
IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 73, NO. 6, JUNE 2024 8765

Throughput Maximization for Result Multicasting
by Admitting Delay-Aware Tasks in MEC

Networks for High-Speed Railways
Junyi Xu , Zhenchun Wei , Member, IEEE, Xiaohui Yuan , Senior Member, IEEE, Yan Qiao , Member, IEEE,

Zengwei Lyu , and Jianghong Han

Abstract—The rapid expansion of high-speed railways (HSRs)
and the growing demand for diverse data services during long jour-
neys require efficient computing services. Mobile Edge Computing
(MEC) emerged as a promising platform to fulfill this demand. We
envision a scenario wherein passengers interact with each other
on the same or different trains in real-time by offloading com-
putationally intensive and delay-sensitive tasks to the track-side
MEC networks for HSRs and computation results are multicast to
the receivers. To improve the quality of data services, we propose
a novel approach to optimize network throughput by admitting
as many tasks as possible, subject to delay constraints, and mul-
ticasting the maximum number of results. The high mobility of
trains and the frequent handovers during train-ground commu-
nication are factored into our scheme, which presents significant
challenges to jointly consider the dynamic multicast grouping and
admission/rejection policies for tasks/results. We introduce the
multi-group-shared Group Steiner tree (GST) model and propose
an efficient heuristic algorithm that reduces the multicast rout-
ing problem to finding a GST for each candidate cloudlet. The
effectiveness of our proposed algorithm is demonstrated through
simulations and the results are promising.

Index Terms—Edge computing, high-speed railways, multi-
casting, group Steiner tree problem, admission control.

I. INTRODUCTION

H IGH-SPEED railways have revolutionized the transporta-
tion sector, leading to a spike in train travel. With the

widespread use of mobile devices, superior data services for pas-
sengers are necessary. Mobile edge computing, which facilitates

Manuscript received 13 August 2023; revised 3 December 2023; accepted 18
January 2024. Date of publication 23 January 2024; date of current version 20
June 2024. This work was supported in part by the Natural Science Foundation
of Anhui Province, China under Grant 2108085MF202, in part by the National
Natural Science Foundation of China under Grant 62002097, and in part by
the Fundamental Research Funds for the Central Universities of China under
Grant PA2023GDGP0044. The review of this article was coordinated by Prof.
Li Wang. (Corresponding author: Zhenchun Wei.)

Junyi Xu, Zhenchun Wei, Yan Qiao, Zengwei Lyu, and Jianghong
Han are with the School of Computer Science and Information En-
gineering, Hefei University of Technology, Hefei 230002, China, and
also with the Engineering Research Center of Safety Critical Indus-
trial Measurement and Control Technology, Ministry of Education, Hefei
230002, China (e-mail: 2016010090@mail.hfut.edu.cn; weizc@hfut.edu.cn;
qiaoyan@hfut.edu.cn; lzw@hfut.edu.cn; hanjh@hfut.edu.cn).

Xiaohui Yuan is with the Department of Computer Science and Engi-
neering, University of North Texas, Denton, TX 76203 USA (e-mail: xiao-
hui.yuan@unt.edu).

This article has supplementary downloadable material available at
https://doi.org/10.1109/TVT.2024.3357769, provided by the authors.

Digital Object Identifier 10.1109/TVT.2024.3357769

small cloud infrastructures at the network edge, offers seamless
connections to computing services. This reduces response delays
and improves network efficiency and user experience. MEC
caters to the escalating resource demands of mobile users by
enhancing device capabilities in real-time.

The shift from unicast (one-to-one) to multicast (one-to-
many) communication has been notable, especially when mul-
tiple users request the same service such as video conferencing,
online education, and cloud gaming. Early attempts [1], [2] have
explored edge caching based content delivery through multi-
casting in HSR scenarios. Therefore, MEC-based multi-user
interactions among passengers could be realized by offloading
computation-intensive tasks. However, little research has ad-
dressed the fundamental routing problem for multicast in HSR
dedicated MEC networks.

Addressing this gap, the main idea of this work is to pro-
pose an admission control method for the HSR-specific MEC
network. The objective is to maximize the network throughput
by admitting as many offloaded tasks as possible, subject to
delay constraints, and multicasting the maximum number of
computation results. This approach can significantly improve
the provision of data services in HSRs.

Designing an approach to maximize multicast throughput in
MEC networks for HSRs raises two questions:

1) How to effectively formulate multicast groups considering
the high mobility of trains and frequent handovers during
train-to-ground communications?

2) How to plan multicast paths to transfer tasks to the ap-
propriate cloudlet to meet the delay requirements and
multicast the results to the users?

Addressing these questions involves four primary challenges:
1) Managing the Base Stations (BSs): During offloading,

tasks have delay requirements, and trains frequently han-
dover across BSs. BSs play the crucial roles in building
multicast groups, affecting the transmission of computa-
tion results.

2) Dealing With the Sequential Process Between Each Task
and Its Results: Unlike traditional multicast, in MEC
networks, the computation result exists when and only
when the task is executed. This sequential relationship
affects path planning and cloudlet selection.

3) Discovering the Suitable Multicast Model: Traditional
multicast schemes require precise specifications of a single
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TABLE I
COMPARISON OF OUR WORK WITH EXISTING STUDIES

source with multiple destinations, making these models
difficult to cope with the high-speed and dynamic nature
of HSRs. We need a model that does not require predefined
destinations.

4) Determining the Appropriate Cloudlet: Task allocation
in MEC networks should consider both data routing and
computation time. Cloudlet selection affects routing paths,
and consequently, data routing time.

Existing solutions often assume that the requirements and
constraints of the HSR scenario are known in advance. However,
due to the dynamic nature of HSRs, this is not always the case.
Therefore, it is necessary to consider a scheme that can adapt to
the changing conditions of HSRs while maximizing multicast
throughput. The contributes of our work are as follows:
� We explore multicast tree construction with delays in the

MEC network for HSRs, considering unique HSR scenario
characteristics and constraints.

� We introduce an efficient heuristic algorithm for one-shot
optimization. This algorithm can be extended for a long
period by dividing time into equal slots and periodically
invoking the proposed algorithm in each slot.

� We develop a scheme to dynamically construct multicast
groups for BSs. This correlates inter-train data interaction
with data traffic within the MEC network and network rout-
ing delay calculation with the prediction of train locations.

The remainder of the paper is organized as follows. Section II
reviews the related work. Section III introduces the scenarios and
systems models and basic concepts. Section IV introduces the
group Steiner Tree-based routing paths and presents the prelimi-
nary analysis of delays and costs in the MEC network. Section V
gives an Integer Linear Programming (ILP) formulation of the
defined problem. Section VI describes our proposed method in
detail. Section VII discusses the performance of the proposed
algorithm. Section VIII concludes this paper with a summary.

II. RELATED WORK

This section provides a review of recent research studies
pertinent to MEC with a focus on throughput, multicast, and
offloading, as well as the application of MEC for HSRs scenarios
and the Internet of Vehicles (IoV). The comparison between our
work and existing studies is summarized in Table I, where Off.,

Mul., Dyn., Arbi., and Mobi. are short for Offloading, Multicast,
Dynamic, Arbitrary, and Mobility, respectively.

A. MEC Research on Throughput, Multicast and Offloading

1) Throughput: Deng et al. [3] addressed the critical issue
of maximizing long-term throughput for multicell, multi-user
MEC systems as MEC becomes increasingly fundamental in
bolstering 5 G. The authors propose a novel design that considers
user association and resource allocation for communication and
computing. Li et al. [4] optimized deep neural network infer-
ences using MEC in an Internet of Things (IoT) environment,
splitting the DNN inference model between the IoT device
and a cloudlet in the MEC network. An innovative dynamic
throughput maximization algorithm was introduced by [5] for
a wireless powered MEC system, optimizing communication,
computation, and energy resources.

2) Multicast: SCT et al. [6] optimized the joint caching and
computing policy to minimize the transmission bandwidth. The
proposed method employs Schrijver’s algorithm, the concave-
convex procedure and an alternating direction method of mul-
tipliers. Hao et al. [7] addressed the challenge of integrating
multicast and MEC, introducing a multicast-aware resource
allocation approach for MEC that optimizes computing and
caching in multicast scenarios.

3) Offloading: An adaptive service offloading scheme for
MEC was proposed to address issues including service latency
minimization, optimal revenue maximization, and high-quality
service requirement offloading [8]. Samanta et al. [9] introduced
RAISE, a resource-agnostic microservice offloading scheme for
mobile Industrial IoT devices in edge computing, facilitating the
maximization of resource utilization and successful offloading.
In [24], the authors present dynamic microservice scheduling for
MEC to optimize task offloading, energy efficiency, and quality
of service under varying network conditions.

B. MEC in HSR Scenarios

1) Edge Caching: To deliver popular services on trains, Li
et al. [10] presented a cache-based scheme with converged wire-
less broadcast and cellular networks. Xiong et al. [11] suggested
a novel scheme that encourages user terminals in HSR scenarios
to cache wireless services. Two auction strategies are developed
to maximize social incomes and minimize terminal waiting time.

2) Edge Computing: Chen et al. [12] proposed a real-time
fault detection framework aided by edge computing for HSR
traction systems. Liu et al. [13] introduced the edge computing
model for fault detection and diagnosis for traction control
systems for HSRs, where their objective is to minimize the
execution cost of task offloading. Zhang et al. [14] examined dy-
namic resource allocation, computation offloading, and energy
considerations in HSR networks. Li et al. [15] proposed a genetic
algorithm-based scheme for transferring and scheduling predic-
tive computations that are sensitive to mobility. Li et al. [16] took
into account a mmWave-based train-ground communication
system for the HSRs. Constrained by the energy consumption
of the local device and onboard mobile relays, the problem of
minimizing the average task processing latency for all users is
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formulated. Xu et al. [17] designed a path-finding algorithm for
managing unicast-based data traffic from task offloading tailored
for HSRs, which solved the challenges of frequent handover
in train-ground communication, thus maximizing the network
throughput.

C. Multicasting in IoV

The aforementioned studies did not consider multicasting
applications for HSR. HSRs are an ecosystem including in-
frastructure such as high-speed trains (HSTs), stations, and the
planning and operational components of rail networks [25].
HSRs differ from highway transportation in the context of the
IoV. HSRs mandate a safety distance [26] between trains and
the limitations imposed by railroad tracks, resulting in distinct
vehicle travel patterns. These particularities of HSR require a
tailored approach in research studies. Although multicasting
studies have gleaned insights from IoV [18], [19], [20], [21],
[22], [23], the direct application to HSR scenarios is infeasible.

