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 A B S T R A C T

Planar tracking has drawn increasing interest owing to its key roles in robotics and augmented reality. Despite 
recent great advancement, further development of planar tracking, particularly in the deep learning era, is 
largely limited compared to generic tracking due to the lack of large-scale platforms. To mitigate this, we 
propose PlanarTrack, a large-scale high-quality and challenging benchmark for planar tracking. Specifically, 
PlanarTrack consists of 1150 sequences with over 733K frames, including 1000 short-term and 150 new long-
term videos, which enables comprehensive evaluation of short- and long-term tracking performance. All videos 
in PlanarTrack are recorded in unconstrained conditions from the wild, which makes PlanarTrack challenging 
but more realistic for real-world applications. To ensure high-quality annotations, each video frame is manually 
annotated by four corner points with multi-round meticulous inspection and refinement. To enhance target 
diversity of PlanarTrack, we only capture a unique target in one sequence, which is different from existing 
benchmarks. To our best knowledge, PlanarTrack is by far the largest and most diverse and challenging dataset 
dedicated to planar tracking. To understand performance of existing methods on PlanarTrack and to provide a 
comparison for future research, we evaluate 10 representative planar trackers with extensive comparison and 
in-depth analysis. Our evaluation reveals that, unsurprisingly, the top planar trackers heavily degrade on the 
challenging PlanarTrack, which indicates more efforts are required for improving planar tracking. Moreover, 
we derive a variant named PlanarTrackBB from PlanarTrack for generic tracking. Evaluation with 15 generic 
trackers shows that, surprisingly, our PlanarTrackBB is even more challenging than several popular generic 
tracking benchmarks, and more attention should be paid to dealing with planar targets, though they are rigid. 
Our data and results will be released at https://github.com/HengLan/PlanarTrack
. Introduction

Planar object tracking is a fundamental problem in computer vision. 
ifferent from generic object tracking which aims at localizing the tar-
et with axis-aligned rectangle bounding boxes (Wu et al., 2013; Huang 
t al., 2019; Fan et al., 2019), the goal of planar object tracking is to 
redict the 2D transformations (e.g., the homograph) of a target (e.g., 
urface or plane of the object) and locate it with four corner points (see 
ig.  1). Because of its important applications in augmented reality (AR) 
e.g., Comport et al., 2003; Wagner et al., 2009; Matveichev and Lin, 
021) and robotics (e.g., Mondragón et al., 2010; Corso et al., 2003), 
lanar object tracking has attracted increasing interest in recent years. 
articularly, with the introduction of several benchmarks (e.g., Liang 
t al., 2018, 2021; Roy et al., 2015), great progress has been seen in 
lanar object tracking (e.g., Zhan et al., 2022; Zhang and Ling, 2022; 
erỳch and Matas, 2023; Li et al., 2023). Despite this, these datasets are 
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largely limited in further facilitating the development of planar object 
tracking, due to the following reasons:
Small-scale. One major issue with existing benchmarks is their rela-
tively small scales. Especially, in the deep learning era, in order to 
unleash the potential of deep planar tracking, a large-scale platform 
with a great number of video sequences is highly desired for training. 
As demonstrated in Fig.  2, however, all existing datasets comprise
less than 300 video sequences, which is far from being sufficient for 
training deep planar trackers. As a result, researchers in the commu-
nity have to utilize synthetic data generated from images (e.g., Lin 
et al., 2014) or videos from the generic bounding box-based tracking 
benchmark (e.g., Huang et al., 2019) for deep planar tracking, which 
may result in suboptimal performance because of domain gap among 
different tasks. In addition to the training of deep planar trackers, a
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Fig. 1. Comparison between generic object tracking (a) and planar object tracking (b). The former estimates axis-aligned rectangular bounding boxes for the 
target object, while the latter (our focus in this work) calculates 2D transformations of the target object to obtain the corresponding corner points for localization. 
All figures throughout this paper are best viewed in color and by zooming in. (For interpretation of the references to color in this figure legend, the reader is 
referred to the web version of this article.)
large-scale platform is necessary for reliable evaluation and comparison 
of different algorithms.
Less challenging scenario. Real-world scenarios are often challenging 
and complicated. Nevertheless, early planar tracking datasets (e.g.,
Lieberknecht et al., 2009; Roy et al., 2015; Gauglitz et al., 2011; Chen 
et al., 2017) are developed from indoor laboratory environments with 
simple background, which cannot fully reflect the complicated and 
diverse scenarios in real applications while evaluating. To handle this, 
recent datasets (e.g., Liang et al., 2018, 2021) directly collect videos 
in the wild. However, most sequences in these benchmarks are mainly 
involved with one challenge factor (or attribute in generic tracking), 
and very few (e.g., 30 videos in Liang et al. (2018) and 40 videos 
in Liang et al. (2021)) contain multiple challenges (i.e., the uncon-
strained condition). This may weaken the difficulties of planar tracking 
in the wild where arbitrary challenges could occur simultaneously, and 
thus restricts their usage in evaluating the generalization of planar 
tracking systems in the real world.
Limited diversity. The diversity of target objects is crucial for a 
tracking benchmark. In existing planar tracking datasets, the sample 
planar target is often utilized in multiple sequences, which largely 
reduces the diversity in target appearance and may lead to bias in 
performance assessment. For example, for the current largest planar 
tracking benchmark (Liang et al., 2021) (one target used in 7 videos), 
the number of planar targets does not exceed 40 (see Table  1). Such 
lack of diversity makes it difficult to use the current benchmarks for 
faithful evaluation of planar trackers in practice.
Lack of long-term tracking. The task of long-term tracking is more 
challenging and holds greater practical significance compared to short-
term tracking. This is because long-term tracking requires algorithms 
capable of continuously capturing the target object over extended dura-
tions, while effectively handling scenarios wherein the target frequently 
disappears and reappears. This complexity makes long-term tracking 
tasks more reflective of real-world applications. In order to be deployed 
in real applications, a planar tracker is expected to perform well in 
not only short-term scenarios but also in long-term videos. Yet, existing 
benchmarks either contain only short-term videos (e.g., Gauglitz et al., 
2011; Liang et al., 2018, 2021) with an average length of less than 
1000 frames or just a few long-term videos (e.g., Roy et al., 2015; Chen 
et al., 2017). We note that the benchmark of Lieberknecht et al. (2009) 
could serve as a testbed for long-term planar tracking by containing 
40 long sequences with an average length of 1200 frames. However, 
its diversity (with 5 targets) and scale (40 sequences in total) are 
significantly limited in further facilitating the development of planar 
tracking.

We notice that there exist several large-scale benchmarks (e.g.,
Muller et al., 2018; Fan et al., 2019; Huang et al., 2019; Peng et al., 
2

Fig. 2. Summary of planar object tracking datasets, containing POT-
280 (Liang et al., 2021), POT-210 (Liang et al., 2018), TMT (Roy et al., 2015), 
UCSB (Gauglitz et al., 2011), Metiao (Lieberknecht et al., 2009), POIC (Chen 
et al., 2017), our PlanarTrack and PlanarTrack∗ from conference version (Liu 
et al., 2023). The circle diameter is in proportion to the number of frames of 
a dataset. Our PlanarTrack is the largest benchmark.

