
Computer Networks 242 (2024) 110247

A
1

Contents lists available at ScienceDirect

Computer Networks

journal homepage: www.elsevier.com/locate/comnet

Cooperative caching algorithm for mobile edge networks based on
multi-agent meta reinforcement learning
Zhenchun Wei a,c,d, Yang Zhao a, Zengwei Lyu a,c,d,∗, Xiaohui Yuan b, Yu Zhang a, Lin Feng a

a School of Computer Science and Information Engineering, Hefei University of Technology, 193 Tunxi Road, Hefei, 230009, Anhui, China
b Computer Science and Engineering, University of North Texas, 1155 Union Circle, Denton, 76210, TX, USA
c Anhui Province Key Laboratory of Industry Safety and Emergency Technology, 193 Tunxi Road, Hefei, 230009, Anhui, China
d Engineering Research Center of Safety Critical Industrial Measurement and Control Technology, Ministry of Education, 193 Tunxi
Road, Hefei, 230009, Anhui, China

A R T I C L E I N F O

Keywords:
Mobile edge computing (MEC)
Cooperative caching
Meta reinforcement learning (MRL)
Multi-agent system

A B S T R A C T

Edge caching reduces service latency, relieves backhaul link traffic pressure, and enhances the quality of
experience by multiplexing network content. Many studies use deep reinforcement learning (DRL) methods
to develop edge caching policies. However, these traditional DRL methods have limitations, such as lengthy
training time, poor model generalization, and the need to relearn network parameters for new tasks. To
overcome these challenges, this paper proposes a multi-agent meta reinforcement learning-based cooperative
edge caching algorithm (MAMRC), which consists of an inner and an outer model. The inner model employs
the multi-agent deep reinforcement learning (MADRL) algorithm to implement cooperative caching for
distributed base stations (BSs). It improves the cache hit rate and reduces service latency. The outer model
uses a meta-learning method to learn meta-parameters and initialize the inner model, which enhances the
generalization capability of the inner model, allowing it to rapidly adapt to new tasks. Experiment results
indicate that, compared to the traditional DRL method and the MADRL-based algorithm, the inner model
caching performance considering edge collaboration is improved by 15.35% and 4.55% respectively. Notably,
compared to traditional caching algorithms and the inner model without initialization with meta-parameters,
MAMRC demonstrates superior average caching performance and stronger generalization ability when facing
new tasks.
1. Introduction

The growing popularity of smart devices has led to a significant
rise in mobile data traffic, which is expected to continue increasing in
the foreseeable future [1]. According to Cisco’s report [2], the number
of internet users will reach 5.3 billion, and the number of connected
devices will reach 29.3 billion by 2023. To meet the soaring demand
for data traffic, MEC has emerged as a critical technology to address
the challenges posed by the densification of base station deployments
in next-generation networks [3]. However, the deployment of BSs alone
is not enough to solve the problems of heavy backhaul link burden
and high content delivery latency, which arise due to a large number
of repeated requests for popular content from mobile users [4]. On
the other hand, edge caching can effectively cache frequently accessed
content closer to the user at the edge server, enabling many repetitive
content requests to be satisfied directly by the edge caching [5]. Edge
caching significantly reduces the burden on the core network, resulting

∗ Corresponding author.
E-mail address: lzw@hfut.edu.cn (Z. Lyu).

in improved quality of experience (QoE) [6]. The outstanding perfor-
mance of edge caching in enhancing network quality of service has
attracted the attention of numerous scholars, and it is recognized as one
of the current hot research topics in the field of MEC by the European
Telecommunications Standards Institute [7].

Early work related to edge caching utilized previously known con-
tent popularity to design caching policies [8,9]. However, these ap-
proaches relied on assumptions that are unsuitable for realistic sce-
narios where content popularity is often unavailable [10]. To address
this issue, studies have independently designed caching mechanisms
for each edge node, considering the differences among BSs [11–13].
However, when BSs with limited caching capacity make independent
decisions, they may cache popular content repeatedly, resulting in
the underutilization of caching resources [14]. With the rapid de-
velopment of MADRL, cooperative caching mechanisms in MEC sce-
narios have received increased research attention [15]. By sharing
vailable online 14 February 2024
389-1286/© 2024 Elsevier B.V. All rights reserved.

https://doi.org/10.1016/j.comnet.2024.110247
Received 4 June 2023; Received in revised form 24 November 2023; Accepted 12
 February 2024

https://www.elsevier.com/locate/comnet
https://www.elsevier.com/locate/comnet
mailto:lzw@hfut.edu.cn
https://doi.org/10.1016/j.comnet.2024.110247
https://doi.org/10.1016/j.comnet.2024.110247
http://crossmark.crossref.org/dialog/?doi=10.1016/j.comnet.2024.110247&domain=pdf

Computer Networks 242 (2024) 110247Z. Wei et al.

a
a
r
c
u
t
p
o

2

q
(
n
l
n
g

cache resources, BSs can mutually cooperate to avoid caching exces-
sive redundant data [16]. Nevertheless, traditional DRL methods used
to develop caching strategies have certain limitations, including low
sample utilization, long training time, and poor model generalization
ability [17].

In a cooperative caching system where BSs have limited cache ca-
pacity, the caching decisions made independently by each BS may lead
to redundant caching of popular content and reduced cache utilization.
Moreover, traditional DRL algorithms face challenges adapting to new
tasks, resulting in increased content delivery latency and decreased
QoE [18]. Developing an edge cooperative caching policy with strong
generalization capability is thus a pressing challenge. First, traditional
optimization decision algorithms are typically designed to optimize
short-term objectives, which may not be adequate to handle the non-
linear, non-stationary, and non-deterministic MEC network and the
long-term payoff problem. Second, the caching decision of a single
BS in cooperative caching is influenced by other BSs’ cache state
and cache actions. However, when BS performs cache replacement
actions, it can only observe its local status and not the cache actions
of others. Third, traditional DRL algorithms have poor robustness and
generalization performance, and their performance is typically limited
to training tasks, requiring retraining when facing new tasks [19].
For instance, a new content request popularity distribution can lead
to the failure of the trained caching model’s parameters, leading to
repeated learning from scratch, which incurs significant time and data
cost consumption [20].

This paper presents a cooperative edge caching algorithm that
introduces a meta-learning approach [21] into MADRL. MAMRC learns
an adaptation to the training task, which consists of an inner and an
outer model. The inner model learns the cooperative edge caching
strategy using the meta-parameters provided by the outer model and
evaluates the quality of the meta-parameters, providing feedback to
the outer model. The outer model learns the meta-parameters using
the training task set and adjusts them based on the feedback from the
inner model. The outer model uses the meta-knowledge accumulated
from the relevant tasks to guide the inner model, enabling it to adapt
quickly to new tasks. The main contributions of this paper include

• A distributed cooperative edge caching algorithm is designed to
maximize the long-term caching gain of the MEC network by
designing the state space, action space, and reward function to
optimize the collaboration mechanism among BSs.

• A MRL-based initial parameter training algorithm is proposed
that guides subsequent learning by pre-storing helpful shared
experience from the training task in advance, improving the gen-
eralization ability of the caching decision algorithm when facing
new tasks.

The rest of this paper is organized as follows: Section 2 provides
n overview of related work. Section 3 introduces the system model
nd elaborates on the proposed problem. Section 4 defines a deep
einforcement learning model for solving the optimal edge cooperative
aching policy. In Section 5, the structure and network parameter
pdate details of the proposed algorithm MAMRC are discussed. Sec-
ion 6 presents simulation experiments and discusses the algorithm’s
erformance. Finally, Section 7 concludes the paper and provides an
utlook on future work.

. Related work

The traditional content replacement methods, including least fre-
uently used (LFU), least recently used (LRU), and first-in first-out
FIFO) [22], have been used widely. However, these methods may
ot be effective in a complex network environment. To overcome this
imitation, Shanmugam et al. [23] proposed a content caching mecha-
ism for each node to minimize the expected download latency with
2

eneral content prevalence and network topology. Balasubramanian
et al. [24] focuses on MEC environments for Device-to-Device (D2D)
communication and proposes a dynamic caching allocation method to
jointly minimize both caching costs and service latency. Recently, many
scholars used reinforcement learning such as Deep Q-network (DQN)
and Deep Deterministic Policy Gradient (DDPG) to solve critical prob-
lems in edge caching systems [25]. To address the long-term popularity
and short-term relevance of user requests, Qian et al. [11] proposed a
hierarchical reinforcement learning method based on Q-learning and
DQN. This method can accurately push or cache appropriate content in
MEC networks. He et al. [26] proposed a DRL method that dynamically
coordinates network, cache, and computational resources to improve
the overall performance of vehicular networks. Li et al. [12] devel-
oped a DDPG-based content caching algorithm to optimize the content
caching policy, minimizing the average transmission delay and energy
consumption of user-requested content in MEC networks. Wu et al. [13]
modeled the cache update problem as a Markov decision process and
proposed an efficient DRL algorithm based on long short term memory
(LSTM) networks and external memory to enhance the caching decision
capability of edge servers. The algorithm improves the cache hit ratio
and long-term system payoff significantly. Nevertheless, none of the
above approaches consider collaborative caching among edge servers.
When the base stations in the edge network make caching decisions in-
dependently, they may cache the hotspot contents repeatedly, resulting
in underutilization of caching resources [14].

