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Abstract—The decoder is a key component in deep networks
for the semantic segmentation of street views. The existing
methods rely on the limited receptive field for feature extraction
without considering the contextual information, which could lead
to errors in understanding complex scenes. Moreover, a balance
of contextual information and computational cost must be con-
sidered to meet the needs of real-world applications. To address
these problems, we introduce a Spatial Plaid Attention Decoder
network, which uses a lightweight decoder with Spatial Plaid
Attention to perform highly efficient operations for semantic
segmentation. With approximately 4 million parameters (9.75%
of the UPerNet), our decoder achieves state-of-the-art perfor-
mance on public datasets such as Cityscapes and ADE20K, with
84.84% and 54.0% mloU, respectively. In addition, our method
reduces the total Flops by 34.95% and 32.85%, respectively.
We demonstrate how contextual information helps the network
in object recognition and how object features and contextual
features contribute to the scene segmentation and recognition.

Index Terms—Image segmentation, deep learning, machine
vision.

I. INTRODUCTION

NDERSTANDING street views plays an important role

in many applications such as situation awareness in
transportation, event detection, and urban planning [1], [2].
To achieve high-level analysis, objects in images need to be
separated and classified, i.e., image semantic segmentation.
In semantic segmentation, pixels in the vicinity present the
typical context of an object. Correctly segmenting objects
usually requires more than the characteristics of the objects.
To leverage the contextual information, the network needs
to extract and integrate features from the object and its
vicinity, which often implies long-range involvement as a
representation of context. Although combining features of
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various scales in pyramid networks helps recognize objects
[3], [4], these methods lack meticulous investigation of con-
textual information. To address this issue, methods have been
developed to extract the context of objects [5], [6], [7], [8].
Techniques include leveraging large convolution kernels, more
layers of convolution, and spatial attention. Large convolution
kernels help the network assess pixel relations in local and
global contexts depending on where they are utilized in the
network [9]. More convolution layers grant a larger receptive
field, helping analyze the context to a greater extent [10], [11].
Spatial attention refines the pixel features based on the spatial
setting of similar pixels in their context, making it easier for
the network to make clear boundaries between the semantic
categories [5], [12], [13].

Alternatively, contextual information has been integrated
into decoders [14], [15]. The U-shaped networks process the
features in a hierarchy of scales, fusing features using skip-
connections while keeping rich semantic information [14],
[16]. The skip connections, however, have a limited capacity to
add contextual features [17]. The use of dilated convolution in
DeepLab V3+ [18] allows the decoder to capture long-range
contextual information with a low computational need. Yet,
the performance gains using different atrous rates are limited.
Methods following the structure of the population Receptive
Fields (pRFs) model human vision for object detections [19],
which allows changing the receptive field adaptively according
to object size and context. However, it is costly due to
the grouped dense convolutions. The limited receptive field
restricts the encoding of long-range dependencies, which leads
to errors in understanding complex scenes where classification
depends on understanding broader relationships.

Inspired by the pRF models of humans, utilizing various
receptive fields of different sizes and dilation densities [20],
we present a decoder for dense pixel prediction that possesses
a receptive field. Our idea forms a Spatial Plaid Attention
Decoder (SPADe), a lightweight network capable of capturing
long-range dependencies using Spatial Plaid Attention (SPA).
Our SPA allows the decoder to compare high- and low-level
features and highlight the prominent contextual features at
different scales. The contribution of this paper is twofold:

e A hierarchical, lightweight, and accurate decoder
that achieves state-of-the-art performance in semantic
segmentation on public datasets.

e A Spatial Plaid Attention module to capture the
long-range dependencies with a significantly low
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computational cost. Flops by 34.95% and 32.85% on
Cityscapes and ADE20K, respectively.

The rest of this paper is organized as follows: Section II
reviews the decoder techniques for semantic segmentation.
Section III presents our proposed SPADe network with SPA
modules. Section IV discusses the experimental results, includ-
ing a comparison with the state-of-the-art methods and an
analysis of network components. Section V concludes this
paper with a summary of key findings.

II. RELATED WORK

Decoders following the U-shaped architecture [2], [16]
extract features at different scales using a backbone and a
decoder upscales the features by integrating information using
skip connections from the immediately higher scale map. The
context of the pixels in the early stages of the backbone high-
lights the texture and boundary of objects. Therefore, using
them may grant better boundary consistency. Such context in
the later stages of the backbone or the stages of the decoder
offers more semantics, such as the adjacency of objects of
certain classes. SegNet [14] employs a similar structure to the
U-Net. However, it uses the pre-trained feature maps of its
backbone network, i.e., VGG-16. Swin Transformer [21] has
also been combined with this U-shape structure [22], showing
promising results in medical image segmentation.

