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Abstract— Learning a model heavily depends on the training
examples, which are sometimes difficult to obtain if not impos-
sible. This a typically true for fault diagnosis in machinery,
particularly for compound faults. The counterfactual inference
reveals the causal components inherent in the fault data in
an interpretable manner, divulging critical causes from the
observable phenomena. This article proposes a method to address
the imbalance and interpretability issues of generalized zero-shot
learning (GZSL) methods for compound-fault diagnosis using
counterfactual inference. Our method uses a structural causal
model (SCM) to decouple and generate fault features, which
enhances the capabilities of the variational autoencoder and gen-
erative adversarial network (VAE-GAN) through a strengthened
discriminator, and reveals the intrinsic causal components in
fault data, distinguishing key fault causes from accompanying
phenomena. This enables the classification of both single and
compound faults by learning from examples of single faults,
easing the dependence on the examples of compound faults.
Extensive experimental results show that our method, trained
solely with single-fault samples, achieves a harmonic average
of 87.40% accuracy for both single and compound faults, out-
performing existing state-of-the-art methods. This significantly
improves both the accuracy and interpretability of compound-
fault diagnosis.

Index Terms— Counterfactual inference, fault diagnosis, gener-
alized zero-shot learning (GZSL), generative adversarial network,
rolling bearing.

I. INTRODUCTION

BEARINGS are critical components in complex industrial
systems. Faults reduce the equipment’s lifespan, dis-

rupt production, and cause safety accidents. Timely diagnosis
ensures the normal operation of mechanical equipment [1], [2].
A compound fault of bearings is a composite of the simultane-
ous occurrence of multiple single faults. The characteristics of
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compound faults are highly coupled and difficult to identify,
which presents a significant challenge in fault diagnosis.

In learning-based fault diagnosis methods, the exponential
growth of compound-fault patterns makes it almost infeasible
to collect examples of all kinds of compound faults for model
training. However, in real industrial scenarios, systems with
bearings experience both single and compound faults. This
necessitates a generalized fault diagnostic model derived from
single-fault examples, enabling the identification of both single
and compound faults [3], [4].

Zero-shot learning (ZSL) has emerged as a promising
method for addressing the fault detection problem, which
tackles the issue of learning from scarce examples. The idea
is to leverage prior knowledge of unseen classes (the semantic
attributes of the classes) and the examples of available classes
to train models to classify the unseen classes [5]. Specifically,
ZSL-based fault diagnosis is trained using single-fault samples
(seen classes) and supplemented with prior semantics of
compound faults (unseen classes). Hence, the model can be
generalized to compound-fault diagnosis tasks.

The studies of ZSL in the field of compound-fault diagno-
sis are unfolding, including attribute-based, embedding-based,
and generative-based ZSL compound-fault diagnosis methods.
The attribute-based approaches [6] facilitate the learning of
the mapping between single-fault samples (seen-class) and
attributes by the attribute classifier. Subsequently, the attribute
classifier is utilized to classify the compound-fault samples
(unseen class) based on the Bayesian attribute prediction.
Embedding-based approaches [7], [8] combine samples and
semantic information by embedding them in specific spaces to
transfer from the single faults to compound faults. Generative-
based approaches [9], [10], [11] convert ZSL into traditional
supervised learning by generating the compound-fault samples
from compound-fault semantics. Furthermore, confronted with
a generalized zero-shot compound-fault diagnosis task, in our
previous studies, we constructed the prior fault semantics using
a semantic-feature embedding module, and input it into a
contrast-embedding generative adversarial network to generate
pseudo-compound-fault samples, which assist in training the
adaptive smoothing module to classify fault samples [12].

However, compound-fault diagnosis based on generalized
ZSL (GZSL) faces more complex test scenarios, requiring the
model to recognize single (seen classes) and compound faults
(unseen classes) under the condition of training with only sin-
gle faults (seen classes), which faces the following challenges:
First, the end-to-end nonlinear mapping characteristics of the
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existing model learning-based compound-fault diagnosis meth-
ods lead to a lack of interpretability in the decision-making
process [13], and users are prevented from understanding the
model’s inference logic and decision-making basis, making
it difficult to be applied in high-risk scenarios; second, for
the existing GZSL methods, the models are trained only with
single-fault samples (seen classes), which leads to the tendency
to predict the compound faults (unseen classes) as single faults
(seen classes); finally, in GZSL, the compound-fault samples
are generated only from semantics and noise, which may differ
from the ground-truth distribution of compound-fault samples,
leading to classification failure.

To tackle these challenges, we point out the existence of
causal and non-causal features in fault data and construct
a structural causal model (SCM) for the compound-fault
diagnosis model through theoretical analysis, which provides
theoretical guidance for the subsequent construction of an
interpretable diagnosis model. On this basis, we introduce
counterfactual inference into compound-fault diagnosis based
on ZSL and propose a generalized zero-shot compound-
fault diagnosis method based on counterfactual inference. Our
method consists of a feature extraction module, a semantic
alignment module, and a generative adversarial module. The
samples and semantics of single faults are used to train the
model’s decoupling and generation ability of causal/non-causal
features under the guidance of the SCM. In counterfactual
inference, the designed generative adversarial module gener-
ates counterfactual fault features (i.e., generated pseudo-single
and compound-fault features), devised from the faults’ non-
causal features and the different fault semantics. In such a
way, the classifiers can be trained to obtain high-quality binary
classification boundaries (single or compound faults), which
solves the problem that the generated pseudo-compound-
fault features in the existing ZSL are biased toward the
single-fault distribution in an interpretable causal inference
manner. In addition, our proposed model strengthens the
effect of the discriminator in the generative adversarial
module through a comparator, thus realizing the genera-
tion of high-quality compound-fault samples only from the
compound-fault semantics and mitigating the distributional
differences between the generated and ground-truth samples.
Finally, a generalized zero-shot compound-fault diagnosis
task is achieved using supervised learning and traditional
ZSL methods for separated single and compound faults,
respectively.

The main contributions of this article are summarized as
follows.

