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Abstract
In the era of big data, personalised recommendation systems are essential for enhancing
user engagement and driving business growth. However, traditional recommendation
algorithms, such as collaborative filtering, face significant challenges due to data sparsity,
algorithm scalability, and the difficulty of adapting to dynamic user preferences. These
limitations hinder the ability of systems to provide highly accurate and personalised
recommendations. To address these challenges, this paper proposes a clustering‐based
recommendation method that integrates an enhanced Grasshopper Optimisation Algo-
rithm (GOA), termed LCGOA, to improve the accuracy and efficiency of recommen-
dation systems by optimising cluster centroids in a dynamic environment. By combining
the K‐means algorithm with the enhanced GOA, which incorporates a Lévy flight
mechanism and multi‐strategy co‐evolution, our method overcomes the centroid sensi-
tivity issue, a key limitation in traditional clustering techniques. Experimental results
across multiple datasets show that the proposed LCGOA‐based method significantly
outperforms conventional recommendation algorithms in terms of recommendation
accuracy, offering more relevant content to users and driving greater customer satisfaction
and business growth.
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1 | INTRODUCTION

Towards the close of the 20th century, the scholarly discourse
first acknowledged the paradigm of recommendation systems,
with collaborative filtering being expounded upon as a viable
methodology for the provision of personalised suggestions [1].
Subsequently, collaborative filtering algorithms were applied in
real‐world situations, such as on movie platforms, to generate
recommendations for users. Three commonly used types of

recommendation include collaborative filtering recommenda-
tion systems [2, 3], content‐based recommendation systems [4]
and model‐based recommendation systems [5].

In the domain of personalised recommendation systems,
traditional methods like collaborative filtering face significant
challenges due to data sparsity and algorithm scalability issues.
Recent years have seen various researchers attempting to
enhance recommendation algorithm performance through
diverse strategies, the algorithms such as singular value
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decomposition [6], Probabilistic Matrix Factorisation (PMF) [7]
and Bayesian Probabilistic Matrix Factorization [8] have been
employed. Although these techniques have improved recom-
mendation effectiveness, they overlook the issue of centroid
sensitivity that is often encountered in clustering, leading to
reduced suggestion accuracy. To tackle this problem, we pro-
pose using the Grasshopper Optimisation Algorithm (GOA)
[9], a population intelligence algorithm, to optimise clustering
centroids. Additionally, we enhance GOA by incorporating a
Lévy flight mechanism and multi‐strategy co‐evolution.

In recent years, the field of optimisation has witnessed a
surge in the development of meta‐heuristic algorithms,
inspired by natural phenomena and behaviours observed in
biological entities. These algorithms have been successfully
applied to a wide range of problems, offering novel solutions
to complex optimisation challenges. Among these, the GOA
has demonstrated significant potential in optimising clustering
centroids for recommendation systems. However, to further
enhance our understanding and application of optimisation in
recommendation systems, it is imperative to consider the rich
landscape of recently proposed meta‐heuristics.

Notably, the Monarch Butterfly Optimization [10] draws
inspiration from the migration behaviour of monarch butter-
flies, offering a robust mechanism for global optimisation
through the simulation of butterfly migration and adjustment
phases. Similarly, the Slime Mould Algorithm [11] models the
foraging behaviour of slime mould, efficiently navigating the
search space by mimicking the mould's growth and movement
patterns towards food sources. The Moth Search Algorithm
[12] leverages the transverse orientation navigation method
used by moths in nature, enabling an effective balance between
exploration and exploitation in the search space. Meanwhile,
the Hunger Games Search [13] algorithm, inspired by the
concept of survival of the fittest, dynamically adjusts the search
strategy based on the fitness landscape, promoting diversity
and convergence towards optimal solutions. Further contrib-
uting to the array of meta‐heuristics, the Colony Predation
Algorithm [14] simulates the predation process in biological
colonies, exploiting cooperative and competitive interactions
among individuals to explore and exploit the search space
effectively. Moreover, the Runge‐Kutta method (RUN) [15] is a
powerful and widely used numerical technique for solving
ordinary differential equations by iteratively approximating
solutions with high accuracy and stability. The Weighted Mean
of Vectors (INFO) [16] proposes an innovative approach by
integrating information from previous iterations to guide the
search process, enhancing the algorithm's performance in
navigating through multidimensional search spaces. Lastly, the
rime Optimisation Algorithm (RIME) [17] offers a unique
perspective by incorporating prime number theory into its
search mechanics, exploring the search space through the
distribution and properties of prime numbers.

Swarm intelligence optimisation algorithms have demon-
strated extensive applications and notable successes across
various fields, including computational biomedicine, medical
image processing, and complex system optimisation. These
algorithms enhance diagnostic precision and feature selection

efficiency in specific applications such as tumour classification
and early‐late stage diagnosis [18, 19], COVID‐19 image seg-
mentation [20], skin lesion diagnosis [21], advancing compu-
tational methods and technologies significantly [22, 23]. Swarm
intelligence algorithms have also been explored by several
scholars to improve the clustering model's accuracy and
convergence speed, significantly enhancing the recommenda-
tion process's performance. As an example, Pan et al. [24]
proposed a semi‐supervised Particle Swarm Optimisation
(PSO) clustering algorithm that utilises adaptive parameter
optimisation to optimise the clustering model for collaborative
filtering. The goal was to improve the performance of the
clustering and nearest neighbour selection processes in
collaborative filtering. Similarly, Yadav et al. [25] proposed a
recommendation algorithm that incorporates trust information
to overcome the limitations of collaborative filtering. They
utilised PSO and Bat Algorithm (BA) to optimise the accuracy
of recommendations. Logesh et al. [26] proposed a new heu-
ristic clustering algorithm that combines swarm intelligence
with fuzzy clustering models and applied it to a user‐based
collaborative filtering recommendation algorithm. Singh et al.
[27] proposed a novel fuzzy clustering based recommendation
method using improved grasshopper optimisation and Map-
Reduce. Research has shown that collaborative filtering tech-
nology faces challenges related to data sparsity and scalability,
whereas the swarm intelligence optimisation method has been
successful in addressing the centroid‐sensitive problem, but it
is more susceptible to local optimal solutions.