Another strategy to use multiscale contextual information
is the pyramidal structure [23]. One of the decoders with
a pyramid structure is FPN [3], which uses a pre-trained
backbone network to extract features from different stages,
extracting information at multiple scales. This operation fuses
the information of pixels in different scales, leveraging the
semantic consistency of the lower scale and richer edges of the
higher scale. UPerNet [4] uses the FPN structure but leverages
a PSP [15] module on top of the feature map of the fifth
stage. The pooling technique aggregates the feature map and is
often performed at different rates to derive features of multiple
scales. Networks such as PSPNet [15] are built upon such
ideas. Features are upscaled and concatenated channel-wise
with the original features. The concatenation provides more
contextual information at each pixel location.

The Multi-Layer Perceptron (MLP) layers have been used
as lightweight decoders, given the recent development of
transformer-based models. SegFormer [24] uses an MLP head
that takes feature maps of 4 different scales from the backbone
as input and upsamples them to match the size of the largest
feature map. Features are flattened for the MLP to produce a
prediction. SegNext [25] uses the same decoder architecture
with additional Hamburger attention [26] before the final
layer. Although MLP layers give the advantage of memory
efficiency, the relation between pixels cannot be assessed
thoroughly, given the limited number of layers and parameters.

Dynamic decoders focus on updating networks with each
sample. K-Net [27] generates sample-specific parameters. To
take advantage of the clues provided by context, K-Net makes
an initial segmentation to lay out the pixel labels and extract
deep features, then it generates and refines convolutional
kernels specific to each object and class. AdaptIS [28] uses
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Fig. 1. The spatial array of human receptive fields of V1, V3, and hAV4.

a backbone to generate object centers, and instance-specific
filters are created to produce an accurate instance mask.

The limited receptive field in decoders presents a great chal-
lenge in integrating contextual information. While techniques
such as multi-scale aggregation, dilated convolutions, and
attention mechanisms have improved context modeling, they
come with trade-offs in computational complexity, memory
usage, and precision. The key research gaps lie in balancing
modeling long-range context and computational efficiency.
Investigation into efficient decoder architectures that leverage
rich contextual information without excessive computational
overhead is needed for real-time and edge applications.

III. SPATIAL PLAID ATTENTION DECODER NETWORK
A. Human Vision Inspiration

The human visual system is a complex network of percep-
tion units that process images at various levels of abstraction
[20]. The primary cortex, a.k.a. V1, receives the visual inputs
to recognize edges and shapes. Subsequently, the V3 unit
captures intricate structures that aid in object recognition.
High-level parts, such as hV4, specialize in color perception
and its integration with shapes for object identification.

Techniques such as functional magnetic resonance imaging
(fMRI) have facilitated the understanding of the receptive
field structure of V1, V3, and hV4 in the human vision [20].
Fig. 1 visualizes pRFs of V1, V3, and hV4, which shows
that as it gets farther from the center, the eccentricity and
receptive fields (the circles) increase. Our vision system places
greater importance on information within a small vicinity of
the center. Nonetheless, regions farther from the center provide
a large search space, enabling the benefit from contextual
information. The variations in size and spacing between each
circle suggest that our vision system analyzes the image using
various receptive fields at different levels of spatial density for
perception. This inspires us to create a decoder that mimics
the receptive field of human vision with a low number of
parameters and state-of-the-art performance.

B. Spatial Plaid Attention

The human perception system cares more about the infor-
mation in a small neighborhood of the center of the field of
view, and takes advantage of the information obtainable from
distance, serving as the context. To implement such a structure,
we consider two components in our SPA module, as shown
in Fig. 2: a Spatial Feature Collection module that gathers
features from the context of the pixel and a Feature Fusion
module that refines features in a low-dimensional space.
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Feature Fusion

Spatial Feature Collection
A

Fig. 2. The structure of SPA. PW: pointwise convolution; DW: depthwise
convolution; K: kernel size; r denotes the atrous dilation rate.

The spatial feature collection module uses contextual infor-
mation for close and long-range coverage. To capture the
context in a neighborhood, we devise a folding operation. The
features of the 4 immediately adjacent pixels of each pixel are
concatenated along the channel dimension:

L(f, 1, ) = fuj) © fi-1,) © fusi,p © fij-1» © faj+n (1)

where f denotes the feature map and i and j are the coordinates
of a pixel. © denotes channel-wise concatenation. Each feature
component f;; € R'!C consists of C channels. This
folding operation achieves a spatial feature augmentation,
which concatenates pixel features into an integrated form of
pixel features and spatial features. It allows the network to
extract contextual information. Multiple folding operations in
SPA increase the field of view such that features in long-range
contextual regions are obtained. We expand the contextual
coverage using multi-path, depth-wise (DW [29]) convolutions
with different atrous rates to capture the long-range relations.

