2021) 27.01 42.37 56.22 66.27 76.96
CBAM (Woo et al., 2018) 27.09 42.35 55.95 66.15 77.48
HPA (Zhuang et al., 2023) 27.35 43.01 56.14 66.34 77.60
SGE (Li et al., 2022) 27.38 42.54 55.77 65.67 77.22
GENet (Hu et al., 2018) 27.54 42.29 55.66 66.12 77.24
FReCSA 30.33 45.00 58.10 67.27 77.51
attention and predefined filters, using ResNet-50 (He et al., 2016) as
the baseline network. Table 4 presents the top-1 accuracy on the subsets
and the complete ImageNet dataset, with methods sorted in ascending
order based on their performance on the smallest ImageNet-40 (Im-40)
dataset.

A performance enhancement by integrating the FReCSA module
into ResNet50 is evident. The top-1 accuracy on the ImageNet-40
dataset witnesses a 34.44% increase, rising from 22.56% to 30.33%,
surpassing the second-best performance by 10.13%. The improvements
remain consistent at 16.64%, 11.03%, and 5.90% on the ImageNet-80,
ImageNet-160, and ImageNet-320 datasets, exceeding the second-best
by 4.63%, 2.76%, and 0.28%, respectively, with training data size
doubled in each case. Such improvements demonstrate the advantages
of integrating the FReCSA module into a deep network. When all
examples are used for training a model, our method achieves a highly
competitive performance at 77.51%.

Channel attention methods such as SRM (Lee et al., 2019), SENet
(Hu et al., 2018b), ECANet (Wang et al., 2020), and GSoPNet (Gao
et al., 2019) consistently demonstrate strong performance when a large
amount of data is available. On the ImageNet-40 dataset, the accuracy
is around or exceeding 26%. SRM performs slightly lower with a
large amount of data, while ECANet eventually demonstrates its advan-
tage of simplified channel connections over SENet. Notably, GSoPNet
achieves excellent performance as data increases, indicating that learn-
ing pairwise location dependencies across channels is powerful but
data-hungry. Incorporating spatial attention, such as CBAM (Woo et al.,
2018) and HPA (Zhuang et al., 2023), further enhances SENet. The
accuracy is above 27% on the ImageNet-40 dataset, and consistent
improvement is observed across the remaining datasets. Spatial atten-
tion methods, such as Simam (Yang et al., 2021), GENet (Hu et al.,
2018), and SGE (Li et al., 2022), demonstrate comparable or even better
performance on the ImageNet-40 dataset, only slightly lag behind on
the complete ImageNet dataset. Such results indicate the significance
of spatial recalibration in facilitating feature learning, especially in the
scenario with a less massive dataset. However, incorporating additional
frequency components (e.g., FCA-LF Qin et al., 2021, FCA-TS Qin
et al., 2021) into channel embedding requires substantial amounts
of data to effectively enhance SENet. Learning long-range dependen-
cies (e.g., GCNet Cao et al., 2019) or more branches (e.g., SKNet Li
et al., 2019) appears to be challenging, with an accuracy below 23%
on the ImageNet-40 dataset. Similarly, the same data requirement
holds for GCNet and SKNet to achieve comparable performance with
SENet. For non-attention methods that incorporate predefined filters,
Harmonic (Ulicny et al., 2019) consistently exhibits strong perfor-
mance, with Batch Normalization to enhance high-frequency informa-

tion. It achieves an accuracy of 26.07% on the ImageNet-40 dataset,

7 
despite a slight lag as data increases. The wavelet method (Liu et al.,
2019), which directly generates high- and low-frequency bands, out-
performs methods indirectly learning high-frequency information, such
as anti-aliasing (Zhang, 2019) and OctConv (Chen et al., 2019) on the
ImageNet-40 dataset, while this advantage diminishes with increasing
data size.

4.3. Fine-tuning on the target datasets

Table 5 presents the top-1 accuracy achieved through fine-tuning on
the target datasets, with methods sorted in ascending order based on
their performance on the Food-101 dataset. In this case, each model
is initialized with pretrained weights from the complete ImageNet
dataset. The output layer (fully connected layer) is replaced to match
the category number of the target dataset, and all parameters are
updated during the adaptation process.