1) An SCM for compound-fault diagnosis is constructed
to describe the process of counterfactual generation and
inference. A novel generative adversarial module has
been devised to decouple the non-causal feature subset
from the fault features. It combines the compound-fault
semantics to generate counterfactual fault features that
can be fit to the ground-truth data distributions, which
provides high-quality classification boundaries for the
classifier. This balances the classification accuracies
between single and compound faults and improves the
interpretability and accuracy of the model.

2) In the generative adversarial module, we introduce a
comparator in variational autoencoder and generative
adversarial network (VAE-GAN) to enhance the dis-
criminator’s layer-wise focus on the semantics, thereby
constraining the generative adversarial module to better
decouple causal and non-causal fault feature subsets, and
thus improve the quality of generation of counterfactual
fault features, improving the accuracy of the models.

The rest of the article is organized as follows. Section II
describes the current work related to GZSL and counterfac-
tual inference in ZSL. Section III specifically describes our
proposed method. Section IV presents the experimental results
and analyses. Section V concludes this article with a summary
of the proposed method and the experimental results.

II. RELATED WORK

A. Generalized ZSL

The field of ZSL can be divided into traditional ZSL and
GZSL based on the relationship between the train and the
test sets. The train set comprises solely seen-class (single
faults) samples, ZSL only needs to identify unseen-class
(compound faults) samples. However, GZSL is confronted
with the dual challenge of identifying both seen and unseen
classes. At present, generative GZSL represents the dominant
direction of research. The underlying premise is to generate
unseen-class samples from semantics, thereby achieving ZSL
tasks by supervised learning. Generative GZSL-based methods
can be divided into three classes: autoencoder-based, GAN-
based, and flow-model-based.

The autoencoder-based methods aim to learn the mapping
between the sample and semantic space and reconstruct the
unseen-class samples through semantics to identify the classes
to which the ground-truth unseen-class samples belong. Kim
and Shim [14] minimized the Wasserstein distance between the
ground truth and the generated feature distribution to generate
unseen-class features from attributes to achieve GZSL. Shao
and Li [15] introduced multichannel multimodal VAEs into
Gaussian mixture distributions to explore the relationship
between semantic and feature space. Han et al. [16] proposed
a hybrid GZSL framework that combines a generative model
with an embedding model for final GZSL classification by
mapping real and synthetic samples into an embedding space.

The GAN-based methods aim to train the generator to
generate unseen-class samples from unseen-class semantics
and random noise by gaming a pair of generator and dis-
criminator, thus allowing the classifier to infer the classes
of unseen-class samples. Sun et al. [17] imposed additional
constraints on the GAN through a semantically enhanced
cross-modal model to generate fine-grained unseen-class fea-
tures. Tang et al. [11] propose a structurally aligned generative
adversarial network framework to improve ZSL by mit-
igating semantic gaps, domain bias, and hubness issues.
Verma et al. [18] proposed a meta-learning-based generative
model that combines model-independent meta-learning with
Wasserstein GAN (WGAN), which learns a generic parameter
to generate seen and unseen class samples and improves
model performance. Chen et al. [19] proposed to incorporate
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semantic and visual mappings into a unified generative model
to refine the visual features of seen and unseen class samples,
and guided the feature refinement module to learn class-
and semantically relevant representations through the adaptive
marginal center loss and the semantic cyclic consistency loss.

The flow-based approaches model the feature transformation
process as a mapping of the reversible neural network, thus
reconstructing the samples by reverse mapping and inferring
the unseen-class samples. Shen et al. [20] mapped samples
to semantic and non-semantic spaces via a reversible neural
network based on the flow model, and directly generated
unseen-class samples via an inverse neural network.

The field of fault diagnosis based on GZSL is still in its
infancy. Yue et al. [21] proposed a semi-supervised hybrid
triplet network to learn the similarity between data and the
matching between data and semantic descriptions, to reduce
the effect of domain shift. Mou et al. [22] encode the fault
features and semantic vectors of fault attributes from two
different modalities as latent variables by two variational
autoencoders and design Barlow matrices to measure the
consistency between the distribution of fault features and fault
semantic vectors.

Despite the improvements in classifying both single and
compound faults by achieving data distribution alignment,
the model interpretability is lacking, and the classification
accuracy for single and compound faults is significantly
imbalanced.

B. Counterfactual Inference

Counterfactual inference is one of three principal com-
ponents of causal inference. It entails modifying observable
variables to infer the cause of the resulting effect, analogous to
human estimation of the significance of an event by imagining
the potential outcomes of actions. This approach to causal
inference has gained considerable prominence in recent years
within the interpretability research of machine learning.

Sauer and Geiger [23] interpret image generation as the
independent roles of background, shape, and texture to gen-
erate counterfactual images to be added to the training set.
Chang et al. [24] construct counterfactual samples by altering
a part of the image outside the manually labeled boundary to
facilitate learning of invariant features in image classification.
Madumal et al. [25] analyzed the action reasons of intelli-
gence from a counterfactual perspective and constructed an
SCM on the action effects of intelligence to provide reasonable
explanations for their behavior.

The combination of GZSL and counterfactual inference
has recently been explored. Tai and Guo [26] constructed
a causal map to describe the relationship between images
and Wikipedia descriptions. The method reduced the effect
of negative causality on the relationship by varying the dis-
tribution of data and combined it with comparative learning
to establish a cross-modal mapping relationship for the GZSL
task. Yue et al. [27] proposed a generative causal model to
generate counterfactual faithful samples from sample attributes
and class attributes to balance classification accuracy between
seen and unseen classes.

However, there is a paucity of research exploring the
potential causal structure in data from the counterfactual
inference perspective in the generalized zero-shot compound-
fault diagnosis task. Furthermore, there is a dearth of research
proposing interpretable generalized zero-shot compound-fault
diagnosis models that achieve stable generalization from single
faults to both single and compound faults.

