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Abstract
Emotion recognition plays a crucial role in the diagnosis and treatment of various mental disorders. Research studies revealed
the close relationship between brain regions and their functional roles in emotions. Propose a learning method that extends
graph neural networks and takes into account the spatial relationship between EEG channels and their contributions of different
regions of the brain to human emotions. Our method uses the adjacency matrix to model the spatial topological relationships
in multi-channel EEG signals and learns weights to adjust their contributions to the classification. Extensive evaluation is
conducted using public data sets, including comparison studies with state-of-the-art methods and performance analysis. In
our comparison studies, our method demonstrates superior performance in terms of average accuracy. It is demonstrated that
the proposed method improves the accuracy of emotion recognition and analyzes the brain at a fine granularity to decide the
part that is most related to the triggering of the emotion.
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Introduction

Emotion recognition plays a crucial role in the diagnosis
and treatment of various mental disorders such as depres-
sion and autism [2, 5]. Extensive research has been con-
ducted on emotion recognition using both physiological and
non-physiological signals, e.g., images, speech, and text.
However, physiological signals, such as the electrocardio-
gram [1], electromyogram [10], eyemovement [26], galvanic
skin response [25], and electroencephalogram (EEG) [9],
have gained significant attention due to their ability to provide
valuable information for emotion recognition. Among these
signals, EEG stands out as it directly reflects the electrical
activity of the brain, which is closely linked to the generation
of emotions [23]. This makes EEG signals highly influential
in emotion recognition research.

Neuroscientific research revealed the close relationship
between brain regions and their functional roles in emo-
tions [13, 14]. The emotional categories are specifically
associated with the activity of neural systems distributed in
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the cerebral cortex and subcortex [16]. Studies havebeen con-
ducted to convert EEG signals into grid data. For instance,
Yang et al. [29] converted 1D EEG timing signals into 2D
EEG signal frames and utilized a hybrid neural network com-
bining convolutional neural network (CNN) and recurrent
neural network (RNN) to capture the spatial and temporal
representations of the raw brain current components. How-
ever, this approach disregards the spatial information of the
EEG channels, which are irregularly arranged in 3D space,
thereby neglecting the structural information of the EEG
channels.

Graph neural networks (GNNs) were developed for ana-
lyzing irregular data and have demonstrated their effective-
ness in capturing representations for uncertain and unevenly
distributed information. GNNs offer a promising avenue for
exploring the relationships between different brain regions
and emotions during EEG-based emotion recognition. Song
et al. [24] employed a graph convolutional neural network
(GCNN) on EEG signals for emotion recognition. This study
proposed a dynamic graph convolutional neural network
(DGCNN) to investigate the intrinsic connections between
EEG channels, achieving an individual-dependent accuracy
of 90.4% on the SEED database. While Song’s method
yielded good results, there is still room for improvement
in terms of classification accuracy. Furthermore, it remains
challenging to intuitively explain the factors influencing the
classification accuracy in emotion recognition tasks.
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In this paper, we propose a learning method that extends
graph neural networks and takes into account the spatial
relationship between EEG channels and their contributions
of different regions of the brain to human emotions. Our
method uses the adjacency matrix to model the spatial topo-
logical relationships inmulti-channel EEG signals and learns
weights to adjust their contributions to the classification.
Extensive evaluation is conducted using public data sets,
including comparison studies with state-of-the-art methods
and performance analysis. Our main contributions of this
paper include the following:

1. The proposed method integrates the hardware proper-
ties with the deep learning method by leveraging the
spatial topology of electrode channels to construct the
graph (represented as an adjacency matrix) and devises
a channel attention mechanism for weight assignment to
electrodes to encode the information in the EEG signals.

2. A graph neural network enhanced with spatial attention
is developed for emotion recognition from EEG sig-
nals, which integrates feature visualization and attention
mechanisms for localizing prominent features.

The remainder of this paper is organized as follows.
Section2 reviews the related work on emotion recognition
using physiological signals. Section3 introduces the basic
scheme of this paper. Section4 describes the experiments
and analysis. Section5 concludes this paper with a summary.