2024) for generic tracking. However, planar tracking differs fundamen-
tally from generic tracking: instead of predicting bounding boxes, it 
requires estimating 2D homography via four corner points, which is 
crucial for applications such as augmented reality and robotics. Such 
geometric precision cannot be reliably achieved by post-processing 
generic trackers, as bounding boxes provide insufficient information 
and small errors are easily amplified. Owing to these different goals and 
settings (see Fig.  1), existing generic datasets are not suitable for planar 
tracking. In addition, a recent benchmark named MPOT-3K (Zhang 
et al., 2023) with 356 videos has been introduced for multi-planar 
tracking, which differs from the goal of single-planar tracking and is 
therefore not directly applicable. To further facilitate research on deep 
planar tracking, a dedicated large-scale benchmark is desired, which 
motivates our work.

Unlike generic tracking that only predicts bounding boxes, planar 
tracking estimates 2D homography via four corner points, which is 
essential for applications such as augmented reality and robotics. Ap-
proximating this task by post-processing generic trackers is unreliable, 
as bounding boxes lack sufficient geometric information and small 
errors are easily amplified. 
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Table 1
Detailed comparison of the proposed PlanarTrack with other existing planar object tracking benchmarks. PlanarTrack∗ denotes for the 
conference version of PlanarTrack.
Benchmark Year Targets Videos Min

frames
Mean
frames

Max
frames

Total
frames

Annotated
frames

Unconstrain-
ed videos

In the
wild

Metaio (Lieberknecht et al., 2009) 2009 8 40 1200 1200 1200 48K 48K n/a 7

UCSB (Gauglitz et al., 2011) 2011 6 96 13 72 500 7K 7K n/a 7

TMT (Roy et al., 2015) 2015 12 109 191 648 2518 71K 71K n/a 7

POIC (Chen et al., 2017) 2017 20 20 283 1149 2666 23K 23K n/a 7

POT-210 (Liang et al., 2018) 2018 30 210 501 501 501 105K 53K 30 3

POT-280 (Liang et al., 2021) 2021 40 280 501 501 501 140K 70K 40 3

PlanarTrack∗ (Liu et al., 2023) 2023 1000 1000 317 490 549 490K 490K 1000 3

PlanarTrack 2024 1150 1150 317 638 3352 733K 733K 1150 3
1.1. Contribution

In this paper, we propose to develop a novel large-scale bench-
mark, named PlanarTrack, dedicated to planar object tracking. The 
contributions of PlanarTrack are summarized as follows:

(1) We present a dedicated large-scale benchmark, PlanarTrack, for 
planar object tracking. PlanarTrack contains 1150 sequences with 
more than 733K frames. All these videos are directly recorded 
in complicated unconstrained conditions from the wild scenarios. 
Compared to existing datasets (e.g., Chen et al., 2017; Gauglitz 
et al., 2011; Liang et al., 2021, 2018; Lieberknecht et al., 2009; 
Roy et al., 2015), our PlanarTrack is much more challenging yet 
realistic in real applications. For each frame in PlanarTrack, we 
carefully inspected and manually annotated the coordinates of four 
corner points. To ensure annotation quality, each annotation is 
double-verified and corrected if necessary. As far as we know, 
PlanarTrack is so far the largest (in terms of the number of se-
quences and frames) and most challenging planar tracking dataset 
with high-quality dense annotations. By developing PlanarTrack, 
we aim to provide a dedicated large-scale platform for promoting 
the development and evaluations of deep-learning-based planar 
trackers.

(2) There is a huge increase in diversity of targets in PlanarTrack, 
compared to existing datasets. There are 1150 different targets 
while other datasets only contain 40 targets at most. The diversity 
of PlanarTrack makes a contribution to a more effective training 
and more equitable evaluations.

(3) PlanarTrack gives an opportunity for evaluation of long-term track-
ing. 150 out of 1150 sequences are produced as long sequences 
with an average length of 1622 frames. Further more, there are 4
ultra-long sequences longer than 3000 frames, enabling assessment 
of long-term trackers. Experiments on long-term and short-term 
sequences show that all planar trackers struggle to maintain target 
capture over extended periods, indicating the need for further 
research into long-term tracking.

(4) We offer more challenging information in PlanarTrack. Almost 
all sequences have multiple challenging factors (i.e., unconstrained 
conditions) which are closer to the realistic scenarios, while existing 
benchmarks contain no or little unconstrained videos. Researchers 
can further understand planar trackers by carrying out experiments 
on different challenging factors.

(5) To analyze PlanarTrack and provide comparisons for future re-
search, we evaluate 10 recent planar object tracking algorithms. 
Evaluation results show that all the trackers significantly decline 
on our more challenging PlanarTrack, which indicates that more 
efforts should be made for improvements. We further conduct 
an overall analysis of different challenging factors and long-term 
tracking with discussion to provide a guidance for future research. 
Besides, our re-training experiments show the usefulness and effec-
tiveness of our benchmark in performance enhancement.

(6) To observe the performance of generic trackers in localizing planar-
like targets, we develop PlanarTrackBB, a by-product of Planar-
Track which is suitable for generic box tracking. We aim at large-
scale learning and evaluation of generic trackers on tracking rigid
3

targets, which is rarely investigated before. To this end, we select 
15 top-performance transformer-based generic trackers for eval-
uation on PlanarTrackBB. Results show that all trackers reveal 
heavy performance degeneration on PlanarTrackBB compared with 
existing large-scale generic tracking benchmarks (e.g., LaSOT Fan 
et al., 2019 and TrackingNet Muller et al., 2018). More efforts 
should be made to handle planar objects though they are rigid.

This paper extends an early conference version in Liu et al. (2023). 
The main new contributions are as follows. (i) We expand the scale 
of PlanarTrack to be about 1.5 times larger in term of number of 
frames by introducing 243,326 new images with precise annotations.
(ii) For long-term tracking, we introduce 150 long sequences with an 
average length of 1622 frames, among which 4 ultra-long sequences 
longer than 3000 frames are contained. Additional experiments have 
been conducted to highlight the significance of long-term planar object 
tracking. (iii) More details of PlanarTrack construction are provided.
(iv) More thorough experiments and in-depth analysis are conducted 
on PlanarTrack for planar object tracking and PlanarTrackBB for generic 
tracking relatively, in order to show the advantages and necessity of 
dedicated large-scale benchmark.

The rest of this paper is organized as follows. Section 2 briefly 
introduces related tracking algorithms and benchmarks. In Section 3, 
we describe the construction of our PlanarTrack in detail with a com-
prehensive analysis of benchmark attributes. Experimental evaluation 
results and in-depth analysis are conducted in Section 4 for better 
understanding. Section 5 reports the construction of PlanarTrackBB and 
generic tracking experiments, followed by a conclusion in Section 6.