While the pretrained weights ease the learning process on the target
datasets by providing prior knowledge, we can still observe significant
performance improvements to the baseline network ResNet50 by in-
tegrating our FReCSA module. The top-1 accuracy on the Food-101
dataset increases by 2.11%, rising from 87.25% to 89.09%, surpassing
the second-best performance by 0.11%. The top-1 accuracy improve-
ments remain consistent at 0.93%, 2.04%, 3.18%, and 2.56% for the
Oxford-IIIT Pet, Caltech-256, SUN397, and MINC datasets, exceeding
the second-best by 0.09%, 0.20%, 0.22%, and 0.20%, respectively.
These results demonstrate that FReCSA extracts features according to
the characteristics of the target datasets.

It is evident that channel attention methods exhibit impressive
performance on the Food-101 dataset. SRM achieves an accuracy of
88.54%, while ECANet and GSoPNet attain accuracy levels of 88.78%
and 88.99% (ranking as the second-best), respectively. In contrast,
SENet only obtains an accuracy of 88.27% on this dataset. For other
remaining datasets with a reduced amount of data, only ECANet main-
tains competitive performance, most likely due to its simplified channel
connections for quick adaptation. Incorporating spatial attention, such
as HPA and CBAM, consistently improves SENet, with an accuracy of
88.55% and 88.78% on the Food-101 dataset, respectively. The overall
better performance of CBAM is likely attributed to the benefits from
Batch Normalization in this scenario with generally less amount of
training data. While incorporating additional frequency components
(e.g., FCA-LF, FCA-TS) into channel embedding improves the per-
formance of SENet to around 88.50% on the Food-101 dataset, its
effectiveness is not consistent, particularly on the Pet dataset with the
least training data. Spatial attention methods, such as Simam, GENet,

and SGE, demonstrate strong overall performance, with an accuracy of
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Table 5
Top-1 accuracy (%) on Food-101 (Food), Oxford-IIIT Pet (Pet), Caltech-256 (Caltech), SUN397 (SUN), and MINC datasets.

Method Food Pet Caltech SUN MINC

ResNet-50 87.25 93.13 82.73 61.09 78.92
AA (Zhang, 2019) 87.87 93.92 84.11 62.28 79.08
SKNet (Li et al., 2019) 88.03 92.59 80.30 61.11 78.03
OctConv (Chen et al., 2019) 88.04 93.81 84.02 62.34 80.57
Wavelet (Liu et al., 2019) 88.17 93.60 83.73 62.89 80.38
Harmonic (Ulicny et al., 2019) 88.26 93.81 84.03 62.87 80.64
SENet (Hu et al., 2018b) 88.27 91.77 75.58 61.12 78.00
GCNet (Cao et al., 2019) 88.30 93.19 83.13 61.40 79.51
FCA-LF (Qin et al., 2021) 88.46 90.73 76.34 61.56 78.35
Simam (Yang et al., 2021) 88.48 92.07 83.69 61.64 80.26
GENet (Hu et al., 2018) 88.51 93.81 84.03 62.89 80.78
SRM (Lee et al., 2019) 88.54 92.61 78.53 61.65 79.84
HPA (Zhuang et al., 2023) 88.55 92.10 80.08 61.79 79.25
FCA-TS (Qin et al., 2021) 88.59 90.73 76.17 61.23 79.06
CBAM (Woo et al., 2018) 88.78 93.24 84.25 62.47 79.10
ECANet (Wang et al., 2020) 88.78 93.51 84.11 62.36 79.70
SGE (Li et al., 2022) 88.79 93.46 84.09 62.88 79.44
GSoPNet (Gao et al., 2019) 88.99 92.10 77.20 61.30 78.10
FReCSA 89.09 94.00 84.42 63.03 80.94
Table 6
Top-1 accuracy (%) on Food-101, Oxford-IIIT Pet, and MINC datasets, minimal 40 images per class. FReCSA† and FReCSA‡ represent our spatial
and channel attention, respectively.

