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Abstract— As part of airport behavior decisions, the accurate
prediction of airport delay is highly significant in optimizing
flight takeoff and landing sequences. However, the combination
of various influencing factors affects airport delay prediction
strongly, which would bring severe challenges in prediction.
This paper introduces the sequence-to-sequence network and
proposes a multi-step regression prediction method for the
airport delay (DA-BILSTM) to accurately predict the airport
delay. Rather than only considering a single kind of airport
delay influencing factors, we design an attention fusion network
for learning the sequence and condition correlation features
adaptively. Moreover, the Bayesian optimization algorithm is
introduced to optimize DA-BILSTM’s hyperparameters. The
method is applied individually to two datasets for predicting the
airport’s delays. The experiment results show that the prediction
performance of DA-BILSTM is better than many state-of-the-art
methods including the autoregressive integrated moving average
model (ARIMA), long short-term memory (LSTM), gated recur-
rent unit(GRU), CNN-BILSTM, and TS-LSTM. When using
DA-BILSTM in the two datasets, the average MAE of airport
delay prediction in the next 5 hours is about 10 minutes, and the
average RMSE is 20 minutes.

Index Terms— Airport delay prediction, attention fusion net-
work, bidirectional long short-term memory network, sequence
to sequence.

I. INTRODUCTION

THE limited airspace and airport ground resources, the
rapid growth of passengers, and the increasingly dense

flight scheduling worsen the airport delay problem daily [1].
Airport delay seriously endangers the interests of airports,
airlines, air traffic controllers, passengers, etc. When an airport
is delayed, the delay will spread to the downstream airports
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of the flight, to spread to all airports, resulting in a large-scale
delay of the whole civil aviation transportation network. Accu-
rate prediction of airport delays can assist airport managers
to make decisions in advance so that the chain propagation
of flight delays can be effectively restrained, and the serious
consequences caused by large-scale airport delays can be
avoided [2]. Accurate prediction of airport delay can also indi-
rectly reflect the relationship between airport flight capacity
and demand in the future [3], which is essential for optimizing
the sequence of flight takeoff and landing, ensuring the safety
and orderliness of all aspects of flights, and improving the
robustness of civil aviation transportation system [4].

In the research of using machine learning to predict airport
delays, most previous studies divide the airport delay into
different categories according to the range of airport delays
and then predict the delay category [5], [6], [7]. Classifica-
tion methods give a coarse prediction of the delay level of
flights but cannot determine the specific amount of airport
delay time [8]. In practical applications, accurate prediction
of airport-specific delays is crucial in flight scheduling [9].
Accurate airport delay prediction methods can be broadly
classified into two categories: single-step forecasting and
multi-step forecasting. Single-step prediction involves fore-
casting only a single future value per prediction, rendering
it well-suited for short-term predictions. On the other hand,
multi-step prediction enables the prediction of multiple future
values in a single instance, making it more suitable for long-
term forecasts [10]. When addressing the challenge of airport
delay prediction, single-step predictions exhibit relatively high
accuracy, while multi-step prediction offers a wealth of infor-
mation that proves invaluable for airport decision-making
and proactive scheduling [11]. In recent years, only a few
studies focused on predicting the specific time of airport delay,
especially multi-step airport delay prediction. The methods
mentioned above may not fully account for the varying
degrees of influence exerted by numerous factors contributing
to airport delays. Some factors are strongly correlated with
airport delays, while others may have a lower degree of
impact on airport delay prediction [12]. Hence, airport delays
caused by sequence and condition factors should be treated
differently. By considering sequential and conditional factors
and the strength of these factors, much-improved airport delay
prediction can be achieved.

Airport operation is jointly affected by various conditions,
such as weather conditions, scheduling conflicts, and overuse
of airport capacities [13]. Sequence factors can also affect
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airport operations [14]. An airport delay triggers a chain
reaction and affects other airports. Hence, it is challenging
to predict airport delays [11], [15], [16]. Firstly, analyzing all
the factors that affect airport delays can be time-consuming
and it is challenging to identify and focus on factors that
have a greater impact on airport delays. The second challenge
is how to maintain high prediction accuracy when making
long-time airport delay predictions. Thirdly, manually setting
hyperparameters is often based on experience and analysis of
data, resulting in a large consumption of time and manpower.
Hence, it is necessary to design a hyperparameter optimization
method.