III. METHODOLOGY

In GZSL, the training set contains a single-fault dataset,
and the test set contains single and compound-fault datasets.
We denote the datasets of single and compound faults as

(xi , yi , ai )|xi ∈ X S, yi ∈ YS, ai ∈ AS, i ∈ [0, NS] and(
x j , y j , a j

)
|x j ∈ XU , y j ∈ YU , a j ∈ AU , j ∈ [0, NU ]

where xi and x j are original fault samples in single-fault
dataset X S and compound-fault dataset XU , yi and y j are
fault labels corresponding to xi and x j , ai and a j are prior
fault semantics corresponding to xi and x j , and NS and NU

are the total sample numbers of the single and compound-fault
datasets, respectively, and YS ∩ YU = ∅.

Our method has three stages. The first stage trains the
model with labeled single-fault samples X S and single-fault
semantics AS and learns a model with the decoupling fea-
ture and generating feature capability, expressed as mapping
F(xi , ai ; θ1) → yi , where θ1 is the trained model parameter.
In the second stage, we freeze the model parameters (trained
in the first stage) to conduct counterfactual generation and
inference using samples to be tested, which are classified into
single faults or compound faults. In the third stage, for single
faults, we train and test directly using supervised learning with
the help of a classifier, and for compound faults, we train the
model using single faults of the first stage to obtain a mapping
function F(xi , ai ; θ2) → yi , which predicts the ground-truth
fault labels of the fault samples recognized as compound faults
in the second stage, and the θ2 is the trained model parameter
in this stage.

A. Feature Decoupling and SCM

1) Feature Decoupling: Feature decoupling is the separa-
tion of features with certain characteristics from the original
features [28]. The fault features of bearings characterize the
high-dimensional information of faults that occur in specific
equipment and working conditions. From the perspective of
signal decomposition, the fault features have background
information that is closely related to the equipment and
working conditions, as well as causal information that is
related to the fault classes. From the causal theory point of
view, according to the common cause principle elaborated by
Reichenbach [29], the following holds.

Definition 1: If two observable variables X and Y are
statistically dependent, there is a variable Z that causally
affects both and accounts for all dependencies by making them
independent when conditioned on Z .

It is reasonable to assume that there is a subset of causal
features that directly determines the class of the fault signal in
high dimensions. We decouple the causal feature subset A and
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Fig. 1. SCM of the proposed method. F is the feature representation of
the original fault sample X , Y denotes its corresponding class, Z denotes the
non-causal feature that are not relevant to Y , and A denotes the causal feature
that are truly relevant to Y .

the non-causal feature subset Z , meaning that given the fault
feature F , we can obtain A and Z by sampling the marginal
distributions P(A|F) and P(Z |F). The decoupled feature
subsets are required to comply with the basic assumption
that A and Z can be combined to generate F , that is, the
fault feature F can be reconstructed by sampling the joint
distributions P(F |A, Z).

Furthermore, the decoupled causal and non-causal feature
subsets are independent of each other according to the inde-
pendent causal mechanism (ICM) principle [29].

Definition 2: The process of causal generation of system
variables consists of autonomous modules that do not inform
or influence each other. In probability, this means that the
conditional distribution of each variable given its cause does
not inform or influence other mechanisms.

We consider the fault features as a combination of causal
and non-causal feature subsets, which do not interact with each
other, meaning that when we change the value or distribution
of one set of them, the other set will not change, and from
this, we can conduct counterfactual generation based on the
decoupled feature subsets.

2) SCM for Compound-Fault Diagnosis: The first step in
counterfactual generation and inference is to decouple the
causal and non-causal feature subsets from the fault features.
To standardize the subsequent process, we construct a priori
SCMs to describe the causal relationships among the objects
in the compound-fault diagnosis, as illustrated in Fig. 1.

A spurious correlation exists between fault features F and
fault labels Y . This is due to the influence of operating
condition factors such as temperature and speed in F . The
probability of the joint feature-label distribution may change
significantly when the working conditions change or small
fluctuations occur in the data. The SCM provides a theoret-
ical descriptive framework for counterfactual generation and
inference, where we separate A and Z from F by feature
decoupling, and then separate single and compound faults
through interpretable counterfactual inference.

B. Counterfactual Generation and Inference

As illustrated in Fig. 2, we generate counterfactual fault
features F ′ for each class by performing counterfactuals

Fig. 2. Counterfactual generation step for compound-fault diagnosis. ×

denotes the interruption of the relationship due to modification of the causal
feature subset A.

Fig. 3. Counterfactual inference step for compound-fault diagnosis.

on causal feature subsets in the to-be-tested fault samples.
Subsequently, we employ correlation metrics to perform coun-
terfactual inference and ascertain whether the samples belong
to single or compound faults. The entire process is divided
into two steps: counterfactual generation and counterfactual
inference.

Involved in the counterfactual generation, we generate coun-
terfactual samples through three counterfactual computation
steps: 1) induction: recover the noise Z based on the endoge-
nous variable F (original fault feature); 2) action: modify the
endogenous variable A to AU ; and 3) prediction: generate the
counterfactual fault feature F ′ as shown in Fig. 2. Specifically,
we decouple the non-causal feature subset Z from the original
fault features, then replace the causal feature subset A with the
a priori compound-fault semantics AU , and finally generate the
counterfactual fault feature F ′ from AU and Z .

Involved in counterfactual inference, we can predict fault
classes based on the counterfactual consistency principle.

Definition 3: If the counterfactual fault features are similar
to the to-be-tested fault features, the counterfactual semantics
AU is the underlying causal feature set A(F) of the to-
be-tested fault features. The to-be-tested fault samples are
compound faults. Conversely, if the counterfactual fault fea-
tures are not similar to the to-be-tested fault features, the
counterfactual semantics AU is different from the causal
features set A(F) of the to-be-tested fault, that is, the to-be-
tested fault samples belong to a single fault.

According to Definitions 1 and 2, the model decouples the
non-causal feature groups that are unrelated to the faults from
the features. The causally related compound-fault semantics
can be combined with non-causal features to generate all
classes of compound-fault features (i.e., counterfactual fault
features) following counterfactual generation. As shown in
Fig. 3, if the generated counterfactual fault feature F ′ results
in a correct classification, the causally related feature group
A(F) in the original fault feature is highly correlated with
the compound-fault semantics AU in the counterfactual fault
feature. Hence, the fault is a compound one; otherwise, it is a
single fault.
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Fig. 4. Framework of the proposed CI-GZCFD.