Roger et al. [18] proposed a low-latency multicast scheme
to decrease the latency of Vehicle-to-Anything (V2X) com-
munications for autonomous driving applications. By jointly
considering coded multicast and edge caching, Bao et al. [19]
investigated the minimizing of data traffic and the redundant
problem in vehicular ad hoc networks (VANETs). Kadhim
et al. [21] presented an energy-efficient multicast routing pro-
tocol by introducing software-defined networks and fog com-
puting in vehicular networks. Hui et al. [22] presented a co-
operative content delivery system based on games in which
BSs collaborate with RSUs to service a group of vehicles using
multicast technology. Keshavamurthy et al. [20] analyzed the
cloud-based sidelink resource allocation problem for multicast
group transmissions in the case of cooperative automated driving
(CAD), and a graph-based solution framework is proposed to
form clusters and assign the inter-cluster resource block pool.
Furthermore, they [23] also explored the multicast group-based
vehicle-to-vehicle (V2V) communications for CAD scenarios
by allocating the sidelink resource, constrained by reliability
requirements and half-duplex limitation.

This is the first study to explore the construction of multicast
trees constrained by delays in MEC networks for HSRs. Unlike
the existing methods, this study considers that the data volume
of the results to be multicast can be arbitrary, while the offloaded
tasks have a relatively small data volume. Our task admission
scheme relies on grouping the BSs based on the prediction of
trains’ localizations.

III. NOTATIONS, MODELS AND CONCEPTS

Fig. 1 shows a series of high-speed trains traveling on a
straight track. Each train is moving at a consistent speed in a
uniform straight line, and these trains are maintained at a safe
distance from one another. Along the track, a dedicated MEC
network is deployed, consisting of BSs, routers, and cloudlets.
Each category of these devices is homogeneous within itself, and
all are interconnected via wired links. When a train traverses a
segment of the railroad within the coverage area of a specific
BS, passengers aboard can access the MEC network through

Fig. 1. Example of the scenario, which consists of track segments, trains, and
track-side MEC network.

the well-known two-hop architecture [14], [16]. Specifically,
the passenger’s device communicates with the trackside BS via
an onboard Access Point (AP), utilizing wireless connections.

This study focuses on the processes from the moment that
(i) a set of tasks offloaded by the users have arrived at the
BSs, to the moment that (ii) the tasks’ results are sent to the
target trains. One computing cloudlet is chosen to compute all
offloaded tasks. A group-shared multicast routing tree, which is
rooted at the chosen computing cloudlet, is also found to route
all tasks and results from the computing cloudlet to the specified
destination BS groups, subject to various constraints. Tasks with
excessive demands will be rejected until a feasible multicast tree
can be obtained. The computation results are transmitted from
the destination BS groups to the designated trains. The main
notations are listed in the supplement [27] due to the limited
space.

Let H be the train set. With high-accuracy localization and
dynamic tracking by onboard GPS and railway monitoring
equipment [2], velocity νh and location l(h) of train h ∈ H can
be obtained continuously. Note that different trains may run at
different speeds. For simplicity, we use the Cartesian coordinate
system [17] to describe the locations of the objects in the system,
and we define the direction of motion of the trains as the direction
of the x-axis.

A. MEC Network Model

The MEC network is modeled by an undirected graph G =
(V,E), where V is the router set and E is the wired link
set. Denote Vc ⊂ V as the routers with the attached cloudlets,
and the computing resource of each cloudlet is limited. For
convenience, the terms of a router and its attached cloudlet will
be interchangeably used unless confusion arises. The cloudlet
is implemented using container-based virtualization technology.
Let Cv be the computing capacity of each cloudlet vc ∈ Vc, and
the computing capacity is defined as the maximum number of
containers in a cloudlet. Let Fv be the number of CPU cycles
per second of each container in cloudlet vc. Data transmission
through routers V and links E incurs communication latency.
We introduce a centralized controller based on software-defined
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network (SDN) [2], [28], which is logically deployed in the
MEC network for global network management. The discussion
of SDN is beyond the scope of this paper.

B. Tasks, Computation Results and Network Throughput

Let KH(t) be a set of tasks of a train set H arrived at BSs at
moment t. The task set from a trainh is denoted asKh ⊆ KH(t).
Let ki,h ∈ Kh be the ith task of train h. Then ki,h is represented
by a triplet ki,h = 〈Hdes

i,h ; fi,h, dreq〉, where h is the source train
for task ki,h, Hdes

i,h ⊆ H is the set of the destination trains, fi,h
is the CPU cycles demanded for computing task ki,h, dreq is its
end-to-end delay requirement. The tasks in KH(t) are offloaded
by the same application, and each task has an identical delay
requirement. These assumptions are reasonable because they
reflect the common use of the same application, such as online
video conferencing or online gaming, by passengers in the HSR
scenario, ensure a consistent Quality of Experience (QoE) for
real-time services. The set of destination trains of Kh is denoted
by Hdes

h .
Each train offloads tasks and receives the results. Let ri,h,h′ be

the result of ki,h sent to train h′, h′ ∈ Hdes
i,h . Notice that during

the multicasting procedure, the computation results of task ki,h
are sent to different destinations in the forms of copies and such
results are totally the same, that is, ri,h,1 = · · · = ri,h,h′ = · · · =
ri,h,|Hdes

i,h |. Denote by Ri,h the results associated with task ki,h,
i.e., Ri,h = ∪h′∈Hdes

i,h
ri,h,h′ . Furthermore, the set of computa-

tion results associated with the task set Kh is denoted as Rh,
and the set of computation results of KH(t) is denoted as RH ,
where RH =

⋃|H|
h=1Rh =

⋃|H|
h=1{

⋃|Kh|
i=1 Ri,h}. Additionally, let

Rrec
h be the set of computation results received by train h, and

Rrec
h can be formulated asRrec

h =
⋃

i∈|Rh′ |
⋃

h′∈H ri,h′,h, where
h is the destination train of each h′ ∈ H . For simplicity, unless
confusion arises, the terms of the computation result and its copy
will be interchangeably used.

We introduce a function z(·) to obtain the data volume of a
task/result. For example, z(ki,h) is the data volume of task ki,h,
and z(Kh) is the data volume of tasks in Kh, i.e., z(Kh) =∑|Kh|

i=1 z(ki,h). We define ρi,h ∈ R+ as the ratio between the
volumes of task ki,h and result ri,h,h′ . The value of ρi,h can
be deduced using program profilers [29], [30].1 Then the data
volume z(ri,h,h′) of task ki,h thus is ρi,h · z(ki,h).

Task set KH(t) is processed in a single cloudlet vK ∈ Vc,
named the computing cloudlet. The advantages of computing
all the tasks in one cloudlet are that (i) the resources and users’
data within a cloudlet can be effectively shared and (ii) the
overhead of cross-cloudlet data communication and fusion can
be avoided. A cloudlet can compute a task if there exists an idle
container. Each task is computed exclusively by a container, and
a unit of computing capacity will be consumed. Otherwise, a new
container will be initialized as long as the cloudlet has adequate
computing capacity.

1The program profilers collect data potentially impacting offloading process
outcomes, such as system memory acquired and used, CPU and GPU activity,
execution times, function calls, and more [31], [32].

Considering the QoE requirements of users in interactions,
especially in scenarios where interactions are made using videos
or images [33], [34], [35]. Therefore, the network throughput
can be measured by how many computation results can be
multicasted, where the results can be multicasted only if the
corresponding task is admitted. Maximizing network throughput
means maximizing the number of multicasted results.

C. Communication Model and Handovers

This section presents the key notations and concepts and a
detailed description of the communication model is included in
the supplement [27]. SetB ⊂ V of BSs with routing capabilities
is uniformly deployed along the tracks and B ∩ Vc = ∅. The
location of BS b ∈ B is l(b). The coverage radius of each
BS is γ. Let ub(l(h), l

′(h)) denote the data volume that BS b
continuously transmits to train h through a subcarrier during the
period train h moves from location l(h) to location l′(h):

ub(l(h), l
′(h)) =

∫ l′(h)

l(h)

C↓
b(x) ·

|l(b)− x|
νh

dx, (1)

where C↓
b(x) is the channel capacity of the downlink of BS

b taking into account the Doppler effect [17], and l(b)− γ ≤
x ≤ l(b) + γ. The process of deriving (1) are put in the supple-
ment [27]. Additionally, a train receives the maximum volume
umax of data from one BS when the train moves from l(b)− γ
to l(b) + γ, i.e.,

umax = ub (l(b)− γ, l(b) + γ) . (2)

In addition, the following cases of calculations related to (1)
are often required in the rest of the article and all the mentioned
calculations can be done by numerical integration [36]. Case 1:
If volume z(·) and location l(h) are given, location l′(h) needs
to be determined. Case 2: If volume z(·) and location l′(h) are
given, location l(h) needs to be determined.

Due to the safe distances between trains, the BS within a cer-
tain geographical area that receives the computation results can
only serve one train. The data volume of the results is arbitrary,
and the maximum data volume that one single BS can transmit
is limited. Thus a train may need to communicate with several
BSs, i.e., handovers may occur during wireless transmission. Let
N↓

h be the number of handovers for a train h. Without loss of
generality, train h begins to receive the data of the computation
results at location l(h), which is in the coverage area of a certain
BS b, i.e., l(h) ≥ l(b)− γ. Meanwhile, the data volume of the
computation results to be received by train h is z(Rrec

h ). Similar
to [17], there are four handover cases to be discussed, and we
put the analysis in the supplement [27]. N↓

h can be expressed
by

N↓
h =

{�z(Rrec
h )/umax� Case 1 or Case 3,

�z(Rrec
h )/umax� Case 2 or Case 4.

(3)
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IV. TASK ADMISSION AND RESULT MULTICASTING

A. Tree-Based Routing Paths

Admitting task set involves routing each task from the given
source(s) to a chosen computing cloudlet, then routing each
result from the computing cloudlet to the given destination(s) via
multicast. Such routing paths form the multicast tree(s). Next,
we introduce the type of multicast tree that is appropriate for our
scenario.

There are two ways to construct a multicast tree. One is
constructing the per-source tree for the given BSs, and the other
is constructing one shared tree covering all the designated BS
groups. Lin et al. [37] gave a comparison of the mentioned
multicast trees in terms of the number of trees in the network,
the computation time, the load on the on-tree routers, and the
end-to-end routing distances. The drawbacks of the per-source
multicast tree are (i) the network controller needs to maintain
a large number of multicast trees, and (ii) the complexities and
difficulties of computing the per-source trees are much higher
than computing one shared tree, especially considering the game
in such a multi-party system while constructing the multiple
per-source trees brought by the sharing the network resources. In
summary, we adopt the approach of the multi-group shared tree
for traffic routing, which means several multicast groups share
the same multicast tree, where all the data traffic of tasks and
results can be routed simultaneously. Such a tree can achieve a
better trade-off between the end-to-end delay and the workloads
of the on-tree routers.