In this paper, we propose LCGOA clustering‐based
recommendation. This innovative approach leverages swarm
intelligence principles observed in nature, specifically the
grasshopper's swarming behaviour, to optimise clustering
centroids. By integrating the K‐means algorithm with the
LCGOA, our method adeptly addresses the challenges of data
sparsity and scalability, paving the way for more accurate and
efficient recommendations. The real‐world benefits of such
advancements are manifold, extending beyond mere techno-
logical enhancements to significantly improve user experi-
ences and drive business success. Users enjoy more
personalised and relevant content, leading to increased
engagement and satisfaction, while businesses benefit from
higher retention rates and potential revenue growth, show-
casing the tangible impact of improved recommendation
systems in today's digital landscape. The key contributions of
this paper are:

� The integration of GOA enhanced with Lévy flight [28] and
multi‐strategy co‐evolution in clustering for recommenda-
tion systems is a novel approach that optimises clustering
centroids to overcome the limitations of traditional methods
like K‐means [29], addressing centroid sensitivity and
scalability.

� By innovatively applying clustering techniques to tackle is-
sues of data sparsity and scalability, the LCGOA method
enhances both the accuracy and efficiency of recommen-
dations, marking a significant improvement over traditional
collaborative filtering methods.
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� The LCGOA method is empirically validated across diverse
datasets [30, 31], demonstrating its practical effectiveness
and superiority over existing recommendation techniques,
thus providing a robust proof of concept for its real‐world
applicability.

� Theoretical advancements are contributed through the
detailed exploration of Lévy flight mechanisms in GOA for
clustering within recommendation systems, promising sub-
stantial improvements in user engagement and content rel-
evancy in commercial applications.

� Future research directions highlight the potential for
problem‐specific optimisations and real‐world evaluations,
suggesting ongoing development and refinement of the
LCGOA model to expand its application in computational
intelligence fields.

The remainder of this paper is organised as follows: Sec-
tion 2 provides an overview of related work in this area. Sec-
tion 3 outlines the application of the recommendation
algorithm to the enhanced GOA. The presentation and anal-
ysis of experimental outcomes are presented in Section 4.
Finally, Section 5 summarises the key findings of this paper and
offers suggestions for future research.

2 | RELATED WORK

� Recommendation algorithm: The recommendation algo-
rithm, which is responsible for determining the effectiveness
and quality of the recommendation system, is a crucial
component. Since the emergence of recommendation sys-
tems, these algorithms have been continuously developed
and optimised and have been applied in various industries.
Recently, both domestic and international academics have
conducted extensive research on the challenges posed by
recommendation technology. To address the issue of
duplicated records in recommendation systems, Ghazanfar
et al. [32] merged multiple recommendation system strate-
gies and developed a cascaded hybrid recommendation
system. Sajal Halder et al. [33] proposed the concept of
movie group mining to manage and increase the viewing
time of the most recent and popular films, thereby
addressing the cold start problem. Panigrahi et al. [34]
introduced a new hybrid algorithm that employs K‐means,
Alternating Least Squares and other dimensionality reduc-
tion techniques to address scalability and sparsity issues.
Kumar et al. [35] proposed a two‐class structure for binary
matrix decomposition that generates a more accurate rating
matrix than an ordinal matrix. To suggest favourite movies
to active users, Bogdan and Vladimir [36] designed a
monolithic hybrid recommendation system. Wu et al. [37]
presented a comprehensive overview of personalised news
recommendation, and proposed a novel perspective to un-
derstand personalised news recommendation based on its
core problems and the associated techniques and challenges.

� Weighted Slope One (WSO) algorithm: In 2005, Professor
Daniel Lemire [38] introduced the Slope One algorithm, a

widely recognised item‐based recommendation algorithm.
This algorithm is known for its simplicity, efficiency and
ease of implementation, and has demonstrated successful
results in numerous applications. The algorithm begins by
calculating the scoring deviation, as outlined in its calcula-
tion process. Given two items i and j (i ≠ j), the deviation
calculation equation devij is shown below:

devij ¼

P
u2Sij

�
rui − ruj

�

�
�Sij
�
�

ð1Þ

where rui and ruj are the ratings of items i and j by user u, Sij
denotes the set of users who have ratings for both items i and j
(i ≠ j), and |Sij| denotes the number of users in the user set Sij.
After obtaining the deviation devij between items i and j (i ≠ j),
user u can make a prediction for item i. The prediction
equation preui is as follows:

preui ¼

P
j2SðuÞ−fig

�
ruj þ devuj

�

jSðuÞ − figj
ð2Þ

where S(u) denotes the set of all items rated by user u, S(u)
−{i} denotes the set of items in the set that have at least one
item (i.e., items other than i) rated by user u at the same time as
item i.

However, the algorithm does not take into account the
number of items being rated simultaneously, which can affect
the accuracy of the predictions. To address this issue, Lemire
et al. [38] proposed theWSO algorithm, which is outlined below:

preui ¼

P
j2SðuÞ−fig

�
rij þ devij

�
∗
�
�Sij
�
�

P
j2SðuÞ−fig

�
�Sij
�
�

ð3Þ

� Swarm intelligence optimisation: The swarm intelligence
optimisation strategy is based on the core idea of generating
intelligent group behaviours that can accomplish complex
tasks by simulating the behaviour of individuals and con-
straining it with specific rules. This algorithm is inspired by
the group behaviour observed in populations of organisms
and the natural evolutionary processes that occur in nature.
The concept of group intelligence was first introduced by
Beni et al. [39]. Since then, many swarm intelligence algo-
rithms have been developed, including Genetic Algorithm
(GA) [40], Particle Swarm Optimization (PSO) [41], Bat
Algorithm (BA) [42], Grey Wolf Optimiser (GWO) [43],
Salp Swarm Algorithm (SSA) [44] and others. Swarm in-
telligence algorithms offer several advantages over conven-
tional optimisation methods, including a straightforward
framework, scalability, robustness and fast convergence. By
simulating the collective intelligent behaviour of organisms,
these algorithms provide a class of models with the ability to
perform intelligent searches, which can be applied to various
optimisation problems such as the Travelling Salesman
Problem [45], Job‐shop Scheduling Problem [46] and clus-
tering problems [47].
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� Lévy flight: The Lévy flight was first proposed by French
mathematician Paul Lévy in 1937 [48]. There is sample ev-
idence to suggest that the Lévy Flight can be used to
describe the movement patterns of various animals [28].
During the flight, larger step sizes in the early stage
contribute to increasing the complexity of biological pop-
ulations and extending the activity search, which can make it
more challenging to find the optimum solution locally. In
the later stage, the step size decreases, allowing the biolog-
ical population to quickly converge towards the global op-
timum solution in a smaller region. In this paper, the Lévy
flight path is used to update the grasshoppers position using
the stochastic equation given below [49]:

X
→
ðt þ 1Þ ¼ X

→
ðtÞ þ μsign

�

rand −
1
2

�

⊕ LðsÞ ð4Þ

where X
→
ðt þ 1Þ denotes the position of the i grasshopper at

the t iteration, μ is a uniformly distributed random number, ⊕
is an entry wise multiplier, and rand is a random number in the
interval [0, 1].