Method Food Pet MINC

40 80 All 40 All 40 All

ResNet-50 66.40 72.91 87.25 92.23 93.13 61.84 78.92
GC (Cao et al., 2019) 66.19 73.46 88.30 92.04 93.19 61.04 79.51
AA (Zhang, 2019) 67.59 73.43 87.87 92.45 93.92 63.15 79.08
OctConv (Chen et al., 2019) 67.46 73.36 88.04 92.59 93.81 63.44 80.57
SK (Li et al., 2019) 65.61 72.78 88.03 90.00 92.59 58.80 78.03
FCA-TS (Qin et al., 2021) 64.51 72.78 88.59 86.07 90.73 55.98 79.06
Wavelet (Liu et al., 2019) 68.32 74.57 88.17 92.59 93.60 63.60 80.38
FCA-LF (Qin et al., 2021) 64.13 72.95 88.46 86.51 90.73 55.83 78.35
SE (Hu et al., 2018b) 64.17 72.57 88.27 87.52 91.77 57.43 78.00
Harmonic (Ulicny et al., 2019) 68.28 74.52 88.26 92.37 93.81 63.32 80.64
ECA (Wang et al., 2020) 68.23 75.01 88.78 92.21 93.51 62.23 79.70
GSoP (Gao et al., 2019) 65.40 74.18 88.99 88.39 92.10 56.40 78.10
CBAM (Woo et al., 2018) 67.63 74.63 88.78 92.56 93.24 60.66 79.10
HPA (Zhuang et al., 2023) 65.33 72.83 88.55 89.97 92.10 59.06 79.25
SGE (Li et al., 2022) 68.48 75.09 88.79 92.56 93.46 63.25 79.44
GE (Hu et al., 2018) 68.04 74.27 88.51 92.45 93.81 63.65 80.78
FReCSA† 67.85 73.73 88.05 92.50 93.68 64.57 80.68
FReCSA‡ 68.23 75.28 88.87 92.56 93.57 62.38 80.28
FReCSA 68.89 75.55 89.09 92.64 94.00 62.97 80.94
88.48%, 88.51%, and 88.79% on the Food-101 dataset, respectively.
For the remaining datasets, GENet exhibits impressive performance,
comparable or close to the second-best, while Simam and SGE lag
behind. For non-attention methods incorporating predefined filters,
despite exhibiting lower performance on the Food-101 dataset, the
overall results on the remaining datasets are impressive, probably due
to the reduced data amount. Harmonic consistently achieves strong
performance, closely approaching the second-best accuracy on the
remaining datasets despite a lower accuracy of 88.26% on the Food-
101 dataset. The wavelet method, with direct generation of high- and
low-frequency bands, lags slightly behind overall, attaining 88.17%
accuracy on the Food-101 dataset. In contrast, methods indirectly
learning high-frequency information, such as anti-aliasing and Oct-
Conv, primarily demonstrate their advantage on small datasets, with
the lowest accuracy of 87.87% and 88.04% on the Food-101 dataset,
respectively.

Table 6 presents the accuracy of our proposed FReCSA module
and related methods using the Food-101, Oxford-IIIT Pet, and MINC
datasets as well as subsets of smaller sizes to train the models. Due to
the size of these three datasets, subsets of images are randomly selected
to create training sets of sizes at 40 or 80. The images for testing the
trained models remain unchanged. We observe a performance drop for
ResNet-50 on the Food-40 dataset (from 87.25% to 66.40%), MINC-
40 dataset (from 78.92% to 61.84%), and Pet dataset (from 93.13%
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to 92.23%) when a smaller set of training images are used. Using a
small set of training images, our FReCSA achieves a better accuracy for
all cases, as highlighted with boldface fonts, whereas the second-best
is highlighted with an underscore. Note that the improvement rate of
FReCSA with respect to the second-best is much greater when a model
is trained with a smaller dataset. For example, the accuracy of the
FReCSA model trained with the MINC-40 dataset improved by 1.45%
whereas the accuracy of the FReCSA model trained with the entire
MINC dataset improved by 0.2%. This suggests that FReCSA learns from
smaller training datasets more effectively.

4.4. Complexity analysis

Table 7 illustrates the number of parameters (in millions) as an
indicator of model size across different datasets, sorted in ascending
order. We observe a slight rise in the number of parameters as our
module is integrated into the ResNet50 baseline network on the Ima-
geNet dataset, increasing from 25.56 million to 25.63 million. The tiny
increase introduced by our module is noteworthy, especially when con-
trasted with SENet-related methods, which typically exceed 28 million
parameters, and the wavelet method, involving more than 35 million
parameters. Additionally, only models such as Harmonic, OctConv,
anti-aliasing, ECANet, and SGE contain fewer parameters. This pattern

remains consistent in other datasets, with adjustments limited to the
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Table 7
Model parameters (in Million) for ImageNet, Food-101, Oxford-IIIT Pet, Caltech-256, SUN397, and MINC datasets.