2. Related work

2.1. Planar tracking algorithms

Planar object tracking is a fundamental computer vision task, which 
aims at recovering the homography from the template to the cur-
rent frame. Here we briefly review three mainstream trends includ-
ing keypoint-based methods, region-based methods and deep-learning-
based methods.
Keypoint-based methods Keypoint-based  algorithms  (Dick et al., 
2013; Ozuysal et al., 2009; Wang and Ling, 2017; Hare et al., 2012; 
Zhao et al., 2015) typically represent an object with a set of points 
and their descriptors. Their tracking process is divided into two steps. 
Firstly, trackers detect the keypoints of objects (e.g., SIFT Lowe, 2004, 
SURF Bay et al., 2008 and FAST Rosten et al., 2008). A pair of corre-
spondences between object and image keypoints is established through 
descriptor matching. Then, a robust homography is estimated with ge-
ometric estimation algorithms (e.g., RANSAC Fischler and Bolles, 1981 
and its variants Torr and Zisserman, 2000; Chum and Matas, 2005). To 
deal with the huge per-frame motions, an approximate nearest neighbor 
search to estimate per-frame state updates is introduced in Dick et al. 
(2013). Authors in Ozuysal et al. (2009) propose to detect objects 
by leveraging hundreds of binary features and models class posterior 
probabilities in a naive Bayesian classification framework, making it 
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perform remarkably on datasets containing very significant perspective 
changes with less computational costs. A graph is applied in Wang and 
Ling (2017) to model a planar object and represent its structure, instead 
of a simple collection of keypoints.
Region-based methods Region-based methods (e.g., Benhimane and 
Malis, 2004; Richa et al., 2011; Chen et al., 2017; Tan and Ilic, 
2014) are sometimes called direct methods. These methods formulate 
the planar tracking task as an image registration problem. They directly 
estimate the homography by optimizing the alignment of the current 
frame with the object of the initial frame. The work of Benhimane 
and Malis (2004) presents a tracking algorithm based on minimiz-
ing the sum-of-squared-difference between a given template and the 
current image. The proposed minimization method is a second-order 
one, making it unnecessary to compute the Hessian and achieve the 
high convergence rate. To reduce the impact of non-linear illumination 
variations, the authors in Richa et al. (2011) introduced a direct track-
ing method based on an image similarity measure called the sum of 
conditional variance (SCV). The SCV requires less iterations to converge 
and has a significantly larger convergence radius, and achieves excel-
lent performance under challenging illumination conditions and rapid 
motions. The work of Chen et al. (2017) also measures the similarity 
between two images through a second-order minimization method for 
planar object tracking. They suggested a denoising method based on 
the Perona–Malik function and a mask image to improve the robustness 
against image noise and low texture.
Deep-learning-based methods In addition to the above two types, 
another popular trend is to regress the homography with the deep 
neural networks (Zhan et al., 2022; Zhang and Ling, 2022; Li et al., 
2023; Erlik Nowruzi et al., 2017; Wang et al., 2018; Liu et al., 2019; 
Sarlin et al., 2020; Šerỳch and Matas, 2023). A hierarchy of twin convo-
lutional regression networks is introduced in Erlik Nowruzi et al. (2017) 
to estimate the homography between a pair of images. The framework 
achieves high performance with simple hierarchical arrangement of 
simple models due to the iterative nature. In Zhan et al. (2022), 
a novel homography decomposition approach is proposed to reduce 
and stabilize the condition number by decomposing the homography 
transformation into two groups and is trained in a semi-supervised 
fashion. Dense optical flow with weight is introduced in Šerỳch and 
Matas (2023) to estimate a homography by weighted least squares in a 
fully differentiable manner. HDN (Zhan et al., 2022) further improves 
robustness by introducing a homography decomposition network with 
semi-supervised learning, enabling stable estimation under challenging 
conditions. More recently, WOFT (Šerỳch and Matas, 2023) formulates 
planar tracking as weighted optical flow estimation, where homogra-
phy is obtained via differentiable weighted least squares, achieving 
strong performance on multiple benchmarks. The above deep-learning-
based planar trackers can not only avoid complicated keypoint feature 
extraction and be trained end to end, but also achieve outstanding 
performance. Thus, the deep regression-based methods have attracted 
increasing attention in planar tracking.

2.2. Planar tracking benchmarks

Datasets have played an important role in facilitating the devel-
opment of planar object tracking. In recent years, there have been 
several planar tracking benchmarks, including Metaio (Lieberknecht 
et al., 2009), UCSB (Gauglitz et al., 2011), TMT (Roy et al., 2015), 
POIC (Chen et al., 2017), POT (POT-210 Liang et al., 2018, POT-
280 Liang et al., 2021) and MPOT-3K (Zhang et al., 2023). Table  1 
provides a detailed comparison between these benchmarks.
Metaio Metaio (Lieberknecht et al., 2009) is one of the earliest datasets 
for planar tracking. It consists of 40 videos with eight different textures 
using a camera mounted on the robotic measurement arm. The ratio of 
4

successfully tracked images is used for measuring the performance of 
the planar trackers.
UCSB UCSB (Gauglitz et al., 2011) has 96 sequences, containing six 
planar textures with 16 motion patterns each. The ground truth is 
semi-automatically annotated using four red markers fixed on a glass 
frame.

TMT TMT (Roy et al., 2015) comprises 109 sequences and each one is 
labeled with a challenging factor. Three trackers are used for ground 
truth annotations. The coordinates of four corners are determined when 
all three trackers are agree within a certain range. The goal of TMT is 
to evaluate different planar tracking algorithms for human and robot 
manipulation tasks.
POIC POIC (Chen et al., 2017) contains 10 sequences with total of 
6663 frames. Objects with varying texture and lambertian/specular 
materials are provided to evaluate the performance of planar trackers 
in challenging complicated illumination environments.
POT Different from the above dataset collected from a simple lab-
oratory environment, POT-210 (Liang et al., 2018) is the first one 
providing a dataset for planar object tracking in the wild, which 
contains 210 sequences of 30 planar objects. It is further extended to 
POT-280 in Liang et al. (2021) by introducing 70 more sequences of 
another 10 objects. Each planar object in POT (Liang et al., 2018, 2021) 
is captured in seven videos. However, six of these form one challenge, 
and only one contains multiple challenges in unconstrained conditions.

Previous algorithms have primarily relied on the POIC and POT 
datasets for experimentation and analysis. However, both datasets have 
significant limitations. On the one hand, POIC is small in scale and lacks 
sufficient category diversity, making it inadequate for fairly evaluating 
deep-based planar trackers, while deep-based algorithms are the cur-
rent mainstream in this field. On the other hand, POT contains only 
seven sequences, six of which contains a single challenge factor, with 
only one sequence presenting multiple challenges under unconstrained 
conditions. This renders POT less representative of real-world scenarios. 
As a result, the field currently lacks a benchmark that addresses these 
shortcomings and provides a comprehensive evaluation framework for 
planar object tracking. To this end, we proposed PlanarTrack, the
largest and most challenging and diverse benchmark with high-quality
annotations for long-term planar object tracking. Table  1 displays a 
detailed comparison of our PlanarTrack with existing planar tracking 
benchmarks.

2.3. Large-scale generic tracking benchmarks

Large-scale benchmarks make it possible for efficient training and 
reliable evaluation, which have greatly facilitated the development 
of tracking in recent years. Examples of large-scale benchmarks in-
clude GOT-10k (Huang et al., 2019), LaSOT (Fan et al., 2019, 2021), 
TrackingNet (Muller et al., 2018), OxUvA (Valmadre et al., 2018), 
TNL2K (Wang et al., 2021b), and VastTrack (Peng et al., 2024).
GOT-10k GOT-10k (Huang et al., 2019) consists of 10K videos, aiming 
to provide rich motion trajectories for short-term tracking. It is the 
first one to propose a novel one-shot evaluation for assessing tracking 
performance.