This paper formulates airport delay prediction as a
multi-step prediction problem to address these challenges. The
average delay per hour at the airport is used to represent the
degree of delay [17]. An attention fusion network-based pre-
dicting method of airport delay is proposed, which consists of
a sequence-to-sequence (Seq2Seq) framework and an attention
fusion network. Seq2Seq consists of an encoder and a decoder,
which extract airport delay features. The attention fusion
network is composed of a sequence attention network and a
condition attention network. The sequence attention network
is designed to mine historical time series factors, which affect
airport delays and generate the sequence correlation feature
vector. The condition attention network is designed to capture
the internal mechanism of various condition factors and gener-
ate the condition correlation feature vector. The fusion feature
vector is obtained and delivered to the decoder for airport delay
prediction by fusing the sequence and condition correlation
feature vectors. The main contributions of this paper can be
summarized as the following two points.

(1) A multi-step regression prediction method for airport
delay is proposed in this paper, which can capture the historical
sequence features and condition features on airport delay,
portraying the influence mechanisms of different factors on
airport delay from different dimensions.

(2) A Bayesian optimization method is devised to select
hyperparameters for the DA-BILSTM, which avoids the sub-
jectivity of manual parameter adjustment and the uncertainty
of parameter adjustment time.

The remainder of this study is organized as follows.
Section II gives a brief overview of airport delay prediction.
Section III introduces the airport delay prediction model
based on the attention fusion network. Section IV shows how
the Bayesian optimization algorithm optimizes DA-BILSTM.
Evaluations and comparisons are presented and discussed in
Section V, and Section VI concludes this study and suggests
potential future work.

II. RELATED WORK

Airport delay, regarded as crucial indicators in transporta-
tion systems, have received substantial attention in the field of
air transportation through extensive research.

Wu et al. [18] analogized the process of spreading delay
status among airports to the process of spreading infectious
diseases and divided airports into susceptible and infected
states, according to which the susceptible airports in the
process of spreading airport delays are predicted. Considering

the continuous updating of airport flight data, Rodriguez-
Sanz et al. [19] introduced a method to model the causal
relationship between airport arrival performance indicators
and meteorological events, which could be used to quantify
the impact of weather on airport arrival conditions, predict
the evolution of airport operational scenarios and support
the airport decision making process. Mukherjee et al. [20]
proposed a logistic regression and decision tree-based airport
delay prediction method considering meteorological condi-
tions and planned traffic demand. Validation of actual data
from Newark Liberty International Airport and San Francisco
International Airport showed that the proposed airport delay
prediction method outperformed existing stochastic prediction
methods. Wang et al. [21] focused on the influence of weather
factors on airport delays, introduced Gaussian mixture models
and OTSU methods to improve the weather-influenced traffic
index model, and proposed an improved weather-influenced
traffic index model based on the improved weather-influenced
traffic index model. Mo et al. [22] considered the demand
for predicting medium and long-term flight delays and estab-
lished an ARIMA model based on a time series prediction
algorithm. Then they validated the prediction performance
of the proposed method using historical data of flights at a
sizeable domestic airport. Xie et al. [23] used an error back
propagation neural network to classify airport departure delays
by developing two classes based on delay frequency and delay
time delineation method.