C. Model Structure for CI-GZCFD

Our proposed generalized zero-shot compound-fault diag-
nosis model based on counterfactual inference comprises a
feature extractor, a semantic alignment module, and a gener-
ative adversarial module, as illustrated in Fig. 4. The feature
extraction module extracts fault features f from the original
vibration signals, the semantic alignment module maps the
prior fault semantics a to the fault feature space to obtain f̃ ,
and the adjusted semantics s is obtained by modal matching,
and the generative adversarial module contains an encoder
E , a generator G, a discriminator D, and a comparator C .
The encoder extracts the non-causal feature z from the fault
features f and fault semantics s, the generator generates
pseudo-fault features f̂ . The discriminator is responsible for
identifying whether the fault features f/ f̂ are generated or not,
and the comparator constrains the match between the hidden
layer d of the discriminator and the fault semantics s.

1) Feature Extraction Module: The compound fault is
defined as multiple single faults that are coupled with each
other. To accurately extract compound-fault features, it is
necessary to design an effective feature extraction module.
We adopt the method in [9] to extract fault features from
original vibration signals. As illustrated in Fig. 5, first,
we extract the salient features with convolution-pooling layers.
Subsequently, the salient features are weighted through spatial
attention and channel attention layers. Ultimately, the features
are mapped to the appropriate dimensions with fully connected
layers.

In brief, we can obtain the fault features f from the input
original vibration signal x with the following equation:

f = Fc(Sp ⊗ [Ch ⊗ [Pool(Conv(x))]]) (1)

where Fc denotes the fully connected layer, and Sp() and Ch()

denote the spatial and channel attention layers, respectively.
a ⊗ b denotes the feature weighting of a over b, which
is equivalent to a(b) ∗ b. Conv() and Pool() denote the
convolution and pooling layers, respectively.

In the training and testing phases, the extracted fault features
and fault labels are computed using the cross-entropy loss
function as follows:

Lc =

n∑
i

yi log pi + (1 − yi ) log(1 − pi ) (2)

Fig. 5. Feature extraction module.

Fig. 6. Semantic alignment module.

where yi is the label of the original vibration signal, pi is the
predicted probability of feature extractor, and n is the number
of fault classes.

2) Semantic Alignment Module: In ZSL, the key to achiev-
ing generalization from single to compound faults is the
semantics, which describe both the single and compound
faults. Our method employs the semantic alignment mod-
ule [9] to construct single and compound-fault semantics.
As illustrated in Fig. 6, the 28-D time-frequency statistical
features of the vibration signals are aligned with the fault
feature distributions to adjust the priori fault semantics (28-D
statistical features).

We construct the prior fault semantics ai of single faults
with 28-D statistical characteristics of vibration signals, where
ai ∈ AS . The prior fault semantics of compound faults are
defined based on the single-fault semantics

AU =

{
k∑

i=1

λi ai |∀ai ∈ AS,

k∑
i=1

λi = 1

}
∀a j ∈ AU (3)

where the k is the number of single-fault classes.
We map the prior fault semantics a to the subspace through

fully-connected layers, and we map the adjusted semantics s in
the subspace to the fault feature space through fully-connected
layers for the Euclidean distance metric. The comparative loss
ensures class discrimination of the adjusted semantics si , and
the mse loss ensures alignment of the prior fault semantics
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with the fault features. The loss of the semantic alignment
module is as follows:

L S = − log
exp

(
sT

i s+/ τs
)

exp
(
sT

i s+ / τs
)
+

∑M
m=1 exp

(
sT

i s−
m / τs

)
− E∥ f̃ − f ∥2 (4)

where τs is the temperature coefficient of comparative loss.
si is the adjusted semantics in the subspace, s+ and s−

m
are the unique positive sample and all M negative samples,
respectively. The f̃ is the projection of si in the fault feature
space, and f is the fault feature.

3) Generative Adversarial Module: In the second stage
of our method, the generative adversarial module generates
counterfactual fault features, and the discriminator D must
identify counterfactual fault features that are combinations of
causal and non-causal feature subsets. The constraints of D on
the generator at the input, conditional on the semantics of the
faults, are weak, and the constraints must be increased to make
the model resistant to distributional disturbances induced by
the counterfactual fault features.

Since the labels of the counterfactual fault features are
highly correlated with the causal feature subset describing the
class information, we add a new constraint to the hidden layer
of D. We use the comparator C to measure the correlation
between the fault features and the fault semantics and constrain
the hidden layer features to cluster by class through contrastive
loss. We encode the fault features and the fault semantics as
latent features by the encoder of VAE-GAN and reconstruct
the fault features from them by the decoder, with the loss
represented as LVAE-GAN

LVAE-GAN = KL(E( f, s)∥p(z|s))

− EE( f,s)
[
log G(z, s)

]
+ E

[
D( f, s)

]
− E

[
D

(
f̂ , s

)]
− λE

[(
∥∇ D

(
f , s

)
∥2 − 1

)2
]
. (5)

This loss function has four terms: a KL divergence, a generator
loss, a discriminator loss, and a gradient penalty. KL() denotes
the Kullback–Leibler divergence, which measures the differ-
ence between the latent variable distribution of the encoder
output and the prior distribution (following the Gaussian dis-
tribution) for decoupling fault features. EE( f,s)[log G(z, s)] is
the generator loss, which encourages the generator to generate
realistic samples. E[D( f, s)]−E[D( f̂ , s)] is the discriminator
loss, which encourages the discriminator to be able to distin-
guish between generated and ground-truth samples. The last
term denotes the gradient penalty, which ensures 1-Lipschitz
continuity and the smoothness of output. f is random sample
of fault feature f and generated fault feature f̂ .