Cooperative edge caching has emerged as a prominent research
topic in edge caching in recent years. In a multi-BS collaborative
caching scenario, content can be shared among edge servers and user
requests can be served by the associated edge servers or their neighbor-
ing edge servers [15]. Garg et al. [27] designed the MARL algorithm to
investigate edge caching with different levels and evaluated it under
full cooperation, episodic cooperation, distributed cooperation, and
independent operation scenarios. Wu et al. [28] proposed a multi-agent
variant of the soft actor-critic-based framework for caching updates in
IoT sensing networks. The performance of their proposed distributed
cooperative caching scheme is significantly better than that of the cen-
tralized caching scheme. Considering the delay and energy balance in
MEC networks, Li et al. [29] introduced a DQN-based cooperative edge
caching approach that employs a Multilayer Perceptron network to pre-
dict video content requested by mobile users and obtains the optimal
edge caching policy by a branch-and-bound method. Zhang et al. [30]
presented a multi-agent Actor-Critic-based algorithm that considers
the application scenario of the varying size of cached data items.
Radenkovic et al. [31] proposed a cooperative edge caching method
based on the MADRL CognitiveCache and validated it in two real-world
network topologies with significant differences in user preferences in
New York and London. Their results confirm that the proposed method
can adapt to the changing MEC network. Chen et al. [32] addressed the
collaborative caching problem as a multi-agent decision problem by us-
ing a variational recurrent neural network to predict time-varying user
requests in each BS and an LSTM network to predict user movement
and location.

The above research primarily focuses on designing cooperative edge
caching strategies based on the popularity of predictable or known
static content. In practical scenarios, however, content popularity dis-
tribution may change dynamically over time, and the assumption of
static content popularity is too idealistic [33]. While some work ad-
dresses dynamic characteristics of content popularity [34], their ap-
proach still assumes a specific Zipf distribution and requires retrain-
ing for new content popularity distribution. There is little research
on improving caching performance by considering inter-collaboration
among edge servers. Furthermore, most studies rely on specific user
request popularity distributions and lack generalization capabilities

when facing new popularity distributions.

Computer Networks 242 (2024) 110247Z. Wei et al.
Table 1
Summary of main notations.

Notation Description

, 𝐵 the set, number of BSs
𝐾𝑏 caching capacity of BS 𝑏
𝑊 Channel bandwidth of BSs
 , 𝑁 the set, number of users
𝑊𝑛 bandwidth allocated to user 𝑛
𝑏 set of users covered by BS 𝑏
𝑟𝑏,𝑛 downlink transmission rate
, 𝑆 the set, number of contents
𝑚𝑠 the size of content 𝑠
𝑝𝑠 probability of user request content
𝑡 ∈ 𝑇 time slot
𝐶𝑏(𝑡) content cache state of BS 𝑏 at slot 𝑡
ℎ𝑛𝑏,𝑠𝑛 (𝑡) cache state of request 𝑠𝑛 at slot 𝑡
𝑑𝑛𝑏 (𝑡) delay from BS 𝑏 to user 𝑛 at slot 𝑡
𝑆𝑏(𝑡), 𝐴𝑏(𝑡), 𝑅𝑏(𝑡) state, action, reward of BS 𝑏
(𝑡), (𝑡), (𝑡) global state, action, reward
𝑒 energy consumption per data bit
𝑒𝑏(𝑡) energy consumption of BS 𝑏 at slot 𝑡

Fig. 1. The cooperative edge caching network.

3. System model and problem formulation

3.1. System model

Table 1 lists the main variables used in our description. Our MEC
network consists of a cloud server and 𝐵 BSs that cater 𝑁 users. The
cloud server has ample storage to cache all available services. The BS
has limited caching capabilities, which allows it to cache only a few
services. The BSs work collaboratively to fulfill content requests from
users. The network structure is shown in Fig. 1. The user request is
uploaded to a BS, which identifies a content-fetching location based on
the requested content and its cache status.

Time is divided into 𝑇 slots, where 𝑡 is a time slot. Each BS
updates its cached content at the beginning of each time slot. BS 𝑏,
𝑏 ∈ and =

{

𝑏1, 𝑏2,… 𝑏𝐵
}

, is configured with one server, and its
maximum caching capacity is denoted as 𝐾𝑏. The coverage area of BSs
has overlaps, and users 𝑛, 𝑛 ∈ and = {𝑛1, 𝑛2,… , 𝑛𝑁}, in the
overlapping area select the BS with the best channel conditions for the
association. The set of users associated with BS 𝑏 is denoted as 𝑏,
and all the users are concatenated as = ∪𝑏∈𝑏. MEC scenarios can
provide 𝑆 types of content for user requests, and we denote a specific
content as 𝑠, 𝑠 ∈ and = {𝑠 , 𝑠 ,… , 𝑠 }. The size of content 𝑠 is
3

1 2 𝑆
Fig. 2. The transmission paths for the different requested content.

𝑚𝑠 ∈
[

𝑚min, 𝑚max
]

, where 𝑚𝑚𝑎𝑥 and 𝑚𝑚𝑖𝑛 are the upper and lower bounds,
respectively.

3.1.1. Caching model
The content caching state of all BSs at time slot 𝑡 is denoted by

𝐶(𝑡) = {𝐶𝑏(𝑡) ∣ 𝑏 ∈ }, where 𝐶𝑏(𝑡) = {𝑐𝑏,𝑠(𝑡) ∣ 𝑠 ∈ } represents
the content caching state of BS 𝑏. The binary variable 𝑐𝑏,𝑠(𝑡) indicates
whether BS 𝑏 caches content 𝑠 at slot 𝑡; 𝑐𝑏,𝑠(𝑡) = 1 means the content
is cached, while 𝑐𝑏,𝑠(𝑡) = 0 means contrast. Each BS must abide by the
cache capacity limit when performing content caching
∑

𝑠∈
𝑐𝑏,𝑠(𝑡)𝑚𝑠 ≤ 𝐾𝑏, 𝑐𝑏,𝑠(𝑡) ∈ {0, 1},∀𝑏 ∈ . (1)

Adding cached content to a BS requires downloading from the cloud
server, resulting in energy consumption. In the MEC network, we only
consider the energy consumption of adding new contents and ignore the
energy consumption required to overwrite or delete previously cached
content.

3.1.2. Request model
In the system, the Zipf distribution is commonly used to model the

popularity of user requests for content [1]. The content requests of all
users are independent and obey the same distribution. We can represent
the probability of user requests for all content using the vector 𝑃 =
{𝑝𝑠 ∣ 𝑠 ∈ }. 𝑝𝑠 denotes the probability of a user requesting 𝑠 and can
be calculated by

𝑝𝑠 =
𝑢𝑠−𝜃

∑

𝑠∈ 𝑢𝑠−𝜃
, (2)

where 𝑢𝑠 is the ranking of 𝑠 in terms of frequency of being requested
among all contents, and 𝜃 is the skewness factor. A higher value of 𝜃
indicates more concentrated content popularity.

As shown in Fig. 2, a user obtains the requested contents directly
if the request has been cached in local BS. However, if the contents
are not cached locally, the neighbor BSs can be utilized to retrieve the
contents. Otherwise, the contents are fetched from the cloud server.

3.1.3. Communication model
BSs utilize the Orthogonal Frequency Division Multiple Access tech-

niques to facilitate communication with users. Each associated user
is allocated a dedicated channel for data transmission by the BS.
Furthermore, the utilization of this technique ensures that there are no
interference issues between different transmission channels [35]. The
downlink transmission rate 𝑟𝑏,𝑛 between user 𝑛 and BS 𝑏 is calculated
according to Shannon’s formula [36]:

𝑟𝑏,𝑛 = 𝑊𝑛𝑙𝑏(1 +
𝑃𝑛ℎ𝑛
𝜎2

), (3)

where 𝑊𝑛 = 𝑊 ∕|
|

𝑏
|

|

denotes the transmission bandwidth allocated by
BS 𝑏 to user 𝑛, 𝑊 is the channel bandwidth of BS, and |

|

𝑏
|

|

denotes
the number of users associated with BS 𝑏. The channel gain of user 𝑛

Computer Networks 242 (2024) 110247Z. Wei et al.

𝑛
L
i
t

c

ℎ

w
d
c
f
t
f

t
o

𝑂

T
{

4

l

𝐴

w
r
t
{

4

n
c
m
o

𝑒

w
i
s
t
e

𝑅

s
j

𝑉

w

is denoted by ℎ𝑛, while 𝑃𝑛 represents the transmission power of user
, and 𝜎2 denotes the noise power. The BSs are connected through a
ocal Area Network [35], and the transmission rate between two BSs
s denoted as a fixed value 𝑟𝑏,𝑏. The transmission rate between a BS and
he cloud server is also fixed and denoted as 𝑟𝑐,𝑏.

When user 𝑛 sends a content request 𝑠𝑛 to BS 𝑏 at time slot 𝑡, its
ache hit status can be expressed as

𝑛
𝑏,𝑠𝑛

(𝑡) ∈ (ℎ0, ℎ1, ℎ2), (4)

here ℎ0 =
[

1 0 0
]𝑇 , ℎ1 =

[

1 1 0
]𝑇 and ℎ2 =

[

1 0 1
]𝑇

enote cache hits for 𝑠𝑛 occurring at the local BS, neighbor BS, and
loud server, respectively. In the MEC network, the transmission delay
or the content request signal is significantly smaller than the content
ransmission delay, thus it can be disregarded. Consequently, the delay
or user 𝑛 to receive the requested content 𝑠𝑛 from BS 𝑏 at time slot 𝑡

can be computed as follows:

𝑑𝑛𝑏 (𝑡) =
[𝑚𝑠𝑛

𝑟𝑏,𝑛

𝑚𝑠𝑛
𝑟𝑏,𝑏

𝑚𝑠𝑛
𝑟𝑐,𝑏

]

⋅ ℎ𝑛𝑏,𝑠𝑛 (𝑡). (5)

3.2. Problem formulation

To minimize the content transmission delay and the energy con-
sumption caused by cache replacement, we introduced the system
utility 𝑄 as a weighted sum of the delay and energy consumption:

𝑄 =
∑

𝑡∈𝑇

∑

𝑏∈

⎡

⎢

⎢

⎣

∑

𝑛∈𝑏

𝑑𝑛𝑏 (𝑡) + 𝛿𝑒𝑏(𝑡)
⎤

⎥

⎥

⎦

, (6)

where 𝑎 represents the current task, 𝑒𝑏(𝑡) denotes the energy consump-
tion resulting from the cache replacement action performed by BS 𝑏
during time slot 𝑡, and 𝛿 is the weight associated with delay and energy
consumption.