Although the use of folding in our SPA increases the
channel size, the DW convolution only creates K x K x 5C
kernels, which have a complexity of O(C) in terms of the
number of parameters, versus the normal convolution that is
O(C?), given the fact that C > 5.

In the feature fusion module, feature maps extracted by
the multi-path, depth-wise convolutions are fused using an
element-wise addition, depicted with € in Fig. 2. A point-
wise (PW) convolution [29] is used to aggregate and refine the
features of each pixel, which reduces the number of features
from 5C to C. This operation reduces the computational cost
of processing large feature maps with the SPA. The skip
connection ensures smoothness in gradient passing.

C. Network Architecture

Our network, as shown in Fig. 3, uses a backbone (encoder)
network to extract features at different scales to ensure the
contextual information of objects is derived. The Spatial Plaid
Attention Decoder (SPADe) decoder uses multi-contextual
features to generate the semantic segmentation map. The
network passes three feature maps of high-resolution F, from
the backbone stage of Back.S |, mid-resolution F,, from stage
Back.S,, and low-resolution F; from stage Back.Ss3 to the
SPADe. The extracted features are processed with 1 x 1
convolutions for channel reduction. Given that the spatial size
of the largest feature map F; is smaller than the input, we
perform upsampling to match the size. Unlike self-attention
[30] with dense matrix multiplications, our SPA leverages
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Fig. 3. Network architecture of SPADe with three contextual coverages.

depthwise convolution as the building block to reduce the
computation.

The semantic gap between the backbone’s high- and low-
resolution features is large. It is important to gradually
combine features of each contextual coverage with only the
feature map at the two immediately adjacent scales. Fig. 3
shows a SPADe of two stages: Dec.S| and Dec.S,, in which
the feature maps from two consecutive contextual coverage
coming from the backbone network are processed together,
e.g., [Fy, Fp] and [F,,, F;]. The feature map of lower resolu-
tion is upsampled and concatenated channel-wise to the higher
resolution one. A SPA module refines the resulting feature
map. The same process is repeated on the output of the SPA
for each pair of [F}, F,,] and [F,,, F/].

Combining features of different scales using our SPA allows
the network to fill the semantic gaps between the features
of a lower and a higher resolution, leveraging the semantic
information of low-resolution features and fine-detail edges of
high-resolution ones. The SPA module is repeated multiple
times (the number of repetitions is denoted with L in Fig. 3)
to process the object features in multi-tier contexts.

The receptive field of a single depth-wise convolution with
an atrous rate of at 3, i.e., 3, is shown in Fig. 4.
A 3 x 3 convolution has a receptive field of 9 cells (see
Fig. 4(a)). To increase the contextual coverage, either the
kernel size has to be increased or the convolution layers
are stacked; both are computationally expensive. Deformable
convolution [31] uses offsets to achieve flexible coverage, as
shown in Fig. 4(b). The light green cells are the original kernel
elements, and the arrows depict the offset vectors. However,
the extra offsets increase the computation. Atrous convolution
enlarges the receptive field without introducing additional
parameters (as shown in Fig. 4(c)). The sparsity makes it
necessary to be paired with normal convolution to cover a con-
siderable spatial extent of a feature map [19]. In contrast, our

r =
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Fig. 4. The receptive field of (a) conventional convolution, (b) deformable
convolution, (c) atrous convolution, and (d) our SPA.

proposed stacked-depth-wise convolutions (Fig. 4(d)) cover a
larger area with fewer parameters. The receptive field is signifi-
cantly enlarged when such a convolution is used in a sequence.

Algorithm 1 SPADe Network for Semantic Segmentation

Require: image /, number of classes N

Ensure: semantic segmentation map M
1: Encoder (Backbone)

E; « Conv(l,kl)

E, « Conv(Pool(E), k2)

E; « Conv(Pool(E>»), k3)

Bottleneck

B « Conv(Pool(Ey), k4)

Decoder

D3 « UpConv(B, E3, k3)

D, « UpConv(Ds, E;, k2)

D, « UpConv(D,, E1, k1)

: D} « §SPA(Concat(Dy, D5))

D), < S PA(Concat(Dy, D))

: DY « S PA(UpConv(Concat(D}, D5)))

QOutput Layer

: M « Conv(DY,N, “softmax”)

return M

R A A o

_— = = e = =
A

We summarize our method in Algorithm 1, which presents
a two-stage SPADe decoder as shown in Fig. 3. When more
stages are desired, the decoder needs to be extended, and the
encoder will include more levels of convolutions.

D. Loss Function and Decoder Variations
The loss function is the softmax cross-entropy between the
predicted segmentation and the ground truth as follows:
N
L(P,G) =) Gilog(P;) )
i=1
where G is an H x W x § tensor for the one-hot encoded
ground-truth semantic class (S classes), P is predicted proba-
bilities for the pixels, N is the total number of pixels, and i is
the pixel index.
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Fig. 5. The decoder network structures with a different number of inputs.
The inputs are features extracted by the backbone networks.