LaSOT LaSOT (Fan et al., 2019) is a high-quality large-scale benchmark 
for single object tracking with 1400 sequences and more than 3.5M 
frames. The average sequence length is more than 2500 frames and 
each sequence has various challenges deriving from the wild. It is later 
extended in Fan et al. (2021) by providing 150 extra sequences.
TrackingNet TrackingNet (Muller et al., 2018) is the first large-scale 
dataset and benchmark for object tracking in the wild, which contains 
more than 30K videos with more than 14 million dense annotations. 
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Fig. 3. Distribution of classes and scenarios in all sequences. (a): Planar targets can be divided into 21 classes. Four representative classes are highlighted. (b): 
Videos are all collected in these 19 scenarios.
The goal of TrackingNet is to further improve and generalize deep 
trackers.

OxUvA OxUvA (Valmadre et al., 2018) consists of 366 sequences 
spanning 14 h, which is designed for long-term tracking. It is more 
challenging due to the frequent target disappearance.
TNL2K TNL2K (Wang et al., 2021b) comprises 2K sequences with 124K 
frames and 663 words, aiming to evaluate trackers specifically for 
vision-language tracking.
VastTrack VastTrack (Peng et al., 2024) is a recently proposed large-
scale generic tracking benchmark. It comprises over 50K video se-
quences with more than 2K categories, aiming to facilitate the explo-
ration of more general and universal tracking.

Different from the aforementioned benchmarks, PlanarTrack is
specifically designed for planar object tracking. Rather than using axis-
aligned rectangular bounding boxes for targets, PlanarTrack utilizes 
corner point annotations for improved precision.

3. The proposed PlanarTrack benchmark

3.1. Design principle

Our goal is to establish a dedicated benchmark, PlanarTrack, for 
training and evaluating planar object trackers. To this end, we follow 
five principles in establishing PlanarTrack, aiming at addressing all the 
issues of existing planar tracking benchmarks mentioned in previous 
sections:

Dedicated large-scale benchmark An important motivation for our 
work is to train and fairly evaluate the deep-learning-based planar 
trackers by providing a large-scale benchmark. For this purpose, we 
capture 1150 sequences with over 733K frames in the proposed bench-
mark, which is four times larger than the scale of POT-280 (Liang et al., 
2021).

Challenging realistic objects in the wild To preserve tracking chal-
lenges in complicated realistic scenarios and faithfully reflect the per-
formance of planar trackers in practice, videos of PlanarTrack are 
collected from natural scenarios with multiple challenge factors (i.e. 
unconstrained condition).
Long-term tracking sequences Frequent disappear and reenter is a 
common situation in long-term tracking. As a result, some long se-
quences should be included in the benchmark for evaluating long-term 
tracking algorithms.
Diverse planar objects The diversity of objects is crucial for the 
generalization of planar trackers. Considering this, the planar target in 
5

each sequence of our PlanarTrack should be unique, which is different 
from the existing benchmarks (e.g., POT-210/280 Liang et al., 2018, 
2021).

High-quality dense annotations Accurate annotations are indispens-
able for effective training and fair evaluation. Therefore, each frame 
in PlanarTrack is manually labeled with careful refinement by well-
trained annotators, in order to ensure the high-quality annotations.

3.2. Data collection

Different from existing generic object tracking benchmarks (Fan 
et al., 2019; Huang et al., 2019; Muller et al., 2018; Peng et al., 2024) 
that source videos from YouTube (https://www.youtube.com/), we 
construct our PlanarTrack by recording videos from reality. We record 
sequences from natural scenarios using mobile phone because we find 
that there are few videos focused on planar objects on YouTube. Specifi-
cally, we invite many volunteers who are familiar with planar tracking 
to capture videos using various phones with different resolutions, in 
order to diversify the video sources. Following the principles mentioned 
above, we select various categories of planar objects, including box,
poster, tag, picture, mirror, screen, traffic sign, tile, board, transparent 
plate and so on. Each sequence has a unique target and is captured 
in unconstrained conditions from various natural scenes (e.g. shopping 
mall, restaurant, library, dormitory, museum for indoor scenarios, campus,
street, playground, park, plaza for outdoor scenarios). We demonstrate 
the distribution of scenarios and classes in Fig.  3. From 3 we can see 
that, our PlanarTrack is highly diverse in both scenarios and classes. 
All sequences are collected in 19 scenarios, while the shopping mall 
occupies the highest percentage. For the diversity of objects, all planar 
targets are divided into 21 classes, in which the picture has the greatest 
number. We purposely capture some targets with unconventional ap-
pearance changes (e.g., screen, transparent plate and mirror) to enhance 
the challenge of our dataset.

In total, PlanarTrack is divided into two parts. The first part (part-
1 for short) contains 1000 sequences with an average length of 490 
frames. Initially, we collected over 2500 videos for part-1. After a 
careful inspection, we choose 1000 sequences which best meet the 
principles mentioned above. For these 1000 videos, we further verify 
their contents and remove inappropriate parts to ensure that they are 
suitable for planar tracking. Although the sequence length of part-1 can 
reach the level of the existing benchmark, part-1 does not address the is-
sue of long-term tracking. To this end, we introduce another part (part-2
for short), which comprises 150 long sequences with an average length 
of 1622 frames, which contains 4 ultra-long sequences of more than 
3000 frames. We at first recorded more than 300 sequences in other 

https://www.youtube.com/
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Fig. 4. Examples of annotated sequences in the proposed PlanarTrack. Each video is annotated with four corner points.
places different from part-1. In these long sequences, we capture objects 
that frequently enter and leave the view to reflect the real-world scenar-
ios. After carrying through the same selecting and preprocessing flow, 
we provide 150 sequences with the best quality in part-2. Eventually, 
we compile our PlanarTrack, a large-scale challenging benchmark ded-
icated to planar tracking by including 1150 unconstrained sequences 
with more than 733K frames from 1150 unique planar objects. Table 
1 provides a detailed summary of PlanarTrack and its comparison with 
existing planar tracking benchmarks.

3.3. Annotation

PlanarTrack is annotated by several well-trained annotators and 
experts. We manually label each frame to provide a high-quality dense 
annotation. We employed a customized annotation tool developed in 
MATLAB, which allowed annotators to mark the four corner points 
with zoom-in support under challenging conditions. Before annotation, 
annotators were trained with clear guidelines covering common cases, 
missing corners, and heavy occlusion or blur. Specifically, we annotate 
four corner points for the planar target of each frame in the given order 
if all its four corner points or four edges are clearly visible. When the 
four corner points and four edges are both hard to recognize due to the 
occlusion, out-of-view or heavy blur, we will assign an absent flag to 
this frame.

With the above strategy, we carry out the annotation by the follow-
ing workflow. Firstly, each sequence is annotated by an annotator. The 
annotation result is then distributed to two experts for double verifica-
tion. If the annotation is not unanimously approved by the experts, it 
will be returned to the original annotator for careful refinement. Such 
a verification-refinement process will last for multiple rounds until the 
annotation finally receives unanimous approval in order to ensure the 
6

high annotation quality. Fig.  4 shows some annotation examples of 
PlanarTrack.