The loss of the comparator added in the discriminator of
VAE-GAN is denoted as Ldc

Ldc = − log
exp

(
dT

i d+/ τd
)

exp
(
dT

i d+ / τd
)
+

∑M
m=1 exp

(
dT

i d−
m / τd

)
− log

exp
(
C

(
di , s+

)
/τd

)∑N
n=1 exp(C(di , sn)/τd)

. (6)

The first term is a supervised loss that computes an M +1-way
classification loss for each batch so that the unique positive
sample d+ and all other M negative samples d−

m are far
away from each other. This allows for the aggregation of
the instances of the same class and the separation of the
dissimilar ones. dT

i denotes the transposed hidden layer feature
of D. The second term is comparator loss, which computes
the correlation between D’s hidden layer feature di and the
unique positive semantics s+. The semantics with the same
class as di in the first term are regarded as positive semantics
s+, and the rest are negative semantics. This loss function
optimizes the correlation between the D’s hidden layer and
the corresponding semantics. τd is the temperature coefficient.

D. Model Processing Procedure

The proposed method includes three stages, as shown in
Fig. 7. The first stage trains the decoupling and generation
ability of the model with single-fault samples and a priori
single-fault semantics. We input single-fault samples x and
prior single-fault semantics a into the model, the feature
extractor extracts fault features f from the fault samples,
the semantic alignment module aligns the prior single-fault
semantics with the fault features f to get the adjusted
single-fault semantics s, and in the generative adversarial
module, the encoder E decouples the non-causal feature subset
z from the single-fault features and single-fault semantics.
It combines the single-fault semantics into the generator to
generate single-fault features, by which the process allows the
model to decouple and generate fault features.

The second stage involves counterfactual generation and
counterfactual inference. In the counterfactual generation pro-
cess, given an arbitrary class of to-be-tested fault samples,
which can be single or compound faults, we input the to-be-
tested fault samples x into the model, and the feature extractor
extracts the fault features f from x . In the generative adver-
sarial module, the encoder E extracts the non-causal feature
subset z from the fault features, and the priori compound-fault
semantics a j are adjusted by the semantics alignment module
to obtain s j , which is combined with the non-causal feature
subset to generate the counterfactual fault feature f ′ via the
generator G. In the counterfactual inference process, we pre-
dict the class of the to-be-tested fault samples by the classifier
and measure the similarity between the ground-truth fault
features and the counterfactual fault features. According to
the counterfactual consistency principle (Definition 3), if the
counterfactual fault feature is similar to the to-be-tested fault
sample, it is inferred to be the compound fault; otherwise, it is
a single fault, which implements the binary classification of
single and compound faults, as shown in Fig. 8.

The third stage consists of single-fault classification and
compound-fault classification. For single-fault to-be-tested
samples X S , we use traditional supervised training, where
the classifier is trained using single-fault samples from the
training set to infer single-fault samples from the test set. For
compound-fault test samples XU , we use the traditional ZSL
method in the training phase. We input single-fault samples
into the proposed model and obtain single-fault features fS

and single-fault semantics si by the feature extraction module
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Fig. 7. Three-stage flowchart of the proposed CI-GZCFD.

Fig. 8. Test flow in the second stage.

Fig. 9. Test flow in the third stage.

and semantic alignment module. Input single-fault semantics
and random noise n into the generator to generate pseudo-
single-fault features by generative adversarial training; In the
testing phase, the compound-fault samples XU and a priori
compound-fault semantics a j are input into the trained model,
and the to-be-tested compound-fault features fU , adjusted
compound-fault semantics s j , and pseudo-compound-fault fea-
tures f̂ U are obtained from the feature extraction module,
semantic alignment module, and generator, respectively. The
pseudo-compound-fault features are used to train the classifier,
which is able to identify the to-be-tested compound-fault
features as illustrated in Fig. 9.

IV. EXPERIMENTAL RESULTS AND DISCUSSION

To assess the proposed model, an experimental platform was
constructed (as shown in Fig. 10), and a series of experiments
were conducted to acquire vibration signals from bearings.

Fig. 10. Self-built experiment platform for signal acquisition.

The experimental platform comprises an ac variable-
frequency motor and a shaft system comprising front-end
bearings, bearing housings, radial load bearings, and fault
bearings. The bearing type is a deep groove ball bearing
6205. Outer and inner ring faults are cut by a machine with
a width of 0.5 mm, and roller faults are formed by pitting
corrosion. Accelerometers mounted on the bearing housings,
the sampling frequency is 51.2 kHz, the load is 0 HP, the
rotational speed is 1500 r/min, and the sampling time for
all classes of faults lasts 10 s. The dataset comprises data
from healthy bearings, three classes of single faults, and four
classes of compound faults. The healthy bearing is denoted
as H, and the three classes of single faults are the inner-ring
fault (IF), the outer-ring fault (OF), and the roller fault (BF),
and the four classes of compound faults are the inner-ring&
OF (IOF), inner-ring&roller fault (IBF), outer-ring&roller fault
(OBF), and inner-ring&outer-ring&roller fault (IOBF). A total
of 1000 samples were obtained for each class of faults, with
the step size at 500 and the window length at 2048. Min-Max
normalization is performed before the fault samples are fed
into the model, mapping the original vibration data between
[0, 1] by linear variation.

In our experiments, accuracy is used for evaluating the
performance of single and compound faults. In addition, the
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TABLE I
EXPERIMENT TASK SETTING. THE TESTING SET SIZE

IS 400 FOR ALL TASKS

harmonic average accuracy (denoted with Ah) is used to
provide a balanced view of the overall performance for both
types of faults

Ah = 2As Au/(As + Au) (7)

where As and Au denote the classification accuracy of single
and compound faults, respectively. The accuracy is calculated
as follows:

1
nm

n∑
i=0

m∑
j=0

I
(
max

(
y0, j , . . . , yi, j , . . . , yn, j

)
= yi

)
(8)

where n is the number of classes, m is the number of samples
in each class, yi, j is the probability that the j th sample is
predicted to be the class i . The max() outputs the class
label that has the greatest probability. I denotes the indicator
function that returns 1 when the output of the max function
equals the class label yi , otherwise returns 0.

A. Impact of Training Set Size

Table I summarizes the four experimental groups, where
the number of training samples for each class varies
from 100 to 400, and the number of test samples for each class
is 400. In the training phase, the classes include four single
faults. In the testing phase, the examples are from eight classes,
including both single and compound faults. The training and
testing sets are balanced. To mitigate the impact of random
fluctuation, we conduct five repetitions for each experimental
group and report the average accuracy and standard deviation.