The Lévy distribution is based on random steps to generate
random numbers and random wanderings determined by the
step size, which can usually be approximated as a simple power
function distribution L(s) ~ |s|−1−β(0 < β ≤ 2) is a parameter
used to control the distribution, usually taken as 1.5, s is the
step size and L(s) is the probability of moving the step size s, so
we can express the Lévy distribution as

Lðs; γ; μÞ ¼

8
>><

>>:

ffiffiffiffiffiffi
γ
2π

r

exp
�

−
γ

2ðs − μÞ

�
1

ðs − μÞ
1
β
; 0 < μ < s < ∞

0; otherwise
ð5Þ

where μ > 0 is the minimum step size and γ is the scale
parameter, when S→∞ the above equation can be written as

Lðs; γ; μÞ ¼
ffiffiffiffiffiffiffi
γ
2π

r
1

s
1
β

ð6Þ

It is common to approximate L(s) as

LðsÞ→
αβΓðβÞsin

�
πβ
2

�

πjsj1þβ ; s→ ∞ ð7Þ

where, Γ is the gamma function.
Usually we use the Mantegna algorithm [50, 51] to simulate

its flight pattern. The Mantegna algorithm defines a random
step size s as follows.

s¼
μ

jvj
1
β

ð8Þ

μ, v obeying the standard normal distribution where μ~N(0,
σμ2), v ~ N(0, σv2), σμ and σv are calculated as follows.

σμ ¼

2

6
6
4

Γð1þ βÞsin
�
πβ
2

�

Γ
�
1þ β
2

�

β2
β−1
2

3

7
7
5

1
β; σv ¼ 1 ð9Þ

Our work distinguishes itself from the referenced literature
in several critical ways. We propose a clustering‐based
recommendation method that integrates an enhanced GOA,
referred to as LCGOA. This novel approach marries K‐means
algorithm with GOA to optimise cluster centroids uniquely for
conventional collaborative filtering recommendations. The
incorporation of Lévy flight mechanism and multi‐strategy co‐
evolution into the GOA significantly enhances the search ac-
curacy and stability, thereby addressing the core issues of data
sparsity and algorithm scalability more effectively than previ-
ous methods. Furthermore, our approach utilises user clus-
tering to dramatically improve recommendation performance,
a technique that has not been sufficiently explored in the
existing literature. Our empirical tests on real‐world datasets
like Movielens and Amazon showcase the superior accuracy of
our method, achieving significant improvements over tradi-
tional collaborative filtering algorithms.

In summary, our contribution lies in developing a more
accurate and scalable clustering‐based recommendation system
by innovatively applying swarm intelligence optimisation to
address long‐standing issues in the field.

3 | METHOD

Clustering can be formulated as a multi‐objective optimisation
problem, where the goal is to divide a set of data points into
multiple groups such that the points within each group are
more similar to each other and less similar to points in other
groups. Swarm intelligence methods, such as GOA, have
proven to be effective in solving optimisation problems in
various fields, including data clustering. Grasshopper Optimi-
sation Algorithm is a meta‐heuristic swarm intelligence opti-
misation algorithm that simulates the behaviour of grasshopper
populations in nature using mathematical models. In this
chapter, we use the Lévy flight mechanism and multi‐strategy
co‐evolution to improve GOA, which enhances search accu-
racy and provides a diverse set of solutions to the optimisation
problem. The improved GOA is then utilised for clustering by
optimising the cluster centroids, and finally applied in the
recommendation system. The GOA was chosen as the
enhanced algorithm for improving the K‐means clustering
method due to several specific advantages it holds over other
swarm intelligence algorithms, such as exploration and
exploitation balance, simulating swarm behaviour, low sensi-
tivity to initial parameters, scalability and efficiency in handling
nonlinearities, particularly in addressing the unique challenges
of clustering in recommendation systems. These advantages

4 - ZHAO ET AL.
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make GOA particularly suited to enhancing the K‐means al-
gorithm for clustering in recommendation systems, where the
need to dynamically update clusters based on evolving user
preferences and data environments is critical. The integration
of GOA not only improves the accuracy and efficiency of
clustering but also enhances the overall recommendation
process by providing more relevant and personalised sugges-
tions to users.

3.1 | Grasshopper optimisation algorithm
based on Lévy flight

In this paper, we propose LGOA, by integrating the Lévy flight
perturbation mechanism with GOA. The integration of Lévy
flight enhances the algorithm's exploration and exploitation
capabilities. The basic principle of LGOA is to first use the
position update Equation (10) of GOA to update the positions
of individual grasshoppers in one iteration of the optimisation
search. Then, the individual grasshopper positions are
disturbed using the Lévy flight unspecified selection to
improve GOA's optimisation performance and avoid getting
stuck in local optimum solutions.

xdiþ1 ¼ c

8
<

:

XN

j¼1;j≠i
c
ubd − lbd

2
s
��
�
�xdj − xdi

�
�
�

� xj − xi
dij

9
=

;
þ T̂ d

ð10Þ

where d represents the dimension, ubd and lbd are the upper
and lower limits of the d dimensional search space, and T̂ d is
the position of the current optimum individual in the
d dimension.

The parameter c reduces the comfort zone proportional to
the number of iterations and is calculated as follows [9]:

c¼ cmax − l
cmax − cmin

L
ð11Þ

where cmax is the maximum value of the adaptive coefficients,
cmin is the minimum value, usually taken as 1 and 0.00,001, l is
the number of current iterations, and L is the maximum
number of iterations.

The pseudo code for LGOA is shown below.