RelatedWork

The use of EEG signals for emotion recognition has gar-
nered significant interest among researchers due to the close
relationship between human emotions and cortical activity,
providing a more realistic reflection of human emotional
states. Several studies have achieved notable results in EEG-
based emotion recognition by employing different features
and classification methods. To address the variation in EEG
signals across different individuals and improve the gener-
alization ability to unseen subjects, Su et al. [27] employed
the projection dictionary pair learning that uses a synthesis
dictionary and an analysis dictionary to enhance the repre-
sentation of features. Xu et al. [28] proposed the domain
adversarial graph attention, which generates a graph using
biological topology to model multi-channel EEG signals and
uses self-attention pooling to extract salient EEG features
from the graph. Zheng [35] developed a group sparse canon-
ical correlation analysis (GSCCA) method for simultaneous
channel selection and emotion recognition. Zheng et al. [33]
leveraged a deep belief network (DBN), and a hiddenMarkov
model is integrated to capture the emotional stage switch-
ing between positive and negative. To learn the discrepancy

between the two brain hemispheres for improved emotion
recognition, Li et al. [17, 19] proposed a bi-hemispheric
discrepancymodel (BiHDM) that learns discriminative emo-
tional features for each hemisphere using global and local
domain discriminators. Zheng et al. [34] constructed a deep
belief network (DBN) and extracted features such as power
spectral density (PSD), differential entropy (DE), and dif-
ferential asymmetry (DASM) from the SEED dataset. Chen
et al. [7] utilized features such as Lempel-Ziv complexity,
wavelet detail coefficients, covariance degree, and approx-
imate entropy after EMD decomposition and employed the
LIBSVM classifier for classification, followed by fuzzy inte-
gration of channel results.

Graph neural networks (GCNs) are neural networks
designed to process graph-structured data, including traffic
networks, social networks, and brain networks. Inspired by
the convolutional operation of CNNs in Euclidean domains,
researchers have integrated spectral graph theory and neu-
ral networks to define convolution in graph domains. For
example, Bruna et al. [4] combined spectral graph theory
with neural networks and utilized the normalized graph
Laplace operator for convolution in graph domains. Deffer-
rard et al. [12] proposed fast local convolution using K -order
Chebyshev polynomials to approximate the convolution ker-
nel, aggregating information from K -order neighbors for
each node. Kipf et al. [15] further limited K to 1 and
introduced standard graph convolution networks with faster
local graph convolution operations. The convolution layers
in GCNs can be stacked to efficiently process K -order neigh-
borhoods of nodes. Compared to classical CNN approaches,
GCNs offer advantages in processing and extracting discrim-
inative features from signals in discrete spatial domains.

Given that the brain consists ofmultiple functional regions
that work together, graph neural networks can effectively
represent the relationships between these topologies and
better model brain mechanisms. Consequently, researchers
have increasingly explored the application of graph neural
networks in EEG-based emotion recognition. For instance,
Yin et al. [30] proposed the ERDL model, which com-
bines graph convolutional neural networks (GCNN) and
long short-term memory neural networks (LSTM), utiliz-
ing GCNN for extracting graph domain features and LSTM
for capturing temporal features. Zhang et al. [32] designed
a graph convolutional broad network (GCB-net) to explore
deeper information about graph structure data, utilizinggraph
convolutional layers for extracting graph structure input fea-
tures and stacking multiple regular convolutional layers for
extracting abstract features. While these methods achieve
improved recognition results, they lack transparency and fail
to provide explanations for the decision-making process of
deep learning models.