In order to better understand our PlanarTrack, we show four rep-
resentative statistics of the annotations in Fig.  5, compared with POT-
210/280. Specifically, we present the distributions of target motion, 
target size (area of target), target scaling (relative area to the initial 
target) and Intersection over Union (IoU) between targets in adjacent 
frames. From Fig.  5, we find that the planar targets in PlanarTrack 
have rapid size changes and speed of movement. Compared to POT-
210/280 (Liang et al., 2018, 2021), PlanarTrack has relatively smaller 
target sizes and faster motions, while most target of POT-210/280 scale 
around 1 relative to the initial target and only moves a few pixels. 
Therefore, our PlanarTrack provides new challenges for planar tracking 
in the wild.

Notice that, since POT-210/280 labels every two frames, we per-
form linear interpolation on their annotations for statistics comparison.

3.4. Analysis of ground truth quality

Since the ground truth (GT) for each frame in our PlanarTrack 
dataset is manually annotated, some errors are inevitably introduced. 
To select appropriate evaluation metric thresholds and prevent re-
searchers from overfitting to GT errors, we conducted an analysis of 
the GT quality in PlanarTrack.

Specifically, following WOFT (Šerỳch and Matas, 2023), we ran-
domly selected a small subset from PlanarTrack, consisting of 10,920 
frames, which was meticulously annotated by two experts highly famil-
iar with planar object tracking, obtaining a refined GT. Subsequently, 
we computed the root of the mean square distances between the GT and 
the refined GT (i.e., the alignment error). Given four GT points 𝐱 ∈ 𝐗
𝑖
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Fig. 5. Statistics of planar target motion, size, relative area compared to initial object and IoU of targets in adjacent frames in PlanarTrack and comparison with 
the recent POT-210/280 (Liang et al., 2018, 2021). We can see the targets in our dataset have smaller sizes and faster and more challenging motions.
Fig. 6. Distribution of alignment error between the GT and the refined GT of 
PlanarTrack.

and four refined GT points 𝐱∗𝑖 ∈ 𝐗∗, the alignment error 𝑒AL can be 
calculated as 

𝑒AL(𝐗,𝐗∗) =

√

√

√

√
1
4

4
∑

𝑖=1

(

𝐱𝑖 − 𝐱∗𝑖
)2. (1)

The results indicate that the mean alignment error between the GT 
and the refined GT on the refined-annotated subset of PlanarTrack is
5.71 pixels. Fig.  6 illustrates the distribution of alignment errors, with
10.71% of annotations exhibiting errors exceeding 15 pixels. Please 
note that, our PlanarTrack includes a greater number of challenging 
scenarios, such as heavier blur, more extreme illumination changes, and
faster motion. These factors make our precise annotation more difficult. 
Consequently, compared to the GT quality of POT-210 reported in 
WOFT (Šerỳch and Matas, 2023), our PlanarTrack exhibits slightly 
higher errors.
7

3.5. Challenging factors

Following other tracking benchmarks (Liang et al., 2018; Fan et al., 
2021), we label each sequence with several challenging factors in 
PlanarTrack to further analyze planar tracking algorithms in different 
challenging conditions. Specifically, we define eight challenging factors 
that widely exist for planar tracking. The challenging factors are listed 
below:

Occlusion (OCC) Object is occluded by itself or other objects in the 
background. To increase the difficulty, we also manually occlude the 
object while moving the camera.
Motion Blur (MB) Motion blur caused by fast camera movement at low 
frame rates can generate the fuzzy corner points, making it difficult to 
track a planar object robustly.
Rotation (ROT) Rotation describes a common situation that an object’s 
direction is changed relative to the camera.
Scale Variation (SV) Scale variation is assigned when the ratio of 
planar annotation is outside the range [0.5, 2].
Perspective Distortion (PD) Perspective distortion is assigned when 
the perspective between the object and camera is changed.
Out-of-view (OV) Out-of-view is assigned when part or all of the object 
leaves the image, which makes some sides or corners of the target 
invisible.

Low Resolution (LR) Low resolution is assigned when the region of 
the target in any frame of a sequence is less than 1000 pixels.
Background Clutter (BC) Background clutter is assigned when the 
background region looks visually similar to the target, including similar 
colors, multiple similar targets, etc.
Light Interactive Surface (LIS) Light Interactive Surface is assigned 
when significant appearance changes of the planar object occur due 
to light phenomena such as reflection and refraction, e.g., mirrors and
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Fig. 7. Distribution of sequences on each challenging factor. (For interpreta-
tion of the references to color in this figure legend, the reader is referred to 
the web version of this article.)

transparent plates. Screens are also classified under this category, as the 
videos displayed on them can cause significant appearance changes.

It is worth mentioning that, some common challenging factors 
used in generic object tracking are not suitable for planar objects. 
Thus, we exclude a few of them, such as deformation and illumina-
tion change. The vast majority of sequences (1135 out of 1150) in 
PlanarTrack simultaneously contain multiple challenging factors (i.e., 
recorded in unconstrained conditions). Therefore, our PlanarTrack is 
much more challenging and practical for real applications, compared 
to POT-210/280.

The distribution of the above challenging factors on PlanarTrack is 
presented in Fig.  7. We notice that perspective distortion is the most 
common challenging factor in PlanarTrack, which may lead to serious 
misalignment problems for planar tracking. In addition, scale variation 
and rotation frequently exist in PlanarTrack.

3.6. Dataset split and evaluation metric

Training/Test Set Split PlanarTrack contains 1150 sequences. We use 
805 sequences for training (PlanarTrackTra) and 345 for evaluation 
(PlanarTrackTst). We try our best to keep the distributions of training 
and test sets close to each other. As for the four ultra-long sequences, 
we put two of them into a training set and the other two into a test set 
for long-term tracking and evaluation. Table  2 shows a comparison of 
these two sets.

For further comparison between training and test sets of Planar-
Track, we present the ratios of sequences in these two sets on eight 
different challenging factors in Fig.  8. From Fig.  8 we can see that, 
our split makes the training and test sets closing to each other, which 
ensures the consistency of training/test split in PlanarTrack. Notice 
that, the number of test sequences is significantly higher than training 
sequences on OV factor. This is because frequent disappearance may 
lead to a decrease of training data but make it more challenging for 
evaluation. Detailed split files will be released on our project website.
Evaluation Metric For the evaluation, we adopt the precision (PRE) 
metric following Liang et al. (2021). Please note here, we do not utilize 
the SUC metric as in previous studies for evaluation, because the SUC, 
that represents the percentage of successful frames in which the error 
between estimated and real homography is less than or equal to a 
certain threshold, depends heavily on the position of the target in the 
image. When the target is located in the bottom-right corner of the 
image, a very small tracker imprecision can lead to a huge re-projection 
error. This makes the SUC metric cannot access the true accuracy of 
tracking results.

However, there are some differences between our PRE and that 
used for generic tracking (Wu et al., 2013). For planar tracking, PRE 
8

Fig. 8. Distribution of challenging factor on training and testing sets.

Table 2
Comparison of training and test sets.
 Videos Min frames Mean frames Max frames Total frames 
 PlanarTrackTra 805 317 636 3352 512K  
 PlanarTrackTst 345 362 641 3150 221K  

is defined as the percentage of frames in which the alignment error 
between corner points of predicted result and groundtruth is within a 
given threshold. Based on the quality analysis of GT in Section 3.4, 
we selected 15 pixels as the primary threshold for the PRE metric. 
Additionally, since 75.98% of cases exhibit errors below 5 pixels, we 
retained the 5 px threshold for the PRE metric as used in POT-210. In 
summary, we adopted 5 px and 15 px thresholds for the PRE metrics to 
enable a more comprehensive evaluation, denoted as P@5 and P@15, 
respectively.