Algorithm 1 LGOA

1. Initialise a population of
grasshoppers, Xi (i = 1, 2, … , N)

2. Initialise the number of populations N,
the maximum number of iterations L, cmax
and cmin

3. Calculate the fitness value for each
search agent

4. Define T as the optimum search agent
5. while (l < L) do
6. Update the parameter c by Equation (11)

7. for (each search agent) do
8. Use Equation (10) to update the

current location of the search agent
9. Calculate the current fitness value

of the grasshopper based on the
objective function and the current
position

10. Use Equation (4) to update the search
agent optimum position

11. The fitness value of each grasshopper
is calculated again and the target value
is updated according to the greedy law of
merit

12. end for
13. Merit Update T
14. if (l < L) then
15. l = lþ1
16. end if
17. end while
18. return T

3.2 | Multi‐strategy and co‐evolution
Grasshopper Optimisation Algorithm

When using GOA to handle complex multi‐modal test func-
tions, it is common to obtain only one or two global optimum.
This is because the population employed by GOA may not be
able to locate all of the optimum solutions during the search.
To address this issue, this paper proposes a co‐evolution
strategy [52] that involves dividing the initial population into
multiple sub‐populations that evolve independently. The
grasshopper population is viewed as a subsystem of multiple
populations that compete with each other for resources. The
co‐evolution strategy promotes evolution by promoting
competition, constraints, coordination and utilisation among
sub‐populations. The optimal solutions are eventually shared
between sub‐populations to improve the balance between the
populations' ability to explore both locally and globally.

The proposed method involves dividing the population of
grasshoppers into several sub‐populations, with each sub‐
population assumed to contain a single species. In this paper,
three common adaptive coefficients of GOA species are
selected c adaptation methods [53, 54], respectively, as follows.

c1 ¼ cmax − l
cmax − cmin

L
ð12Þ

c2 ¼
�
cmax − l
L

�2

ð13Þ

c3 ¼
�

cos
�
πl
L

�

þ cmax

�

ðcmax þ cminÞ ð14Þ

where, c1, c2 and c3 represent Linear, Arc and Cosine adaption
respectively, cmax is the maximum value of the adaptive
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coefficients, cmin is the minimum value, l is the number of
current iterations and L is the maximum number of iterations.

The optimal parameter choice for each sub‐population c
may be affected by important parameters set in GOA and the
magnitude of the problem being solved. To address this, we
employ two strategies in this paper, namely the fixed division
strategy and the random assignment strategy [55]. These stra-
tegies aim to choose the appropriate parameters for each sub‐
population.

The fixed division strategy involves giving each sub‐
population a fixed parameter c, as shown below, by allocating
different parameters c to various sub‐populations.

cSi ¼ cj; j 2 1; 2;⋯; n ð15Þ

where Si represents the first i sub‐population, cj is the choice of
one of the three adaptive coefficients c mentioned above, and
n is the number of sub‐population divisions. Before starting
the search process, we fix a parameter cj for each sub‐
population Si, which remains constant throughout the itera-
tive process of algorithm optimisation.

In each iteration, the random assignment strategy randomly
chooses a parameter c for each sub‐population. The random
assignment method can be represented mathematically as:

cSi ¼

8
>><

>>:

c1; if randð1;nÞ ¼ 1
c2; if randð1;nÞ ¼ 2
⋯
cn if randð1;nÞ ¼ n

ð16Þ

where rand(1, n) is the random number generated by 1, 2, … ,
n. In this way, each sub‐population in each iteration has an
equal chance of choosing any of the parameters c. This will
successfully prevent the algorithm from entering a local opti-
mum while also increasing the diversity of the populations.

To further enhance LGOA, we introduce multi‐strategy
co‐evolution and propose a new algorithm, LCGOA. The
LCGOA divides the grasshopper population into several sub‐
populations based on a population partitioning strategy. The
parameters c are assigned to each sub‐population using both
the fixed division and the random assignment strategy. The
algorithm updates the global optimum solution based on the
optimum results obtained by each sub‐population and the
corresponding parameter c, and continuously updates the po-
sitions of each grasshopper until the maximum global opti-
mum solution is reached. The pseudo code of LCGOA is
presented below (see Algorithm 2).

Algorithm 2 LCGOA

1. Initialise a population of
grasshoppers, Xi (i = 1, 2, … , N)

2. Initialise the number of populations N,
the maximum number of iterations L, the
number of sub-populations n, cmax and cmin

3. Dividing the population into n sub-
populations, Si (i = 1, 2, … , n)

4. Calculate the initial fitness value for
each sub-population

5. Define [TargetFitness, TargetPosition]
as the initial optimum solution and its
optimum position among all sub-
populations

6. while (l < L) do
7. Update the evolution direction of the

whole population by TargetPosition
8. for (each sub-population Si) do
9. Use Equation (15) or (16) to select

parameters c for each sub-population
10. Update grasshopper position and

target value using Algorithm 1
11. end for
12. Update [TargetFitness,

TargetPosition]
13. if (l < L) then
14. l = lþ1
15. end if
16. end whlie
17. return the final optimum [TargetFitness,

TargetPosition]

3.3 | LCGOA clustering‐based
recommendation

This section proposes a user clustering recommendation al-
gorithm with optimised clustering centroids that addresses the
challenges of data sparsity and algorithm scalability in collab-
orative filtering recommendation. The proposed algorithm
enhances the recommendation effect of the collaborative
filtering algorithm by predicting unrated items in the data
matrix using the WSO algorithm and pre‐processing the initial
data matrix to reduce its sparsity. The LCGOA clustering
method is then used to cluster the populated rating data, which
reduces the search space for the closest neighbours of the user
and increases the scalability of the algorithm. Finally, the
conventional recommendation algorithm is used to generate
the final recommendation for the target user's class.

Clustering is a crucial process in recommendation algo-
rithms that can improve the accuracy of recommendations for
users in the same class cluster. It involves dividing a set of data
into distinct groups of features. K‐means is one of the 10 most
popular clustering algorithms [29].

It is known that there are K centroids (u1, u2, … , uK) and
m data points (x1, x2, … , xm) to be classified, each point is
recorded with a vector r of the same dimensionality to which
class it belongs. The objective function of the K‐means algo-
rithm is as follows.

min Jðu1;…; uK ; r1;…; rmÞ

¼min
Xm

i¼1
rTi
h
ðxi − u1ÞT · ðxi − u1Þ;…; ðxi − uKÞT · ðxi − uKÞ

i

ð17Þ

6 - ZHAO ET AL.
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In the K‐means algorithm, optimising the objective function is
typically achieved in two steps. First, assuming the coordinates u
of the centroid are known, the algorithm solves for each category
r. Second, assuming the category r of each point is known, the
algorithm solves for the coordinates u of each centroid.

To improve the search efficiency of the K‐means algorithm
andmaintain population diversity, we combine LCGOAwith K‐
means. This algorithm utilises the balance between exploration
and exploitation in LCGOA to optimise and search for the best
cluster centroid. This process involves the following key
steps [56]:

Step 1: Initialisation of cluster centroids: Initially, the popula-
tion of possible solutions (i.e., cluster centroids) is generated
randomly. Each solution represents a set of K centroids for the
K‐means algorithm.