Statistical-based airport delay prediction methods presented
above infer airport delay by analyzing the relationship between
variables. Although the calculation is simple and the time
complexity is low, the prediction accuracy could be worse,
and the stability of the prediction method is poor in the con-
dition of large and high-dimensional airport delay data [24].
Fortunately, the development of machine learning has brought
a new turn to the airport delay prediction problem. Recurrent
Neural Network (RNN) [25] has excellent advantages in
learning nonlinear features of sequences by introducing the
concept of sequence into the network structure. The LSTM
network [26] has been improved for the network gradient
explosion and gradient disappearance problems of RNN and
is more suitable for processing and predicting long-distance
time sequence information with long intervals and delays
in time sequences and outperforms other mainstream net-
works in airport delay prediction problems. Liu et al. [27]
proposed a multi classification airport delay prediction method
based on LSTM to solve the difficulty of capturing delay
sequence information in traditional prediction models. Li and
Jing [7] developed a prediction framework that utilizes LSTM
units to capture temporal characteristics related to crowd-
edness and weather conditions. They employed Random
Forest as a classifier to predict flight delays, achieving a
classification accuracy of up to 92.39%. Li et al. [6] con-
sidered the spatial correlations between airports along with
the temporal correlations among timestamps and proposed
a CNN-LSTM deep learning framework to predict airport
delays. The performance of the proposed method was exper-
imentally demonstrated to be better than several benchmark
models.
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However, the above research methods based on statistics
and machine learning tend to classify airport delays as classi-
fication problems, only rating the delay level of the airport.
The information provided by predicting the delay category
is not enough to meet the needs of airport decision-making,
etc. For organizations such as airlines and logistics compa-
nies that require making complex business decisions, delay
category prediction may not provide sufficiently accurate data
for detailed business impact analysis [28]. In the context of
practical applications, the precise estimation of delay times
specific to each airport is more informative in facilitating the
scheduling process at airports. The method proposed in [29]
predicted the airport delay time but lacked the mining of
airport delay state characteristics and only predicted the airport
delay time based on the temporal sequence of airport delay
data. A long short-term memory network of delay prediction
with an attention mechanism is proposed in [12] to predict
flight delays, which can focus on input data combined with the
attention vector to capture the critical time points, making the
prediction more accurate. Wang et al. [30] proposed a novel
“Bubble” mechanism, which utilizes clustering analysis and
data-driven sampling methods to construct new spatiotemporal
features. They combined outbound and inbound prediction
with trajectory pattern prediction using random forests, aiming
to accurately forecast the mid-term Estimated Time of Arrival
for Multi-Airport System. Yan et al. [31] proposed a method
named MASTNet that combines multiple views to control
information propagation between airports for airport arrival
flow prediction. They automatically learn an adjacency matrix
using flight duration and schedule factors, which is then
input into specialized graph convolutional blocks to capture
temporal dependencies. Qu et al. [32] considered the spatial
dimensional information within the data and proposed a flight
delay prediction model based on Att-Conv-LSTM. In this
model, the LSTM network is utilized to capture temporal
characteristics, the convolutional neural network is employed
to extract spatial features, and an attention mechanism mod-
ule is incorporated to enhance the network’s computational
efficiency. The aforementioned methods have not investigated
multi-step prediction of airport delays, which can give the
airport a longer flight planning and scheduling time.

This paper builds a Seq2Seq framework and designs a
sequence attention network and a condition attention net-
work to capture the effects of historical sequence factors and
condition factors on airport delay time, which considers the
multi-dimension of airport delay influence factors. Airport
decision-making can be improved by multi-step prediction.
The Bayesian optimization algorithm is introduced to obtain
the optimal hyperparameters of the proposed method.

The comparisons between our work and the previous works
are listed in Table I.

III. METHODOLOGY

This section describes the structure of the proposed airport
delay prediction model DA-BILSTM in detail. The structure
of DA-BILSTM can be divided into the following two parts:
the Seq2Seq network and the attention fusion network. The
Seq2Seq network consists of an encoder and a decoder. The

encoder is responsible for learning the hidden features of the
airport delay data. Furthermore, the decoder is responsible
for connecting the hidden state of the decoder’s current time
step with the fusion feature vector to assist the airport delay
prediction. The fusion feature vector is calculated according to
the fusion network. The attention fusion network is composed
of a sequence attention network and a condition attention
network, which are respectively responsible for extracting the
deep time sequence features and condition features of airport
delay history data, and fusing the sequence correlation feature
vector and condition correlation feature vector to obtain the
fusion feature vector. The airport delay prediction model based
on the attention fusion network is shown in Fig. 1.

A. Problem Formulation

The method to predict the airport delay is studied in
this paper. This paper defines airport delay as the aver-
age hourly arrival delay of flights in an airport. In airport
delay prediction, supposing that the input sequence is
{xt−D+1, xt−D+2, · · · , xt }, where xi ∈ Rn represents the
observed value at time i and D is the window size. Then,
the task is to predict the airport delay yt+1, where 1 is the
fixed horizon [33]. And the predicted value of airport delay is
denoted as ŷt+1.