The scalability in the design of the SPADe network allows
for a different number of backbone networks to be used for
feature extraction. Fig. 5 illustrates three variations of the
decoder network. For clarity, convolutions and concatenation
operations are omitted from these illustrations.

The top left case depicts the decoder that takes one input
from the backbone network; the bottom left case depicts a
decoder that takes three inputs from the backbone network;
and the right case depicts a decoder that takes four inputs from
the backbone network. A hierarchical strategy is employed to
integrate contextual features. As the number of input features
increases, the depth of the SPA modules increases.

IV. RESULTS AND DISCUSSION

A. Datasets and Settings

Our experiments use Cityscapes [32] and ADE20K [33].
Cityscapes consists of 5,000 images of 19 semantic classes,
which are randomly divided into 2,975 for training, 500 for
validation, and 1,525 for testing. Each image has a size of
1024 x 2048. The other dataset is ADE20K, which consists of
150 semantic classes with 20,210 training images, 2,000 for
validation, and 3,000 for testing.

We use ConvNeXt, Swin Transformer, ResNet, InternIm-
age, and DaViT as the backbone networks in comparison.
AdamW is used with a weight decay of 0.05 for ConvNeXt,
Internlmage, and ResNet backbones, and 0.01 for the Swin
and DaViT. The initial learning rate used is le-6, and we use
‘poly’ scheduling with a factor of 0.9 to adjust the learning
rate. Our training has a warm-up stage of 1,500 steps. The
batch size for the training using the Cityscapes dataset is 8§,
and the batch size for the training using ADE20K is 16. Our
models are trained on Cityscapes and ADE20K for 80K and
160K steps, respectively. All the trainings are on a node with
either 4 NVIDIA A40 or A100 GPUs. Except for Swin-L and
ResNet-101, we use the Diagonalwise Refactorization [34]
to implement the depthwise convolution in our method. For
Swin-L and ResNet-101, we use the DW convolution [29].

B. Effect of Contextual Information

Objects in Cityscapes contain a wide variety of sizes and
complex scenarios, which makes it challenging. The local
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Ground Truth

Image

SPADe UPerNet (ConvNeXt)

Fig. 6. Results of modified Cityscapes images using SPADe, UPerNet, and SegFormer. The red boxes show the objects randomly copied to a different region.

context pertains to the surrounding pixels within a small range.
These pixels may belong to the same or different objects. The
global context provides a more comprehensive view of the
semantics present in a large scope within the image.

We modified images by copying an object to a random
region. We hypothesize that even the hard-to-segment objects
with weak levels of feature representation and small sizes can
be correctly segmented with the right semantic context. On the
other hand, if such objects are out of context, the model would
segment them incorrectly. The modified images are processed
by UPerNet and SPADe, both of which are implemented with
the ConvNeXt-XL network.

Fig. 6 depicts our results. The top row shows that a car
resembles a bike. In its original location, all three models
consider the object as a bike due to the neighboring bikes.
When the object is pasted to a different location, UPerNet
segments it as mostly a building with parts of it as cars. Our
model identifies the object as the car in the majority of cases;
however, the overall prediction is inaccurate. The middle row
shows a car that is copied from the lower left corner of the
red box into a tree. In its original location, all three models
predict it correctly as a car; however, due to the change in the
contextual information, the same object is classified as a part of
the tree by both models. In the bottom row, we copied a person
from the lower right of the red box and pasted it into the tree.
Even though the object is small, all the models can detect it
correctly; however, for the modified image, the models find no
correlation between the object and its surroundings and fail to
predict correctly. Both models detect objects in their original
context and miss them when the object is transferred out of
context. This underscores the importance of semantic context,
especially the global context for weakly presented objects.

To illustrate how context affects the performance of SPADe,
we visualize the attention map of the model in Fig. 7, for two
images in the center pixel. The attention map is also obtained
for a modified image. We also provide a highlighted attention
map that illustrates the most contributing context pixel among
the pixels of the first attention map. In the first and third

rows of Fig. 7, the identified objects have highly activated
pixels in both attention and highlighted attention maps. The
number of local context pixels that fall inside the object is
much smaller than the global context pixels that surround the
object. When the same object is moved to a different location
in the second and fourth rows, we observe that the model fails
to get activated not only inside the object but also globally.
This is an indicator of the harmony and correlation between
local and global contextual information.