Step 2: Evaluation of solutions: The quality of each solution is
evaluated based on the objective function of the K‐means al-
gorithm, which typically involves minimising the within‐cluster
sum of squares.

Step 3: Optimisation with LCGOA: The LCGOA algorithm is
applied to iteratively improve the solutions.

Step 4: Update of cluster centroids: Based on the outcomes of
the LCGOA optimisation, the positions of the grasshoppers
(solutions) are updated, which corresponds to the updating of
the cluster centroids in the K‐means algorithm.

Step 5: Convergence check: The algorithm checks for conver-
gence based on a predefined criterion (i.e., whether the
maximum number of iterations has been reached). If the
convergence criterion is met, the algorithm terminates; other-
wise, it goes back to Step 2 for further iterations.

Step 6: Final cluster centroids: Once the algorithm converges,
the final positions of the grasshoppers represent the optimised
cluster centroids. These centroids are then used in the K‐means
algorithm to assign each data point to the nearest centroid,
resulting in the final clustering of the data.

This integrated approach, combining K‐means with
LCGOA, aims to optimise cluster centroids more effectively
than the standard K‐means algorithm alone, thereby enhancing
the accuracy of clustering‐based recommendation methods by
addressing the issue of centroid sensitivity. The pseudo code of
the algorithm is presented below (see Algorithm 3).

Algorithm 3 LCGOA Clustering

1. Initialise the population Xi (i = 1,
2, … , N)

2. Initialise cmax, cmin, L, number of
clustering k and clustering centroid

3. Coding the k clustering centres to get

the initial position of grasshoppers
4. Calculate the cluster centroids for each

category and encode them as grasshopper
locations

5. Use Equation (17) to evaluate the
location of grasshoppers and retain
their optimal location

6. Update LCGOA parameter c and grasshopper
location

7. while (l < L) do
8. LCGOA updates parameter and optimises

the best solution
9. end while
10. The new grasshopper positions are

reverse coded to obtain k clustering
centroids

11. Using the best clustering centroid to
clustering

Let the set of users be U = {u1, u2, … , um}, and the set of
users generated using LCGOA clustering is denoted as
Uʹ = {C1, C2, … , Ci, … , CK}. Where, K is the number of
clusters and Ci denotes the first i class. The steps of LCGOA
clustering‐based recommendation are as follows.

Step 1: Input user u, user‐rating matrix Rm*n, and initialise the
number of clusters K.

Step 2: Eliminate the 0 elements in the matrix Rm*n using
Equation (3) to obtain the matrix Rʹm*n.

Step 3: Use Xi(i 2 1, 2, … , K) as the initial clustering centroid
and divide the data in Rm*n into K classes by LCGOA
clustering.

Step 4: Calculate the similarity between the clustering centroids
of u and K using the Equation (18), and add u to the class with
the highest similarity to it.

dðui;XiÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðui − XiÞT ðui − XiÞ
q

ð18Þ

Step5: Calculate the similarity between u and other users in the
class, and derive its nearest neighbour set Nuj (j = 1, 2, … , m).
The similarity calculation for user u and v is defined as follows:

simðu; vÞ ¼
P
i2Iuvðrui − ruÞðrvi − rvÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
i2Iuvðrui − ruÞ2

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
i2Iuvðrvi − rvÞ2

q ð19Þ

where Iuv denotes the set of items with common ratings of
users u and v, rui and rvi denote the ratings of item i by users u
and v, respectively. ru and rv are the average ratings of users u
and v on Iuv, respectively.

ZHAO ET AL. - 7
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Step 6: Based on the ratings of items by similar nearest
neighbours, use the Equation (20) to find the predicted ratings
of recommended items by users u and rank them, and
recommend the top N items to u.

Pui ¼
P
n2Nuðrni − rnÞsimðu; nÞ
P
n2Nujsimðu; nÞj

þ ru ð20Þ

where, ru and rn denote the average ratings of user u and n,Nu is
the set of nearest neighbour for user u, rni is the ratings of items i
by user n, and sim(u, n) is the similarity between user u and n.

In this paper, we enhance the standardGOA by integrating a
Lévy flight mechanism and introducing a multi‐strategy co‐
evolution approach. The Lévy flight mechanism diversifies the
search patterns of the algorithm, enabling it to escape local op-
tima and explore the search space more thoroughly with variable
step sizes. This not only broadens the exploration capabilities but
also significantly reduces the search complexity by avoiding
exhaustive searches in non‐promising regions. Furthermore, the
multi‐strategy co‐evolution divisions the overall population into
sub‐populations, each adopting a different strategy for search
space exploration. This division allows for amore focused search
within each segment of the solution space, effectively decreasing
the search complexity by reducing redundant search efforts and
enhancing the convergence speed.

4 | EXPERIMENTS

4.1 | Datasets

To compare the performance metrics of the recommendation
algorithm based on LCGOA clustering with traditional
collaborative filtering recommendation and to verify its effi-
cacy, we conducted comparison experiments using the Mov-
ielens and Amazon datasets. The datasets are described below.

(1) Movielens movie dataset ml‐100k [30]: This dataset con-
sists of 100,000 ratings (1–5) from 943 users on 1682
movies, each user has rated at least 20 movies, and simple
demographic info for the users (age, gender, occupation,
zip). The sparsity level of the user rating set is 0.9370. The
data was collected through the MovieLens web site
(movielens.umn.edu) during the 7‐month period from
September 19th, 1997 through April 22nd, 1998. Users
were selected at random for inclusion.

(2) Amazon product reviews and metadata [31]: This dataset
includes reviews (ratings, text), product metadata
(description, category information, price, brand and image
features) and links. In this case, the identity of the user has
been anonymised and replaced by userID, and the prod-
ucts correspond by ID number. The rows in the file are
first sorted by userID, and then by productID in user.
Rating represents the user's rating of them item, and the
rating takes values from 1 to 5, with 1 representing the
lowest and 5 being the highest.

4.2 | Recommendation performance
comparison

To conduct experiments, we used a five‐fold cross‐validation
method to sample the dataset. The dataset was evenly
divided into five parts, and each of the five parts was used for
validation in different experiments. Each experiment was
repeated five times under the same conditions, and the results
of the five experiments were averaged for analysis. The Mean
Absolute Error (MAE), Root Mean Square Error (RMSE),
Precision and Recall were used as evaluation metrics in this
paper. Mean Absolute Error was calculated as the magnitude of
error between the true and predicted ratings of items for users.
Root Mean Square Error was evaluated by dividing the dataset
into training and testing sets and calculating the error between
them to assess the quality of the recommendation results.
Precision is the ratio of the number of items predicted by the
recommendation method to the total number of recommended
items of interest to the user, while Recall is the ratio of the
number of items predicted by the recommendation method to
the total number of items of interest to the user. The specific
equation for these evaluation metrics are as follows.