1) BS Groups: To construct such a multicast tree, the BSs
need to be divided into groups, and the groups need to be
maintained to follow the moving trains. Computation results
are first transmitted to different BS groups through multicast.
Then the results are redistributed to the BSs in the same group,
subject to the delay requirements and the location of trains,
where the redistribution scheme is out of the scope of this
paper and will be studied in our future work. Finally, a train
that passes through the coverage area of a BS group fetches the
data buffered in the BS group. We define the BS that caches the
offloaded tasks as the source BS by correlating the inter-train
interaction of data with the traffic within the MEC network.
All tasks in Kh have been merged into identical source BS
sh ∈ B at moment t. Moreover, we define the BSs to which
result set Rh will be delivered as the destination BSs. Such BSs
are denoted by Dh ⊆ B. It is worth mentioning that a BS can
be both a source BS and a destination BS for the same train.
Denote by B↓

h the group of destination BSs for continuously
transmitting result set Rrec

h to train h. According to (3), denote
bjh as the jth BS in group B↓

h. Thus, the last BS in group B↓
h can

be represented as b
1+N↓

h

h . Then group B↓
h can be expressed as

B↓
h = {b1

h, . . .b
j
h, . . ., b

1+N↓
h

h }. Moreover, let U(bjh) be the data
volume of the result set Rrec

h that each BS bjh ∈ B↓
h transmits

to train h. According to (1), (2), and (3), we calculate U(bjh) as
Follows.

U(bjh) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

z(Rrec
h ) N↓

h = 0, j = 1

z(Rrec
h )− U(b1+N↓

h

h )− (N↓
h − 1) · umax N↓

h ≥ 1, j = 1

ubjh

(
l(bjh)− γ, l(h) + dreq · νh

)
N↓

h ≥ 1, j = N↓
h + 1

umax N↓
h ≥ 2, 2 ≤ j ≤ N↓

h.

(4)

Let BH and Bh ⊆ BH be the BS groups serving train set H
and the BS group serving train h, respectively. Train h finishes
offloading task setKh and finishes receiving computation results
Rrec

h during h’s journey in the group Bh. In the rest of the
paper, we consider each BS group Bh as a multicast group.
A multicast group contains one source BS and a certain number
of destination BSs. Thus Bh can be expressed by

Bh = {sh, . . ., B↓
h} =

{
sh, . . ., b

1
h, . . .b

j
h, . . ., b

1+N↓
h

h

}
. (5)

Notice that train h will pass these BSs in order and it takes
time to route the task from sh to the computing cloudlet and route
the result from the computing cloudlet to b1

h. In this period, the
train is moving and BSs located between sh and b1

h may not play
any role. However, in some special cases, a BS may both play
the role of source BS sh and the first destination BS b1

h in the
group Bh. For train h, we define the source BS group of h as the
BS group where source BS sh is located, and the destination BS
group of h is defined as the BS group where any destination BS
b ∈ Dh is located. A BS group can be both the source BS group
and a destination BS group for the same train.

2) Group Steiner Tree: Constructing a multi-group shared
multicast tree needs to answer the following questions: ”At least
how many paths are needed to connect each group with the
root vertex?” and ”In each group, which BSs are suitable to
be the endpoints of the paths that connect the group with the
tree’s root vertex?” Therefore, we model the multi-group shared
multicast tree as a group Steiner tree (GST) with edge and vertex
weights [38]. The GST problem can be described as follows:
Given an undirected graph G = (V,E), each edge e ∈ E has
weight we and each vertex v ∈ V has weight wv , given subsets
of vertices {gi}k, each subset gi is called a group. The goal is to
find the minimum cost treeT inG that contains at least one vertex
from each group gi, and the obtained tree T is mentioned as the
Group Steiner Tree. Such a model can answer the mentioned
questions well.

Let TK be the group Steiner tree, which connects computing
cloudlet vK with BS groups BH . Clearly, TK is rooted at vK .
Tree TK is used to route the data traffic of both the task set
KH(t) and the result set RH on the MEC network. Consid-
ering that G and TK are undirected graphs, we thus denote
ph = 〈Bh, . . ., vK〉 as the simple path that connects a BS in
the group Bh with root vertex vK in TK . We take train h as
an example, the routing paths of the task set Kh and the result
set Rh involve (i) routing the traffic of task set Kh from the
source BS groupBh to the chosen computing cloudlet vK via ph,
and (ii) routing the data traffic of result set Rh from computing
cloudlet vK to each destination BS group Bh′ via a path ph′ ,
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where h′ ∈ Hdes
h . TK can be expressed by

TK =

|H|∑
h=1

⎛
⎝ph ∪

|Hdes
h |∑

h′=1

ph′

⎞
⎠. (6)

B. Delays and Costs in MEC Networks

All passengers achieve the best QoE when the delay expe-
rienced by task set KH(t) and result set RH in the multicast
tree meets the end-to-end delay requirement of every task ki,h.
Meanwhile, passengers must pay to obtain services by routing
tasks and results on the MEC network. In the following, we
define various delays and costs in the MEC network.

1) Delay Experienced by Tasks and Computation Results:
The total delay experienced by each task ki,h and its result set
Ri,h in G consists of (i) the computation delay in the computing
cloudlet, (ii) the routing delay on links, and (iii) the delay
corresponding to the BSs. We define the network delay as the
sum of the computation delay and the routing delay.

Computation Delay: Let dcomi,h be the delay of computing task
ki,h in cloudlet vK . dcomi,h can be expressed by

dcomi,h = fi,h/Fv, (7)

where fi,h andFv are the demanded CPU cycles of task ki,h and
each container’s CPU cycles per second in vK , respectively.

Routing Delay: Let de and dv be the delay on link e ∈ E and
router v ∈ V for transmitting a unit of data associated with a
passenger, respectively. Let droui,h be the routing delay of task
ki,h ∈ TK , including the delay of routing the task on path ph ⊆
TK and the delay of routing result ri,h,h′ on each path ph′ ⊆ TK ,
where h′ ∈ Hdes

h . droui,h is calculated with

droui,h =

(∑
e∈ph

de+
∑
v∈ph

dv

)
· z(ki,h)

+ max
h′∈Hdes

h

⎧⎨
⎩
⎛
⎝∑

e∈ph′

de +
∑
v∈ph′

dv

⎞
⎠ · z(ri,h,h′)

⎫⎬
⎭ .

(8)

Delay Associated With BSs: Consider that the distance be-
tween BSs in the same group is much smaller than the safe
distance between trains, and a BS group only serves one train
during its trip across the BS group. Thus, compared with the
delay of data transmission on wired links, the delay of the
direct communication between BSs in the same group can be
neglected. For each BS bhj in group B↓

h, let d↓h,b be the delay

of train h receiving volume U(bjh) of a portion of the result
set Rrec

h . According to (1) and (4), d↓h,b equals 2 · γ/υh, where

b = bhj and 2 ≤ j ≤ N↓
h . We temporarily default the formulas

for calculating the wireless delay of BS b1
h and b

1+N↓
h

h , since
which two BSs in the group Bh respectively plays the role of

b1
h and b

1+N↓
h

h need to be determined. A detailed description is
given in subsection VI-A. Furthermore, the delay for train h

fully receiving the data of Rrec
h is

d↓h =

|B↓
h|∑

b=1

d↓h,b. (9)

Then the total wireless download delay for downloading result
set RH can be represented by

d↓H = maxh∈H d↓h. (10)

Network Delay: In summary, according to (7) and (8), we
define network delay dneti,h for task ki,h by the following formula

dneti,h = droui,h + dcomi,h , (11)

and the network delay of the task set KH(t) is

dnetH = max
h∈H

{
max

1≤i≤|Kh|
dneti,h

}
. (12)

Total Delay: Then, the total delay experienced by task set
KH(t) and result set RH can be specified as

dtotalH = dnetH + d↓H . (13)

Furthermore, the total delay cannot be greater than the delay
requirement of any task ki,h ∈ KH(t), i.e.,

dtotalH ≤ dreq. (14)

2) Admission Cost: The admission cost of a task in G is the
sum of the following costs: the processing cost in the computing
cloudlet, the routing cost of forwarding the data traffic corre-
sponding to the task, and its computation results along links
and routers in the multicast tree. Denote by c(v) and c(e) the
costs of one unit of data traffic that consumes the resource
on router v ∈ V and link e ∈ E, respectively. Meanwhile, we
denote c(vK) as the processing cost for computing one unit of
data in one container of computing cloudlet vK . First, denote by
cproi,h the processing cost of task ki,h, which can be calculated by

cproi,h = c(vK) · z(ki,h). (15)

Then denote croui,h as the routing cost of transferring task ki,h
along path ph to processing cloudlet vK , i.e.,

croui,h =

(∑
v∈ph

c(v) +
∑
e∈ph

c(e)

)
· z(ki,h), (16)

and let cmul
i,h,h′ be the cost of multicasting result ri,h,h′ in the

multicast tree. cmul
i,h,h′ can be obtained by

cmul
i,h,h′ =

⎛
⎝∑

v∈ph′

c(v) +
∑
e∈ph′

c(e)

⎞
⎠ · z(ri,h,h′), (17)

where ph, ph′ ⊆ TK , and TK is the feasible multicast routing
tree for routing ki,h and its computation results. Let Ci,h be the
admission cost of admitting task ki,h

Ci,h = cproi,h + croui,h +
∑

h′∈Hdes
i,h

cmul
i,h,h′ . (18)
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Denote by CH the total cost of admitting task set KH(t), and
CH can be expressed by

CH =

|H|∑
h=1

|Kh|∑
i=1

Ci,h. (19)

In practice, MEC service providers need to set their budgets
for network operations to make money. Let β be the budget for
network operations to admit tasks and multicast results. Thus,
total cost CH must satisfy CH ≤ β.

V. PROBLEM DEFINITION AND AN ILP FORMULATION

Given a track-side MEC networkG = (V,E), a set of trainsH
making a one-dimensional linear motion, each train maintains a
safe distance. A set of tasks offloaded by the trains, which arrived
at the BSs with the same end-to-end delay requirement. The set
of results is multicast to the designated trains. The delay-aware
multicast-oriented throughput maximization problem in G is to
maximize the number of multicast results by admitting as many
tasks as possible and finding a group Steiner tree, rooted at a
feasible computing cloudlet, such that this tree (i) routes the data
traffic of tasks from the source BSs to the root for computation,
(ii) then routes the data traffic of the computation results from
the root to the designated destination trains, and (iii) the sum of
the usage costs of the routers, links, and the computing resources
in the tree are minimum while meeting the delay requirement
and the resource demands of each task, subject to the resource
constraints in G and the motion of the trains.

The problem we define is an NP-hard problem, which is
dictated by its special case: By reducing to the Steiner tree
problem on graphs, the traditional multicast routing problem
that does not take into account resource and delay constraints
has been shown to be NP-hard problems [39]. We formulate
the problem as the Integer Linear Programming (ILP, additional
details are in the supplement [27]). ILP can be computationally
intensive and slow to solve large-scale problems. The process
of solving ILP is unintuitive, making it difficult to understand
and interpret. For example, it does not inherently provide mecha-
nisms for reallocating tasks, adjusting routing paths, or rejecting
tasks/results if the ILP solution is infeasible. The remainder
of the paper will develop a series of efficient and extensible
procedures and algorithms to solve the problem.