C. Comparison With the State-of-the-Art Methods

We evaluate our SPADe by using several backbone networks
and report in GFlops and mloU adopted from MMSegmen-
tation GitHub [35]. Table I compares the state-of-the-art
methods using the Cityscapes. We report the total number of
parameters of the model (Param.), the number of parameters
of the backbone (B.Param.), and the number of parameters
of the decoder (D. Param.). Additionally, we report the total
GFlops for the entire model (GFlops), the total GFlops of the
backbone (B. GFlops), and the total GFlops of the decoder
(D. GFlops). Two groups of models, namely small and large,
in terms of backbone size, are presented. Within each group,
we evaluated SPADe with one or more backbone networks.

Table II reports the results of using the ADE20k. The
methods are grouped into small, medium, and large sizes. If
available, the mlIoU is provided in single-scale (ss) and multi-
scale (ms) testing modes. To perform multi-scale inference,
we perform augmentation by flipping the original image and
resizing the original image with a scaling factor of [0.5, 0.75,
1.0, 1.25, 1.5, 1.75, 2.0], giving a total of 8 augmented copies
of the image. A label is predicted for each case, and the labels
are merged through averaging. The best performance in each
metric is highlighted with bold-face fonts, and the second best
is underlined. The results are sorted according to the mloU
(ms) for the methods of the same backbone.

1) Performance Analysis: On the Cityscapes dataset, we
obtained the highest ss and ms mloU with ResNet-101 back-
bone, with an ms mloU improvement of 1.48%. Our model
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Attention Map Highlighted Attention Map

Fig. 7. GradCAM attention of SPADe over two images and the modified versions. The red boxes show the objects in the original and modified versions.

TABLE I

PERFORMANCE COMPARISON ON CITYSCAPES VAL.. THE GFLOPS 1S CALCULATED BASED ON 1024 x 2048 IMAGES. THE SS AND MsS
DENOTE SINGLE- AND MULTI-SCALE TESTING. THE * DENOTES THAT THE BACKBONE IS DILATED RESNET-101

Model Backbone Decoder Para (M)] B.Para M) D.Para(M)] | GFlops] B. GFlops| D. GFlops] | mloU(ss/ms)T

FCN ResNet-101* FCN 69 42 27 2203 1432 771 -776.6

EncNet ResNet-101* EncNet 52 42 10 1752 1432 320 76.1/77.0

FPN ResNet-101 FPN 48 42 6 520 337 183 75.8/77.4

= PSPNet ResNet-101 PPM 66 42 24 376 337 39 - 178.5

g SenFormer ResNet-101 SenFormer 163 42 121 1473 337 1136 80.3/ -

«n CCNet ResNet-101* CCNet 66 42 24 2236 1432 804 79.5/80.7

DeeplabV3+ | ResNet-101* ASPP 60 42 18 2035 1432 603 - /80.9

UPerNet ResNet-101 UPerNet 83 42 41 2052 337 1715 - /181.5

Ours ResNet-101 SPADe 46 42 4 652 337 315 80.7/82.1

GSS-FT-W Swin-L - - 195 - - - - - 780.0

DiversePatch Swin-L DiversePatch 234 195 39 3190 2616 574 82.7/83.6

2 SenFormer Swin-L SenFormer 233 195 38 4368 2616 1752 82.8/84.0

] Ours Swin-L SPADe 199 195 4 1914 1752 162 83.3/84.2

~ ConvNeXt ConvNeXt-XL UPerNet 391 348 13 264 2552 1712 83.8/34.3

Ours ConvNeXt-XL SPADe 352 348 4 2864 2552 312 83.5/84.5

Internlmage | Internlmage-XL UPerNet 368 329 39 4022 2300 1722 83.6/84.3

Ours InternImage-XL SPADe 333 329 4 2616 2300 316 84.0/84.8
also shows the best ss mloU with a Swin-Large backbone, the SPADe with various architectures, we also test SPADe
with a 0.6% improvement margin compared to the second- with DaViT-B and Swin-B. In the case of Swin-B, our model
best. With ConvNeXt-XL, we performed the best with ms obtained the highest ss mIoU of 51.2%, among all the medium-

mloU, showing superiority over UPerNet with the same back-
bone with 0.2% mloU. With the Internlmage-XL [36] as
the backbone, SPADe obtains a higher performance than the
case with the UPerNet decoder in both ss and ms evalua-
tions of mloU. The SPADe with Internlmage-XL is also the
highest-performing model among all the evaluated models in
Table I.

Table II compare the state-of-the-art methods using
ADE20k. Our SPADe decoder achieves the highest ss mloU
with both ResNet-101 and ResNet-101-D8 with a 0.2% and
1.8% improvement over the second-best model, of the same
backbone, respectively. Our performance in terms of mloU
(ms) is also very competitive. To show the compatibility of

sized models, and a competitive ms mloU of 51.8%. DaViT
performed as well as UPerNet with the same backbone. Our
model with Swin-L gets the best ms mloU and the second-
best ss mloU with 0.5% improvement in ms over KNet.
Also, we got the best ss mloU of 53.8 using ConvNeXt-XL,
outperforming UPerNet and the same ms as UPerNet.