MAE¼

P
u;i2T jrui − r̂uij
jT j

ð21Þ

RMSE¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
u;i2T ðrui − r̂uiÞ

2
q

jT j
ð22Þ

Precision¼
P
u2U jRðuÞ ∩ TðuÞj
P
u2U jRðuÞj

ð23Þ

Recall¼
P
u2U jRðuÞ ∪ TðuÞj
P
u2U jTðuÞj

ð24Þ

where r̂ui represents the predicted ratings of the user u on item
i, and rui is the true rating. The lowerer the MAE and RMSE
value, the better the recommendation. R(u) is the list of rec-
ommendations made to the user based on the user's behaviour
on the training set, while T(u) is the list of the user's behaviour
on the test set. The higher Precision and Recall value, the
better the recommendation.

To address the issue of sparsity in the user‐item rating
matrix of traditional collaborative filtering recommendation,
this paper proposes using LCGOA to first cluster users,
thereby reducing the search space and difficulty of finding
the nearest neighbours, and improving the accuracy of rec-
ommendations. By clustering users, it becomes easier to
identify the real neighbours and form the final recommen-
dation list.

To compare the performance of the three algorithms, we
conducted experiments on two datasets and evaluated the
MAE and RMSE. The algorithms tested were the traditional
user‐based collaborative filtering algorithm (UB‐CF), the K‐
means‐based collaborative filtering algorithm (K‐means‐CF),
and the LCGOA clustering‐based collaborative filtering

8 - ZHAO ET AL.
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algorithm (LCGOA‐clustering‐CF). The experimental results
are presented in Figures 1 and 2, where the vertical axis rep-
resents the corresponding score prediction index values for the
three algorithms, and the horizontal axis represents the num-
ber of chosen nearest neighbours n, ranging from 5 to 50 in
increments of 5.

On the Movielens dataset, the overall trend of the Preci-
sion and Recall of the three collaborative filtering recom-
mendation algorithms increases with the increase of the
number of nearest neighbours n value, and then gradually
plateaus. The LCGOA clustering‐based recommendation al-
gorithm we proposed has the highest Precision and Recall
values, which indicates that clustering users at an early stage
can effectively improve the recommendation accuracy. The
MAE and RMSE values of all three collaborative filtering
recommendation algorithms decrease as the number of nearest
neighbours of the target user increases, indicating that the
accuracy of the recommendation can be effectively improved
by increasing the number of nearest neighbours. Our proposed
method achieved the lowest MAE and RMSE values for
different numbers of neighbours, demonstrating that the al-
gorithm reduces data sparsity by filling the initial data and
clustering user data, which makes the nearest neighbour search

range more objective and yields more accurate user neighbours
before performing traditional recommendation. The experi-
mental results show that the LCGOA clustering‐based
recommendation algorithm proposed in this paper out-
performs the traditional collaborative filtering recommenda-
tion algorithms and has better performance. Similarly, on the
Amazon dataset, the LCGOA clustering‐based recommenda-
tion algorithm has the lowest MAE and RMSE values and the
highest Precision and Recall values, indicating the best
recommendation performance.

4.3 | More validation experiments

In this section, through a series of test functions with different
characteristics performance comparison of GOA improvement
strategies (see Table 1 for test functions information [57]).

Where functions F1–F3 are unimodal test functions, which
have only one global optimum; F4–F5 are multi‐modal test
functions with several local optimum solutions (we set the
dimension of F1–F5 to 30); F6–F8 are fixed dimensional
multi‐modal test function [57]. The settings of the key pa-
rameters are shown in Table 2.

F I GURE 1 Comparison of results with different numbers of nearest neighbours on Movielens dataset.

ZHAO ET AL. - 9
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F I GURE 2 Comparison of results with different numbers of nearest neighbours on Amazon dataset.

TABLE 1 Different test functions information.

Function Name Dim Range Fmin

F1ðxÞ ¼
Pn
i¼ 1x

2
i Sphere 30 [−100,100] 0

F2ðxÞ ¼
Pn
i¼ 1

�Pi
j¼ 1xj

�2
Schwefel 30 [−100,100] 0

F3ðxÞ ¼
Pn
i¼ 1ix

4
i þ random Quartic 30 [−1.28,1.28] 0

F4ðxÞ ¼ − 20 exp

 

− 0:2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

Xn

i¼ 1
x2i

r !

− exp

 
1
n

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn

i¼ 1
cosð2πxiÞ

q
!

þ 20 þ e

Ackley 30 [−32,32] 0

F5ðxÞ ¼ sin2ðπw1Þ þ
Xn− 1

i¼ 1
ðwi − 1Þ

2�
1 þ 10 sin2ðπwi þ 1Þ

�

þ ðwn − 1Þ2
�
1 þ sin2ð2πwnÞ

�

Lévy 30 [−10,10] 0

F6ðxÞ ¼

0

@ 1
500 þ

P25
j¼ 1

1
jþ
P2

i¼ 1ðxi − aijÞ
6

1

A

− 1 Shekel Foxholes 2 [−65.536, 65.536] ≈1

F7ðxÞ ¼
P11
i¼ 1

0

@ai − x1ðb2i þ bix2Þ
b2i þ bix3 þ x4

1

A

2 Kowalik 4 [−5,5] ≈0.0003075

F8ðxÞ ¼ ðx1 þ 2x2 − 7Þ2 þ ð2x1 þ x2 − 5Þ2 Booth 2 [−10,10] 0
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4.3.1 | Lévy flight validity experiments

In this section, we compare the efficiency of LGOA and GOA
to demonstrate the validity of the Lévy flight mechanism
perturbation. Table 3 presents a comparison of the optimum,
mean and standard deviation values obtained from running
GOA and LGOA on test functions.

Table 3 shows that LGOA performs better than GOA in
terms of optimum values, mean values and standard deviation.
While the multi‐modal test function has local optimum solu-
tions and is prone to settling towards the local optimum during

optimisation, the unimodal test function only has one global
optimum, making LGOA substantially better than the original
GOA. The experimental results indicate that LGOA has a
better ability to jump out of local optimum and a stronger
global search capability. Moreover, the standard deviation
comparison demonstrates that LGOA has greater stability. The
advantages of the Lévy flight mechanism are clearly demon-
strated by the experimental results.