The attentionmechanism in deep learning is akin to human
visual attention, where humans scan the global image to
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focus on specific areas of interest and gather more detailed
information about the target. Similarly, attentionmechanisms
in deep learning select relevant information from a pool of
data. Channel-wise attention, for instance, compresses global
information and generates statistical information for each
channel [6]. As multi-channel EEG signals often contain
spatial information, attention can be applied to the GCN to
explore the importance of EEG signal channels and extract
spatial information based on their discriminative power. Li
et al. [20] proposed a transferable attention neural network
(TANN) that highlights the transferable EEG brain region
data and samples through the attention mechanism. Zhong et
al. [37] proposed a regularizedgraphneural network (RGNN)
that captures local and global relations among different EEG
channels. Cui et al. [11] developed a Gated Recurrent Unit-
Minimum Class Confusion (GRU-MCC) model. A gated
recurrent unit is applied to model the spatial dependence of
electrodes and extract features. Qian et al. [21] proposed an
Adaptive Graph Convolutional Network with Spatial Atten-
tion and Transformer (AGCN-SAT) for emotion recognition
from EEG signals. Transformer is applied to extract global
spatial features, which are concatenated with local spatial
features. Spatial attention is used to obtain discriminative fea-
tures. Zhang et al. [31] proposed a spatial-temporal recurrent
neural network (STRNN) to integrate spatial and temporal
features. A multidirectional recurrent neural network (RNN)
layer is employed to capture long-range contextual cues, and
discriminative features are derived with a bi-directional tem-
poral RNN layer.

Techniques such asClassActivationMapping (CAM) [38]
and Gradient-weighted Class Activation Mapping (Grad-
CAM) [22] are commonly used for visualizing neural net-
works and explaining the importance of input data about the
target category, facilitating better decision-making. Neural
networks typically consist of a feature extractor and a classi-
fier, where the feature extractor captures image features, and
the classifier assigns class labels to the extracted features.
CAM replaces the fully connected layer of the neural net-
work with a global average pooling (GAP) layer and retrains
the model. Given a feature map A1,A2,...,An in the last layer,
where each neuron in the classification layer corresponds to
a class with a weight w1,w2,...,wn , the generation of class C
is performed accordingly.

LC
CAM =

∑
wC
i Ai . (1)

A feature map pixel corresponds to a specific region
in the original input image, where its value represents the
extracted features from that region. The size of the recep-
tive field in the feature map, denoted as Sc, is determined
by the pixel values and weights within the feature map. The
global average pooling (GAP) layer is introduced to enable
the network to learnwhich regions in the original input image

contain category-related features during training. By remov-
ing the fully connected layer and not introducing any new
parameters, GAP helps reduce the risk of overfitting. How-
ever, to derive the weights within GAP, the model needs
to be retrained after replacing the last classifier. To address
these limitations, Grad-CAM improves upon Class Activa-
tion Mapping (CAM) by utilizing the gradient information
flowing into the last convolutional layer of the CNN. This
allows Grad-CAM to assign weight values to each neu-
ron based on the gradient information, thereby enabling a
more focused analysis of specific decision-makingprocesses.
Given a classification score Sc for class C, a feature map size
Z = C1 ∗ C2, and the weight of the Ai

k j neuron in the ith
feature map represented by the partial derivative ∂ck , Grad-
CAM provides a refined approach for assigning weights to
individual neurons.

αc
k = 1

Z

∑

i∈w

∑

j∈h

∂ yc

∂Ak
i j

. (2)

By applying ReLu to the weighted summation of linear
activation maps, the attention is computed as follows:

Lc
Grad−CAM = ReLu(

∑

k

αc
k A

k). (3)

The output provides insights into the regions of interest
that the neural network focuses on during emotion recogni-
tion. By calculating the heat map for each emotion category
across all samples, we can examine the variations in how dif-
ferent emotions are classified and gain an understanding of
the importance of different channels in the emotion recogni-
tion process. These heat maps offer valuable visualizations
that aid in interpreting and analyzing the network’s decision-
making mechanisms.

Spatial-Attention Graph Neural Network

Network Architecture

The architecture of our proposed Spatial-Attention Graph
Neural Network is depicted in Fig. 1. The network comprises
five stages: an input layer, a front-end graph convolution
layer, a Grad-CAMfiltering layer, a back-end graph convolu-
tion layer, and an output layer. In the input layer, we construct
an adjacency matrix that captures the spatial relationships
among EEG channels. Channel-wise attention is employed
to adjust the weight parameters of each graph node, adapting
them to the input EEG data. Note that the channels are spa-
tially placed on the human skull and it is hence representing
the spatial attention in terms of human brain activities. Sub-
sequently, the data is fed into the graph convolution layer,
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Fig. 1 The network architecture of the proposed method

where the EEG data is processed to extract its feature map.
The resulting output consists of feature maps corresponding
to the electrode channels.