This study aims to explore the generalization performance of coop-
erative edge caching policies to minimize the long-term system utility:

min
∑

𝑓∈
𝑄𝑓

𝑠.𝑡. (1) 𝑎𝑛𝑑 (4)
, (7)

where denotes the set of test tasks used to assess the caching policy’s
generalization capability when confronted with new tasks. The popular-
ity distribution of the content in the test task is novel and has not been
observed during the algorithm’s training on previous training tasks.

4. Multi-agent deep reinforcement learning model for cooperative
caching

The state of the MEC network in the next time is determined by
the current state and caching decision. Therefore, a Markov process
is appropriate for modeling the state transfer. In a distributed caching
policy, BS can only access local observation information and has no
access to the current user request state because caching decisions
are made before user requests arrive. As a result, the optimization
problem in Eq. (7) is a multi-agent decision problem based on the
partially observable Markov decision process (POMDP) [37], where
each BS is considered an agent. A POMDP can be represented by the
tuple (, ,, 𝑇 , 𝑅,, 𝛾), where is the set of agents, and are
the sets of states and actions of all agents, respectively. 𝑇 represents
the conditional transition probability between states, 𝑅 is the reward
function, denotes the set of local observations of all agents, and
𝛾 ∈ [0, 1] is the reward discount factor.
4

a

4.1. Observation and state space

The local state of the agent 𝑏 at time slot 𝑡 is

𝑆𝑏(𝑡) =
{

𝐶𝑏(𝑡),𝑀𝑏(𝑡), 𝑋𝑏(𝑡)
}

, (8)

which consists of a local cache state 𝐶𝑏, content size 𝑀𝑏, and user re-
quest state 𝑋𝑏. It is noteworthy that 𝑀𝑏(𝑡) = {𝑚𝑏,1(𝑡), 𝑚𝑏,2(𝑡),… , 𝑚𝑏,𝑆 (𝑡)}
only records the size of cached contents in BS 𝑏 and the size of other
content is recorded as zero.

When an agent performs a cache replacement, it cannot get the
user request status of the current time slot, but only the user’s request
history. The number of all content history requests observed by agent
𝑏 at time slot 𝑡 is �̂�𝑏(𝑡) = {�̂�𝑏,1(𝑡), �̂�𝑏,2(𝑡),… , �̂�𝑏,𝑆 (𝑡)}. For simplicity, we
ransfer �̂�𝑏(𝑡) to the range of [0, 1] by linear normalization. The local
bservation of agent 𝑏 at time slot 𝑡 is

𝑏(𝑡) =
{

𝐶𝑏(𝑡),𝑀𝑏(𝑡), �̂�𝑏(𝑡)
}

. (9)

he global state for the whole system at time slot 𝑡 is defined as (𝑡) =
𝑆1(𝑡),… , 𝑆𝑏(𝑡),… , 𝑆𝐵(𝑡)}, where 𝑆𝑏(𝑡) = 𝑂𝑏(𝑡).

.2. Action space

At the beginning of each time slot, the agents need to update the
ocal cache. The cache replacement action 𝐴𝑏(𝑡) by agent 𝑏 at time 𝑡 is

𝑏(𝑡) = {𝑎𝑏,1(𝑡),… , 𝑎𝑏,𝑠(𝑡),… , 𝑎𝑏,𝑆 (𝑡)}, 𝑎𝑏,𝑠 ∈ {0, 1} , (10)

here 𝑎𝑏,𝑠 = 1 is that agent 𝑏 decides to cache content 𝑠, 𝑎𝑏,𝑠 = 0
epresents not caching. Action 𝐴𝑏(𝑡) satisfies the constraint Eq. (1), and
he global action for the system at time slot 𝑡 is defined as (𝑡) =
𝐴1(𝑡), 𝐴2(𝑡),… , 𝐴𝐵(𝑡)}.

.3. Reward space

Frequent cache replacement leads to a considerable increase in
etwork communication overhead. It is crucial to minimize the energy
onsumption associated with updating BS cached content while opti-
izing the latency for users to access content. The energy consumption

f performing action 𝐴𝑏 for agent 𝑏 is

𝑏(𝑡) = 𝑒 ⋅ 1
2
∑

𝑠∈
(𝑎𝑏,𝑠(𝑡) − 𝑐𝑏,𝑠(𝑡))(𝑎𝑏,𝑠(𝑡) − 𝑐𝑏,𝑠(𝑡) + 1) ⋅ 𝑚𝑠, (11)

where 𝑒 is the energy consumption per unit size of cached content,
𝑐𝑏,𝑠(𝑡) is the cache state of content 𝑠 in BS 𝑏 when the execution action
is performed.

At time slot 𝑡, the immediate reward that agent 𝑏 receives for
executing a cache replacement action is determined by a weighted
combination of delay reduction and energy conservation

𝑅𝑏(𝑡) =
∑

𝑛∈𝑏

[𝑚𝑠𝑛
𝑟𝑏,𝑛

𝑚𝑠𝑛
𝑟𝑏,𝑏

𝑚𝑠𝑛
𝑟𝑐,𝑏

]

⋅ ℎ2 −
∑

𝑛∈𝑏

𝑑𝑛𝑏 (𝑡) − 𝛿 ⋅ 𝑒𝑏(𝑡), (12)

here delay reduction refers to the reduced delay compared to obtain-
ng all the content from the cloud server. The global reward for the
ystem at time slot 𝑡 is defined as (𝑡) = {𝑅1(𝑡),… , 𝑅𝑏(𝑡),… , 𝑅𝐵(𝑡)}. And
he overall reward 𝑅(𝑡) for the entire MEC network can be immediately
xpressed as

(𝑡) =
∑

𝑏∈
𝑅𝑏(𝑡). (13)

In our multi-agent system, the state value function 𝑉𝜋 (𝑠) that con-
iders long-term rewards is the cumulative expected reward under the
oint policy 𝜋:

𝜋 (𝑠) = E

[

∑

𝑡∈𝑇
𝛾 𝑡𝑅(𝑡)||

|

𝑆(𝑡), 𝜋

]

, (14)

here 𝜋 = {𝜋1, 𝜋2,… , 𝜋𝐵} is the set of caching policies for all agents,

nd 𝛾 ∈ [0, 1] is the discount factor. The value of 𝛾 influences the

Computer Networks 242 (2024) 110247Z. Wei et al.
Fig. 3. The framework of MRL-based MAMRC.

extent to which future rewards affect present decisions. Higher values
of 𝛾 prioritize long-term rewards. Hence, the problem of optimizing
cooperative edge caching policy is finding the policy 𝜋∗ to maximize
long-term reward of the system.

5. Meta reinforcement learning-based cooperative edge caching
algorithm

Fig. 3 illustrates the basic framework of MAMRC, which consists
of two main models: the inner model and the outer model. During
MAMRC learning, the inner model is initialized with meta parameters
provided by the outer model. It is then trained using reinforcement
learning to acquire the optimal cache replacement policy tailored to
the current sampling task. The learned model parameters of the in-
ner model are fed back to the outer model, which adjusts the meta-
parameters based on this feedback. As a result, the inner model is
initialized with updated meta-parameters and can be promptly adapt
to new tasks.

5.1. Inner model

The framework of the inner model is shown in Fig. 4. The inner
model extends the MADDPG algorithm [38] and facilitates coopera-
tive caching among BSs through centralized training and distributed
execution. When the set of global states of the MEC network is
observed, each agent makes cache content replacement decisions based
on their local observations. The MEC network provides immediate
cache rewards after all agents have executed their actions . After
cache replacement, the MEC network state is updated to ′, and the
state transfer tuple (,,, ′) is stored in the replay buffer 𝐷.

Each agent comprises multiple deep neural networks, including
the actor network 𝜋(𝜃) and critic networks 𝑄𝜋 (𝜙), along with their
corresponding target networks �̂�(�̂�) and �̂��̂�(�̂�). The target networks
are introduced to maintain stability when inner model training and
network structure are identical to the original network.

At time slot 𝑡, the actor network parameters of agent 𝑏 are defined
as 𝜃𝑏(𝑡). 𝜋𝑏 is the cache replacement policy function that maps the local
state 𝑆𝑏(𝑡) of the agent to the cache replacement action 𝐴𝑏(𝑡)

𝐴𝑏(𝑡) = 𝜋𝑏(𝑆𝑏(𝑡)
|

|

|

𝜃𝑏(𝑡)). (15)

To facilitate the exploration of potentially optimal cooperative
caching strategies, the actor introduces the Gumbel-SoftMax Trick
mechanism by adding random noise. Furthermore, the final output
5

vector of the actor network is denoted as �̂�, which has to be mapped
to an executable cache replacement action 𝐴 using Algorithm 1.

Algorithm 1 Caching action mapping

Require: The outpour vector of the actor network �̂�𝑏,∀𝑏 ∈ ;
Ensure: The adjusted caching action for agent 𝑏: 𝐴𝑏;
1: Initialize 𝐴𝑏 = {𝑎𝑏,1,⋯ , 𝑎𝑏,𝑠,⋯ , 𝑎𝑏,𝑆}, where 𝑎𝑏,𝑠 = 0,∀𝑠 ∈ , 𝛥 = 0,
𝑖 = 1;

2: while 𝛥 < 𝐾 do
3: Get the 𝑖𝑡ℎ largest index 𝑠 of vector �̂�𝑏;
4: if 𝛥 + 𝑚𝑠 < 𝐾 then
5: 𝑎𝑏,𝑠 = 1, 𝑖 = 𝑖 + 1;
6: end if
7: 𝛥 = 𝛥 + 𝑚𝑠;
8: end while

The critic network serves as an evaluator of the cache replacement
actions. At time 𝑡, the critic network receives the locally observed states
(𝑡) and the set of cache replacement actions (𝑡) performed by all
agents. The state value 𝑄𝜋𝑏 is computed as follows:

𝑄𝑏(𝑡) = 𝑄𝜋𝑏 ((𝑡),(𝑡)||
|

𝜙𝑏(𝑡)), (16)

where 𝜙𝑏(𝑡) denotes the critic network parameter of agent 𝑏.
At regular intervals, {(𝑗 ,𝑗 ,𝑗 , ′𝑗)||

|

𝑗 ∈ } are randomly sampled
from the reply buffer and input into the network for training, where
is the set of sample indices. The actor updates the network parameters
using policy gradient, while the critic network parameters are updated
by computing the temporal difference (TD) error.