Fig. 11 depicts the harmonic average accuracy of the four
experimental groups. As the number of training examples
increases, the classification accuracy of the model increases
gradually. When the number of training examples is 400 (i.e.,
Task D), the harmonic average accuracy Ah reaches 87.4%.
The standard deviation remains similar and small in all four
cases, which implies the robustness of our method.

As shown in Fig. 11, we obtained an F-statistic value
of 73.50 and a P-value of 2.03E-15 by conducting one-
way ANOVA. The large F-statistic value indicates that the
change in Ah between Tasks A through D is much larger
than the change in Ah under the same task. The small
P-value indicates significant differences in model performance
for Tasks A through D.

In addition, we calculated 95% confidence intervals for Ah

in the task, which reflects interval estimates of the overall
experimental results based on our results. The confidence
interval variation reflects the estimation precision of the overall
experimental results, and the narrower the interval is, the more

Fig. 11. Classification accuracy with different numbers of training samples.

Fig. 12. Visualization results of the generated counterfactual fault features.

precise the estimation is. For example, the confidence interval
variation for Task A is 77.96 minus 75.10. The confidence
intervals for Tasks A through D are relatively narrow, which
indicates that the existing experimental results are reliable in
estimating the accuracy of our proposed method.

B. Performance Analysis of Counterfactual Inference

To evaluate the performance of the second stage of counter-
factual generation and inference, we use the feature maps of
the counterfactual generation for qualitative analysis and the
results of the counterfactual inference for quantitative analysis.
First, the quality of the counterfactual-generated features is
critical and directly determines whether the samples to be
tested are classified as single or compound faults. The results
based on the feature visualization are shown in Fig. 12, where
there is a clear demarcation between counterfactual-generated
features for single and compound faults that very much
facilitates the classifier to perform the classification.

In addition, we compute two accuracies in the second
stage of the counterfactual inference process: Binary_S and
Binary_U. Binary_S is the accuracy for single faults, and
Binary_U is the accuracy for compound faults, which are
calculated as follows:

1
m

m∑
j=0

I
(
max

(
y0, j , y1, j

)
= y∗, j

)
(9)

where m is the number of samples. y0, j and y1, j denote the
probability that the j th sample is predicted to be 0 and 1,
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TABLE II
ACCURACY OF COUNTERFACTUAL INFERENCE

Fig. 13. Average accuracy with different numbers of training samples.

respectively. The max() outputs the class label that corre-
sponds to the greater probability. I() denotes the indicator
function. In computing Binary_S, it returns 1 when the output
of the max function equals y0, j , otherwise returns 0. When
computing Binary_U, it returns 1 when the output of the max
function equals y1, j , otherwise returns 0. As shown in Table II,
Binary_S varies from 0.91 to 0.96 and Binary_U varies from
0.87 to 0.96 for tasks changing from A to D. The relatively
high accuracies indicate that ground-truth compound faults are
not mostly misclassified as single faults, which is attributed to
counterfactual generation and inference.

C. Performance of Single and Compound Faults

Fig. 13 depicts the average accuracy of the four experimen-
tal groups in Table I. The prediction accuracy of single-fault
samples depends on the appropriate single and compound
faults classification of the model. As shown in this figure, the
accuracy of the single-fault classification is around 90% and
the performance increases with more training examples. This
indicates that the model is capable of effectively separating
the single and compound faults. In addition, the proposed
model achieves 83.14% accuracy for the classification of
compound-fault samples and has a greater performance incre-
ment rate compared to the performance of classifying single
faults. As we increase the number of training examples, the
difference in performance of classifying single and compound
faults reduces. The difference between As and Au of Task A
is 20.29%, and it reduces to 8.98% of Task D. It is evident
that the proposed model effectively differentiates single- and
compound-fault samples and achieves a high accuracy under
their respective superior methods. This alleviates the require-
ment of the model on the classification of to-be-tested fault
samples and improves its generality.

In the third stage, the generation quality of different
compound-fault classes determines the classification ability of
the traditional ZSL method, for this reason, we visualize the
generated compound-fault features. As shown in Fig. 14, the
different classes of compound faults have large class margins.

Fig. 14. Visualization results of generated compound-fault features.

Fig. 15. Confusion matrix of the four tasks. (a) Task A. (b) Task B. (c) Task
C. (d) Task D.

Fig. 15 illustrates the confusion matrix of the classifica-
tion results of the four tasks to show the test results in
detail. The vertical axis of this matrix represents the ground-
truth classes, and the horizontal axis represents the predicted
classes. Fig. 16(d) depicts that the model performs well in the
prediction of single-fault samples, and there exists only a weak
probability of identifying single faults as compound faults.
However, the model performs slightly worse on the prediction
of the compound-fault samples; there exists a probability of
0.17 to identify the IOF of the compound faults as the IF of
the single faults, which is due to the prediction loss in the
second stage. There exists a probability of 0.27 to identify the
IOBF as IOF, which is due to the prediction loss in the third
stage, it may be that the existing model is unable to avoid the
IOBF from being confused with the other compound faults,
as it is the most complex compound fault coupled by three
single faults.

D. Ablation Experiments

We conducted a comparative analysis of the benchmarks
VAE-GAN, VAE-GAN + Ldc, and our proposed CI-GZCFD
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Fig. 16. Average accuracy of our method including different components.

on task D. The Ldc corresponds to (6), which is an enhance-
ment of the supervision of the discriminator D based on
the VAE-GAN, and on which counterfactual inference is
introduced to form the CI-GZCFD model. The accuracy of
our experiments is presented in Fig. 16. The baseline Ah is
62.69%, and the single-fault classification accuracy is con-
siderably higher than that of the compound faults. This is a
consequence of the intrinsic domain drift issue inherent to
GZSL. The Ah of VAE-GAN + Ldc is enhanced by 14.76%
in comparison to that of VAE-GAN, which can be attributed
to the powerful supervisory effect of the discriminator D on
the decouple and generation process. The proposed CI-GZCFD
demonstrates a substantial enhancement in comparison to both
of them. The improvement in prediction accuracy for the com-
pound faults is particularly noteworthy, which can be attributed
to the distinction between single- and compound-fault samples
under the influence of counterfactual generation and inference.
This results in the optimal performance of the proposed model
in the generalized zero-shot compound-fault diagnosis, with
Ah reaching 87.40%.