In the Grad-CAM filtering layer, we utilize backprop-
agation to obtain the gradient information of the feature
map, which is converted into weight information for each
channel, denoted as W = [w1, w2, ..., wn]. Considering the
high-dimensional nature and redundant information present
in EEG signals collected through multi-channel electrodes,
we incorporate attention coefficients ρ = [0.1, 0.2, ..., 0.9]
in the Grad-CAM filtering layer to selectively filter out fea-
tures withminimal impact on the classification outcome. The
graph convolution layer then trains the filtered data, followed
by classification through a softmax activation function.

Emotion Recognition

To represent EEG signals as a graph, we assign each EEG
channel as a node, and the spatial proximity between two
channels is captured by an edge connecting them. The graph
is represented using an adjacency matrix. The input layer
of CA-GNN initializes the adjacency matrix based on the
spatial topology of the EEG channels, as illustrated in Fig. 2.
Additionally, initial weights are assigned to each edge based
on channel attention mechanisms.

We introduce CA-GNN, a novel network architecture for
emotion recognition, as illustrated in Fig. 1. The network
consists of fivemain components: an input layer, a graph con-
volution layer, a Grad-CAM filtering layer, a second graph
convolution layer, and an output layer. In the input layer, we
initialize the adjacency matrix based on the standard 10-20
electrode distribution in the cerebral scalp, assigning edge
weights as follows:

Ai j = α

d2i j
, (4)

where Ai j represents theweight of the edge connecting chan-
nels i and j , and di j represents the spatial distance between
the two channels. The adjacency matrix captures the spatial
relationships among EEG channels. The strength of connec-
tions between brain regions is inversely correlated with the
square distances [36].

To address the issue of redundant information in EEG
signals collected through multi-channel electrodes, we intro-
duce channel attention to identify emotionally relevant chan-
nels.Unlikemanual screening, our adaptive approach assigns
weights to different channels based on their importance.

X = [x1, x2, ..., xc], u ∈ R
W×H , (5)

where [x1, x2, ..., xc] are the EEG data of different channels.
H denotes different frequency bands, and W denotes EEG
sample feature points.

U = [u1, u2, ..., uc], u ∈ R
W×H . (6)

Channel attention probability U is obtained through a
softmax function applied to the output of a neural network.
The weights in U are used to calculate the channel attention
features, C j , by multiplying them with the corresponding
spectral features, S j :

C j = Uj · S j . (7)

The convolution part of the graph utilizes the ChebNet
convolution kernel, which processes the graph input data X
and outputs Z ∈ R

n×d , where n is the number of electrode
channels, and d is the dimensionality of the output features.
The transformation between adjacent layers of the graph neu-
ral network (GNN) is computed as follows:

Xi+1 = f (Xi , A), (8)
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Fig. 2 The input layer of the
network

where Xi+1 is the features at the (i+1)-th layer, Xi denotes
the features at the i-th layer, A is the adjacency matrix, and
f denotes the mapping functions. For a graph convolution
network, we have

Xi+1 = σ(D− 1
2 AD− 1

2 XiWi ), (9)

where σ is the sigmoid function, and D is the diagonal matrix
of A.

To understand the influence of different brain regions on
classification results, we employ Grad-CAM and attention
mechanisms in EEG emotion recognition. Class activation
maps (CAMs) are generated to visualize the contribution
of each region to the classification process. By applying
backpropagation, we obtain the gradient information of the
target layer and normalize the gradient vector.Attention coef-
ficients are used to filter out channels below a threshold,
generating a new vector for the subsequent layer. The CAMs
are created by superimposing the original scalp layer with
heat maps representing each channel’s gradient information,
indicating the influence of the channel in the classification
process.