Taking agent 𝑏 as an example, the parameters of actor network 𝜃𝑏
is updated by

𝜃𝑏 ← 𝜃𝑏 + 𝛼 ⋅ ∇𝜃𝑏𝐽 (𝜃𝑏), (17)

where 𝛼 is the learning rate of the actor network, and ∇𝜃𝑏𝐽 (𝜃𝑏) refers
to the policy gradient. When the batch size is 𝐻 , ∇𝜃𝑏𝐽 (𝜃𝑏) is calculated
as

∇𝜃𝑏𝐽 (𝜋𝑏) = E ,𝐴∼𝐷[∇𝜃𝑏𝜋𝑏(𝐴𝑏
|

|

|

𝑆𝑏)∇𝐴𝑄𝜋𝑏 (, 𝐴1,… , 𝐴𝑏,… , 𝐴𝐵)
|

|

|𝐴𝑏=𝜋𝑏(𝑠𝑏
|

|

|

𝜃𝑏)
]

≈ 1
𝐻

∑

𝑗∈
∇𝜃𝑏𝜋𝑏(𝑆

𝑗
𝑏
|

|

|

𝜃𝑏)∇𝐴𝑗𝑏
𝑄𝜋𝑏 (

𝑗 , 𝐴𝑗1,… , 𝐴𝑗𝑏,… , 𝐴𝑗𝐵)
|

|

|𝐴𝑗𝑏=𝜋𝑏(𝑠
𝑗
𝑏
|

|

|

𝜃𝑏)
.

(18)

The critic network is trained using TD error by minimizing the loss
function

 = 1
𝐻

∑

𝑗∈
(𝑦𝑗𝑏 −𝑄

𝜋
𝑏 (

𝑗 , 𝐴𝑗1,… , 𝐴𝑗𝑏,… , 𝐴𝑗𝐵))
2
. (19)

When the reward discount factor is 𝛾, 𝑦𝑗𝑏 is calculated as

𝑦𝑗𝑏 = 𝑅𝑗𝑏 + 𝛾 ⋅ �̂�
�̂�
𝑏 (

′𝑗 , 𝐴
′𝑗
1 ,… , 𝐴

′𝑗
𝑏 ,… , 𝐴

′𝑗
𝐵
|

|

|

�̂�)||
|𝐴

′𝑗
𝑏 =�̂�𝑏(𝑠

𝑗
𝑏
|

|

|

�̂�𝑏)
. (20)

The target network is not involved in the training process. After the
actor and critic networks update their parameters, the parameters of
the target network are soft updated as

�̂�𝑏 ← 𝜏 ⋅ 𝜃𝑏 + (1 − 𝜏) ⋅ �̂�𝑏
�̂�𝑏 ← 𝜏 ⋅ 𝜙𝑏 + (1 − 𝜏) ⋅ �̂�𝑏

, (21)

where 𝜏 is the smoothing coefficient. The complete process of the
proposed cooperative edge caching algorithm is shown in Algorithm 2.

5.2. Outer model

By combining the objective function of Model-Agnostic Meta-
Learning (MAML) [39] with the training method of the inner model,
the objective function of the outer model is

𝑂𝑢𝑡𝑒𝑟(𝜓) = E
[

𝐼𝑛𝑛𝑒𝑟(𝜉′)
]

, 𝜉′ = 𝑓
(

𝜉 ,
)

, 𝜉 = 𝜓 , (22)
𝑖∈𝜌() 𝑖 𝑖 𝑖 𝑖 𝑖 𝑖

Computer Networks 242 (2024) 110247Z. Wei et al.
Fig. 4. The framework of MADRL-based inner model.
Algorithm 2 MARL-based inner model
Require: The actor network 𝜋𝑏 and target network �̂�𝑏 with random

parameters 𝜃𝑏; the critic network 𝑄𝜋𝑏 and target network �̂��̂�𝑏 with
random parameters 𝜙𝑏; the reply buffer 𝐷 with memory capacity
𝐾𝑑 ;

Ensure: optimal caching policy 𝜋∗;
1: Random initialize the content cache policy of all BSs;
2: for slot=1 to 𝑇 do
3: initialize 𝑡=1;
4: for all agent 𝑏 ∈ do
5: Receive the local observation 𝑆𝑏(𝑡);
6: Get the outpour vector of actor �̂�𝑏(𝑡) = 𝜋𝑏(𝑆𝑏(𝑡) ||𝜃𝑏(𝑡));
7: Obtain adjusted action 𝐴𝑏(𝑡) using Algorithm 1;
8: Execute action 𝐴𝑏(𝑡) and update the cache policy of BS 𝑏;
9: Receive the user requests this slot;

10: Calculate the immediate reward 𝑅𝑏(𝑡) using (12);
11: Receive the subsequent observation 𝑆 ′

𝑏(𝑡);
12: end for
13: Store ((𝑡),(𝑡),(𝑡), ′ (𝑡)) in 𝐷;
14: if 𝑡%𝑙=0 then
15: Sample random 𝐻 samples (𝑗 ,𝑗 ,𝑗 , ′𝑗), 𝑗 ∈ from 𝐷;
16: for all agent 𝑏 ∈ do
17: Update actor 𝜋𝑏 using the stochastic gradient descent (18)

by Adam;
18: Update critic 𝑄𝜋𝑏 by minimizing the loss (19) by Adam;
19: The parameters of target network �̂�𝑏 and �̂��̂�𝑏 are soft updated

by (21);
20: end for
21: end if
22: 𝑡 = 𝑡 + 1;
23: end for

where 𝑓
(

𝜉𝑖, 𝑖
)

represents the inner model update function that is
initialized with the meta parameter 𝜓 . 𝑖 denotes the 𝑖𝑡ℎ task sampled
in the outer model training phase, while 𝜉𝑖 represents the inner model
initialization parameter corresponding to 𝑖. 𝜉′𝑖 refers to the network
parameter when 𝑖 is trained to obtain the optimal caching policy.

The stochastic gradient descent is used to optimize the objective
function and the meta parameters 𝜓 are updated as follows:

𝜓 ← 𝜓 − 𝜆∇𝜓
∑

𝑖∈𝜌()
𝐼𝑛𝑛𝑒𝑟𝑖

(𝜉′𝑖), (23)

where 𝜆 is the learning rate of outer model training.
6

However, optimizing the objective function using Eq. (22) requires
the calculation of second-order gradients, which is time-consuming and
computationally expensive. In addition, owing to the actor and critic
networks in the inner model using different methods to update network
parameters, it is challenging to compute second-order gradients. To
address these issues, the outer model optimizes Eq. (22).

Fig. 5 illustrates the workflow of the outer model. In the training
phase, after each task has learned a content caching strategy, the
network parameters are updated using the difference between the
parameters before and after the task:

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝜓𝑎𝑐𝑡𝑜𝑟 ← 𝜓𝑎𝑐𝑡𝑜𝑟 + 𝜆
1
𝑛
∑𝑛
𝑖=1 (𝜉

′
𝑖,𝑎𝑐𝑡𝑜𝑟 − 𝜓𝑎𝑐𝑡𝑜𝑟)∕𝛼

𝜓𝑐𝑟𝑖𝑡𝑖𝑐 ← 𝜓𝑐𝑟𝑖𝑡𝑖𝑐 + 𝜆
1
𝑛
∑𝑛
𝑖=1 (𝜉

′
𝑖,𝑐𝑟𝑖𝑡𝑖𝑐 − 𝜓𝑐𝑟𝑖𝑡𝑖𝑐)∕𝛽

𝜓𝑡𝑎𝑟𝑔𝑒𝑡_𝑎𝑐𝑡𝑜𝑟 ← 𝜏 ⋅ 𝜓𝑎𝑐𝑡𝑜𝑟 + (1 − 𝜏) ⋅ 𝜓𝑡𝑎𝑟𝑔𝑒𝑡_𝑎𝑐𝑡𝑜𝑟
𝜓𝑡𝑎𝑟𝑔𝑒𝑡_𝑐𝑟𝑖𝑡𝑖𝑐 ← 𝜏 ⋅ 𝜓𝑐𝑟𝑖𝑡𝑖𝑐 + (1 − 𝜏) ⋅ 𝜓𝑡𝑎𝑟𝑔𝑒𝑡_𝑐𝑟𝑖𝑡𝑖𝑐

, (24)

where 𝑛 is the batch size in the outer model training, 𝛼 and 𝛽 are
the learning rates of the actor network and the critic network of the
inner model, respectively. The smoothing coefficient 𝜏 is used to update
target networks. The process of updating meta-parameters is shown in
Fig. 6, where the arrows depict the direction of gradient updates.