4.3.2 | Comparison experiments of different
improvement strategies

In this section, we compare the performance of LGOA with
three different parameter c selection forms and two different
multiple‐group co‐evolution strategies, namely fixed division
(LGOA‐F) and random assignment (LGOA‐R), using Linear,
Arc and Cosine adaptive methods. Table 4 presents a com-
parison of the optimum and mean values obtained by applying
various strategies to a test function. Similarly, Table 5 shows
the comparison of the optimum and mean values obtained by
applying different c selection forms and co‐evolution strategies
to the same test function.

TABLE 2 Key parameter settings.

Parameter name Parameter setting

N (population size) 150

L (maximum number of iterations) 1000

cmax 1

cmin 0.00001

n (number of sub‐populations) 3

TABLE 3 Grasshopper Optimisation Algorithm (GOA) and LGOA comparison results.

Test functions

Optimum Mean Standard deviation

GOA LGOA GOA LGOA GOA LGOA

F1 1.6911 � 10−2 1.9465 £ 10−20 0.21317 1.8968 £ 10−16 0.18535 2.7914 £ 10−16

F2 3.5099 � 102 1.1163 £ 10−19 1.1265 � 103 8.471 £ 10−16 1.543 � 103 9.502 £ 10−16

F3 6.1847 � 10−3 5.6738 £ 10−6 1.0411 � 10−2 4.3813 £ 10−5 3.9879 � 10−3 3.5779 £ 10−5

F4 1.7793 3.2885 £ 10−11 2.6528 2.5086 £ 10−9 0.86197 2.2116 £ 10−9

F5 2.1755 0.2689 6.8258 0.58325 3.5575 0.2217

F6 4.369 � 10−14 1.4577 £ 10−14 1.8547 � 10−13 1.3952 £ 10−13 1.1959 � 10−13 7.8204 £ 10−14

F7 0.998 0.998 0.998 0.998 2.3984 � 10−16 2.1579 £ 10−16

F8 5.5947 � 10−4 3.0749 £ 10−4 6.7683 � 10−3 3.0767 £ 10−4 9.3864 � 10−3 1.5488 £ 10−7

Note: Bold values indicate that the algorithm obtained optimal results in comparison with the other algorithms.

TABLE 4 Comparison of optimum values of different improvement strategies.

Test functions LGOA‐1 LGOA‐2 LGOA‐3 LGOA‐F LGOA‐R

F1 1.9842 � 10−20 1.7447 � 10−28 8.8261 � 10−28 3.0129 � 10−29 1.7679 £ 10−30

F2 1.5685 � 10−19 1.9225 � 10−28 4.2286 � 10−27 1.6026 � 10−28 1.4211 £ 10−29

F3 4.3859 � 10−6 7.0432 � 10−7 1.0223 � 10−5 5.7634 � 10−6 3.4301 £ 10−7

F4 2.9982 � 10−11 4.4409 � 10−15 7.9936 � 10−15 4.4409 � 10−15 8.8818 £ 10−16

F5 0.2689 0.71966 0.45206 0.17913 0.090294

F6 0.998 0.998 0.998 0.998 0.998

F7 3.075 � 10−4 3.0826 � 10−4 3.0778 � 10−4 3.075 � 10−4 3.0749 £ 10−4

F8 4.6417 � 10−15 3.9794 � 10−9 5.4892 � 10−18 3.3267 � 10−13 3.6424 £ 10−18

Note: Bold values indicate that the algorithm obtained optimal results in comparison with the other algorithms.

ZHAO ET AL. - 11
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Analysing Tables 4 and 5, it can be observed that LGOA‐F
and LGOA‐R generally perform better than the original
LGOA in terms of optimum search accuracy. LGOA‐R ach-
ieves the best optimum values among all 8 test functions, while
LGOA‐F outperforms LGOA‐1, 2 and 3 in some test func-
tions. Similarly, in terms of mean values, LGOA‐R out-
performs all other strategies on all 8 test functions, while
LGOA‐F also performs better than LGOA‐1, 2 and 3 in
some test functions. Figure 3 demonstrates the average
convergence curve for the test functions, where the fixed di-
vision strategy (LGOA‐F) is represented by the red curve, and
the random assignment strategy (LGOA‐R) is represented by
the black curve.

The experimental results demonstrate that LGOA‐F and
LGOA‐R improve the algorithm's optimisation‐seeking ability
by enabling information sharing among sub‐populations, while
also ensuring efficient mining and the ability to jump out of
local optimum. These benefits are achieved through the multi‐
strategy co‐evolution strategy and are evident in both the
unimodal test function with a single global optimum and the
multi‐modal test function with locally optimum solutions.
Comparing LGOA‐F and LGOA‐R, it is obvious that LGOA‐
R has better performance.

4.3.3 | Comparison with other swarm intelligence
algorithms

In this section, we combine the previously improved LCGOA
(LGOA‐R) with the multiple swarm co‐evolution based GOA
(GOA‐MC) [55] and several other newer swarm intelligence
optimisation algorithms, such as GWO [43], PSO [41] and SSA
[44]. Tables 6 and 7 show the comparison of the optimum
values and mean values obtained by various swarm intelligence
algorithms run on the test functions.

From Tables 6 and 7, it is easy to see that in the comparison
with other swarm intelligence algorithms, LCGOA does not
perform optimally only on F1, and the rest of the test functions
reach the optimal optimum and mean values, which indicates
that the algorithm has a strong search capability and high overall
search accuracy. The distinctive swarming behaviour simulation,
balance between exploration and exploitation, simplicity, scal-
ability and ease of enhancement make GOA a compelling
choice for solving complex optimisation problems, such as
those encountered in clustering‐based recommendation sys-
tems. In addition, the LCGOA was overall superior in the
comparison with the GOA‐MC, which further demonstrates
the advantages of introducing the Lévy flight mechanism.

TABLE 5 Comparison of mean values of different improvement strategies.