In our network, the input data Xi is a collection ofmultiple
frequency band features extracted from EEG signals. It is
represented as Xi ∈ R

N×n×d , where N is the number of
training samples, n is the number of electrode channels, and
d is the number of features. The corresponding labels are
denoted as Yi , Yi ∈ 0, 1, ...,C − 1, whereC is the number of
categories. The probability of Yi given Xi and the parameters
θ is calculated as follows:

P(Yi | Xi , θ) = so f tmax(Hσ(HXiW
i )Wi+1), (10)

H = D− 1
2 AD− 1

2 , (11)

where H represents the normalized adjacency matrix, andW
represents the weight matrices.

The loss function ofCA-GNNcombines the cross-entropy
function with an L1 regularization term:

−
N∑

i=1

log(P(Y | Xi , ε), Ŷi ) + α‖A‖1. (12)

The cross-entropy loss measures the difference between the
actual emotion labels and the model’s predicted labels, while
the L1 regularization term encourages sparsity in the adja-
cency matrix A.

Results and Discussion

Datasets and EvaluationMetrics

We conducted experiments on three widely used public
datasets: SEED [34], SEED-IV [36], and MPED [25]. The
SEED dataset consists of 62 channels of EEG signals
recorded from 15 subjects (8 females and 7 males). The sub-
jects watched 15 movie clips and generated three emotions:
neutral, positive, and negative. Each participant underwent
three sets of experiments at different times, with each set
comprising 15 trials. Figure3 illustrates four example sig-
nals of the SEED dataset.

The SEED-IV dataset includes 62 channels of EEG sig-
nals collected from 15 subjects (8 females and 7 males). The
subjectswatched 72movie clips designed to elicit happy, sad,
fearful, and neutral emotions. Similar to the SEED dataset,
each participant completed three sets of experiments at dif-
ferent times, with each set consisting of 24 trials.

The MPED dataset is a multimodal physiological signal
emotion dataset comprising EEG signals recorded from 23
subjects using 62 EEG electrodes. The subjects watched 28
movie clips representing different emotions, including joy,
fun, anger, fear, sadness, disgust, and neutrality.
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Fig. 3 Example signals of the SEED dataset. Multiple channels are shown in each plot

In our study, average accuracy and confusion matrices are
used to evaluate theperformanceofEEGemotion recognition
methods. Accuracy is the proportion of correctly classified
emotions out of all emotions. This metric gives an over-
all view of the method performance without differentiating
the performance for the individual emotion. The confusion
matrix refers to a table that is used to evaluate the perfor-
mance of a classification model by comparing its predicted
and actual outputs. The matrix consists of four categories:
true positive (TP), true negative (TN), false positive (FP), and
false negative (FN). The confusion matrix provides a more
quantitative evaluation of each class and, hence, is useful
in understanding the performance with respect to the accu-
racy of recognizing each emotion and the confusion among
classes.

Experimental Settings

Our experiments were conducted on a computer with Intel
i7 10th CPU and NVIDIA GTX 1660Ti GPU. The program-
ming packages includeAnaconda 3, PyTorch 1.9.0, andCuda
10.2. The parameter settings of our method include the num-
ber of EEG channels, 62; the number of frequency bands, 5;
and the number of convolution kernels, 32; and the convolu-
tion kernel was a second-order Chebyshev polynomial.

In our experiments, we conducted individual correlation
classification experiments. For the SEEDdataset, the training
data and testing datawere obtained fromdifferent trials of the
same experiment. The training set comprised data from nine
trials, while the test set contained data from the remaining
six trials of the same experiment. The classification labels
included negative, neutral, and positive emotions. Similarly,
for the SEED-IV dataset, the training data consisted of data

from 16 trials, and the test data included data from the other
8 trials of the same experiment. The classes include happy,
sad, fearful, and neutral emotions. For the MPED dataset,
the training data consisted of data from 21 trials, and the test
data contained data from the remaining 7 trials of the same
experiment. The classification labels included happy, funny,
angry, fearful, sad, disgusted, and neutral emotions.