Algorithm 3 presents the overall design of MAMRC. Initially, a batch
of tasks is sampled from the training task set 𝜌(), and each task
is trained using Algorithm 3 to learn the optimal cache replacement
policy. The meta parameters are updated using Adam [40]. Once the
outer model is trained to obtain meta parameters with stable effects,
the inner model does not require further training to adapt to tasks and
make caching decisions.
Algorithm 3 MRL-based MAMRC
Require: Task distribution 𝜌() = {1;⋯ , 𝑖,⋯ , 𝐼};
Ensure: Meta parameter 𝜓 ;
1: Random initialize meta parameter 𝜓 ;
2: for iterations 𝑘 ∈ {1,⋯ , 𝐾} do
3: Sample 𝑛 tasks 𝑖 ∈ {1, 2,⋯ , 𝑛} from 𝜌();
4: for each task 𝑖 ∈ {1, 2,⋯ , 𝑛} do
5: Initialize the parameters of 𝑖: 𝜉𝑖 ← 𝜓 ;
6: Train 𝑖 using Algorithm 2;
7: end for
8: Update 𝜓 using (24) via Adam;
9: end for

Computer Networks 242 (2024) 110247Z. Wei et al.
Fig. 5. The workflow of the outer model.
Fig. 6. The update process of meta parameters.

6. Performance evaluation

6.1. Simulation setup

In the MEC scenario, services are provided to users by four BSs
that communicate with each other. The bandwidth for each BS is
20MHz, which is divided equally among its users. Each BS has an
edge server with a content cache capacity of 200 MB. The number of
users associated with the four BSs is 50, 30, 20, and 40. To replicate
real-world user requests, the experiments are conducted using the
MovieLens 1M Dataset [41]. Following the methodology in [34], each
content’s frequency of request is approximated using a Zipf distribution
with a skewness factor of 0.8. In each time slot, the users send requests
to a BS with a total of 𝑆=1000 request types in the network, and each
content has a size 𝑚 ∈ [1, 10] MB. Additional simulation parameters are
detailed in Table 2.

The experiment was based on the deep learning framework PyTorch
1.12.0, written in Python 3.7.0. The computer hardware configuration
comprised an AMD Ryzen 7 5800H CPU, NVIDIA GeForce RTX 3060
GPU, and 32 GB memory, with Windows 10 operating system. We
modeled each BS as an agent in the experiments, incorporating the
actor network, critic network, and their corresponding target networks.
Each deep neural network contains two fully connected layers, with the
first layer consisting of 128 neurons and the second of 256 neurons,
using the ReLU activation function. The learning rates for the actor
and critic networks are 0.0001 and 0.0006, respectively. The Adam
optimizer was used for updating, with network parameters updated
every hundred-time slots. The detailed hyperparameters settings for the
MAMRC training are shown in Table 2.
7

Table 2
Evaluation parameters.

Parameter Value

Number of BSs 4
Number of users 50, 30, 20, 40
Number of contents 1000
Content size [1,10] MB
Skewness factor 0.8
Bandwidth of BSs 20 MHz
Transmission rate between BSs 5 MB/S
Transmission rate between the cloud server and BS 1 MB/S
Transmission power between user and BS 0.1 W
Gauss white noise power 100 dBm
Unit energy consumption for content transmission 0.3 J/MB
Weight of energy consumption and delay 0.5
Number of steps in each episode 100
Inner and outer model batch size 128, 8
Memory capacity of reply buffer 105

Actor and critic learning rate 0.0001, 0.0006
Reward discount factor 0.96
Target smoothing coefficient 0.01
Outer model learning rate 2 × 10−6

6.2. Verification of inner model

We conducted a comparative analysis with four popular edge caching
methods, LFU, FIFO, DDPG, and MAAC.

• LFU: Select the content with the lowest frequency of user requests
within a specific period for replacement.

• FIFO: Selects the earliest cached content for replacement.
• DDPG [12]: A deterministic policy gradient algorithm based on

actor-critic, where the agent independently formulates the cache
replacement strategy.

• MAAC [30]: A multi-agent actor-critic caching algorithm inspired
by the Actor-Critic algorithm, which is designed to tackle the
cooperative caching issue.

LFU and FIFO are traditional cache replacement methods that up-
date caching based on the content’s access frequency and arrival time.
In contrast, DDPG is a DRL method that utilizes the same state, action,
and reward function settings as the inner model. However, it functions
without considering the collaboration between BSs. MAAC is an edge
caching algorithm based on MADRL. Apart from sharing the same
reward function as the inner model, all other algorithmic settings are

Computer Networks 242 (2024) 110247Z. Wei et al.
Fig. 7. Performance comparison of different caching methods.
Table 3
Performance of different methods.

Method Reward Total hit ratio Local hit ratio Neighbor hit ratio

LFU 190.90 0.4244 0.2257 0.1987
FIFO 177.86 0.4186 0.1966 0.2220
DDPG 275.85 0.4671 0.2860 0.1811
MAAC 304.33 0.5192 0.2498 0.2693
MAMRC 318.19 0.5378 0.2602 0.2776

referenced from [30]. We use the same sequence of user requests in our
experiments to ensure a fair comparison.

In Fig. 7, the horizontal axis represents the episode of network
parameter updates, each consisting of one hundred time slots. The
vertical axis shows the reward function values and the total, local,
and neighbor cache hit rates. Fig. 7(a) and Fig. 7(b) show that the
performance of cache replacement methods, LFU and FIFO, is far
inferior to DRL methods. Both DDPG and the inner model converge at
around 170 episodes, while MAAC requires training for approximately
250 episodes to achieve stable results. DDPG exhibits a significantly
lower average reward and total hit ratio than the MADRL methods
that consider content-cooperative caching. In comparison to MAAC, the
proposed inner model converges faster and demonstrates superior per-
formance. Fig. 7(c) and 7(d) show that DDPG has a higher hit ratio for
local caches. In contrast, the hit ratio for neighbor caches is relatively
lower. This is because, in DDPG, the agent independently formulates
cache replacement strategies, which may result in repeatedly caching
popular content. Despite experiencing a reduction in the local hit ratio,
the performance of the inner model considering content collaboration
caching is significantly better than other baseline methods.

The results in Table 3 are the average of multiple time slots after
performance stabilization. The immediate reward of the inner model
is improved by 66.68%, 78.90%, 15.35% and 4.55% compared with
LFU, FIFO, DDPG and MAAC, respectively, and the total cache hit ratio
8

is improved by 26.72%, 28.48%, 15.14%, and 3.58% respectively. As
the traditional cache replacement mechanism brings massive energy
consumption by frequently updating the cache contents, the reward
improvement of the inner model is more significant than that of the
total hit ratio.

To evaluate the caching performance of the inner model in different
MEC networks, we conducted experiments with varying numbers of
BSs, total content numbers, BS cache capacities, and Zipf distributions.
Other network parameters follow the values in Table 2, and the results
are illustrated in Fig. 8. As shown in Fig. 8(a), the long-term rewards
of all methods increase with the number of BSs, where the reward of
the inner model is significantly better than others. Fig. 8(b) displays the
performance under different content amounts ranging from 500 to 2500
with a step size of 500. It can be observed that the cache performance
becomes worse as the content amount increases. Larger cache space
allows BSs to cache more content. Hence, the curve in Fig. 8(c) shows
an upward trend but is not linear. In Fig. 8(d), we varied the Zipf
skewness factor between 0.2 and 1.0 with a step of 0.2 and observed
that the long-term rewards of all methods exhibited an upward trend.
This finding suggests that an increase in the concentration of user
requests for popular content leads to an improvement in cache hit rates.
In summary, the inner model’s cache performance performs optimally
in various MEC environments.

6.3. Verification of MAMRC

In the training process of MAMRC, the content popularity of the
training and testing tasks follows different distributions, as shown in
Table 4. Specifically, the popularity distribution in the testing task
was distinct from that of the training task, aiming to evaluate the
generalization capability of MAMRC when dealing with new tasks.
To better mimic the real-world scenarios, we randomly selected the
number of users and the size of contents in training and test tasks within
the ranges provided in Table 4.

Computer Networks 242 (2024) 110247Z. Wei et al.

i
u
t
c

Fig. 8. Performance comparison of different MEC environments.
d
r

m
r
r
i
t
s
T
t
h
t
i
p
b
p
r

o
c
t
t
w

Table 4
Evaluation parameters setup of outer model.

Parameter Training task Testing task

𝜃 0.4 – 0.7, 0.8 – 1.0 0.7 – 0.8
𝑁𝑏 [20, 60] [20, 60]
𝑚 [1, 10] MB [1, 10] MB

Fig. 9. Convergence of outer model in the training phase.

Hyperparameter tuning experiments have shown that the outer
model can achieve the best performance when the training batch size is
eight and the learning rate 𝜆 is 2×10−6. The training process is depicted
n Fig. 9, where the horizontal axis is the iterations of meta-parameter
pdates, and the vertical axis represents the average value of the long-
erm reward achieved by the inner model when initialized with the
9

urrent meta-parameters across various test tasks. T
To demonstrate the generalization performance of MAMRC under
ifferent tasks, the following models were employed to execute cache
eplacement policies in the testing tasks.

• LFU: Directly using LFU to decide the replacement of cached
content.

• Trained inner model(TIM): The inner model that learns the
optimal caching policy through a specific training task.

• MAMRC: The inner model initialized with meta-parameters at the
convergence of the outer model.

Fig. 10 demonstrates the caching performance achieved by the
ethods above across multiple testing tasks. The horizontal axis rep-

esents specific testing tasks, and the vertical axis shows the average
eward across multiple time slots in the testing tasks. Due to variations
n the number of user requests, the average rewards obtained by
he same method may differ across different testing tasks. It can be
een that when facing a new task, the caching performance of the
IM declines severely, and in a few testing tasks, it even falls below
hat of the LFU algorithm. This is because traditional DRL algorithms
ave poor generalization abilities, and the model parameters already
rained may become invalid when facing completely new tasks. By
ntroducing meta-learning into DRL, MAMRC effectively solves the
roblem mentioned above, and the caching performance is significantly
etter than other algorithms. Compared with LFU and TIM, the caching
erformance in total test tasks is improved by 57.35% and 26.51%,
espectively.

For a more intuitive comparison of the generalization performance
f models, we selected LFU, multiple different TIMs, and MAMRC as
ache decision models and conducted simulations across 20 various
esting tasks. The simulation results, as shown in Fig. 11, depict the
otal hit ratio averaged over multiple time slots on the vertical axis,
hile the horizontal axis represents different cache decision models.

he specific values corresponding to the metrics of each method are

Computer Networks 242 (2024) 110247Z. Wei et al.
Table 5
Total hit ratio of different methods.