Test functions LGOA‐1 LGOA‐2 LGOA‐3 LGOA‐F LGOA‐R

F1 1.2229 � 10−16 1.8531 � 10−24 2.0823 � 10−24 4.842 � 10−25 3.478 £ 10−26

F2 5.7938 � 10−16 1.032 � 10−23 9.7245 � 10−24 6.889 � 10−24 6.6172 £ 10−25

F3 8.4892 � 10−6 1.3799 � 10−5 3.5214 � 10−5 6.3158 � 10−6 4.3859 £ 10−6

F4 1.9501 � 10−9 1.7994 � 10−13 1.6396 � 10−13 1.0498 � 10−13 2.8955 £ 10−14

F5 0.58367 1.2397 0.68113 0.49807 0.42271

F6 0.99801 0.99801 0.99801 0.998 0.998

F7 3.0874 � 10−4 4.591 � 10−4 3.1781 � 10−4 3.0826 � 10−4 3.0787 £ 10−4

F8 1.4342 � 10−13 1.2064 � 10−6 1.2225 � 10−14 6.3243 � 10−12 2.2401 £ 10−15

Note: Bold values indicate that the algorithm obtained optimal results in comparison with the other algorithms.

F I GURE 3 The average convergence curve for the test functions.
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5 | CONCLUSION

In this paper, we propose a collaborative filtering recommen-
dation algorithm based on a swarm intelligence algorithm for
improved clustering to address the issues of data sparsity and
algorithm scalability. Our experiments demonstrate the effec-
tiveness of LCGOA clustering in maximising recommendation
accuracy. The specific steps taken in this work are as follows:

� This paper aimed to address the limitations of traditional
recommendation systems by improving recommendation
accuracy and efficiency. Specifically, the research sought to
enhance the clustering process in collaborative filtering by
integrating the K‐means algorithm with an optimised GOA,
namely LCGOA, to dynamically determine optimal cluster
centroids.

� The research methodology involved a novel application of
LCGOA to optimise the selection of cluster centroids in the
K‐means algorithm, a popular method used in collaborative
filtering recommendation systems. The research detailed the
process of integrating LCGOA with K‐means, emphasising
the iterative optimisation of centroids to minimise intra‐
cluster variance and enhance recommendation relevance.
Comparative experiments were conducted against baseline

recommendation algorithms across multiple datasets, utilis-
ing a comprehensive set of evaluation metrics.

� The experimental results demonstrated significant im-
provements in recommendation accuracy and efficiency
with the LCGOA‐enhanced K‐means method. Notably, the
method showed a notable reduction in MAE and RMSE,
alongside gains in Precision and Recall when compared to
traditional approaches. These findings indicate that the
LCGOA integration effectively addresses the challenges of
initial centroid selection and local optima, common in
standard K‐means applications.

� From a theoretical perspective, this paper contributes to the
literature on swarm intelligence applications in recommen-
dation systems, providing a novel integration strategy that
enhances clustering algorithms. Practically, the improved
recommendation accuracy and efficiency translate into
tangible benefits for both users and businesses, including
enhanced personalisation, user satisfaction and operational
scalability. This enhanced accuracy ensures users receive
more relevant content recommendations, thereby increasing
engagement and loyalty, while businesses benefit from
optimised content delivery and resource utilisation,
leading to better customer retention and potential revenue
growth.

TABLE 7 Comparison of mean values.

Test functions LCGOA GOA‐MC GWO PSO SSA

F1 4.1634 � 10−26 3.2793 � 10−2 8.0914 £ 10−81 8.65 � 10−3 8.2659 � 10−9

F2 7.8189 £ 10−25 1.0904 � 102 3.2622 � 10−16 0.50163 18.0533

F3 5.6802 £ 10−6 1.569 � 10−2 7.6697 � 10−4 7.7025 � 10−2 4.5282 � 10−2

F4 8.4572 £ 10−14 4.1584 3.7303 � 10−13 0.61736 1.5106

F5 0.42271 5.0778 0.66244 1.2187 5.001

F6 0.998 1.0974 1.1964 10.8219 0.998

F7 3.079 £ 10−4 7.5382 � 10−4 4.4102 � 10−4 5.8638 � 10−4 7.3808 � 10−4

F8 2.9657 £ 10−15 3.1243 � 10−11 1.306 � 10−8 5.389 � 10−8 7.3294 � 10−15

Note: Bold values indicate that the algorithm obtained optimal results in comparison with the other algorithms.

TABLE 6 Comparison of optimum values.

Test functions LCGOA GOA‐MC GWO PSO SSA

F1 1.6529 � 10−30 9.6585 � 10−3 1.8137 £ 10−82 1.2549 � 10−5 5.4129 � 10−9

F2 1.3617 £ 10−29 56.6844 1.8212 � 10−18 0.1753 2.058

F3 3.4843 £ 10−7 1.0233 � 10−2 2.2688 � 10−4 4.0396 � 10−2 2.6341 � 10−2

F4 8.8818 £ 10−16 2.0433 8.8818 £ 10−16 9.7236 � 10−2 2.2819 � 10−5

F5 0.090294 0.2954 0.36126 0.29241 1.1773

F6 0.998 0.998 0.998 4.2225 0.998

F7 3.0749 £ 10−4 3.0787 � 10−4 3.075 � 10−4 3.215 � 10−4 3.078 � 10−4

F8 4.0287 £ 10−20 1.3856 � 10−14 1.1203 � 10−10 8.5212 � 10−9 2.9286 � 10−16

Note: Bold values indicate that the algorithm obtained optimal results in comparison with the other algorithms.
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� While the experimental results demonstrate the effectiveness
of our proposed method, there are still some shortcomings
to consider. For instance, the No Free Lunch Theorem [58]
highlights the impossibility of developing a universal opti-
misation technique, which means that we must be problem‐
specific when addressing optimisation challenges. Further-
more, our current evaluation metrics may not fully reflect
the performance of the algorithms. In the future, we should
consider incorporating qualitative and quantitative multidi-
mensional evaluation criteria, such as coverage, diversity,
surprise and user satisfaction, to make the recommendation
results more realistic and trustworthy. Additionally, one
promising direction is the real‐world application of our
method in various industries. For instance, in e‐commerce
platforms like Amazon and Alibaba, personalised product
recommendations are crucial for driving sales and
improving user satisfaction. The dynamic nature of user
preferences in these platforms makes clustering‐based
methods like LCGOA particularly relevant, as they can
efficiently adapt to changes in customer behaviour and
enhance the recommendation process. This will be reflected
in our future work.

In conclusion, by addressing the limitations of traditional
recommendation algorithms, our proposed LCGOA‐based
method offers enhanced clustering capabilities, making it
particularly useful in dynamic environments where user pref-
erences evolve rapidly. This improvement is particularly rele-
vant for large‐scale e‐commerce platforms, streaming services,
and social media networks, where the accuracy and relevance
of recommendations directly impact user engagement and
business performance. The findings underscore the potential
of leveraging swarm intelligence for data clustering challenges,
marking a step forward in the pursuit of more intelligent,
adaptive and user‐centric recommendation systems.
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