In all experiments, the parameters of our method were set
as follows: the number of EEG channels was 62, the number
of frequency bands was 5, the number of convolution kernels
was set to 32, and the convolution kernel was a second-order
Chebyshev polynomial. During the training process, the acti-
vation function used was BReLU. We employed the Adam
optimizer with a learning rate of 0.001 and a dropout rate of
0.3. The graphical convolutional network consisted of 2 or 3
layers, and the entiremodelwas implemented using PyTorch.

Comparison Study

Weconduct a comparison studywith fourteen state-of-the-art
methods, including PDPL [27], GSCCA [35], TANN [20],
RGNN [37], DBN [33], STRNN [31], DGCNN [24],
BiDANN [17], AGCN-SAT [21], GCB-net [32], Emotion-
Meter [36], GRU_MCC [11], BiHDM [19], and DAGAM
[28]. In addition, we include SVM as a baseline, which has
been applied to all three datasets. The average accuracy and
standard deviation of these methods together with the per-
formance of our method are reported in Table 1.

In general, both datasets SEED-IV and MPED are much
more challenging than SEED as the performance of all meth-
ods is relatively lower. The average accuracy of various
methods for the SEED dataset is in the range of 80% and
mid 90%, whereas the average accuracy of the SEED-IV
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Table 1 Average accuracy (%)
and standard deviation

Dataset
Method Year SEED SEED-IV MPED

SVM − 83.99 9.92 56.62 20.05 31.14 8.06

GA-PDPL [27] 2023 69.89 14.39 − − 24.87 5.83

GSCCA [35] 2016 82.96 9.95 69.08 16.66 − −
TANN [20] 2021 84.41 8.75 68.00 8.35 28.32 5.11

RGNN [37] 2020 85.30 6.72 73.84 8.02 − −
BiHDM [19] 2020 85.40 7.53 69.03 8.66 28.27 4.99

DBN [33] 2014 86.08 8.34 66.77 7.38 29.26 9.19

GRU_MCC [11] 2022 88.07 5.27 − − 31.22 4.48

STRNN [31] 2018 89.50 7.63 − − − −
DGCNN [24] 2018 90.40 8.49 69.88 16.29 36.92 12.78

BiDANN [17] 2018 92.38 7.04 70.29 12.63 − −
EmotionMeter [36] 2018 − − 70.58 17.01 − −
DAGAM [28] 2023 92.59 3.21 80.74 4.14 − −
AGCN-SAT [21] 2023 92.76 6.16 − − − −
GCB-net [32] 2019 94.24 6.70 − − − −
Our − 94.73 5.63 74.86 10.81 39.04 4.46

dataset is about mid 50% to mid 70%. The performance of
the MPED dataset is much lower about 30%. This is partly
due to the large number of emotions in the MPED dataset.
MPED has seven emotion classes, which is more than the
number of classes in SEED or SEED-IV.

In this table, the best performance is highlighted in bold
font face and the second best is marked with underline. For
the SEED dataset, our method achieves an average accuracy
of 94.73% with a standard deviation of 5.63%. Compared
to GCB-net [37], our method improves the accuracy by
0.52%. In addition, the standard deviation of our method is
among the smallest, which implies amore consistent emotion
recognition. A similar trend is observed in the results using
SEED-IV andMPED datasets. It is important to note that the
improvement of our method with respect to the best among
the state-of-the-art methods is much more significant for the
results of using the MPED datasets at 5.74%. Although the
average accuracy of DAGAM for the SEED-IV dataset is at
80.74%, our method exhibited a much-improved accuracy
for the SEED dataset at a rate of 2.3%.

Part of the performance gain of our method can be
attributed to the spatial-functional relationships encodedwith
our attention technique. The spatial topology-based adja-
cency matrix and the attention-based graph neural network
provide a close synthesis of EEG signals of the human brain.
In addition, the attention pattern-based Grad-CAM effec-
tively filters out irrelevant regions for emotion recognition
highlights the regions that contribute more, and enhances
classification performance.