VI. PROPOSED METHOD

The proposed method consists of five phases. 1) Construct
the BS groups for a train set H and reject the tasks that cause
the construction faults; 2) Construct a GST for the groups
constructed in phase one, which is rooted at a given cloudlet,
without considering the delay requirements of the tasks and the
capacity constraints of the computing cloudlet; 3) Adjust the
GST obtained from phase two in a series of auxiliary graphs
derived from G, considering the delay and resource constraints
that are not taken into consideration in phase two. Reject tasks
and results which cause the faults of adjustment; 4) Construct
the bipartite graph to describe the priority relationships between
the tasks and results that are routed in the adjusted GST of

phase three, and the problem can be reduced to a breadth-first
traversing in the bipartite graph; 5) For all the cloudlets in G,
the maximum throughput can be obtained by iteratively applying
the procedures in phases two, three, and four.

A. BS Group Construction

The key point for constructing BS group Bh is determining

which BSs play the roles of b1
h and b

1+N↓
h

h , while the BS playing
the role of sh can be determined. An intuitive idea is that we
create a BS group Bh in an extreme case, where no delay
requirement will be violated during the period that a train h
is covered by each BS in Bh. The created BS group can surely
meet the delay requirements in a more general case. The location
of train h at moment t is l(h). Train h finishes downloading
all results in Rrec

h at moment t+ dreq , before h leaves the
coverage area of the last BS in Bh. We consider the BS that

covers location l(h) + dreq · νh as the last BS b
1+N↓

h

h in group
Bh. The data of Rrec

h must arrive at a BS in Bh when train
h is within the coverage area of b1

h. We infer that the period
during which the trainh travels from location l(h) to the location
where h begins to receive the data of Rrec

h , can be considered

as the maximum tolerable network delay dnetH . Let ˜dnetH be the
maximum tolerable value of dnetH . According to (1) and (4), the
relationship is expressed as follows

z(Rrec
h ) =

∫ l(b1
h)+γ

l(h)+˜dnet
H ·νh

C↓
b1
h

(x) · |l(b
1
h)− x|
νh

dx+

N↓
h∑

j=2

umax

+

∫ l(h)+dreq ·νh

l(b
1+N↓

h
h )−γ

C↓
b

1+N↓
h

h

(x) · |l(b
1+N↓

h

h )− x|
νh

dx.

(20)

Since z(Rrec
h ), l(h), l(b1

h), l(b
1+N↓

h

h ), dreq , νh, umax are

known, ˜dnetH can be uniquely determined by the numerical
integration described in Section III-C.

B. GST Construction and Adjustment

1) GST Construction: Given a cloudlet vT ∈ Vc and we as-
sume for a moment that vT has enough computing capacity.
Then a group Steiner tree Tv, which is rooted at vT , is found in
G by using Sun’s |H|-approximation algorithm [40] such that
Tv contains at least one BS of each BS group and the sum of the
costs of one unit of resources at vertices and edges in this tree is
minimized, without considering the delay requirements of any
task in KH(t).

2) GST Feasibility: We assume that Tv is a feasible multicast
tree for the task set KH(t) and the result set RH , and the
expression of Tv is (6). Let Kv

H(t) ⊆ KH(t) and Rv
H ⊆ RH

be the tasks and results that are routed on the tree Tv . Let
ph,h′ = ph ∪ ph′ be the path that passes through root vT and
connects a group Bh and another group Bh′ in Tv , where
ph = 〈Bh, . . ., v〉. Denote by PH =

⋃|H|
h=1

⋃|H|
h′=1 ph,h′ the set

of all the paths mentioned in Tv . For each path ph,h′ ∈ PH , we
find the tasks that (i) are offloaded by train h and their results
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are transmitted to h′, or (ii) are offloaded by train h′ and their
results are transmitted to h. Notice that h′ equals h when h is
both the source train and the destination train for a task. This set
of tasks is denoted as Kp ⊆ Kv

H(t). Therefore, the total number
|PH | of paths that are used to route task set Kv

H(t) in Tv is
(|H|+1)·|H|

2 . According to the definition of network delay, delay
dpi,h experienced by task ki,h ∈ Kp and its result on path ph,h′

can be calculated by rewriting (11) as

dpi,h =

(∑
e∈ph

de+
∑
v∈ph

dv

)
· z(ki,h)

+

⎛
⎝∑

e∈ph′

de +
∑
v∈ph′

dv

⎞
⎠ · z(ri,h,h′) + fi,h/Fv. (21)

We introduce a function d(·) to calculate the maximum delay
experienced by the data routing of a path or a set of paths.
d(ph,h′) thus is the maximum delay experienced by task set Kp

and its result set on path ph,h′ , i.e., d(ph,h′) = maxki,h∈Kp
dpi,h.

According to (12), the delay experienced by task set Kv
H(t)

and result set Rv
H in Tv can be calculated by d(Tv), i.e.,

d(Tv) = maxph,h′⊆Tv
d(ph,h′). If d(Tv) ≤˜dnetH , tree Tv is a

feasible solution. Otherwise, tree Tv needs to be adjusted.
3) GST Adjustment in an Auxiliary Graph: An intuitive idea

of GST adjustment is iteratively adjusting every path inPH until

there is no path that violates delay ˜dnetH . A detailed description
is given in Procedure 1.

We sort all the paths in PH in decreasing order of the
maximum delay experienced by the tasks and the results on
each path (Lines 5-6, Procedure 1). Without loss of generality,
suppose that path ph,h′ has the maximum delay in Tvph,h′ =
argmaxph,h′⊆Tv

d(Tv). Clearly, d(Tv) equals d(ph,h′) and

d(ph,h′) >˜dnetH . Thus, path ph,h′ is the bottleneck path for
transmitting task set Kp and its result set in Tv . A delay-
constrained-least-cost (DCLC) path, which connects group Bh

and group Bh′ , needs to be found to replace ph,h′ , such that

the obtained DCLC path meets delay ˜dnetH , and the costs of
data routing on the new path are also minimized. However,
planning such a path connecting two groups in an undirected
graphG, when h′ equals h, is difficult to solve. Another problem
is determining which vertices of the two groups are the terminals
of the DCLC path. Next, we transform such a problem into
finding the DCLC path in an auxiliary graph, which is described
as follows. Denote by Gv = (Vv, Ev) the auxiliary graph for
vT ∈ G. First, we construct graphG′ = (V ′, E ′) by augmenting
G. For each group Bh, we add a dummy vertex x′

h into B′ and
every dummy vertex cost and delay are set to zero. Then, for
each BS b ∈ Bh, an undirected dummy edge 〈b, x′

h〉with neither

cost nor delay is added into E′, i.e., B′ =
⋃|H|

h=1{x′
h} ∪B, and

E ′ =
⋃|H|

h=1

⋃
b∈Bh

{〈b, x′
h〉} ∪ E. Second, we construct graph

G′′ = (V ′′, E ′′), which is a copy of G′ = (V ′, E ′). For each
v′ ∈ V ′, and e′ ∈ E ′, node v′′, and edge e′′ are added into V ′′,
E ′′, respectively. Especially, dummy node x′

h ∈ G′ corresponds
to dummy node x′′

h ∈ G′′. Last, each node and each edge in
G′ and G′′ are added into Vv , Ev , respectively. Specially, for

Fig. 2. Example of the auxiliary graph. (a) The original graph, where v is the
computing cloudlet, vertices a and b are the routers, vertices c, d, e, f , g are the
BSs, the vertices enclosed by a blue cycle make up a BS group, the red lines
and red vertices represent the GST rooted at v; (b) The auxiliary graph, where
the red lines and red vertices represent the extended GST, and the dummy node
and the dummy edges are added to each BS group in the auxiliary graph.

root vertex vT in G, the corresponding vertices in G′ and G′′

are denoted as v′T and v′′T . Then, an undirected edge 〈v′T , v′′T 〉
is added into Ev , where the edge cost is set to the cost of
vertex vT and the edge delay equals the computation delay of
using vT . i.e., Vv = V ′ ∪ V ′′, Ev = E ′ ∪ {〈v′T , v′′T 〉} ∪ E ′′, and
Gv = G′ ∪ {〈v′T , v′′T 〉} ∪G′′. An example is given in Fig. 2.

In each iteration, Juttner’s (1 + ε)-approximation algo-
rithm [41] is used to find the DCLC path pdclch,h′ in Gv (Line
15, Procedure 1), which connects vertex x′

h with vertex x′′
h′ and

routes task set Kp and its result set. Let padjh,h′ = padjh ∪ padjh′

be the corresponding path of pdclch,h′ in G, where path padjh and

path padjh′ are the adjusted paths that connect group Bh with
root vT and group Bh′ with root vT , respectively. Then padjh

and padjh′ are used to replace ph and ph′ in Tv , respectively.

However, there may exist multiple paths that violate delay˜dnetH

in PH . In each iteration, only one path of ph,h′ will be adjusted.
Consider that ph,h′ = ph ∪ ph′ is a combination of path ph
and path ph′ , therefore adjusted path padjh,h′ = padjh ∪ padjh′ can
be regarded as a joint adjustment of path ph and path ph′ .
That is, the delay of the adjusted path of ph in the current
iteration may not be feasible for the combinations in the previous
iterations. Therefore, the feasibility of the adjusted paths must
be examined and a set Jh is maintained to record the historical
feasible paths corresponding to Bh in each iteration (Line 18,
Procedure 1).

C. Rejection Policy for Tasks and Results in Two Phases

The phase of BS group construction: There may exist a special

case when the calculated ˜dnetH leads to a paradox as follows, if
source BS sh plays the role of b1

h, and train h receives the results
before it enters the coverage area of sh. Such a paradox can be
described by the following formula,

l(h) +˜dnetH · νh < l(sh)− γ. (22)

If the value of z(Rrec
h ) is too large, then ˜dnetH may not be

feasible. Group Bh will not be created unless results with large

data volume are rejected. ˜dnetH has a lower bound, and it needs

to satisfy˜dnetH ≥ (l(sh)− γ − l(h))/νh.Therefore, the value of
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Procedure 1: Adjusting the Group Steiner Tree With Delay Constraints.

z(Rrec
h ) also has an upper bound, which is denoted by z(˜Rrec

h ),
and it satisfies

z(˜Rrec
h ) ≤

∫ l(sh)+γ

l(sh)−γ

C↓
sh
(x) · |l(sh)− x|

νh
dx+

N↓
h∑

j=2

umax

+

∫ l(h)+dreq ·νh

l(b
1+N↓

h
h )−γ

C↓
b

1+N↓
h

h

(x) · |l(b
1+N↓

h

h )− x|
νh

dx.

(23)

The results of Rrec
h are carefully selected to make up ˜Rrec

h

such that the total volume is less than or equal to z(˜Rrec
h ).

Such a selection process is a 0-1 knapsack problem, where let
wi,h,h′ ∈ {0, 1} be the binary decision variable to determine

whether ri,h,h′ is selected to make up set ˜Rrec
h . This problem

can be solved using Lawler’s fast approximation algorithm [42].
The result set RH can be derived from set ˜Rrec

h . If any results
of task ki,h do not exist in RH after the above process, then task
ki,h is also removed from KH(t).