Method Im Food Pet Caltech SUN MINC

ResNet-50 25.56 23.71 23.58 24.03 24.32 23.56
Harmonic (Ulicny et al., 2019) 25.56 23.71 23.58 24.03 24.32 23.56
OctConv (Chen et al., 2019) 25.56 23.71 23.58 24.03 24.32 23.56
AA (Zhang, 2019) 25.56 23.71 23.58 24.03 24.32 23.56
Simam (Yang et al., 2021) 25.56 23.71 23.58 24.03 24.32 23.56
ECANet (Wang et al., 2020) 25.56 23.72 23.58 24.03 24.32 23.56
SGE (Li et al., 2022) 25.56 23.72 23.59 24.03 24.32 23.56
FReCSA 25.63 23.79 23.66 24.11 24.40 23.63
GENet (Hu et al., 2018) 26.06 24.21 24.08 24.53 24.82 24.05
SKNet (Li et al., 2019) 26.15 24.31 24.18 24.63 24.92 24.15
FCA-LF (Qin et al., 2021) 28.07 26.23 26.10 26.55 26.84 26.07
FCA-TS (Qin et al., 2021) 28.07 26.23 26.10 26.55 26.84 26.07
GCNet (Cao et al., 2019) 28.08 26.24 26.11 26.55 26.84 26.08
SENet (Hu et al., 2018b) 28.09 26.25 26.11 26.56 26.85 26.09
CBAM (Woo et al., 2018) 28.09 26.25 26.12 26.57 26.85 26.09
GSoPNet (Gao et al., 2019) 28.29 26.44 26.31 26.76 27.05 26.28
HPA (Zhuang et al., 2023) 29.72 27.88 27.75 28.20 28.48 27.72
Wavelet (Liu et al., 2019) 35.21 33.37 33.23 33.68 33.97 33.21
Table 8
Model computation per image by GFLOPs (Floating Point Operations in Billion) for ImageNet, Food-101, Oxford-IIIT Pet, Caltech-256, SUN397,
and MINC datasets.

Method ImNet Food Pet Caltech SUN MINC

ResNet-50 4.122 4.120 4.120 4.120 4.121 4.120
Harmonic (Ulicny et al., 2019) 2.152 2.150 2.150 2.151 2.151 2.150
OctConv (Chen et al., 2019) 3.579 3.577 3.577 3.578 3.578 3.577
Simam (Yang et al., 2021) 4.122 4.120 4.120 4.120 4.121 4.120
FCA-LF (Qin et al., 2021) 4.124 4.123 4.122 4.123 4.123 4.122
FCA-TS (Qin et al., 2021) 4.124 4.123 4.122 4.123 4.123 4.122
ECA (Wang et al., 2020) 4.127 4.126 4.125 4.126 4.126 4.125
SGE (Li et al., 2022) 4.127 4.126 4.125 4.126 4.126 4.125
GC (Cao et al., 2019) 4.128 4.126 4.126 4.126 4.126 4.126
SE (Hu et al., 2018b) 4.130 4.128 4.128 4.128 4.129 4.128
GE (Hu et al., 2018) 4.143 4.141 4.141 4.141 4.141 4.141
FReCSA 4.150 4.148 4.148 4.148 4.148 4.148
CBAM (Woo et al., 2018) 4.151 4.149 4.149 4.150 4.150 4.149
SK (Li et al., 2019) 4.187 4.185 4.185 4.185 4.186 4.185
HPA (Zhuang et al., 2023) 4.940 4.938 4.938 4.939 4.939 4.938
AA (Zhang, 2019) 5.164 5.162 5.162 5.162 5.163 5.162
Wavelet (Liu et al., 2019) 6.292 6.290 6.290 6.290 6.291 6.290
GSoPNet (Gao et al., 2019) 6.405 6.404 6.403 6.404 6.404 6.403
last fully connected layer in accordance with the number of categories
in the target dataset.

Table 8 illustrates the GFLOPs (Floating Point Operations in billions)
as a measure of the computational complexity for each model. The
calculation is based on an input image size of 224 × 224, and the
values are sorted in ascending order except for the baseline network
ResNet-50. We observe a slight increase in GFLOPs when integrating
our module to the ResNet50 baseline on ImageNet, rising from 4.122
to 4.150 billion. This slight increase is particularly noteworthy when
compared to HPA, anti-aliasing, wavelet, and GSoPNet, all of which
have GFLOP values exceeding 5 or 6 billion. The same trend persists
across other datasets, where only the last fully connected layer is
adjusted according to the number of categories in the target dataset.