4. Evaluation

4.1. Evaluated planar object tracking algorithms

We do several evaluations of planar object trackers on PlanarTrack 
to demonstrate its reliability and novelty. As there are not many 
planar object trackers compared to generic tracking (actually, this is 
the biggest motivation for us to introduce PlanarTrack for promot-
ing research on planar object tracking), we select 10 representative 
algorithms about planar tracking with accessible source codes. Specif-
ically, these trackers are WOFT (Šerỳch and Matas, 2023), HDN (Zhan 
et al., 2022), GIFT (Liu et al., 2019), LISRD (Pautrat et al., 2020), 
SIFT (Lowe, 2004), Gracker (Wang and Ling, 2017), SOL (Hare et al., 
2012), SCV (Richa et al., 2011), ESM (Benhimane and Malis, 2004) 
and IC (Baker and Matthews, 2004). Particularly, WOFT (Šerỳch and 
Matas, 2023) and HDN (Zhan et al., 2022) are two recent planar 
trackers using deep learning. All other algorithms can be used for 
homography estimation. We modify them to the corresponding planar 
object trackers. It is worth mentioning that, we are not able to evaluate 
generic trackers on PlanarTrack because of the incompatible inputs and 
results. For this, we construct a new PlanarTrackBB for generic tracking 
evaluation, as described later.

4.2. Evaluation results

4.2.1. Overall performance
Totally, we evaluate 10 representative planar object trackers on 

PlanarTrackTst, among which WOFT and HDN are utilized without 
modifications as they are specifically developed for the planar tracking 
task. For the remaining methods, we modify them so that they can 
be used for planar object tracking. Their implementations except GIFT 
and LISRD are borrowed from Liang et al. (2018). We adapt GIFT 
and LISRD to planar object tracking due to some setting problems 
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Table 3
Summary of evaluated planar trackers. Representation: ‘‘Deep’’ for deep-learning-based Method, ‘‘Keypoint’’ for Keypoint-based 
Method, and ‘‘Direct’’ for Direct Method.
 Method Backbone Representation

 Deep Keypoint Direct 
 WOFT (Šerỳch and Matas, 2023) RAFT 3  
 HDN (Zhan et al., 2022) ResNet-50 3  
 GIFT (Liu et al., 2019) CNN 3  
 LISRD (Pautrat et al., 2020) VGG16 3  
 SIFT (Lowe, 2004) – 3  
 Gracker (Wang and Ling, 2017) – 3  
 SOL (Hare et al., 2012) – 3  
 SCV (Richa et al., 2011) – 3  
 ESM (Benhimane and Malis, 2004) – 3  
 IC (Baker and Matthews, 2004) – 3  
Fig. 9. Accuracy changes of two planar trackers WOFT and HDN with respect 
to frame number.

in Liang et al. (2018). Fig.  10 shows the evaluation results of the 
above approaches in P@5 and P@15. From Fig.  10 we can see that, 
WOFT achieves the best P@5 score of 0.402 and P@15 score of 0.607. 
GIFT applies transformation-invariant deep visual descriptors for planar 
object tracking, which demonstrates the second best P@5 score of 0.221 
and P@15 score of 0.402. Notice that, all the top four approaches 
leverage deep neural networks for planar target localization, which 
shows the great potential of deep-learning-based planar tracking in the 
future.

Short-term Tracking analysis Our PlanarTrack consists of 1000 se-
quences with an average length of 490 frames, which is suitable for 
short-term tracking. To evaluate the performance of deep-learning-
based planar trackers, we perform regular experiments on
PlanarTrackTst-300, the test set for short-term tracking. Evaluation re-
sults are shown in Table  4. WOFT achieves the highest P@15 score of 
0.641, which is obviously better than HDN.
Long-term Tracking analysis To analyze the performance of the 
top four methods in long-term planar object tracking, we demon-
strate the tracking results on PlanarTrackTst-300, PlanarTrackTst-45 and 
PlanarTrackTst-345 in Table  4. Notice that, PlanarTrackTst-45 is the test 
set consisting entirely of long sequences, while PlanarTrackTst-345 is 
the test set of the whole PlanarTrack. From Table  4, we can observe 
that both WOFT and HDN show performance degradation while HDN 
has the most significant decline in the long-term tracking scenario. 
Additionally, we plot the accuracy of these tow planar trackers as a 
function of frame number, as shown in Fig.  9. From Fig.  9, it can be 
observed that, the accuracy trends for the same tracker in the short-
term intervals of PlanarTrackTst-300 and PlanarTrackTst-45 are relatively 
similar. However, during long-term tracking on PlanarTrackTst-45, the 
accuracy consistently declines, suggesting that current trackers struggle 
to maintain target capture over extended periods. Several factors may 
contribute to this issue. For example, frequent disappearances and 
reappearances of the target over time can cause significant spatial shifts 
relative to the last successfully tracked frame, which is particularly 
9

Table 4
Comparison and analysis of two planar trackers in short-term tracking and 
long-term tracking. 
 WOFT HDN  
 PlanarTrackTst-300 P@5 0.433 0.263 
 P@15 0.641 0.499 
 PlanarTrackTst-45 P@5 0.253 0.085 
 P@15 0.379 0.164 
 PlanarTrackTst-345 P@5 0.402 0.211 
 P@15 0.607 0.455 

Fig. 10. Precision plots of all planar trackers on PlanarTrackTst using P@5 
score and P@15 score, respectively.

detrimental to trackers relying on displacement prediction. Addition-
ally, repeated appearance changes of the target over a long duration 
may exceed the trackers’ ability to manage long-term associations.

This highlights the need for a dedicated platform dedicated for long-
term planar object tracking, which could drive the development of 
advanced long-term tracking algorithms.

4.2.2. Challenging factor-based evaluation
For better analysis of different planar trackers, we further evaluate 

the above trackers on the eight challenging factors. Fig.  11 displays 
the tracking results on the two most common challenging factors 
(perspective distortion (PD) and scale variation (SV)) and on the two 
most difficult challenging factors (low resolution (LR) and light interactive 
surface (LIS)). From Fig.  11 we can see that, WOFT achieves the 
best performance on both the commonest and most difficult scenarios. 
Specifically, WOFT achieves the best P@15 scores of 0.610, 0.598, 
0.427 and 0.453 on PD, SV, LR and LIS, which again shows the 
importance of temporal information for planar tracking. Besides, the 
tracking performances severely decrease on LR and LIV. A reasonable 
explanation is that these two challenges may be harmful to the feature 
extraction of points or targets, leading to tracking drifts or failures. 
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Fig. 11. Precision plots of trackers on the two most common challenging 
factors including perspective distortion and scale variation and on the two most 
difficult challenging factors including low resolution and light interactive surface
using P@15.

From our perspective, research should be devoted to improvements in 
these two situations.

Fig.  12 shows the whole results on all 9 challenging factors with 
P@15 score. From Fig.  12 we observe that WOFT achieves the best 
performance on all 9 challenging factors with P@15 scores. HDN 
obtains the second best results on 8 out of 9 factors with P@15 
score. Among the four deep-learning-based tracking methods, WOFT 
is far ahead of the rest three approaches due to the introduction of 
temporal information. An interesting observation is that LISRD per-
forms extremely poorly on LR. A potential reason is that the small 
target information is buried in background when extract features by 
its CNN-based backbone.