The phase of GST adjustment: In each iteration of adjusting
a certain GST Tv (Lines 10-31, Procedure 1), if the DCLC path
between dummy vertices x′

h and x′′
h′ cannot be found or the

adjusted path is not feasible for an original path ph,h′ ∈ Tv (Line
23, Procedure 1), it indicates that path ph,h′ is the bottleneck
path of tree Tv . Therefore, the eligibility of tasks / results for
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Procedure 2: Obtaining the Set of Admitted Tasks and
Multicasted Results by Traversing a Given Bipartite Graph.

passing through ph,h′ must be examined. In other words, some
tasks/results need to be rejected to reduce latency on path ph,h′ .
The strategy of task/result rejection (Line 24, Procedure 1) is as
follows. First, We find task set Kp ⊆ Kv

H(t) that passes through
the path ph,h′ . For each task ki,h ∈ Kp, calculate delay dpi,h

according to (21). If dpi,h >˜dnetH , we reject result ri,h,h′ , which
passes through path pi,h. The result ri,h,h′ is removed from the
set Rv

H . When all the results of a task have been rejected, then
this task also needs to be rejected and removed from the task set
Kv

H(t).

D. A Graph-Based Heuristic for Admitting Tasks and
Multicasting Results in a GST

There is no need to consider the delay constraints during
the procedure of task admission and result multicasting when
the multicast tree is determined. We propose a graph-based
algorithm to multicast results as many as possible by admitting
as many tasks as possible in a GST Tv . We observed that a
task precedes any of its results, which means that a result can be
multicast if and only if its corresponding task has been admitted.

Algorithm 1: HeuAlg.

Thus, we describe such a priority relationship between task
set Kv

H(t) and result set Rv
H by constructing a bipartite graph

Gb = (Vb, Ub, Eb). We sort set Kv
H(t) in increasing order of

the sum of the processing cost and the routing cost of each
task ki,h ∈ Kv

H(t), then we sort set Rv
H in increasing order of

the multicasting cost of each result ri,h,h′ ∈ Rv
H . For each task

ki,h in the sorted set Kv
H(t), construct node vb ∈ Vb with three

attributes of admission status vb.admit, processing cost vb.c
pro
i,h

and routing cost vb.croui,h . vb.admit is initialized to FALSE,
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Fig. 3. Example of a bipartite graph Gb = (Vb, Ub, Eb), where node set Vb

corresponds to tasks, v1.c
pro
i,h

+ v1.c
rou
i,h ≤ v2.c

pro
i,h

+ v2.c
rou
i,h ≤ v3.c

pro
i,h

+

v3.c
rou
i,h ; Node set Ub corresponds to results, u1.c

mul
i,h,h′ ≤ u2.c

mul
i,h,h′ ≤

u3.c
mul
i,h,h′ ≤ u4.c

mul
i,h,h′ ≤ u5.c

mul
i,h,h′ ; Edge set Eb represents the priority re-

lationships between the tasks and their results.

which means that vb has not been visited and the corresponding
task needs to be examined to be admitted. If vb.admit is set
to REJECT , it means that the corresponding task is rejected.
If vb.admit is set to TRUE, then the corresponding task is
admitted. For each result ri,h,h′ in the sorted setRv

H , it constructs
node ub ∈ Ub with two attributes of multicast cost ub.c

mul
i,h,h′

and parent ub.parent. If task ki,h corresponds to node vb
and result ri,h,h′ ∈ Ri,h corresponds to node ub, then an edge
eb ∈ Eb is added between vb and ub, where ub.parent is set
to vb. For ease of description, we implicitly assume that (i)
vb.c

pro
i,h + vb.c

rou
i,h ≤ vb′ .c

pro
i,h + vb′ .c

rou
i,h holds if node vb′ is on

the right side of node vb; (ii) ub.c
mul
i,h,h′ ≤ ub′ .c

mul
i,h,h′ holds if node

ub′ is on the right side of node ub; (iii) The nodes in set Ub are
at the bottom of the nodes in set Vb. The mentioned procedure
continues until all tasks and results have been assigned to the
bipartite graphGb. An example of the mentioned bipartite graph
is given in Fig. 3.

Then, maximizing the number of multicasted results in a given
GST Tv has been transformed into traversing as many nodes in
set Ub in bipartite graph Gb = (Vb, Ub, Eb) as possible, con-
strained by the budget β and cloudlet capacity Cv . We traverse
Gb with left-right and bottom-up strategy, and the details are
given in Procedure 2. It first initialized two sets, which are named
AK andMR (Line 2, Procedure 2). The nodes corresponding to
the admitted tasks are put intoAK, and the nodes corresponding
to the multicasted results are put into MR. Then we start the
traverse from the node, whose cmul

i,h,h′ is the minimum among all
nodes in Ub and every node ub ∈ Ub is processed as follows.
(i) If the admission status of the parent node of ub ∈ Ub is
REJECT , then ub will not be multicast, and it continues to
check the feasibility of the node on the right side of ub. (Lines
4–5, Procedure 2). (ii) If the parent node of ub ∈ Ub has not been
visited and the number of admitted tasks is greater than or equal
to capacity Cv , it stops traversing Gb (Lines 7-8, Procedure 2).
Otherwise, it examines the parent node of ub with the sum of the
processing cost and routing cost (Lines 9–16, Procedure 2). the
parent node of ub can be put into AK if the admission status is
TRUE (Lines 13–14, Procedure 2). (iii) The condition of Line
19 can only be verified if the parent node of ub ∈ Ub has been
admitted, i.e., node ub can be put into MR if the total admission
cost is less than or equal to the budget β. Otherwise, it stops
traversing Gb (Lines 19-24, Procedure 2).

E. Algorithm and Analysis

1) Throughput Maximization Algorithm: By iterative appli-
cation of the aforementioned procedures, we have the algorithm
to solve the network throughput maximization problem, which
is given in HeuAlg 1. We construct the set BH of BS groups
and reject the tasks and results causing the faults of construction
(Line 4, HeuAlg 1) by applying the procedures described in
subsection VI-A and subsection VI-C. Then we construct GST
Tv for each cloudlet in set Vc and store the trees in queue Q
(Lines 5-8, HeuAlg 1). For each tree Tv inQ (Line 9, HeuAlg 1),
we adjust the tree by invoking Procedure 1. Task set Kv

H(t)
and result set Rv

H , which are routed in tree Tv , are obtained
(Lines 10-15, HeuAlg 1). By applying Procedure 2, we obtain
the throughput of each tree Tv (Lines 16-19, HeuAlg 1). Last,
the maximum throughput of G is equal to the throughput of the
tree in queue Q that has the maximum number of multicasted
results (Lines 20-22, HeuAlg 1).

2) Theoretical Conclusions and Analysis: Due to the limited
space, we list the important conclusions in the main text as
follows, and leave the details of the lemmas and theorems and
their analysis in the supplement [27].

Theorem 1: Procedure 2 has a relative performance guarantee
of 1/2.

Theorem 2: Given a train set H with the initial locations
and velocities of the trains, a MEC network G = (V,E) with
a set V of routers, a subset B of BSs, a subset Vc ⊆ V of
cloudlets, and a set E of links, task set KH(t) and their
multicast-oriented computation results with delay requirements
and resource demands, there is an algorithm HeuAlg for the
network throughput maximization problem, which takes

O

⎛
⎜⎜⎜⎝
|H|3|V |(|KH(t)|(|V |+ |E|) + log |H|)
+|H|2|V |(|KH(t)| log |KH(t)|+ |E|2log4|E|)
+|V |(|H||V | log |V |+ |RH | log |RH |)
+|RH | log(1/ζ3) + 1/ζ4 + |B|

⎞
⎟⎟⎟⎠ time,

where ζ is a constant with ζ > 0.

VII. PERFORMANCE EVALUATION

A. Experiment Settings

The network topologies were generated using the GT-ITM
tool [43]. Wireless communication parameters, listed in the
Supplement [27], were set according to [17], [44], [45], [46],
[47]. The computing capacity of each cloudlet ranged from
100 to 500 [48], and the CPU cycles in a cloudlet were set at
1.5 GHz [49]. Routing costs per task/result along a link were
randomly set from 0.01 to 0.1 [50], and the cost of a router to
route a task/result varied from 0.05 to 0.1 [28]. The processing
cost for a cloudlet to compute a task was randomly drawn from
0.5 to 2 [51], and the delay on a link or in a router ranged from
1 ms (ms) to 10 ms [52]. Each taskki,h and its result setRi,h were
generated as follows: A task randomly chose its destination set
Hdes

i,h from set H of trains. Task volume z(ki,h) was uniformly
distributed from 0.01 MB to 3 MB [53], and the demanded CPU
cycles fi,h varied from 500 Mhz to 2000 Mhz [49]. The results
were obtained on a machine with a 3.2 GHz Intel i7 6-core CPU
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and 32 GB RAM. Each value in the figures was obtained by
taking the mean value of 50 trials.

B. Baselines

Inspired by the benchmark designs in [28], [51], the perfor-
mance of HeuAlg was evaluated against six baselines: Min-
Cost, MinDelay, RandomSelect, TradeoffSteiner, DelayNFV
and DelaySPT. Specially, the path-finding strategies of MinCost,
MinDelay and TradeoffSteiner are based on the calculations as
follows. The calculation of weight wλ(e) of edge e ∈ E and
weight wλ(v) of node v ∈ V in a network G need to be done
by the following formulas, wλ(e) = λ · c(e) + (1 − λ) · d(e),
and wλ(v) = λ · c(v) + (1 − λ) · d(v), where λ is the regulated
weight, c(v) and c(e) are the original costs of one unit of
data on link e and node v, respectively. d(e) and d(v) are the
original delays on link e and node v, respectively. Then, all the
baselines always choose the cloudlet with sufficient capacity and
minimum cost, where the mentioned formula also calculates the
cost with regulated weight λ. Algorithms MinCost, MinDelay,
TradeoffSteiner, DelayNFV, and DelaySPT randomly select the
BSs from the BS groups constructed by algorithm HeuAlg. The
details of all the baselines are as follows.
� MinCost: MinCost is a greedy algorithm for unicasting.

When a pair of users on different trains need to interact,
MinCost needs to find the least weight path using Dijkstra’s
algorithm [54], and such a path is from a source BS to a
specified destination BS for each task and its result, passing
through the selected cloudlet. The value of λ for MinCost is
set to 1, then finding the routing path with the least sum of
the weight of edges and nodes for each task and its result.

� MinDelay: Similar to MinCost, MinDelay is also a unicast
algorithm. The value of λ for MinDelay is set to 0, which
means that MinDelay always routes tasks and results along
the path with minimum delay. MinDelay also finds the path
with the least weight using Dijkstra’s algorithm [54].