4.5. Ablation study

Submodule performance. To gain deeper insights into the pro-
posed FReCS module, we evaluate the performance of our channel
and spatial attention components. Table 9 illustrates the top-1 accu-
racy of individual components as well as the entire FReCSA module
on four subsets and the complete ImageNet dataset. Although our
spatial attention component is designed for enhancement rather than
stand-alone performance, we could still observe the highly competitive
performance of 27.98%, 43.40%, 56.40%, and 66.03% on four sub-
sets, respectively, while the performance of 76.63% on the complete
ImageNet dataset is moderate. As a comparison, our channel attention
9 
Table 9
Top-1 Accuracy (%) on ImageNet Datasets. FReCSA† and FReCSA‡ represent our spatial
and channel attention, respectively.

Method Training dataset size per class

40 80 160 320 Full

FReCSA† 27.98 43.40 56.40 66.03 76.63
FReCSA‡ 28.94 44.40 57.08 66.74 77.49
FReCSA 30.33 45.00 58.10 67.27 77.51

component achieves even higher performance of 28.94%, 44.40%,
57.08%, and 66.74%, respectively, with strong performance of 77.49%
on the complete ImageNet dataset. The results of our entire FReCS
module clearly demonstrate its ability to leverage the complementary
strengths of both channel attention and spatial attention, enhancing
the overall effectiveness across each dataset. Furthermore, the superior
performance of our channel attention component can be attributed to
the substantial amount of data, which facilitates the learning of spatial
filters for each channel. In contrast, our spatial attention component ex-
clusively focuses on learning spatial recalibration with a small amount
of data. This performance advantage diminishes to some extent as the
dataset size substantially increases, which affects the learning of spatial
filters.

Table 10 shows the top-1 accuracy of individual components as well
as the entire FReCSA module on five additional fine-tuning datasets.

Despite achieving a lower accuracy of 88.05% on the Food dataset,
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Table 10
Top-1 Accuracy (%) on Food-101, Oxford-IIIT Pet, Caltech-256, SUN397, MINC
Datasets. FReCSA† and FReCSA‡ represent our spatial and channel attention,
espectively.
Method Food Pet Caltech SUN MINC

FReCSA† 88.05 93.68 84.34 62.44 80.68
FReCSA‡ 88.87 93.57 83.70 62.58 80.28
FReCSA 89.09 94.00 84.42 63.03 80.94

Table 11
Top-1 accuracy (%) of FReCSA using different variables (bias, filter size, filter
interaction, and spatial interaction. ImageNet-40 is used in this experiment.

Bias Acc. Filter Acc. Interaction Acc. Filter Acc.
size type

0 30.10 3 × 3 30.09 Local–global 27.16 Low-pass 27.89
0.5 30.33 5 × 5 30.20 Local-only 30.12 Identity 28.85
1 29.13 7 × 7 30.33 Local-local 30.33 Depthwise 29.19

High-pass 30.33

which contains 75,750 training images, and a slightly lower accu-
racy of 62.44% on the Sun dataset, our spatial attention component
demonstrates impressive performance, with accuracy scores of 93.68%,
84.34%, and 80.68% on the Pet, Caltech, and MINC datasets, respec-
tively. For comparison, while achieving a high accuracy of 88.87%
on the Food dataset and slightly better accuracy of 62.58% on the
SUN dataset, our channel attention component attains lower accuracy
scores of 93.57%, 83.70%, and 80.28% on the remaining datasets,
respectively, compared to our spatial attention component. The re-
sults of our FReCS module demonstrate the advantage of combining
channel attention and spatial attention, leveraging their complemen-
tary strengths to consistently outperform each component across these
datasets. Furthermore, results highlight the challenges of relying solely
on one type of attention (e.g., channel attention or spatial attention)
for performance improvement across different datasets.

Table 11 reports the performance of our FReCSA module on the
ImageNet-40 dataset with different bias values, filter sizes, filter types,
and spatial interactions in the spatial attention component. The spatial
interactions include local–global (e.g., the SGE module), local-only
(e.g., the GE module), and local-local (e.g., the SimAM module).

Bias. Different bias values of 0, 0.5, and 1 are studied. The accuracy
at a bias setting of 0, with a value of 30.10%, serves as the baseline
performance. The results indicate that an excessively high bias value
of 1 may result in a degraded accuracy of 29.13%. This decline is
likely attributed to reduced contrast, as all values shift significantly
toward the upper bound imposed by the Sigmoid function. Conversely,
a median bias value of 0.5 provides contrast benefits, resulting in an
improved accuracy of 30.33%. Consequently, we set the default bias
value to 0.5. Specifically, we apply a filter size of 7 × 7 to achieve a
arge receptive field in this exploration, following CBAM.
Filter Size. In addition to the large filter size of 7 × 7, which

serves as the baseline performance, we also explore the effect of other
common filter sizes. Results demonstrate that decreasing the filter
size to 5 × 5 leads to no additional benefits but a slight degradation
of performance, with an accuracy of 30.20%. Further reducing to a

filter size of 3 × 3 results in an even lower accuracy of 30.09%. m
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Our observations indicate that a large filter corresponding to a large
receptive field is favorable. Therefore, we maintain the default value
of filter size as 7 × 7.