E. Comparison Study

We compare our method with five state-of-the-art GZSL
models, including ZSML [18], LDS-IFD [8], CGASNet [12],
PREE [19], and CE-GZSL [16]. To ensure a fair comparison,
different models are assigned the same training and testing sets
in each experimental group. The same features and semantics
are employed to train and test the models. To obtain a
representative result, each experiment is repeated five times,
and the average value is calculated.

Fig. 17 illustrates the average accuracy of different methods.
In all four experimental groups, the test accuracy of each
model demonstrated an increase in line with the number
of training samples. ZSML exhibits the lowest prediction
accuracy. This is because ZSML relies on a large number
of meta-tasks to tune the model parameters, but only four
single-fault samples are available for training, which severely
limits performance. While LDS-IFD shows slight improve-
ment, its efficacy remains constrained by the limited number of
training samples, which restricts the dimensionality of the fault
semantics. The CE-GZSL model demonstrates satisfactory
performance on four tasks, largely due to its utilization of
instance-level comparative supervision and class comparative
supervision in the embedding space. This method effectively

Fig. 17. Average accuracy of the compared methods.

mitigates the impact of domain drift. The accuracy of PREE is
76.42%, which is attributed to the improved feature extraction
method and the quality of the feature representation by adjust-
ing the intra-class consistency and inter-class variation. The
accuracy of CGASNet is 81.15%, which is second only to our
proposed model. This is because the proposed method employs
contrast generation and an adaptive smoothing network to
generate fault features, and the class confidence is efficiently
estimated by the fault identification module, thus alleviating
the class bias problem in GZSL. In contrast, the proposed
model demonstrates superior performance compared to the
other five models across all four groups of experiments. For
instance, it exhibits a 10.98% improvement in prediction
accuracy compared to the suboptimal model in Task D.

V. CONCLUSION

This article addresses the issues of model
non-interpretability and imbalance in classification accuracy
between single and compound faults by proposing a
generalized zero-shot compound-fault diagnosis model based
on counterfactual inference. The model effectively identifies
both single and compound faults using only single-fault
samples for training, by decoupling causal and non-causal
features and generating counterfactual fault features. This
method narrows the accuracy gap between different fault
classes, achieving a harmonic average accuracy of 87.4%
and reducing the performance gap from 20.29% to 8.98%.
The proposed method outperforms state-of-the-art methods,
offering higher and more balanced accuracies and significantly
enhancing model generalizability.

The proposed method includes three stages of training and
testing, which could be simplified for a lighter computational
cost. In our future studies, we will explore a simple model
structure to reduce the computational cost of the model to
improve its efficiency. In addition, we will work on the causal
discovery technique to mine the real causal structure inside the
data, address the needs of industrial intelligent fault diagnosis,
and explore explainable artificial intelligence.

REFERENCES

[1] Y. Tang, C. Zhang, J. Wu, Y. Xie, W. Shen, and J. Wu, “Deep learning-
based bearing fault diagnosis using a trusted multiscale quadratic
attention-embedded convolutional neural network,” IEEE Trans. Instrum.
Meas., vol. 73, pp. 1–15, 2024.

Authorized licensed use limited to: University of North Texas. Downloaded on May 19,2025 at 07:24:04 UTC from IEEE Xplore.  Restrictions apply. 



XU et al.: COUNTERFACTUAL INFERENCE FOR GENERALIZED ZERO-SHOT COMPOUND-FAULT DIAGNOSIS 3536411

[2] S. Tian, D. Zhen, H. Li, G. Feng, H. Zhang, and F. Gu, “Adaptive
resonance demodulation semantic-induced zero-shot compound fault
diagnosis for railway bearings,” Measurement, vol. 235, Aug. 2024,
Art. no. 115040.

[3] C. Yan, X. Chang, M. Luo, H. Liu, X. Zhang, and Q. Zheng, “Semantics-
guided contrastive network for zero-shot object detection,” IEEE Trans.
Pattern Anal. Mach. Intell., vol. 46, pp. 1530–1544, 2021.

[4] J. Zhang, Q. Zhang, X. He, G. Sun, and D. Zhou, “Compound-fault
diagnosis of rotating machinery: A fused imbalance learning method,”
IEEE Trans. Control Syst. Technol., vol. 29, no. 4, pp. 1462–1474,
Jul. 2021.

[5] G. Kwon and G. A. Regib, “A gating model for bias calibration in
generalized zero-shot learning,” IEEE Trans. Image Process., early
access, Mar. 1, 2022, doi: 10.1109/TIP.2022.3153138.

[6] L. Feng and C. Zhao, “Fault description based attribute transfer for zero-
sample industrial fault diagnosis,” IEEE Trans. Ind. Informat., vol. 17,
no. 3, pp. 1852–1862, Mar. 2021.

[7] J. Xu, S. Liang, X. Ding, and R. Yan, “A zero-shot fault semantics
learning model for compound fault diagnosis,” Expert Syst. Appl.,
vol. 221, Jul. 2023, Art. no. 119642.

[8] S. Xing, Y. Lei, S. Wang, N. Lu, and N. Li, “A label description
space embedded model for zero-shot intelligent diagnosis of mechanical
compound faults,” Mech. Syst. Signal Process., vol. 162, Jan. 2022,
Art. no. 108036.

[9] J. Xu, K. Li, Y. Fan, and X. Yuan, “A label information vector generative
zero-shot model for the diagnosis of compound faults,” Expert Syst.
Appl., vol. 233, Dec. 2023, Art. no. 120875.

[10] C. Yan et al., “ZeroNAS: Differentiable generative adversarial networks
search for zero-shot learning,” IEEE Trans. Pattern Anal. Mach. Intell.,
vol. 44, no. 12, pp. 9733–9740, Dec. 2022.

[11] C. Tang, Z. He, Y. Li, and J. Lv, “Zero-shot learning via structure-aligned
generative adversarial network,” IEEE Trans. Neural Netw. Learn. Syst.,
vol. 33, no. 11, pp. 6749–6762, Nov. 2022.