Metric Methods

LFU TIM1 TIM2 TIM3 TIM4 TIM5 TIM6 TIM7 TIM8 MAMRC

Min 0.3424 0.3831 0.3868 0.3607 0.3514 0.2794 0.2474 0.3482 0.3620 0.4307
Max 0.4289 0.4591 0.4549 0.4305 0.4174 0.3366 0.2925 0.4281 0.4505 0.4699
Fluctuation 0.0865 0.0759 0.0681 0.0697 0.0659 0.0572 0.0451 0.0799 0.0884 0.0391
Average 0.3826 0.4184 0.4164 0.3900 0.3754 0.3007 0.2739 0.3882 0.4100 0.4482
e
S

D

c
i

D

A

h
S
F
P

R

Fig. 10. Performance comparison of different methods in multi test tasks.

Fig. 11. Generalization performance comparison of different methods.

shown in Table 5. It can be observed that the average total hit ratio
of MAMRC is 0.4482. Compared to LFU and multiple TIMs, MAMRC
achieves optimal cache performance when facing entirely new testing
tasks. Besides, MAMRC exhibits strong generalization capabilities, as
it demonstrates the smallest fluctuation range in the overall total hit
ratio across different testing tasks, with only 0.0391, while the average
fluctuation range for all TIMs is 0.0688.

7. Conclusion and future work

This paper proposes a novel cooperative edge caching algorithm
MAMRC based on multi-agent meta-reinforcement learning to over-
come the limitations of existing algorithms, such as low performance
and poor generalization ability. In this approach, we first model the
optimization problem as a POMDP-based multi-agent decision prob-
lem and then design a reinforcement learning algorithm to explore
the optimal cooperative edge caching policy. Furthermore, we in-
troduce meta-learning to guide DRL using meta-knowledge accumu-
lated from relevant tasks, which effectively enhances the robustness
and generalization performance of the DRL algorithm across different
10
task scenarios. Experimental results demonstrate that MAMRC outper-
forms baseline methods, including greedy and DRL algorithms, achiev-
ing optimal caching performance. Moreover, due to the incorpora-
tion of meta-parameters, MAMRC demonstrates robust generalization
capability when confronted with new tasks.

There is still much room for future research. For example, ex-
ploring cooperative edge caching strategies in heterogeneous networks
with various edge devices may pose a more significant challenge.
Additionally, we will focus on addressing the issue of too many hyper-
parameter combinations during meta-reinforcement learning training
by developing automatic hyperparameter tuning methods.

CRediT authorship contribution statement

ZhenchunWei: Conceptualization, Writing – original draft, Method-
ology, Formal analysis. Yang Zhao: Validation, Data curation, Soft-
ware, Visualization. Zengwei Lyu: Funding acquisition, Investigation,
Resources. Xiaohui Yuan: Writing – original draft, Writing – review &
diting. Yu Zhang: Formal analysis. Lin Feng: Project administration,
upervision.

eclaration of competing interest

The authors declare that they have no known competing finan-
ial interests or personal relationships that could have appeared to
nfluence the work reported in this paper.

ata availability

Data will be made available on request.

cknowledgments

This work was supported by the Natural Science Foundation of An-
ui Province, China (2108085MF202), the National Natural
cience Foundation of China (62002097), the Fundamental Research
unds for the Central Universities of China (PA2023GDSK0048,
A2023GDGP0044).

eferences

[1] B. Abolhassani, J. Tadrous, A. Eryilmaz, Optimal load-splitting and distributed-
caching for dynamic content over the wireless edge, IEEE/ACM Trans. Netw. 31
(5) (2023) 2178–2190.

[2] U. Cisco, Cisco Annual Internet Report (2018–2023) White Paper, Vol. 10, (1)
Cisco, San Jose, CA, USA, 2020, pp. 1–35.

[3] A. Sarah, G. Nencioni, M.M.I. Khan, Resource allocation in multi-access edge
computing for 5G-and-beyond networks, Comput. Netw. 227 (2023) 109720.

[4] L. Qiu, G. Cao, Popularity-aware caching increases the capacity of wireless
networks, IEEE Trans. Mob. Comput. 19 (1) (2019) 173–187.

[5] M. Reiss-Mirzaei, M. Ghobaei-Arani, L. Esmaeili, A review on the edge caching
mechanisms in the mobile edge computing: A social-aware perspective, Internet
Things 22 (2023) 100690.

[6] X. Chen, T. Tan, G. Cao, T.F.L. Porta, Context-aware and energy-aware video
streaming on smartphones, IEEE Trans. Mob. Comput. 21 (3) (2022) 862–877.

[7] T.X. Tran, A. Hajisami, P. Pandey, D. Pompili, Collaborative mobile edge
computing in 5G networks: New paradigms, scenarios, and challenges, IEEE
Commun. Mag. 55 (4) (2017) 54–61.

[8] M. Gregori, J. Gómez-Vilardebó, J. Matamoros, D. Gündüz, Wireless content
caching for small cell and D2D networks, IEEE J. Sel. Areas Commun. 34 (5)
(2016) 1222–1234.

http://refhub.elsevier.com/S1389-1286(24)00079-3/sb1
http://refhub.elsevier.com/S1389-1286(24)00079-3/sb1
http://refhub.elsevier.com/S1389-1286(24)00079-3/sb1
http://refhub.elsevier.com/S1389-1286(24)00079-3/sb1
http://refhub.elsevier.com/S1389-1286(24)00079-3/sb1
http://refhub.elsevier.com/S1389-1286(24)00079-3/sb2
http://refhub.elsevier.com/S1389-1286(24)00079-3/sb2
http://refhub.elsevier.com/S1389-1286(24)00079-3/sb2
http://refhub.elsevier.com/S1389-1286(24)00079-3/sb3
http://refhub.elsevier.com/S1389-1286(24)00079-3/sb3
http://refhub.elsevier.com/S1389-1286(24)00079-3/sb3
http://refhub.elsevier.com/S1389-1286(24)00079-3/sb4
http://refhub.elsevier.com/S1389-1286(24)00079-3/sb4
http://refhub.elsevier.com/S1389-1286(24)00079-3/sb4
http://refhub.elsevier.com/S1389-1286(24)00079-3/sb5
http://refhub.elsevier.com/S1389-1286(24)00079-3/sb5
http://refhub.elsevier.com/S1389-1286(24)00079-3/sb5
http://refhub.elsevier.com/S1389-1286(24)00079-3/sb5
http://refhub.elsevier.com/S1389-1286(24)00079-3/sb5
http://refhub.elsevier.com/S1389-1286(24)00079-3/sb6
http://refhub.elsevier.com/S1389-1286(24)00079-3/sb6
http://refhub.elsevier.com/S1389-1286(24)00079-3/sb6
http://refhub.elsevier.com/S1389-1286(24)00079-3/sb7
http://refhub.elsevier.com/S1389-1286(24)00079-3/sb7
http://refhub.elsevier.com/S1389-1286(24)00079-3/sb7
http://refhub.elsevier.com/S1389-1286(24)00079-3/sb7
http://refhub.elsevier.com/S1389-1286(24)00079-3/sb7
http://refhub.elsevier.com/S1389-1286(24)00079-3/sb8
http://refhub.elsevier.com/S1389-1286(24)00079-3/sb8
http://refhub.elsevier.com/S1389-1286(24)00079-3/sb8
http://refhub.elsevier.com/S1389-1286(24)00079-3/sb8
http://refhub.elsevier.com/S1389-1286(24)00079-3/sb8

Computer Networks 242 (2024) 110247Z. Wei et al.
[9] W. Jiang, G. Feng, S. Qin, Optimal cooperative content caching and delivery
policy for heterogeneous cellular networks, IEEE Trans. Mob. Comput. 16 (5)
(2016) 1382–1393.

[10] J. Kwak, Y. Kim, L.B. Le, S. Chong, Hybrid content caching in 5G wireless
networks: Cloud versus edge caching, IEEE Trans. Wireless Commun. 17 (5)
(2018) 3030–3045.

[11] Y. Qian, R. Wang, J. Wu, B. Tan, H. Ren, Reinforcement learning-based optimal
computing and caching in mobile edge network, IEEE J. Sel. Areas Commun. 38
(10) (2020) 2343–2355.

[12] Q. Li, Y. Sun, Q. Wang, L. Meng, Y. Zhang, A green DDPG reinforcement learning-
based framework for content caching, in: 2020 12th International Conference on
Communication Software and Networks, ICCSN, 2020, pp. 223–227.

[13] P. Wu, J. Li, L. Shi, M. Ding, K. Cai, F. Yang, Dynamic content update for
wireless edge caching via deep reinforcement learning, IEEE Commun. Lett. 23
(10) (2019) 1773–1777.

[14] Y. Zhen, W. Chen, L. Zheng, X. Li, D. Mu, Multiagent cooperative caching
policy in industrial internet of things, IEEE Internet Things J. 9 (18) (2022)
16770–16779.

[15] A. Tian, B. Feng, H. Zhou, Y. Huang, K. Sood, S. Yu, H. Zhang, Efficient federated
DRL-based cooperative caching for mobile edge networks, IEEE Trans. Netw.
Serv. Manag. 20 (1) (2023) 246–260.

[16] Q. Chang, Y. Jiang, F.-C. Zheng, M. Bennis, X. You, Cooperative edge caching
via multi agent reinforcement learning in fog radio access networks, in: ICC
2022-IEEE International Conference on Communications, 2022, pp. 3641–3646.

[17] J. Beck, R. Vuorio, E.Z. Liu, Z. Xiong, L. Zintgraf, C. Finn, S. Whiteson, A
survey of meta-reinforcement learning, 2023, pp. 1–53, arXiv preprint arXiv:
2301.08028.