4.2.3. Qualitative evaluation
To better understand the above planar trackers, we demonstrate 

sampled tracking results of them in different challenging factors such 
as background clutter, scale variation, perspective distortion, motion blur,
rotation, out-of-view, low resolution and ultra-long-term tracking in Fig. 
13. From Fig.  13 we observe that, although some trackers can deal with 
certain challenging factors, they may drift to the background region or 
fail to localize the planar target when multiple challenging factors occur 
simultaneously. For Fig.  13-(a), trackers except WOFT can only roughly 
localize the target with large alignment error because of the varying 
reflection and large scale variation. A possible solution to handle this 
issue is to use some temporal information with the last and current 
frames (like optical flow in WOFT). We also evaluate the trackers on 
our proposed ultra-long sequences (see Fig.  13-(f)). WOFT can localize 
the planar target in most frames benefit from its motion clues. However, 
it may misidentify when there are similar targets (Fig.  13-(g)).

4.3. Comparison with POT-210

POT-210 (Liang et al., 2018) is currently one of the most popular 
benchmarks for planar object tracking. However, there remain some 
10
Table 5
Comparison of PlanarTrackTst to POT-210 (Liang et al., 2018) and its subset 
POT-210UC in unconstrained condition using P@5 score. We also compare the 
P@5 score and P@15 score on our PlanarTrackTst.
Method POT-210 POT-210UC PlanarTrackTst

P@5 P@5 P@5 P@15

WOFT (Šerỳch and Matas, 2023) 0.805 0.768 0.402 0.607
HDN (Zhan et al., 2022) 0.612 0.567 0.211 0.455
GIFT (Liu et al., 2019) 0.553 0.528 0.221 0.402
LISRD (Pautrat et al., 2020) 0.617 0.581 0.192 0.325
SIFT (Lowe, 2004) 0.692 0.578 0.161 0.257
Gracker (Wang and Ling, 2017) 0.392 0.185 0.162 0.346
SOL (Hare et al., 2012) 0.417 0.289 0.131 0.208
SCV (Richa et al., 2011) 0.228 0.105 0.105 0.145
ESM (Benhimane and Malis, 2004) 0.204 0.100 0.090 0.128
IC (Baker and Matthews, 2004) 0.121 0.053 0.045 0.063

Table 6
Retraining of HDN (Zhan et al., 2022) using PlanarTrack𝐓𝐫𝐚.
 Original HDN Retrained HDN 
 POT-210 (Liang et al., 2018) P@5 0.612 0.637 (+2.5%)  
 PlanarTrackTst P@5 0.211 0.281 (+7.0%)  
 P@15 0.455 0.520 (+6.5%)  

issues that limit the development of deep-learning-based planar object 
tracking algorithms. Firstly, most videos of POT-210 contain mainly 
one challenging factor and very few (i.e. 30 in POT-210 and 40 in 
POT-280) are involved in unconstrained conditions. This could not 
faithfully reflect the difficulties and complexities in reality for evalu-
ation. Besides, the lack of planar target diversity also limits its usage. 
In addition, the biggest drawback is that POT-210 only contains 53K 
annotated frames (70K in POT-280), which is far from enough for 
training and fair evaluation. To address these issues, we first construct 
PlanarTrack with 1150 sequences and totally 733K frames, making it 
a large-scale benchmark for planar object tracking. For each sequence, 
we freely capture a unique target for diversity with multiple challeng-
ing factors. Therefore, our PlanarTrack is more challenging and realistic 
in practical applications.

To verify the above, we compare existing planar trackers on POT-
210 and PlanarTrackTst. Please note that, among the ten selected track-
ers, only four trackers are deep-based (i.e., WOFT, HDN, GIFT and 
LISRD) that require training before inference, as shown in Table  3. The 
remaining six trackers are training-free and can directly track planar 
objects. Therefore, in Table  5, we evaluate the performance of the 
six training-free trackers by directly performing inference on POT-210, 
POT210UC, and PlanarTrackTst . For the four deep-based trackers, we 
first train them on POT-210 and then perform inference on POT-210, 
POT210UC, and PlanarTrackTst to obtain the evaluation results.

Table  5 shows the tracking results. From Table  5 we observe that, 
WOFT achieves the best P@5 score of 0.805 and 0.768 on POT-
210 and POT210UC. However, when used for tracking planar targets 
on PlanarTrackTst, its performance is significantly degenerated. GIFT 
with the second best performance also absolutely declines from POT-
210 to PlanarTrackTst. Other trackers are declined more or less on 
PlanarTrackTst.

In addition to POT-210, we further compare POT-210UC, a small 
subset of POT-210 with all videos captured in unconstrained condi-
tions, with PlanarTrackTst in Table  5, as they are both have multiple 
challenging factors in a sequence. As in Table  5, tracking performances 
on POT-210UC are significantly worse than those on POT-210, which 
means that POT-210UC is more challenging than POT-210. Compared to 
POT-210UC, all trackers achieve the worst P@5 score on PlanarTrackTst, 
which implies that our PlanarTrack is challenging. The best tracker 
WOFT on POT-210UC shows P@5 score of 0.768, while it degrades to 
0.402 on PlanarTrack  with an absolute drop of 36.6%. 
Tst
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Fig. 12. Precision plots of trackers on each challenging factor using P@15 score. Best viewed in color.
From the above comparisons and analysis, we clearly see that POT-
210 is a little simple for existing deep-learning-based planar trackers, 
which limits the development of planar object tracking algorithms. 
By contrast, our PlanarTrack is more challenging, complicated and 
large enough for planar object tracking. There is still a big room for 
improving tracking performance on PlanarTrack.

4.4. Retraining on PlanarTrack

Deep-based algorithms often face the challenge of data hungry, 
where increasing the dataset size can significantly enhance general-
ization performance. As one of our central aspirations is to provide a 
large-scale platform for promoting the development of deep-learning-
based planar trackers, we conduct retraining experiments on Planar-
Track. Please note that, among the four deep-based algorithms, GIFT 
and LISRD are not end-to-end trackers and are not well-suited for 
11
retraining. WOFT released code but did not provide a training script. 
As a result, we performed the retraining experiments solely on HDN. 
Specifically, we retrain the recent HDN using PlanarTrackTra, instead 
of the synthetic data. While retraining, all the parameters and settings 
are kept the same as in the original method. After retraining, we 
demonstrate the results of HDN on POT-210 and PlanarTrackTst in 
Table  6. From Table  6, we observe consistent performance gains on 
the two benchmarks. In other words, leveraging enough task-specific 
data in training can obviously improve the tracking performance. In 
specific, after retraining and testing on POT-210 by a fixed training/test 
split, the P@5 scores on POT-210 are increased from 0.612 to 0.637, 
with an absolute improvement of 2.5%. On PlanarTrackTst, the P@5 
and P@15 scores have a more significant rise of 7.0%/6.5%, from 
0.211/0.455 to 0.281/0.520. These improvements show that a large-
scale training set is effective and necessary for improving planar object 
tracking performance.