Fig. 8 depicts a comparison of SPADe with UPerNet. On
the top row, the UPerNet misses a significant part of the
sidewalk. In the second case, both methods perform equally
well; however, in the identified red box, UPerNet misclassifies
the building, while ours accurately classifies the pixels. In
contrast to the state-of-the-art, our proposed SPADe network
demonstrates a superior performance in terms of mloU.
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TABLE I

COMPARISON ON ADE20K VAL.. GFLOPS IS CALCULATED USING 512 X 512 IMAGES OR 640 x 640 IMAGES {. THE SS
AND MS DENOTE SINGLE- AND MULTI-SCALE TESTING. *: BACKBONE IS DILATED RESNET-101

Model Backbone Decoder Para (M)] B. Para M) D. Para (M) | GFlops] B. GFlops) D. GFlops] | mloU(ss/ms)T

FPN ResNet-101 FPN 438 42 6 65 42 23 39.4/40.7
_ DeepLabV3+ ResNet-101 ASPP 63 21 255 42 213 - /44.1
= PSPNet ResNet-101 PPM 68 26 256 42 214 - /441
E EncNet ResNet-101* EncNet 52 10 219 179 40 42.6/44.0
ResNet ResNet-101 UPerNet 83 41 258 42 215 43.8/44.9
CCNet ResNet-101* CCNet 66 24 279 179 100 43.7/45.0
Ours ResNet-101* SPADe 46 4 224 179 45 44.5/44.9

DaViT DaViT-B UPerNet 121 34 293 84 209 49.4

Ours DaViT-B SPADe 91 4 124 84 40 494
Shuffle Transformer Shuffle-S UPerNet 81 - - 261 - - 48.4/49.6
! FocalNet Focal-B UPerNet 126 90 - 1354 - - 49.0/50.5
;g QFormer-B QFormer-By, UPerNet 123 90* - - - - 49.5/50.6
= UniFormer UniFormer-By, ., UPerNet 80 50%* - 276 - - 49.5/50.7
CEDNet-NeXt-B ConvNeXt-B CED 123 - 296 - - 49.9/51.0
Swin Transformer Swin-B UPerNet 120 33 306 94 212 50.8/52.4
Ours Swin-B SPADe 91 4 133 94 40 51.2/51.8
KNetf Swin-L KNet 245 195 50 659 291 368 52.2/53.3
© Swin Transformer! Swin-L UPerNet 232 195 37 662 327 334 - 1535
2 SenFormer' Swin-L SenFormer 233 195 38 546 327 219 53.1/ -
= Ours Swin-L SPADe 199 195 4 246 206 40 52.6/53.8
ConvNeXtT ConvNeXt-XL UPerNet 391 348 43 834 498 336 53.6/54.0
Ours’ ConvNeXt-XL SPADe 352 348 4 560 498 62 53.8/54.0

(a) Image (b) Ground Truth

(c) UPerNet (d) SPADe

Fig. 8. Comparison of SPADe and UPerNet on two images of Cityscape val.

2) Efficiency Analysis: Tables 1 and II also report the
efficiency in terms of parameter size and GFlops. Testing
with Cityscapes, our SPADe consistently achieves the lowest
parameter size of 4M for the decoder. SPADe with ResNet-
101 has a low GFlops profile while obtaining the best mloU.
With Swin-L it improves the decoder GFlops by 71.8% while
for ConvNeXt-XL this gain reaches 81.78% compared to the
second-best. When SPADe is used, the model size is reduced
from 14.59% and 9.97% for Swin-L and ConvNeXt-XL. com-
pared to the second-best. Using the Internlmage backbone,
SPADe obtained a significant reduction of decoder parameters
and GFlops at 89.74% and 81.64% in contrast to UPerNet.

In the experiments using ADE20k, the best-performing
model in ms mloU with ResNet-101 backbone has a GFlops

of 215, while SPADe obtains a similar performance with
90.24% reduction in decoder size and 81.39% lower decoder
GFlops. Compared to CCNet, the top-performing method with
ResNet-101-D8 backbone, SPADe has lowered the decoder
computation by a margin of 55.0% while its size is 16.66%
of CCNet. We also note that the best-performing decoders
in terms of GFlops, with ResNet-101 and ResNet-101-DS§,
sacrifice the mIoU to gain lower computational cost. With the
DaViT our model has 30M fewer parameters overall and only
19.13% decoder GFlops with the same mloU.