[18] Y. Mao, C. You, J. Zhang, K. Huang, K.B. Letaief, A survey on mobile edge
computing: The communication perspective, IEEE Commun. Surv. Tutor. 19 (4)
(2017) 2322–2358.

[19] M. Zhao, G. Wang, Q. Fu, X. Guo, Y. Chen, T. Li, X. Liu, MW-MADDPG: a meta-
learning based decision-making method for collaborative UAV swarm, Front.
Neurorobot. 17 (2023) 1–16.

[20] G. Qu, H. Wu, R. Li, P. Jiao, DMRO: A deep meta reinforcement learning-based
task offloading framework for edge-cloud computing, IEEE Trans. Netw. Serv.
Manag. 18 (3) (2021) 3448–3459.

[21] T. Hospedales, A. Antoniou, P. Micaelli, A. Storkey, Meta-learning in neural
networks: A survey, IEEE Trans. Pattern Anal. Mach. Intell. 44 (9) (2021)
5149–5169.

[22] S. Podlipnig, L. Böszörmenyi, A survey of web cache replacement strategies, ACM
Comput. Surv. 35 (4) (2003) 374–398.

[23] K. Shanmugam, N. Golrezaei, A.G. Dimakis, A.F. Molisch, G. Caire, Femtocaching:
Wireless content delivery through distributed caching helpers, IEEE Trans.
Inform. Theory 59 (12) (2013) 8402–8413.

[24] V. Balasubramanian, M. Wang, M. Reisslein, C. Xu, Edge-boost: Enhancing mul-
timedia delivery with mobile edge caching in 5G-D2D networks, in: 2019 IEEE
International Conference on Multimedia and Expo, ICME, 2019, pp. 1684–1689.

[25] A. Feriani, E. Hossain, Single and multi-agent deep reinforcement learning for
AI-enabled wireless networks: A tutorial, IEEE Commun. Surv. Tutor. 23 (2)
(2021) 1226–1252.

[26] Y. He, N. Zhao, H. Yin, Integrated networking, caching, and computing for
connected vehicles: A deep reinforcement learning approach, IEEE Trans. Veh.
Technol. 67 (1) (2017) 44–55.

[27] N. Garg, T. Ratnarajah, Cooperative scenarios for multi-agent reinforcement
learning in wireless edge caching, in: ICASSP 2021-2021 IEEE International
Conference on Acoustics, Speech and Signal Processing, ICASSP, 2021, pp.
3435–3439.

[28] X. Wu, X. Li, J. Li, P. Ching, V.C. Leung, H.V. Poor, Caching transient content for
IoT sensing: Multi-agent soft actor-critic, IEEE Trans. Commun. 69 (9) (2021)
5886–5901.

[29] C. Li, L. Zhu, W. Li, Y. Luo, Joint edge caching and dynamic service migration
in SDN based mobile edge computing, J. Netw. Comput. Appl. 177 (2021)
102966–102982.

[30] Y. Zhang, B. Feng, W. Quan, A. Tian, K. Sood, Y. Lin, H. Zhang, Cooperative
edge caching: A multi-agent deep learning based approach, IEEE Access 8 (2020)
133212–133224.

[31] M. Radenkovic, V.S.H. Huynh, Cognitive caching at the edges for mobile social
community networks: A multi-agent deep reinforcement learning approach, IEEE
Access 8 (2020) 179561–179574.

[32] S. Chen, Z. Yao, X. Jiang, J. Yang, L. Hanzo, Multi-agent deep reinforce-
ment learning-based cooperative edge caching for ultra-dense next-generation
networks, IEEE Trans. Commun. 69 (4) (2020) 2441–2456.

[33] J. Gao, S. Zhang, L. Zhao, X. Shen, The design of dynamic probabilistic caching
with time-varying content popularity, IEEE Trans. Mob. Comput. 20 (4) (2020)
1672–1684.

[34] M.K. Somesula, R.R. Rout, D.V. Somayajulu, Cooperative cache update using
multi-agent recurrent deep reinforcement learning for mobile edge networks,
Comput. Netw. 209 (2022) 108876–108890.

[35] L. Chen, J. Xu, S. Zhou, Computation peer offloading in mobile edge computing
with energy budgets, in: GLOBECOM 2017-2017 IEEE Global Communications
Conference, 2017, pp. 1–6.
11
[36] X. Wang, C. Wang, X. Li, V.C. Leung, T. Taleb, Federated deep reinforcement
learning for internet of things with decentralized cooperative edge caching, IEEE
Internet Things J. 7 (10) (2020) 9441–9455.

[37] M.T. Spaan, Partially observable Markov decision processes, in: Reinforcement
Learning: State-Of-The-Art, 2012, pp. 387–414.

[38] R. Lowe, Y. Wu, A. Tamar, J. Harb, P. Abbeel, I. Mordatch, Multi-agent actor-
critic for mixed cooperative-competitive environments, in: Proceedings of the
31st International Conference on Neural Information Processing Systems, NIPS,
2017, pp. 6382–6393.

[39] C. Finn, P. Abbeel, S. Levine, Model-agnostic meta-learning for fast adaptation of
deep networks, in: International Conference on Machine Learning, PMLR, 2017,
pp. 1126–1135.

[40] D.P. Kingma, J. Ba, Adam: A method for stochastic optimization, 2014, pp. 1–15,
arXiv preprint arXiv:1412.6980.

[41] F.M. Harper, J.A. Konstan, The movielens datasets: History and context, ACM
Trans. Interact. Intell. Syst. (TIIS) 5 (4) (2015) 1–19.

Zhenchun Wei received the B.S. and Ph.D. degrees from the
School of Computer Science and Information Engineering,
Hefei University of Technology, Hefei, China, in 2000 and
2007, respectively. He is currently an Associate Professor
and M.S. Supervisor with the School of Computer Science
and Information Engineering, Hefei University of Tech-
nology. His research interests include Internet of Things,
distributed intelligence, deep learning, edge computing.

Yang Zhao received his B.E. degree from Hefei University
of Technology in 2019. He is currently pursuing the M.S.
degree with the School of Computer and Information, Hefei
University of Technology, China. His research interests
include wireless network optimization and edge caching.

Zengwei Lyu received the B.S. degree in 2012, the M.S.
degree in 2015 and the Ph.D. degree in 2020, both from
School of Computer Science and Information Engineering,
Hefei University of Technology, and he is currently an
associate research fellow in Hefei University of Technology.
His research fields mainly lie in wireless rechargeable sensor
networks.

Xiaohui Yuan received the Ph.D. degree from Tulane
University, in 2004. He is currently an Associate Professor
with the University of North Texas. His research interests
include computer vision, data mining, machine learning,
and artificial intelligence. He serves as the chair of several
international conferences. He serves on the editorial board
of several international journals. He is the Editor-in-Chief of
the International Journal of Smart Sensor Technologies and
Applications.

Yu Zhang received his B.E. degree from Anhui Medical
University in 2021. He is pursuing the postgraduate de-
gree in the School of Computer Science and Information
Engineering, Hefei University of Technology, Hefei, China.
His research interests include wireless rechargeable sensor
networks and deep learning.

Lin Feng received the Ph.D. degree in computer science
from the Hefei University of Technology, China, in 2014.
She is currently an Associate Professor with the Hefei
University of Technology. Her current research interests
include vehicular ad hoc networks, wireless networks, and
computer vision.