Asadzadeh et al. [3] proposed a GNN node (ESB-G3N)
method and performed binary classification experiments on

self-built data sets, which are obtained with sLORETA. On
the other hand, public data sets, e.g., SEED, SEED-IV, and
MPED, obtain emotion labels based on the forms completed
by the subjects after the test. Due to the delay of feedback
and factors other than the videos presented to the subjects,
the self-reports could be different from the subjects’ true
emotions at the time of the visual excitement.

In comparison to themethod byChen et al. [8], our experi-
ments utilizedEEGdata collected usingEmotiv EPOC+. The
classes include arousal and valence. Figure4 illustrates the
accuracy of our proposed graph neural network with atten-
tion over different epochs. The left figure shows the accuracy
of arousal and the right one shows the accuracy of valence. It
is clear that the arousal dimension stabilizes after 30 epochs,
and the valence dimension stabilizes after 50 epochs. The
model achieves an accuracy of 87.89% in the arousal dimen-
sion and 89.45% in the valence dimension at about 100
epochs. In contrast, the classification accuracy of the method
presented in [8] for arousal andvalence dimensions is 74.88%
and 82.63%, respectively. These results highlight the supe-
rior performance of our proposed method over the approach
in [8].

Performance Analysis

Figure5 depicts the confusion matrix of our method applied
to the three datasets. For both SEED and SEED-IV datasets,
our method exhibits a fairly close performance to all emotion
classes. The numbers on the diagonal line give the correct
recognition rates. For the SEED dataset, the correct rate
is above 90%. For the SEED-IV dataset, the rate is about
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Fig. 4 Accuracy of graph neural network and attention-based models for EEG signals of arousal dimensions (left) and valence dimensions (right)

80%. However, for the MPED dataset, there exists a dispar-
ity among some emotions. Specifically, Digust appears to be
an emotion that is often misclassified into Angry, Funny, and
Sad. Also, the confusion between Joy and Funny is quite sig-
nificant. It is arguable that there is a clear distinction between
the two emotions.

The proposed network achieves a recognition rate of 96%
for neutral and positive emotions and 90% for negative emo-
tions in the SEED dataset. This indicates that the proposed
method performs well in identifying positive and neutral
emotions. However, the model shows relatively lower per-
formance in detecting negative emotions, possibly due to the
presence of various patterns corresponding to different neg-
ative emotions.

When it is applied to the SEED-IV dataset (as shown
in the middle of Fig. 5), our method achieves recognition
rates of 80%, 89%, and 75% for different negative emotions,
indicating its ability to differentiate between different neg-
ative emotions. The confusion matrix of our method on the
MPED dataset is shown on the right of Fig. 5. Our method
achieves recognition rates of 46% and 49% for joy and fun,
respectively. Positive emotions exhibit better performance
than negative emotions, and joy and fun tend to be more
easily confused within the same emotion category.

Ablation Study

Adjacency Matrix

To understand the contribution of the adjacency matrix to
the learning topology, we conducted experiments using the
SEED dataset and analyzed the impact of model structure on
emotion recognition performance. Our experiments consider
four adjacency matrix designs:

1. Fully connected adjacency matrix (FC): All elements of
the adjacency matrix are set to 1, indicating that all chan-
nels are connected to each other with equal weight.

2. Locally connected adjacency matrix (LC) [18]: The
entire brain is divided into 16 regions, and connections
between channels within the same region have a weight
of 1.

3. Randomly connected adjacency matrix (RC): All ele-
ments of the adjacency matrix are randomly initialized
with values ranging from 0 to 1. Non-zero values indicate
connections, while 0 represents no connection.

4. Adjacency matrix based on spatial topological relations
(STR): The connectionmatrix between channels is deter-
mined based on their spatial proximity and distance, with
closer channels having greater connection weights.