Filter Type. Besides the predefined high-pass filter, which retains
rapid changes within the neighborhood, we explore three additional
filter types: the low-pass filter counterpart, which preserves slow-
varying components; the identity filter, which outputs the same input;
and the learnable depthwise filter. We observe that the predefined high-
pass filter yields the highest accuracy while switching to its low-pass
filter counterpart results in an 8.05% performance degradation due to
the blurring operation. The identity filter mitigates the performance
degradation to 4.89%, while using the depthwise learnable filters fur-
ther alleviates the performance degradation to only 3.74%. Still, it is
not as effective as the predefined high-pass filter, which highlights the
difficulty in learning such a filter.

Spatial Interaction. Correspondingly, the local–global interaction
in our FReCSA module is implemented by multiplying the high-pass
filter result with the global average pooling value. The local-only inter-
action is simply the high-pass filter result, and local-local interaction
is achieved by multiplying the high-pass filter result with the original
value. Results indicate that local-local interaction attains the highest
accuracy, while local–global interaction results in a significant 10.46%
performance degradation due to global smoothing. Meanwhile, local-
only interaction lags slightly behind by 0.69% due to the lack of the
original intensity. Therefore, we opt for local-local interaction in our
FReCSA module.

Components Contribution. Table 12 investigates the contribution
f components within our proposed FReCSA module. Our observation
eveals that the best accuracy is achieved when all components are
elected. For our channel attention, the initial step of Global Average
ooling (GAP) results in an accuracy of only 21.10%. Further com-
ining Batch Normalization and channel scaling achieves the optimal
erformance of 28.94%, demonstrating their complementary power,
hereas incorporating them individually falls behind. When introduc-

ng our spatial attention as enhancement, the initial step of spatial
nteraction only improves performance to 29.59%. Subsequently in-
orporating ReLU activation boosts performance to 29.74%, while the
ntegration of Batch Normalization or a bias term alone shows no
dditional benefits. For the remaining component combinations, ReLU
ctivation consistently exhibits superior performance when compared
o combinations without it. Using Batch Normalization instead of a
ias term produces better results, and combining both maximizes the
enefits. Therefore, we opt to incorporate all components into our
ReCSA module.

. Conclusion

In this paper, we present a frequency regulated channel-spatial
ttention module to address the learning challenges associated with
imited data availability for image classification. In many real-world
pplications, annotated training datasets are usually small or moderate
n size, which may not match the scale of the ImageNet dataset for
raining large deep networks. Our FReCSA module combines simplified
hannel attention with frequency-modulated spatial attention to har-
ess their complementary power for efficiently learning from small or

oderate datasets.
able 12
op-1 accuracy on the ImageNet-40 Dataset for components contribution within Our FReCSA module.

Global Ave. Pool ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Channel Batch Norm. ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Attention Channel scaling ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Spatial Inter. ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Spatial Batch Norm. ✓ ✓ ✓ ✓

Attention Fixed bias ✓ ✓ ✓ ✓

ReLU ✓ ✓ ✓ ✓

Accuracy (%) 21.10 19.34 28.34 28.94 29.59 29.41 29.13 29.86 29.74 29.97 30.10 30.33
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Our experimental results demonstrate that incorporating the
FReCSA module into a deep network enhances the network perfor-
mance with simplified channel connection design and prior knowledge
via predefined filtering. The improvement is more significant when the
training dataset is small. The improvement rate of top-1 accuracy on the
Imagenet-40 dataset is 10.13% over the second-best. Despite an extra
module being added to the existing networks, the number of parameters
and computational complexity induced by the FReCSA module increase
very little in terms of model size and computational operations. Our
investigation highlights the individual contributions of the predefined
high-pass filter, featuring a large filter size and a median bias value,
as well as the local-local interaction, to performance improvement.
Combining all components within our FReCSA module yields the best
results.

Our findings underscore the challenges of learning long-range de-
pendencies or integrating additional branches, particularly with limited
data. While spatial attention complements channel attention, the intro-
duction of additional frequencies into channel attention necessitates a
substantial amount of data to fully realize its advantages.
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