For the large backbones, such as Swin-L and ConvNeXt-
XL, the same trend is observed as both decoder size and
GFlops have best-performing stats, with 89.19% and 81.73%
for the decoder size and GFlops improvement of SPADe over
the second-best for Swin-L, as well as 90.69% and 81.54% of
decoder size and GFlops improvement with ConvNeXt-XL.
In conclusion, our SPADe model achieves a very competitive
efficiency, boasting the smallest parameter size and GFlops on
Cityscapes and ADE20k benchmarks in many cases.

3) Performance and Efficiency Trade-off: In practice, we
often aim at balancing performance and efficiency. Fig. 9
illustrates a diagram of the computational cost (GFlops), the
performance (mloU), and the size of decoders. The colors of
the circles categorize them in terms of backbone, while the
size of the decoder for each model is visualized using the size
of the solid circle representing the model.

A model with high GFlops and low mloU falls closer to the
upper left corner of the space, while a competitive model with
high mIoU and low GFlops tends to lie near the lower right
corner of the space. Models such as FPN lie in the lower left
corner, showing low computational cost, decoder size, and low
mloU for both datasets. On the contrary, UPerNet lies close
to the upper right corner, demonstrating high performance,
but with a high cost and decoder size. Our SPADe networks
are at the lower range of the GFlops and, depending on the
backbone networks used, achieve very competitive mloU. That
is, a smaller decoder size, competitive mloU, and lower cost
are achieved compared to the models using the same backbone,
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Fig. 9. GFlops vs. mloU of the compared methods.

(e a SR 4 |

Fig. 10. The average receptive field of the SPADe.

letting it land closer to the lower right region of the space.
This is evident that the proposed method achieves a superior
balance of performance and cost.

D. Effect of Decoder on the Receptive Field

Fig. 10 illustrates the average receptive field of the SPADe
for 100 images when predicting the label of the center pixel.
Our model captures the contextual information in four groups
of circles according to the radius size. Hot colors represent
greater gradients, which indicate the most attention and the
regions that contribute in a higher magnitude towards the
prediction. The S| category groups pixels in a small neighbor-
hood, with a relatively lower level of importance, according
to their color. Given that the network keeps processing the
features, the receptive field increases, leading to the formation
of large pixel groups such as S, S3, and S4.

Additionally, the overlap of pixel groups, e.g., §; and
S,, increases the attention to the pixel in their intersection,
which leads to assigning greater gradients and consequently
warmer colors to them. A sample of our overlapping pattern
is highlighted with a double circle in the middle of the image,
where S, S», and S; patterns are interlaced.

To illustrate the difference in the overall receptive field of
a model, we implement the network using ResNet-101 as
the backbone network for the encoder, followed by different
decoders.

The receptive fields of the networks are shown in Fig. 11. In
contrast to ICNet, UPerNet, GCNet, APCNet, and Non-Local
Net, which mainly attend to a small neighborhood around the
center pixel, our model attends to most parts of the image. It
covers an appropriate contextual scope concerning the objects.
CCNet focuses more on a narrow vertical and horizontal region
near the center of the pixel of interest. Although DeepLab-V3+
shows a similar receptive field pattern, repetition of multi-
path convolution and folding enables our decoder to adapt
the receptive field for a larger coverage. Hence, our SPADe
network ensures the capture of local features and provides
extensive contextual information with a large receptive field.

E. Evaluation on the Repetition of Processing Block

SPADe uses several repetitions (denoted with L) of SPA.
The choice of L has an impact on the receptive field of
the network. By using more parallel convolutions of different

Authorized licensed use limited to: University of North Texas. Downloaded on October 09,2025 at 00:42:38 UTC from IEEE Xplore. Restrictions apply.



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

XIE et al.: SPADe FOR SEMANTIC SEGMENTATION OF STREET VIEWS

-.-
o

CCNet

DeepLabV3+
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Fig. 11. Average receptive field of decoders for 100 images of Cityscapes
val. The backbone is ResNet-101. SPADe considers a larger context.

TABLE III

EFFECT OF L USING CITYSCAPES VAL.
USE SINGLE-SCALE TESTING

L | Param.(M)  GFlops mloU
1 44.16 229 79.64
2 45.24 278 80.01
3 46.32 327 80.65

Atrous rates, the network adjusts the contribution of the spatial
context. Table III reports the results using different values for
L. When L is increased, the mloU of SPADe also increases.
Comparing the cases when L = 1 to L = 2, the model obtains
0.5% higher mloU while adding only 1.08 M additional
parameters. An L = 3 improves the performance further by
another 0.5% mloU. In each increment of L value, we observe
only an increase of 49 GFlops. It is clear that as we increase
the number of repetitions of the SPA module, the mloU
improves. However, more SPA modules used in the SPADe
network require a greater memory space and computation.
In the rest of our experiments, we set the number of SPA
repetitions to 3 in our SPADe network.