Fig. 5 Confusion matrix of our method on the SEED dataset (left), SEED-IV dataset (middle), and MPED dataset (right)
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Fig. 6 Average accuracy of our
method using different
adjacency matrices

Figure 6 illustrates the average accuracy of our method
using the four different adjacency matrices. Among the four
adjacency matrics, the one based on spatial topological rela-
tions, i.e., STR, achieves the best accuracy, which aligns well
with findings in neuroscience research [36]. On the other
hand, the randomly connected adjacencymatrix (RC) yielded
theworst accuracy at 86.5%.The relatively poor performance
of RC and the large difference between STR and RC is likely
due to the fact that randomly initialized adjacency matri-
ces introduce errors in the propagation of features on the
graph network, resulting in lower accuracy. The accuracies of
using the locally connected adjacency matrix and fully con-
nected adjacent matrix are both quite competitive at 91.3%
and 90.7%, respectively. This implies that the key connec-
tions may exist within local areas.

Attention Rate

To evaluate the effectiveness of the attention mechanism
in improving emotion recognition, we conducted experi-
ments on the SEED dataset to analyze the impact of different
attention coefficients on the results. Different attention coef-
ficients were set in the Grad-CAM filtering layer to filter out
features with weights below the attention threshold. The fil-
tered data was then fed into the second layer of the graph
convolutional neural network for model training. The results
of the experiments are illustrated in Fig. 7.

Figure 7 presents the recognition accuracy of our method
using different attention coefficient rates. The results from
the three datasets are depicted with different colors. Despite
the subtle difference among the three accuracy curves, the
overall trend is consistent with a peak near the attention rate
at 0.5, which gives the highest recognition accuracy. When
the attention coefficient is too small, numerous invalid fea-
tures may not be filtered out, leading to a lower emotion

recognition accuracy. As the attention coefficient increases,
more important features for result classification are retained,
resulting in improved emotion recognition rates. However,
when the attention coefficient becomes too high, themajority
of features are filtered out, resulting in an insufficient num-
ber of features for model classification and a lower emotion
recognition accuracy.

Spatial Activity Analysis

Figure8 illustrates the brain cortex activation distribution for
two-layer map convolutional network classification. Color is
used to encode the activity level of human brain regions,
with darker colors indicating stronger brain activities. It is
clear that significant brain activities are observed in the pre-
frontal, parietal, and occipital regions across all frequency
bands, suggesting their involvement in emotion processing
within the brain. Additionally, the asymmetrical activity in
the left and right hemispheric sites indicates their critical role
in emotion recognition, as evident from channel activation.

Figures 9 and 10 display the activation distribution maps
generated by both the two-layer and three-layer graph neural
networks, revealing that the multilayer graph neural network
has minimal impact on the classification results. However,
the activation distribution maps produced by the three-layer
graph neural network exhibit clearer activity points and
improved localization, indicating its ability to capture finer
details.

Conclusion

In this study, we present a novel approach for EEG emotion
recognition by leveraging graph neural networks (GNNs) and
attention mechanisms. Our proposed method incorporates
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Fig. 7 Accuracy of different
attention coefficients

Fig. 8 Brain cortex activation
distribution for two-layer map
convolutional network
classification

Fig. 9 Distribution of first-level
attentional activation of
three-layer graph neural network

Fig. 10 Distribution of
secondary attentional activation
of three-layer graph neural
network
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spatial and attentional information from EEG signals to
enhance the accuracy of emotion recognition while provid-
ing insights into the specific regions of the cerebral cortex
that contribute significantly to the process. Drawing inspi-
ration from neuroscience and the attention mechanism, we
construct a graph using an adjacency matrix based on the
topological relations between EEG channels. Additionally,
we employ channel attention to assign weights to individ-
ual electrode channels, effectively capturing the topological
relations inherent in the EEG signals. By utilizing the Grad-
CAM and adjusting the attention parameters, we prioritize
the features that are most critical for EEG emotion recogni-
tion.

Experiments were conducted with three public datasets
and the results demonstrate the superior performance of
our approach, achieving classification accuracy of 94.73%,
74.86%, and 39.04% on the SEED, SEED-IV, and MPED
datasets, respectively. The analysis of activation distribution
maps reveals pronounced activity in the prefrontal, parietal,
and occipital regions across all frequency bands, suggesting
their close associationwith emotional processing in the brain.
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