� DelaySPT: Building on the baseline design in [55], De-
laySPT employs a heuristic approach to construct the
delay-constrained shortest path tree using Lichen’s algo-
rithm [56] for unicast paths to each multicast destination.
Each unicast path connects a source BS to a designated
destination BS for a specific task and its result, traversing
through a chosen cloudlet while balancing cost and delay.

� UniMax: UniMax [17] is a unicast-based algorithm to route
each task and its result on the MEC network for HSRs. In
line with the idea of finding the root of GST in this paper,
UniMax traverses each possible cloudlet in the network
and uses the cloudlet as a computing cloudlet to plan the
routing path through the cloudlet for each pair of task and
result.

� TradeoffSteiner: TradeoffSteiner needs to find a Steiner
tree with Charikar’s algorithm [57] for routing all the tasks
and results. Such a tree is rooted at the min-cost cloudlet
and spans all the given BSs. λ for the TradeoffSteiner is
set to 0.5, which means the path-finding strategy of the
algorithm TradeoffSteiner makes a trade-off between the
costs and the delays.

� RandomSelect: RandomSelect randomly chooses a
cloudlet with sufficient capacity as the computing cloudlet,
i.e., RandomSelect constructs only one GST, which is
rooted at the randomly chosen cloudlet, such that the
network throughput is calculated based on this GST only.
The other strategies of RandomSelect, including the GST
adjustment, rejection policy, and admission policy, are as
same as HeuAlg.

� DelayNFV: The DelayNFV algorithm [28] was originally
designed to find the routing paths for a set of NFV-enabled
multicast requests with a delay requirement. DelayNFV’s
path planning uses a Steiner tree-based algorithm, and we
adapt the algorithm to the specific context of this study.
Specifically, the computing cloudlet served as the only
instance required by the corresponding multicast request.

Based on the above description, we further classify the
baseline into Steiner-based algorithms and shortest-path-based
algorithms. The Steiner-based algorithms consist of Tradeoff-
Steiner, RandomSelect, and DelayNFV. HeuAlg also belongs to
the Steiner-based algorithm. The shortest-path-based algorithms
consists of MinCost, MinDelay, DelaySPT, and UniMax.

C. Evaluation Metrics

Different algorithms were evaluated using several metrics,
and the definition of the metrics in this article are listed as
follows.

1) Quality of Computing Service (QoCS): The QoCS is de-
fined as the ratio of the admitted tasks, KA, to the total tasks
that have arrived, KH(t). This metric shows how efficiently
the algorithm allocates the computing resources of the cloudlets
within the network.

QoCS = |KA|/|KH(t)|,
where KA ⊆ KH(t).

2) Efficiency of Multicast (EoM): EoM is defined as the ratio
between the results received by each train h and the total results
of admitted tasks. It’s important to recognize that an admit-
ted task does not guarantee multicast to the specified destina-
tion, thus reflecting the multicast transmission efficiency of the
algorithm.

EoM =

H∑
h=1

|Rrec
h |/|RA|,

where RA ⊆ RH is the results of the admitted tasks.
3) Throughput: Throughput in the MEC network refers to

the total computation results received by each train h.

Throughput =

H∑
h=1

|Rrec
h |.

4) Average Service Delay (ASD): ASD is the mean value of
the end-to-end delay experienced by each admitted task kj,h ∈
KA and its corresponding results in the network.

ASD =
∑

kj,h∈KA

(
drouj,h + dcomj,h + d↓h

)
/|KA|.
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TABLE II
DIFFERENT SYSTEM PARAMETER SETTINGS

5) Operation Cost (OC): OC consists of the sum of the
routing cost for each task ki,h ∈ KH(t), the processing cost
for each admitted task kj,h ∈ KA, and the multicasting cost for
each result rj,h,h′ ∈ RA to the designated trains.

OC =
∑

ki,h∈KA

croui,h +
∑

kj,h∈KA

cproj,h +
∑

rj,h,h′ ∈RA

cmul
j,h,h′ .

D. Discussion on Results

We evaluate the performance of HeuAlg in comparison to
baseline algorithms under various system parameters, as out-
lined in Table II. We consider two typical areas traversed by
trains: urban and rural areas. Based on realistic timetables [58],
[59], we set the safety distance between neighboring trains at a
minimum of 18 km. Train speeds are adjusted according to the
area, with urban areas having slower speeds of 0–40 m/s and rural
areas at 70–90 m/s. For our discussion, we consider a 50 km track
section and a 120 km track section in the urban and rural areas,
respectively. Thus, the number of BSs |B| in different areas is set
to 25 and 60, respectively. The train numbers |H| are set to 6 and
3 for urban and rural areas, respectively. The network infrastruc-
ture varies between different areas, leading to differences in edge
network conditions. In the urban area, the edge network is based
on the city’s backbone network, providing abundant network
resources with a large number |V | of nodes and a high density
|Vc|/|V | of cloudlets. As trains travel through rural areas, the
number of network nodes and the density |Vc|/|V | of cloudlets
decrease, resulting in relatively insufficient network resources.
Taking into account the network conditions in different areas,
tasks offloaded by users exhibit distinct characteristics. In urban
areas, users prefer offloading tasks with high data volumes of
results and low delay requirements. In contrast, in rural areas,
users prefer offloading tasks with low data volumes of results and
high delay requirements. The ratio ρi,h is set according to [60],
while the delay requirement dreq (millisecond) is set according
to [28].

1) Analysis of Efficiency of Multicast: Fig. 4 illustrates the
EoM performance of different algorithms. The EoM decreases
as the number of tasks admitted increases in all areas, a trend
that is particularly pronounced in algorithms such as MinCost
and MinDelay. From Fig. 4, it is evident that the HeuAlg
algorithm outperforms the other baselines in terms of EoM
in different areas. Specifically, Fig. 4(a) shows the EoM of
different algorithms in the urban area. The difference between
Steiner-based algorithms and shortest-path-based algorithms
increases as the task number increases. At a task number of
1000, the EoM of the HeuAlg algorithm is 8.9%, 19.0%, 25.2%,
64.4%, 79.1%, 104.3%, and 181.2% higher than that of De-
layNFV, RandomSelect, TradeoffSteniner, UniMax, DelaySPT,
MinDelay, and MinCost, respectively. Fig. 4(b) depicts the

Fig. 4. EoM of different algorithms in urban and rural areas. (a) Urban.
(b) Rural.

EoM of different algorithms in the rural area. Fig. 4(b) also
shows that the EoM of HeuAlg, DelayNFV, RandomSelect,
TradeoffSteniner, UniMax, DelaySPT, MinDelay, and MinCost
in the rural area are lower than their EoM in the urban area by
10.3%−12.7%, 10.3%−10.4%, 7.0%−10.1%, 9.6%−14.4%,
1.1%−32.8%, 1.2%−33.5%, 0.2%−31.7% and 0.1%−16.6%,
respectively.

This is because HeuAlg considers the constraints to determine
whether they will affect the feasibility of the multicast path.
Thus, the results to be multicast are checked individually at
both the BS group construction and the GST adjustment. This
approach maximizes the number of transmittable results on the
multicast path, which improves the efficiency of transmission.

2) Analysis of Average Service Delay: Fig. 5(a) illustrates the
average service delay of HeuAlg in the urban environment. The
delay curve of HeuAlg outperforms the other existing baselines.
When the task number is set to 1000, excluding the MinDelay
algorithm, the delay for HeuAlg is lesser than the other baselines
by 13.1%C50.1%. The urban setting introduces more complex-
ity, but HeuAlg’s ability to adapt and manage resources ensures
optimal performance. On the other hand, Fig. 5(b) illustrates
the average service delay of HeuAlg with varying numbers of
users in the rural environment. We observe that the delay curve
of HeuAlg maintains a lower profile compared to other existing
baselines, such as RandomSelect, TradeoffSteiner, MinDelay,
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Fig. 5. ASD of various algorithms in urban and rural areas. (a) Urban.
(b) Rural.

MinCost, DelayNFV, DelaySPT and UniMax. With the increase
in the number of users, the system faces higher demand, leading
to increased delay. However, HeuAlg optimally handles this
growth, resulting in a lower delay than other baselines (excluding
the MinDelay algorithm) by 32.0%C52.9% when the task num-
ber is at 1000. The algorithm’s efficiency in managing resources
contributes to this performance.

The reason is that the baselines take significant amount of time
to route tasks to and process them within the appropriate cloudlet
during task offloading. Taking into account the delay constraints,
task routing and computation time shrink the time available
for result routing, and it is necessary to reject certain results
to meet these delay requirements. HeuAlg therefore employs
an auxiliary graph construction technique to plan task routing,
computation, and subsequent result routing. This approach helps
to efficiently address the tradeoff between the durations of these
three phases under inherent delay constraints.

3) Analysis of Quality of Computing Service: The QoCS
performance of HeuAlg is analyzed in comparison to the base-
line algorithms: MinCost, MinDelay, TradeoffSteniner, Ran-
domSelect, DelayNFV, DelaySPT and UniMax. As observed
in Fig. 6, HeuAlg outperforms the other baselines in terms of
QoCS in varying traversing areas. Fig. 6(a) illustrates the QoCS
of different algorithms in the urban area. The figure shows that
the QoCS decreases as the number of arrived tasks increases.
The difference in QoCS among the algorithms is not significant
when the task number is low (≤200). However, as the task
number increases, the effectiveness of Steiner tree-based algo-
rithms, such as HeuAlg and DelayNFV, on QoCS becomes more
pronounced. At a task number of 1000, the QoCS of the HeuAlg
algorithm is 10.0%, 53.6% 83.1%, 114.4%, 120.9%, 151.4%,

Fig. 6. QoCS of different algorithms in urban and rural areas. (a) Urban.
(b) Rural.

191.6% higher than that of DelayNFV, RandomSelect, Tradeoff-
Steniner, UniMax, DelaySPT, MinDelay, and MinCost, respec-
tively. Fig. 6(b) presents the QoCS of different algorithms in the
rural area. The QoCS still decreases as the task number increases.
Furthermore, the QoCS of HeuAlg, DelayNFV, RandomSelect,
TradeoffSteniner, UniMax, DelaySPT, MinDelay, and MinCost
in the rural area are 2.2%–9.9%, 3.1%–13.3%, 0.01%–9.0%,
2.2%–22.6%, 10.7%–22.9%, 7.0%–35.3%, 11.8%–38.6%, and
7.7%–45.8% lower than their QoCS in the urban area, re-
spectively. The rationale behind this is that QoCS is primarily
affected by the selection of the computing cloudlet and the path
from the BS group to the computing cloudlet.

As mentioned above, HeuAlg integrates task routing into a
comprehensive path planning strategy. Meanwhile, HeuAlg also
considers each cloudlet with sufficient resources in the network
as a potential candidate and then applies path adjustment and
rejection policies to determine the most appropriate computing
cloudlet. Consequently, the computing cloud determined by
HeuAlg outperforms all baselines.