Y. Jiao, X. Liu, X. Liu et al. Computer Vision and Image Understanding 262 (2025) 104553
Fig. 13. Qualitative results of six trackers with the highest precision scores on different sequences. We observe that these planar trackers drift to the background 
region or even lose the target object due to different challenging factors in the videos such as background clutter, scale variation, perspective distortion, motion 
blur, rotation, out-of-view and low resolution.
5. PlanarTrackBB and experiments

A certified generic tracker should be able to locate the targets 
robustly without prior knowledge of their categories. Planar objects 
(e.g. posters, screen, board) are very common things in our daily life. 
Surprisingly, there is little study on localization of planar targets with
12
generic visual trackersat large scale, even in the existing large-scale 
generic tracking benchmarks (e.g. Fan et al., 2021; Huang et al., 2019; 
Muller et al., 2018).

In order to figure out the capacities of these generic trackers in 
tracking planar targets, we further develop a new benchmark named 
PlanarTrack  based on our PlanarTrack. To be specific, PlanarTrack
BB BB
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Table 7
Evaluation of generic trackers on PlanarTrackBB and comparison with other popular generic 
benchmarks using SUCBB.

TrackingNet
(Muller et al., 2018)

LaSOT
(Fan et al., 2019)

PlanarTrackBB
(ours)

SeqTrack (Chen et al., 2023) 0.855 0.725 0.670
ROMTrack (Cai et al., 2023) 0.841 0.714 0.667
DropTrack (Wu et al., 2023) 0.841 0.718 0.665
MixFormerV2 (Cui et al., 2024) 0.834 0.706 0.648
MixFormer (Cui et al., 2022) 0.839 0.701 0.647
OStrack (Ye et al., 2022) 0.839 0.711 0.642
SwinTrack (Lin et al., 2022) 0.840 0.713 0.638
ARTrack (Wei et al., 2023) 0.856 0.731 0.633
TransInMo (Guo et al., 2022) 0.817 0.657 0.620
STARK (Yan et al., 2021) 0.820 0.671 0.615
AiATrack (Gao et al., 2022) 0.827 0.690 0.613
TransT (Chen et al., 2021) 0.814 0.649 0.603
SimTrack (Chen et al., 2022) 0.834 0.705 0.601
ToMP (Mayer et al., 2022) 0.815 0.685 0.597
TrDiMP (Wang et al., 2021a) 0.784 0.639 0.589
shares the same images and training/test split as PlanarTrack. The 
only difference between PlanarTrackBB and PlanarTrack is that we con-
vert annotations from four annotated corner points to an axis-aligned 
bounding box in PlanarTrackBB, especially used for large-scale eval-
uation of generic trackers. Specifically, we calculate the axis-aligned 
bounding box based on the four annotated corner points and adjust it 
to ensure it completely fits within the image boundaries. Notice that, 
in PlanarTrackBB we actually represent the coordinates of the axis-
aligned bounding box in XYWH format (i.e. [𝑥min, 𝑦min, 𝑤𝑖𝑑𝑡ℎ, ℎ𝑒𝑖𝑔ℎ𝑡]) 
like LaSOT (Fan et al., 2019) and GOT-10k (Huang et al., 2019). The 
difference and some examples of PlanarTrack and PlanarTrackBB are 
demonstrated in Fig.  14.

To further understand PlanarTrackBB, we select 15 recent state-of-
the-art generic trackers for evaluation. All the trackers are transformer-
based, including SeqTrack (Chen et al., 2023), ROMTrack (Cai et al., 
2023), DropTrack (Wu et al., 2023), MixFormerV2 (Cui et al., 2024), 
MixFormer (Cui et al., 2022), OStrack (Ye et al., 2022), SwinTrack (Lin 
et al., 2022), ARTrack (Wei et al., 2023), TransInMo (Guo et al., 2022), 
STARK (Yan et al., 2021), AiATrack (Gao et al., 2022), TransT (Chen 
et al., 2021), SimTrack (Chen et al., 2022), ToMP (Mayer et al., 2022), 
TrDiMP (Wang et al., 2021a). We employ the best version of each 
generic tracker for evaluation except SimTrack and ARTrack. Sim-
L/14 performs best but only Sim-B/16 is released in Simtrack, while 
ARTrack-L384 achieves the best performance but only ARTrack-B384 is 
given. For metrics, we use the success score for bounding box-based 
tracking (Wu et al., 2013), named SUCBB.

Table  7 shows the evaluation results of the above generic track-
ers and comparisons with existing large-scale generic tracking bench-
marks including LaSOT Fan et al., 2019 and TrackingNet Muller et al., 
2018. Due to the different evaluation metrics, we do not compare 
our PlanarTrackBB with GOT-10k (Huang et al., 2019). From Table 
7 we observe that, although existing generic trackers can achieve 
remarkable performance on LaSOT and TrackingNet, they are signifi-
cantly degraded when handling planar-like targets on PlanarTrackBB. 
For instance, the best generic tracker SeqTrack obtains 0.855/0.725 
SUC scores on LaSOT/TrackingNet, but obviously declines to 0.670 
on PlanarTrackBB, with an absolute drop of 18.5%/5.5%. The second 
best ROMTrack is also decreased from 0.841/0.714 to 0.667. This may 
indicate that more attention should be paid to improve such planar 
trackers, though they are rigid.

For in-depth analysis of generic tracking performances on
PlanarTrackBB, we further demonstrate the evaluation results of the 
above generic trackers in Fig.  15 by using a modified LaSOT (Fan et al., 
2019) evaluation toolkit. Under One Pass Evaluation (OPE) protocol, 
we utilize bounding box-based precision and success plots as in generic 
tracking (Wu et al., 2013) for assessment. From Fig.  15 we can see 
that, the top two generic trackers SeqTrack and ROMTrack achieve 
0.684/0.670 and 0.674/0.667 relatively on PlanarTrack .
BB

13
Fig. 14. Examples from PlanarTrackBB. The targets are annotated by white 
axis-align bounding boxes for genetic visual tracking. Best viewed in color.

Fig. 15. Performance of evaluated generic visual trackers on PlanarTrackBB
using bounding box-based precision and success plots. To facilitate clearer 
analysis, we exclusively present the top 10 trackers. Best viewed in color.

6. Conclusion

In this paper, we introduced a brand new benchmark named Planar-
Track. PlanarTrack consists of 1150 videos recorded in unconstrained 
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conditions from realistic scenarios, and has more than 733K annotated 
image frames in total. High-quality dense annotations are provided 
and great diversity of targets is ensured in PlanarTrack. To the best of 
our knowledge, PlanarTrack is the first challenging large-scale dataset 
dedicated to planar object tracking. To further understand existing 
approaches and provide a comparison for further research, we per-
form experiments by evaluating ten recent planar trackers and carry 
out a detailed analysis of PlanarTrack. By releasing PlanarTrack, we 
sincerely hope that we can offer the community a dedicated platform 
for research and applications of planar tracking. In addition, we provide 
PlanarTrackBB, a by-product dataset based on PlanarTrack, for study-
ing generic trackers on tracking planar-like target objects. Evaluation 
results indicate that there is still huge room for future improvement 
on PlanarTrack and PlanarTrackBB. For future research, we see several 
promising directions: (i) robust feature learning under low resolution 
and light-interactive surfaces, (ii) better temporal modeling for long-
term tracking, (iii) integration of multi-modal cues such as depth or 
inertial data, and (iv) effective re-detection strategies for disappeared 
objects.
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