[12] J. Xu, H. Zhang, W. Chen, Y. Fan, and X. Ding, “CGASNet: A
generalized zero-shot learning compound fault diagnosis approach for
bearings,” IEEE Trans. Instrum. Meas., vol. 73, pp. 1–11, 2024.

[13] Q. Guo, G. Li, and J. Lin, “A domain generalization network exploiting
causal representations and non-causal representations for three-phase
converter fault diagnosis,” IEEE Trans. Instrum. Meas., vol. 73,
pp. 1–13, 2024.

[14] J. Kim and B. Shim, “Generalized zero-shot learning using conditional
Wasserstein autoencoder,” in Proc. IEEE Int. Conf. Acoust., Speech
Signal Process. (ICASSP), May 2022, pp. 3413–3417.

[15] J. Shao and X. Li, “Generalized zero-shot learning with multi-
channel Gaussian mixture VAE,” IEEE Signal Process. Lett., vol. 27,
pp. 456–460, 2020.

[16] Z. Han, Z. Fu, S. Chen, and J. Yang, “Contrastive embedding for
generalized zero-shot learning,” in Proc. IEEE/CVF Conf. Comput. Vis.
Pattern Recognit. (CVPR), Jun. 2021, pp. 2371–2381.

[17] H. Sun, J. Wei, Y. Yang, and X. Xu, “Semantic enhanced cross-modal
GAN for zero-shot learning,” in Proc. ACM Multimedia Asia, Dec. 2021,
pp. 1–7.

[18] V. K. Verma, D. Brahma, and P. Rai, “Meta-learning for general-
ized zero-shot learning,” in Proc. AAAI Conf. Artif. Intell., 2020,
pp. 6062–6069.

[19] S. Chen et al., “FREE: Feature refinement for generalized zero-shot
learning,” in Proc. IEEE/CVF Int. Conf. Comput. Vis. (ICCV), Oct. 2021,
pp. 122–131.

[20] Y. Shen, J. Qin, L. Huang, L. Liu, F. Zhu, and L. Shao, “Invertible
zero-shot recognition flows,” in Proc. Eur. Conf. Comput. Vis., 2020,
pp. 614–631.

[21] J. Yue, J. Zhao, and C. Zhao, “Similarity makes difference: SSHTN
for generalized zero-shot industrial fault diagnosis by leveraging aux-
iliary set,” IEEE Trans. Ind. Informat., vol. 20, no. 5, pp. 7598–7607,
May 2024.

[22] M. Mou, X. Zhao, K. Liu, and Y. Hui, “Variational autoencoder based on
distributional semantic embedding and cross-modal reconstruction for
generalized zero-shot fault diagnosis of industrial processes,” Process
Saf. Environ. Protection, vol. 177, pp. 1154–1167, Sep. 2023.

[23] A. Sauer and A. Geiger, “Counterfactual generative networks,” in Proc.
2021 Int. Conf. Learn. Represent. (ICLR), 2021, pp. 1–25.

[24] C.-H. Chang, G. A. Adam, and A. Goldenberg, “Towards robust classi-
fication model by counterfactual and invariant data generation,” in Proc.
IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2021,
pp. 15207–15216.

[25] P. Madumal, T. Miller, L. Sonenberg, and F. Vetere, “Explainable
reinforcement learning through a causal lens,” in Proc. AAAI Conf. Artif.
Intell., vol. 34, Apr. 2020, pp. 2493–2500.

[26] J. Tai and Y. Guo, “Unsupervised zero-shot learning for achieve
cross-modal alignment with counterfactuals,” in Proc. ECAI, 2023,
pp. 2290–2297.

[27] Z. Yue, T. Wang, Q. Sun, X. Hua, and H. Zhang, “Counterfactual zero-
shot and open-set visual recognition,” in Proc. IEEE/CVF Conf. Comput.
Vis. Pattern Recognit. (CVPR), Jun. 2021, pp. 15399–15409.

[28] M. Yang, F. Liu, Z. Chen, X. Shen, J. Hao, and J. Wang, “CausalVAE:
Disentangled representation learning via neural structural causal mod-
els,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR),
Jun. 2021, pp. 9588–9597.

[29] B. Schölkopf et al., “Towards causal representation learning,” Proc.
IEEE, vol. 109, no. 5, pp. 612–634, Feb. 2021.

Juan Xu (Member, IEEE) received the Ph.D. degree
from the School of Computer and Information, Hefei
University of Technology, Hefei, China, in 2012.

She is currently an Associate Professor at Hefei
University of Technology. Her research interests
include Industrial IoT and intelligent fault diagnosis,
prognostics and health management, and predictive
maintenance.

Hui Kong is currently pursuing the M.S. degree
in information and communication engineering with
Hefei University of Technology, Hefei, China.

His current research interests include deep learning
and transfer learning methods for intelligent fault
diagnostics and prognostics.

Xu Ding (Member, IEEE) received the B.S. and
Ph.D. degrees from the School of Computer and
Information, Hefei University of Technology, Hefei,
China, in 2006 and 2015, respectively.

He is currently an Associate Research Fellow with
the Institute of Industry and Equipment Technology,
Hefei University of Technology. His research field
mainly lies in wireless communications and wireless
sensor networks.

Xiaohui Yuan (Senior Member, IEEE) is an Asso-
ciate Professor at the University of North Texas,
Denton, TX, USA, and the Director of the Com-
puter Vision and Intelligent Systems Laboratory.
His research interests include artificial intelligence,
computer vision, and machine learning.

Dr. Yuan was a recipient of the Ralph E. Powe
Professor Award in 2008 and U.S. Air Force Visiting
Professor Award in 2011, 2012, and 2013. He serves
as an associate editor, an editorial board member,
and a guest editor for several journals, and an

organizing member for many international conferences.

Authorized licensed use limited to: University of North Texas. Downloaded on May 19,2025 at 07:24:04 UTC from IEEE Xplore.  Restrictions apply. 

http://dx.doi.org/10.1109/TIP.2022.3153138