4) Analysis of Throughput: Fig. 7 illustrates the throughput
performance of HeuAlg in comparison with other baseline al-
gorithms in both rural and urban environments. In both settings,
HeuAlg exhibits a significant advantage, outperforming other
algorithms across various numbers of tasks. Fig. 7(a) depicts
the throughput of HeuAlg against the baselines in the urban
area. Among them, the throughput of HeuAlg and DelayNFV
algorithms increases with the number of tasks, the throughput
of RandomSelect and TradeoffSteiner gradually converge to a
certain value as the number of tasks increases, whereas the
throughput curves of the shortest-path-based algorithms show
a trend of first increasing and then leveling off with the number
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Fig. 7. Throughput of algorithms in urban and rural areas. (a) Urban. (b) Rural.

of tasks. Meanwhile, HeuAlg has a significant advantage over
other baseline algorithms as the number of tasks increases. For
example, when the number of tasks is 1000, the throughput of
HeuAlg is 19. 8%, 82.9%, 129.6%, 252.8%, 303.0%, 415.9%,
and 720.5% higher than that of DelayNFV, RandomSelect,
TradeoffSteniner, UniMax, DelaySPT, MinDelay and MinCost,
respectively. Fig. 7(b) shows the throughput of different algo-
rithms in the rural area, and the trends on the throughput curves of
algorithms in Fig. 7(b) are similar to that of Fig. 7(a). And as the
number of tasks increases, the difference between the throughput
of the Steiner-based algorithms and the throughput of shortest-
path-based algorithms becomes larger and larger. For example,
when the number of tasks is 1000, the throughput of HeuAlg is
21.2%, 69.6%, 171.7%, 434.7%, 621.7%, 861.4%, and 1324.1%
higher than that of DelayNFV, RandomSelect, TradeoffSteniner,
UniMax, DelaySPT, MinDelay and MinCost, respectively. Also,
in Fig. 7(b) we notice that the difference between HeuAlg’s
throughput and the baselines’ tends to increase further if the
number of tasks increases further. Considering that the number
of trains involved in multicast communication is higher in the
rural area than in the urban area, it is not statistically significant
to compare the throughput of the same algorithm in the rural
area with that in the urban area.

These trends result from HeuAlg including the steps to iden-
tify and adjust the bottleneck paths in Procedure 1 when modify-
ing the candidate GST. Consequently, HeuAlg can dynamically
modify the GST structure in response to various task numbers,
resource demands, and delay requirements, thus improving mul-
ticast throughput.

5) Analysis of Operation Cost: Fig. 8(a) illustrates the vari-
ance in operation costs of different algorithms in the urban area.
As seen in the figure, the operation costs of all Steiner-based

Fig. 8. Operation cost of algorithms in urban and rural areas. (a) Urban.
(b) Rural.

algorithms gradually increase with the task number. Combined
with the throughput depicted in Fig. 7, this suggests that Steiner-
based algorithms are not significantly influenced by throughput
in terms of operation cost. In contrast, the operation costs for
shortest-path-based algorithms initially escalate sharply with
increasing the task number, followed by a slow decline when the
task number is between 500 and 1000. This reaffirms our conclu-
sion from Fig. 7 that shortest-path-based algorithms encounter
a performance bottleneck in terms of throughput. Consider
the following example where the budget is set at 6000 in an
urban area. When HeuAlg, DelayNFV, RandomSelect, Trade-
offSteniner, UniMax, DelaySPT, MinDelay, and MinCost are
applied with respective costs of 800, 900, 1000, 900, 600, 500,
600, and 500, none of them exceed this budget. In this case, the
throughputs for these algorithms are 1798, 1601, 1117, 958,
725, 667, 576, and 440, respectively. Fig. 8(b) presents the
operation costs of different algorithms in a rural area, where
the trend is similar to that of Fig. 8(a). The operation costs of
Steiner-based algorithms continue to increase steadily with the
task number, while the operation costs of shortest-path-based
algorithms demonstrate an initial increase due to performance
bottlenecks, followed by a decreasing trend as the task number
increases. Consider the following example where the budget is
set at 11000 in a rural area. When HeuAlg, DelayNFV, Ran-
domSelect, TradeoffSteniner, UniMax, DelaySPT, MinDelay,
and MinCost are applied with respective costs of 700, 600,
300, 900, 500, 400, 600, and 400, none of them exceed this
budget. In this case, the throughputs for these algorithms are
2017, 1616, 869, 1072, 729, 620, 519, and 471, respectively. It is
obvious from these results that HeuAlg outperforms the others
by achieving the highest throughput in both urban and rural
areas.
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The reason is that HeuAlgs routing tree structure, which uses
GST, is highly efficient. In scenarios with high task density or
low delay requirements, GST ensures that only one base station
within a multicast group needs to connect to a small cloud,
significantly reducing routing overhead. On the contrary, other
algorithms require connecting all designated base stations to the
cloudlet, regardless of the conditions. This distinction empha-
sizes HeuAlg’s operational efficiency and cost effectiveness in
complex network environments.

Synthesis: The above analysis demonstrates that the Steiner-
based algorithm significantly outperforms the shortest-path-
based algorithm in multicast scenarios and therefore the unicast
algorithm cannot be directly applicable to solving multicast
problems. In particular, HeuAlg shows its superior and robust
performance in various environments. It offers detailed insights
into the adaptability of different algorithms to fluctuating task
numbers and environmental conditions. This emphasizes its effi-
cacy in routing computational outcomes to designated locations
while adhering to delay constraints. Although latency optimiza-
tion is not a primary objective of this study, HeuAlg reduces
service latency compared to other baseline algorithms in both
urban and rural settings. Its ability to adapt to diverse situations
and efficiently allocate resources contributes significantly to its
improved performance. Additionally, a review of Figs. 7 and 8
reveals that HeuAlg effectively balances operational costs. This
balance is crucial to maximize network throughput, particularly
when operators face budget constraints.

VIII. CONCLUSION

This article studies the throughput maximization problem for
multicasting the results of the offloaded delay-aware tasks in a
track-side MEC network in the snapshot scenario, where the
tasks are from the same application. We propose a heuristic
algorithm by progressively considering the constraints. Tasks
are admitted as many as possible such that as many results are
multicast to the specified destinations as possible, the resource
demands and delay requirements of each task are met, while
the total cost of the multicast routing tree is minimized, subject
to various resource capacities in the network. The simulation
results show that the proposed algorithm is suitable for multi-
casting the results to passengers on trains in both urban and rural
areas.

REFERENCES

[1] X. Wang and H. Liy, “Content delivery for high-speed railway via in-
tegrated terrestrial-satellite networks,” in Proc. IEEE Wireless Commun.
Netw. Conf., 2020, pp. 1–6.

[2] M. Gao and B. Ai, “Efficient hybrid beamforming with anti-blockage de-
sign for high-speed railway communications,” IEEE Trans. Veh. Technol.,
vol. 69, no. 9, pp. 9643–9655, Sep. 2020.

[3] Y. Deng, Z. Chen, X. Chen, and Y. Fang, “Throughput maximization for
multiedge multiuser edge computing systems,” IEEE Internet Things J.,
vol. 9, no. 1, pp. 68–79, Jan. 2022.

[4] J. Li, W. Liang, Y. Li, Z. Xu, X. Jia, and S. Guo, “Throughput maxi-
mization of delay-aware DNN inference in edge computing by exploring
DNN model partitioning and inference parallelism,” IEEE Trans. Mobile
Comput., vol. 22, no. 5, pp. 3017–3030, May 2023.

[5] X. Deng, J. Li, and L. Shi, “Wireless powered mobile edge computing:
Dynamic resource allocation and throughput maximization,” IEEE Trans.
Mobile Comput., vol. 21, no. 6, pp. 2271–2288, Jun. 2022.

[6] Y. Sun, Z. Chen, M. Tao, and H. Liu, “Bandwidth gain from mobile
edge computing and caching in wireless multicast systems,” IEEE Trans.
Wireless Commun., vol. 19, no. 6, pp. 3992–4007, Jun. 2020.

[7] H. Hao, C. Xu, S. Yang, and L. Zhong, “Multicast-aware optimization for
resource allocation with edge computing and caching,” J. Netw. Comput.
Appl., vol. 193, pp. 103–195, 2021.

[8] A. Samanta and Z. Chang, “Adaptive service offloading for revenue maxi-
mization in mobile edge computing with delay-constraint,” IEEE Internet
Things J., vol. 6, no. 2, pp. 3864–3872, Apr. 2019.

[9] A. Samanta, T. G. Nguyen, T. Ha, and S. Mumtaz, “Distributed resource
distribution and offloading for resource-agnostic microservices in indus-
trial IoT,” IEEE Trans. Veh. Technol., vol. 72, no. 1, pp. 1184–1195,
Jan. 2023.

[10] B. Li, J. Xiong, and B. Liu, “Cache-based popular services pushing on
high-speed train by using converged broadcasting and cellular networks,”
IEEE Trans. Broadcast., vol. 65, no. 3, pp. 577–588, Sep. 2019.

[11] J. Xiong, H. Xie, B. Liu, B. Li, and L. Gui, “Cooperative caching services
on high-speed train by reverse auction,” IEEE Trans. Veh. Technol., vol. 70,
no. 9, pp. 9437–9449, Sep. 2021.

[12] H. Chen and Z. Li, “Edge computing-aided framework of fault detection for
traction control systems in high-speed trains,” IEEE Trans. Veh. Technol.,
vol. 69, no. 2, pp. 1309–1318, Feb. 2020.

[13] Y. Liu and W. Li, “Vehicular edge computing model for fault detection
and diagnosis of high-speed train,” in Proc. IEEE Int. Conf. Intell. Transp.
Syst., 2020, pp. 1–6.

[14] Q. Zhang, H. Zheng, and Z. Zhong, “Energy-aware dynamic computation
offloading in high-speed railway networks with D-TDD,” in Proc. IEEE
92nd Veh. Technol. Conf., 2020, pp. 1–6.

[15] H. Li et al., “Mobility-aware predictive computation offloading and task
scheduling for mobile edge computing networks,” in Proc. IEEE 7th Int.
Conf. Comput. Commun., 2021, pp. 1349–1354.

[16] L. Li, Y. Niu, S. Mao, and B. Ai, “Resource allocation and computation
offloading in a millimeter-wave train-ground network,” IEEE Trans. Veh.
Technol., vol. 71, no. 10, pp. 10615–10630, Oct. 2022.

[17] J. Xu, Z. Wei, Z. Lyu, L. Shi, and J. Han, “Throughput maximization
of offloading tasks in multi-access edge computing networks for high-
speed railways,” IEEE Trans. Veh. Technol., vol. 70, no. 9, pp. 9525–9539,
Sep. 2021.

[18] S. Roger et al., “Low-latency layer-2-based multicast scheme for localized
V2X communications,” IEEE Trans. Intell. Transp. Syst., vol. 20, no. 8,
pp. 2962–2975, Aug. 2019.