http://refhub.elsevier.com/S1389-1286(24)00079-3/sb9
http://refhub.elsevier.com/S1389-1286(24)00079-3/sb9
http://refhub.elsevier.com/S1389-1286(24)00079-3/sb9
http://refhub.elsevier.com/S1389-1286(24)00079-3/sb9
http://refhub.elsevier.com/S1389-1286(24)00079-3/sb9
http://refhub.elsevier.com/S1389-1286(24)00079-3/sb10
http://refhub.elsevier.com/S1389-1286(24)00079-3/sb10
http://refhub.elsevier.com/S1389-1286(24)00079-3/sb10
http://refhub.elsevier.com/S1389-1286(24)00079-3/sb10
http://refhub.elsevier.com/S1389-1286(24)00079-3/sb10
http://refhub.elsevier.com/S1389-1286(24)00079-3/sb11
http://refhub.elsevier.com/S1389-1286(24)00079-3/sb11
http://refhub.elsevier.com/S1389-1286(24)00079-3/sb11
http://refhub.elsevier.com/S1389-1286(24)00079-3/sb11
http://refhub.elsevier.com/S1389-1286(24)00079-3/sb11
http://refhub.elsevier.com/S1389-1286(24)00079-3/sb12
http://refhub.elsevier.com/S1389-1286(24)00079-3/sb12
http://refhub.elsevier.com/S1389-1286(24)00079-3/sb12
http://refhub.elsevier.com/S1389-1286(24)00079-3/sb12
http://refhub.elsevier.com/S1389-1286(24)00079-3/sb12
http://refhub.elsevier.com/S1389-1286(24)00079-3/sb13
http://refhub.elsevier.com/S1389-1286(24)00079-3/sb13
http://refhub.elsevier.com/S1389-1286(24)00079-3/sb13
http://refhub.elsevier.com/S1389-1286(24)00079-3/sb13
http://refhub.elsevier.com/S1389-1286(24)00079-3/sb13
http://refhub.elsevier.com/S1389-1286(24)00079-3/sb14
http://refhub.elsevier.com/S1389-1286(24)00079-3/sb14
http://refhub.elsevier.com/S1389-1286(24)00079-3/sb14
http://refhub.elsevier.com/S1389-1286(24)00079-3/sb14
http://refhub.elsevier.com/S1389-1286(24)00079-3/sb14
http://refhub.elsevier.com/S1389-1286(24)00079-3/sb15
http://refhub.elsevier.com/S1389-1286(24)00079-3/sb15
http://refhub.elsevier.com/S1389-1286(24)00079-3/sb15
http://refhub.elsevier.com/S1389-1286(24)00079-3/sb15
http://refhub.elsevier.com/S1389-1286(24)00079-3/sb15
http://refhub.elsevier.com/S1389-1286(24)00079-3/sb16
http://refhub.elsevier.com/S1389-1286(24)00079-3/sb16
http://refhub.elsevier.com/S1389-1286(24)00079-3/sb16
http://refhub.elsevier.com/S1389-1286(24)00079-3/sb16
http://refhub.elsevier.com/S1389-1286(24)00079-3/sb16
http://arxiv.org/abs/2301.08028
http://arxiv.org/abs/2301.08028
http://arxiv.org/abs/2301.08028
http://refhub.elsevier.com/S1389-1286(24)00079-3/sb18
http://refhub.elsevier.com/S1389-1286(24)00079-3/sb18
http://refhub.elsevier.com/S1389-1286(24)00079-3/sb18
http://refhub.elsevier.com/S1389-1286(24)00079-3/sb18
http://refhub.elsevier.com/S1389-1286(24)00079-3/sb18
http://refhub.elsevier.com/S1389-1286(24)00079-3/sb19
http://refhub.elsevier.com/S1389-1286(24)00079-3/sb19
http://refhub.elsevier.com/S1389-1286(24)00079-3/sb19
http://refhub.elsevier.com/S1389-1286(24)00079-3/sb19
http://refhub.elsevier.com/S1389-1286(24)00079-3/sb19
http://refhub.elsevier.com/S1389-1286(24)00079-3/sb20
http://refhub.elsevier.com/S1389-1286(24)00079-3/sb20
http://refhub.elsevier.com/S1389-1286(24)00079-3/sb20
http://refhub.elsevier.com/S1389-1286(24)00079-3/sb20
http://refhub.elsevier.com/S1389-1286(24)00079-3/sb20
http://refhub.elsevier.com/S1389-1286(24)00079-3/sb21
http://refhub.elsevier.com/S1389-1286(24)00079-3/sb21
http://refhub.elsevier.com/S1389-1286(24)00079-3/sb21
http://refhub.elsevier.com/S1389-1286(24)00079-3/sb21
http://refhub.elsevier.com/S1389-1286(24)00079-3/sb21
http://refhub.elsevier.com/S1389-1286(24)00079-3/sb22
http://refhub.elsevier.com/S1389-1286(24)00079-3/sb22
http://refhub.elsevier.com/S1389-1286(24)00079-3/sb22
http://refhub.elsevier.com/S1389-1286(24)00079-3/sb23
http://refhub.elsevier.com/S1389-1286(24)00079-3/sb23
http://refhub.elsevier.com/S1389-1286(24)00079-3/sb23
http://refhub.elsevier.com/S1389-1286(24)00079-3/sb23
http://refhub.elsevier.com/S1389-1286(24)00079-3/sb23
http://refhub.elsevier.com/S1389-1286(24)00079-3/sb24
http://refhub.elsevier.com/S1389-1286(24)00079-3/sb24
http://refhub.elsevier.com/S1389-1286(24)00079-3/sb24
http://refhub.elsevier.com/S1389-1286(24)00079-3/sb24
http://refhub.elsevier.com/S1389-1286(24)00079-3/sb24
http://refhub.elsevier.com/S1389-1286(24)00079-3/sb25
http://refhub.elsevier.com/S1389-1286(24)00079-3/sb25
http://refhub.elsevier.com/S1389-1286(24)00079-3/sb25
http://refhub.elsevier.com/S1389-1286(24)00079-3/sb25
http://refhub.elsevier.com/S1389-1286(24)00079-3/sb25
http://refhub.elsevier.com/S1389-1286(24)00079-3/sb26
http://refhub.elsevier.com/S1389-1286(24)00079-3/sb26
http://refhub.elsevier.com/S1389-1286(24)00079-3/sb26
http://refhub.elsevier.com/S1389-1286(24)00079-3/sb26
http://refhub.elsevier.com/S1389-1286(24)00079-3/sb26
http://refhub.elsevier.com/S1389-1286(24)00079-3/sb27
http://refhub.elsevier.com/S1389-1286(24)00079-3/sb27
http://refhub.elsevier.com/S1389-1286(24)00079-3/sb27
http://refhub.elsevier.com/S1389-1286(24)00079-3/sb27
http://refhub.elsevier.com/S1389-1286(24)00079-3/sb27
http://refhub.elsevier.com/S1389-1286(24)00079-3/sb27
http://refhub.elsevier.com/S1389-1286(24)00079-3/sb27
http://refhub.elsevier.com/S1389-1286(24)00079-3/sb28
http://refhub.elsevier.com/S1389-1286(24)00079-3/sb28
http://refhub.elsevier.com/S1389-1286(24)00079-3/sb28
http://refhub.elsevier.com/S1389-1286(24)00079-3/sb28
http://refhub.elsevier.com/S1389-1286(24)00079-3/sb28
http://refhub.elsevier.com/S1389-1286(24)00079-3/sb29
http://refhub.elsevier.com/S1389-1286(24)00079-3/sb29
http://refhub.elsevier.com/S1389-1286(24)00079-3/sb29
http://refhub.elsevier.com/S1389-1286(24)00079-3/sb29
http://refhub.elsevier.com/S1389-1286(24)00079-3/sb29
http://refhub.elsevier.com/S1389-1286(24)00079-3/sb30
http://refhub.elsevier.com/S1389-1286(24)00079-3/sb30
http://refhub.elsevier.com/S1389-1286(24)00079-3/sb30
http://refhub.elsevier.com/S1389-1286(24)00079-3/sb30
http://refhub.elsevier.com/S1389-1286(24)00079-3/sb30
http://refhub.elsevier.com/S1389-1286(24)00079-3/sb31
http://refhub.elsevier.com/S1389-1286(24)00079-3/sb31
http://refhub.elsevier.com/S1389-1286(24)00079-3/sb31
http://refhub.elsevier.com/S1389-1286(24)00079-3/sb31
http://refhub.elsevier.com/S1389-1286(24)00079-3/sb31
http://refhub.elsevier.com/S1389-1286(24)00079-3/sb32
http://refhub.elsevier.com/S1389-1286(24)00079-3/sb32
http://refhub.elsevier.com/S1389-1286(24)00079-3/sb32
http://refhub.elsevier.com/S1389-1286(24)00079-3/sb32
http://refhub.elsevier.com/S1389-1286(24)00079-3/sb32
http://refhub.elsevier.com/S1389-1286(24)00079-3/sb33
http://refhub.elsevier.com/S1389-1286(24)00079-3/sb33
http://refhub.elsevier.com/S1389-1286(24)00079-3/sb33
http://refhub.elsevier.com/S1389-1286(24)00079-3/sb33
http://refhub.elsevier.com/S1389-1286(24)00079-3/sb33
http://refhub.elsevier.com/S1389-1286(24)00079-3/sb34
http://refhub.elsevier.com/S1389-1286(24)00079-3/sb34
http://refhub.elsevier.com/S1389-1286(24)00079-3/sb34
http://refhub.elsevier.com/S1389-1286(24)00079-3/sb34
http://refhub.elsevier.com/S1389-1286(24)00079-3/sb34
http://refhub.elsevier.com/S1389-1286(24)00079-3/sb35
http://refhub.elsevier.com/S1389-1286(24)00079-3/sb35
http://refhub.elsevier.com/S1389-1286(24)00079-3/sb35
http://refhub.elsevier.com/S1389-1286(24)00079-3/sb35
http://refhub.elsevier.com/S1389-1286(24)00079-3/sb35
http://refhub.elsevier.com/S1389-1286(24)00079-3/sb36
http://refhub.elsevier.com/S1389-1286(24)00079-3/sb36
http://refhub.elsevier.com/S1389-1286(24)00079-3/sb36
http://refhub.elsevier.com/S1389-1286(24)00079-3/sb36
http://refhub.elsevier.com/S1389-1286(24)00079-3/sb36
http://refhub.elsevier.com/S1389-1286(24)00079-3/sb37
http://refhub.elsevier.com/S1389-1286(24)00079-3/sb37
http://refhub.elsevier.com/S1389-1286(24)00079-3/sb37
http://refhub.elsevier.com/S1389-1286(24)00079-3/sb38
http://refhub.elsevier.com/S1389-1286(24)00079-3/sb38
http://refhub.elsevier.com/S1389-1286(24)00079-3/sb38
http://refhub.elsevier.com/S1389-1286(24)00079-3/sb38
http://refhub.elsevier.com/S1389-1286(24)00079-3/sb38
http://refhub.elsevier.com/S1389-1286(24)00079-3/sb38
http://refhub.elsevier.com/S1389-1286(24)00079-3/sb38
http://refhub.elsevier.com/S1389-1286(24)00079-3/sb39
http://refhub.elsevier.com/S1389-1286(24)00079-3/sb39
http://refhub.elsevier.com/S1389-1286(24)00079-3/sb39
http://refhub.elsevier.com/S1389-1286(24)00079-3/sb39
http://refhub.elsevier.com/S1389-1286(24)00079-3/sb39
http://arxiv.org/abs/1412.6980
http://refhub.elsevier.com/S1389-1286(24)00079-3/sb41
http://refhub.elsevier.com/S1389-1286(24)00079-3/sb41
http://refhub.elsevier.com/S1389-1286(24)00079-3/sb41

	Cooperative caching algorithm for mobile edge networks based on multi-agent meta reinforcement learning
	Introduction
	Related work
	System model and problem formulation
	System model
	Caching model
	Request model
	Communication model

	Problem formulation

	Multi-agent deep reinforcement learning model for cooperative caching
	Observation and state space
	Action space
	Reward space

	Meta reinforcement learning-based cooperative edge caching algorithm
	Inner model
	Outer model

	Performance evaluation
	Simulation setup
	Verification of inner model
	Verification of MAMRC

	Conclusion and future work
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	Acknowledgments
	References