Table IV gives a detailed view of the class-wise performance
of our method when different L values are used. The average
mloU of all classes is also reported at the end of the table. A
larger value for L improves the model performance on the
majority of classes, which includes the classes comprising
small objects such as traffic lights and persons, and the ones
primarily composed of large objects such as roads and cars.
For the classes with small objects, the large receptive field
helps SPADe to recognize the object’s surroundings and make
better predictions. For bigger objects, due to the size, not

TABLE IV
CLASS-WISE MIOU OF SPADE WITH RESNET-101 ON CITYSCAPES VAL

Model | road  swalk  build. wall fence pole
L=1 98.14 8526 9290 5042 6274  68.27
L=2 98.24 85.69 93.09 5384 6230 6890
L=3 98.32 8640 93.03 5583 6299 69.23
tlight sign veg. terrain sky person  rider
73.49 81.37 9262 6634  95.26 8423  67.69
73.85 82.07 92,69 64.07 95.15 84.11  67.11
74.41 81.80 92.77 67.19  95.17 84.33 66.79
car truck bus train mbike  bike mloU
95.69 8249 88.74 7727  70.86  79.46 79.64
95.72 86.75 90.05 76.77 7183  79.59 80.01
95.82 8491 9044 81.09 71.61 79.54 80.65
TABLE V

THE MIOUS USING CITYSCAPES VAL.. THE CHECK MARKS
INDICATE THE INCLUSION OF THE COMPONENT

Case | Folding Multi-Path DW  mloU(ss)
1 X 1,8, 18 79.66
2 v 1 76.51
3 v 1,8 80.72
4 v 1,8, 18 80.61
5 v 1, 18, 36 80.72

only is contextual information around the object important,
but keeping high prediction consistency across all pixels of the
object is a challenge. This problem is alleviated by larger Ls,
leading to an overall improved performance. Overall, a deeper
SPADe network exhibits greater performance in accurately
segmenting and labeling the objects, such as the increased
mloU by 0.71%, 1.99%, 3.12%, and 4.32% for sidewalk, wall,
terrain, and train classes, respectively. Such improvements are
achieved at the expense of a small cost of 49 GFlops.

F. Multi-Path Depthwise Convolutions

We conduct experiments using different dilation rates with
and without folding to evaluate folding and multi-path feature
processing in SPA. Five cases are reported in Table V. In the
first case, we use no 4-neighbor folding and only use the three
parallel convolutions. The rest of the cases include folding but
have a different number of convolutions.

Cases 1 and 4 differ in the inclusion of folding. Without
folding, the mloU is 79.66%, whereas the inclusion of folding
improves the performance to 80.61%, which is an increase
of 1.19%. When folding is used with a 1 x 1 convolution,
the performance degrades dramatically by 5.5%, comparing
cases 2 and 5. Involving two or three parallel convolutions
benefits the performance to a similar extent. However, we use
the configuration in case 5 as a larger atrous range benefits
the model when processing the images as a whole rather than
using a sliding window operation. Both folding and multi-path
convolutions are essential parts of SPA to achieve improved
performance compared to the baseline. Folding benefits SPA
by providing contextual information in a locality, while multi-
path depthwise convolution leverages long-range dependencies
of pixels to improve the performance of the SPADe.
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V. CONCLUSION

This paper presents a SPADe network with a decoder
module SPA for semantic segmentation. The SPADe network
uses a multi-contextual feature fusion approach, combin-
ing feature maps from different spatial contexts to produce
high-quality segmentation results with low computation. SPA
decoder increases the receptive field, capturing a larger con-
textual scope, with a sparse convolution kernel to balance the
accuracy and efficiency. Our results demonstrate that SPADe
with InternImage-XL backbone achieved performance using
Cityscapes, with 34.95% fewer Flops and only 9.75% of
the parameters compared to UPerNet. Using ADE20K, our
method with ConvNeXt-XL achieved comparable performance
to the state-of-the-art while reducing Flops by 32.85% com-
pared to UPerNet. Additionally, when using the ResNet-101
backbone on Cityscapes, our decoder achieves the second-best
in Flops. Increasing the number of levels of SPA improved
the mloU by 1%. Additionally, incorporating folding and
dilated depthwise convolution helped SPADe achieve a 1.06%
mloU gain. Notably, SPADe offers the largest effective recep-
tive field when compared to state-of-the-art using the same
backbone.

Despite the enhancement in semantic segmentation accu-
racy and a reduction in both model size and computational
efficiency, there is still room for improvement, particularly for
real-world applications where computational power is limited
and sub-second response is expected. Our future study will
explore hierarchical SPAs with sparse connections to reduce
the computation costs. In addition, a dual-branch network
structure could be investigated to alleviate the demand for
large video memories and, hence, enable the deployment in
edge devices.
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