[19] H. Bao et al., “Coded multicasting in cache-enabled vehicular ad hoc
network,” Comput. Netw., vol. 159, pp. 157–170, 2019.

[20] P. Keshavamurthy, E. Pateromichelakis, D. Dahlhaus, and C. Zhou,
“Cloud-enabled radio resource management for co-operative driving ve-
hicular networks,” in Proc. IEEE Wireless Commun. Netw. Conf., 2019,
pp. 1–6.

[21] A. J. Kadhim and S. A. H. Seno, “Energy-efficient multicast routing
protocol based on sdn and fog computing for vehicular networks,” Ad
Hoc Netw., vol. 84, pp. 68–81, 2019.

[22] Y. Hui, Z. Su, and T. H. Luan, “Collaborative content delivery in software-
defined heterogeneous vehicular networks,” IEEE/ACM Trans. Netw.,
vol. 28, no. 2, pp. 575–587, Apr. 2020.

[23] P. Keshavamurthy, E. Pateromichelakis, D. Dahlhaus, and C. Zhou,
“Resource scheduling for V2V communications in co-operative auto-
mated driving,” in Proc. IEEE Wireless Commun. Netw. Conf., 2020,
pp. 1–6.

[24] A. Samanta and J. Tang, “Dyme: Dynamic microservice scheduling in
edge computing enabled IoT,” IEEE Internet Things J., vol. 7, no. 7,
pp. 6164–6174, Jul. 2020.

[25] X. Dai, H. Zhao, S. Yu, D. Cui, Q. Zhang, and H. Dong, “Dynamic
scheduling, operation control and their integration in high-speed railways:
A review of recent research,” IEEE Trans. Intell. Transp. Syst., vol. 23,
no. 9, pp. 13994–14010, Sep. 2022.

[26] S. Li, L. Yang, and Z. Gao, “Distributed optimal control for multiple high-
speed train movement: An alternating direction method of multipliers,”
Automatica, vol. 112, 2020, Art. no. 108646.

[27] J. Xu, “The supplement,” github.com. Accessed: Jan. 31, 2024. [On-
line]. Available: https://github.com/junyixu-git/MEC-HSR-Multicast/
blob/main/supplemental.pdf

[28] H. Ren et al., “Efficient algorithms for delay-aware NFV-enabled multi-
casting in mobile edge clouds with resource sharing,” IEEE Trans. Parallel
Distrib. Syst., vol. 31, no. 9, pp. 2050–2066, Sep. 2020.

[29] H. Wu and K. Wolter, “Stochastic analysis of delayed mobile offloading
in heterogeneous networks,” IEEE Trans. Mobile Comput., vol. 17, no. 2,
pp. 461–474, Feb. 2018.

Authorized licensed use limited to: University of North Texas. Downloaded on October 12,2024 at 15:17:12 UTC from IEEE Xplore.  Restrictions apply. 

https://github.com/junyixu-git/MEC-HSR-Multicast/blob/main/supplemental.pdf
https://github.com/junyixu-git/MEC-HSR-Multicast/blob/main/supplemental.pdf


XU et al.: THROUGHPUT MAXIMIZATION FOR RESULT MULTICASTING BY ADMITTING DELAY-AWARE TASKS IN MEC NETWORKS 8781

[30] H. Flores, P. Hui, P. Nurmi, E. Lagerspetz, S. Tarkoma, and J. Manner,
“Evidence-aware mobile computational offloading,” IEEE Trans. Mobile
Comput., vol. 17, no. 8, pp. 1834–1850, Aug. 2018.

[31] A. u. R. Khan, M. Othman, S. A. Madani, and S. U. Khan, “A survey
of mobile cloud computing application models,” IEEE Commun. Surveys
Tut., vol. 16, no. 1, pp. 393–413, First Quarter 2014.

[32] Y. Mao, C. You, J. Zhang, and K. Huang, “A survey on mobile edge
computing: The communication perspective,” IEEE Commun. Surv. Tut.,
vol. 19, no. 4, pp. 2322–2358, Fourthquarter 2017.

[33] F. Gringoli, P. Serrano, and I. Ucar, “Experimental qoe evaluation of
multicast video delivery over IEEE 802.11 aa WLANs,” IEEE Trans.
Mobile Comput., vol. 18, no. 11, pp. 2549–2561, Nov. 2019.

[34] J. Park, J.-N. Hwang, and H.-Y. Wei, “Cross-layer optimization for VR
video multicast systems,” in Proc. IEEE Glob. Commun. Conf., 2018,
pp. 206–212.

[35] Z. Zhang, M. Zeng, M. Chen, and D. Liu, “Joint user grouping, version
selection, and bandwidth allocation for live video multicasting,” IEEE
Trans. Commun., vol. 70, no. 1, pp. 350–365, Jan. 2022.

[36] P. J. Davis and P. Rabinowitz, Methods of Numerical Integration. San
Diego, California, USA: Academic Press, Inc., 1984.

[37] Y.-D. Lin, Y.-C. Lai, H.-Y. Teng, and C.-C. Liao, “Scalable multicasting
with multiple shared trees in software defined networking,” J. Netw.
Comput. Appl., vol. 78, pp. 125–133, 2017.

[38] B. Ding, J. X. Yu, S. Wang, L. Qin, X. Zhang, and X. Lin, “Finding top-k
min-cost connected trees in databases,” in Proc. IEEE 23rd Int. Conf. Data
Eng., 2007, pp. 836–845.

[39] C. A. Oliveira, P. M. Pardalos, and M. G. Resende, “Optimization problems
in multicast tree construction,” in Handbook of optimization in telecom-
munications. Berlin, Germany: Springer, 2006, pp. 701–731.

[40] Y. Sun, X. Xiao, B. Cui, S. Halgamuge, and T. Lappas, “Finding group
steiner trees in graphs with both vertex and edge weights,” Proc. VLDB
Endowment, vol. 14, no. 7, pp. 1137–1149, 2021.

[41] A. Juttner and B. Szviatovski, “Lagrange relaxation based method for the
qos routing problem,” in Proc. IEEE Int. Conf. Comput. Commun., 2001,
pp. 859–868.

[42] E. L. Lawler, “Fast approximation algorithms for knapsack problems,”
Math. Operations Res., vol. 4, no. 4, pp. 339–356, 1979.

[43] Georgia Institute of Technology, “GT-ITM: Georgia tech internetwork
topology models,” gatech.edu. Accessed: Jan. 31, 2024. [Online]. Avail-
able: https://sites.cc.gatech.edu/projects/gtitm/

[44] L. Tian and J. Li, “Seamless dual-link handover scheme in broadband
wireless communication systems for high-speed rail,” IEEE J. Sel. Areas
Commun., vol. 30, no. 4, pp. 708–718, May 2012.

[45] X. Chen, L. Jiao, W. Li, and X. Fu, “Efficient multi-user computation
offloading for mobile-edge cloud computing,” IEEE/ACM Trans. Netw.,
vol. 24, no. 5, pp. 2795–2808, Oct. 2016.

[46] C. Zhang, P. Fan, K. Xiong, and P. Fan, “Optimal power allocation with
delay constraint for signal transmission from a moving train to base stations
in high-speed railway scenarios,” IEEE Trans. Veh. Technol., vol. 64,
no. 12, pp. 5775–5788, Dec. 2015.

[47] L. Wang and B. Ai, “Energy-efficient power control of train–ground
mmwave communication for high-speed trains,” IEEE Trans. Veh. Tech-
nol., vol. 68, no. 8, pp. 7704–7714, Aug. 2019.

[48] D. Bruneo, “A stochastic model to investigate data center performance
and QoS in IaaS cloud computing systems,” IEEE Trans. Parallel Distrib.
Syst., vol. 25, no. 3, pp. 560–569, Mar. 2014.

[49] X. Lyu, H. Tian, C. Sengul, and P. Zhang, “Multiuser joint task offloading
and resource optimization in proximate clouds,” IEEE Trans. Veh. Technol.,
vol. 66, no. 4, pp. 3435–3447, Apr. 2017.

[50] Z. Xu, W. Liang, M. Huang, M. Jia, S. Guo, and A. Galis, “Efficient
NFV-enabled multicasting in SDNs,” IEEE Trans. Commun., vol. 67, no. 3,
pp. 2052–2070, Mar. 2019.

[51] Y. Ma, W. Liang, J. Wu, and Z. Xu, “Throughput maximization of NFV-
enabled multicasting in mobile edge cloud networks,” IEEE Trans. Parallel
Distrib. Syst., vol. 31, no. 2, pp. 393–407, Feb. 2020.

[52] S. Knight, H. X. Nguyen, N. Falkner, R. Bowden, and M. Roughan,
“The internet topology zoo,” IEEE J. Sel. Areas Commun., vol. 29, no. 9,
pp. 1765–1775, Oct. 2011.

[53] T. Chen, H. Shan, and X. Wang, “Optimal scheduling for wireless on-
demand data packet delivery to high-speed trains,” IEEE Trans. Veh.
Technol., vol. 64, no. 9, pp. 4101–4112, Sep. 2015.

[54] E. Dijkstra, “A note on two problems in connexion with graphs,” Nu-
merische Mathematik, vol. 1, no. 1, pp. 269–271, 1959.

[55] X. Zhao, J. Guo, C. T. Chou, A. Misra, and S. K. Jha, “High-throughput
reliable multicast in multi-hop wireless mesh networks,” IEEE Trans.
Mobile Comput., vol. 14, no. 4, pp. 728–741, Apr. 2015.

[56] J. Lichen, L. Cai, J. Li, S. Liu, P. Pan, and W. Wang, “Delay-constrained
minimum shortest path trees and related problems,” Theor. Comput. Sci.,
vol. 941, pp. 191–201, 2023.

[57] M. Charikar et al., “Approximation algorithms for directed steiner prob-
lems,” J. Algorithms, vol. 33, no. 1, pp. 73–91, 1999.

[58] China Academy of Railway Sciences Corporation, “12306 China railway,”
12306.cn. Accessed: Jan. 31, 2024. [Online]. Available: https://www.
12306.cn/en/index.html

[59] Central Japan Railway Company, “Tokaido-sanyo shinkansen timetable,”
global.jr-central.co.jp. Accessed: Jan. 31, 2024. [Online]. Available: https:
//global.jr-central.co.jp/en/info/timetable/

[60] S. Vlahovic and M. Suznjevic, “The impact of network latency on gaming
QoE for an FPS VR game,” in Proc. IEEE 11th Int. Conf. Qual. Multimedia
Experience, 2019, pp. 1–3.

Authorized licensed use limited to: University of North Texas. Downloaded on October 12,2024 at 15:17:12 UTC from IEEE Xplore.  Restrictions apply. 

https://sites.cc.gatech.edu/projects/gtitm/
https://www.12306.cn/en/index.html
https://www.12306.cn/en/index.html
https://global.jr-central.co.jp/en/info/timetable/
https://global.jr-central.co.jp/en/info/timetable/


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 900
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.00111
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 1200
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.00083
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00063
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Suggested"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