B. Sequence to Sequence Network

As the airport delay data is naturally chronological, our
method adopts the Seq2Seq network [34]. According to the
delay propagating chain, the airport delay at the predicted
time is jointly affected by the delays before and after it.
Moreover, the bidirectional long short-term memory net-
work (BILSTM) [35] can model context information and has
stronger information memory ability. Hence, BILSTM is used
for encoding and decoding in this paper [36], [37], [38],
and [39].

As shown in Fig. 2, BILSTM consists of two
unidirectional and oppositely oriented LSTM networks.
{xt−D+1, xt−D+2, · · · , xt }, xi ∈ Rn represents the input data
sequence and hi is the output of the hidden layer at each
time step. The i-th hidden state of BILSTM hi combines the
hidden states in the forward and backward directions and
can be represented as hi = [

−→
hi ,
←−
hi ], which can synthesize

the modeling context information and enhance the long-term
information memory capability [40].

Suppose the input of the encoder is xt and the hidden state
of the previous step is ht−1, the output is the hidden state of
the current moment ht , then,

ht = BILSTMenc(xt , ht−1). (1)

The decoder is responsible for receiving the output sequence
of the previous time step yt−1, the hidden state st−1 of the
decoder in the previous time step t − 1 and the fusion feature
vector cmix,t , and calculating the hidden state st for time t ,
as shown in Equation (2):

st = BILSTMdec(yp,t−1, cmix,t , st−1). (2)
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TABLE I
SUMMARY OF PREVIOUS RESEARCH ON AIRPORT DELAY PREDICTION

Fig. 1. Airport delay prediction model based on attention fusion network.

Fig. 2. BILSTM network structure.

Finally, the fusion feature vector cmix,t is concatenated with
the hidden layer state output st of the BILSTM decoder [41],
and the prediction results are computed by a layer of the fully
connected network as follows:

ŷi = tanh( Wc[cmix,t ; st ] ), (3)

where Wc is the weight.
The complete process of DA-BILSTM is described in

Algorithm 1.

Algorithm 1 DA-BILSTM
Require: The input sequence {xt−D+1, xt−D+2, · · · , xt };
Ensure: The predicting value ŷi ;

1: Initialize: Encoder, Decoder;
2: for time step t = 1 to n do
3: if t = 1 then
4: Encode {xt−D+1, xt−D+2, · · · , xt } to obtain the

encoder output ht ;
5: Calculate the sequence correlation feature vector cs,t

and the condition correlation feature vector cv,t ;
6: Fusing cs,t and cv,t to obtain the fusion feature vector

cmix,t = cs,t + cv,t ;
7: Get decoder output st = BILSTMdec(cmix,t , ht );
8: else
9: st = BILSTMdec(yp,t−1, cmix,t , st−1);

10: end if
11: Obtain the prediction value ŷi = tanh( Wc[cmix,t ; st ] );
12: end for

C. Attention Fusion Network

Due to a large amount of airport data and the variety of
influencing factors, the dimension of the input data is high,
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Fig. 3. Sequential attention network structure.

and it is difficult to obtain effective data information directly.
Therefore, this paper designs the attention fusion network,
which is composed of a sequence attention network and a
condition attention network.

1) Sequence Attention Network: The sequence attention
network introduces an attention mechanism to automatically
and dynamically capture the influence mechanism of the
airport delay history information. Assuming that the data
window is [t−D + 1, t], where D is the data window size
to be determined, and hi is the hidden state of the encoder
at the i-th time step, where hi ∈ Rm . The structure of the
sequence attention network is shown in Fig. 3.

For the decoding time step t , the hidden state of the decoder
is st−1, and the scoring function is calculated as follows:

f (hi , st−1) = st−1
TWαhi , t−D + 1 ≤ i ≤ t, (4)

where Wα is the sequence attention network parameter. The
weight αi of each hi is computed by

αi =
exp( f (hi , st−1))∑t

j=t−D+1 exp( f (h j , st−1))
, (5)

where αi represents the sequence correlation feature weights of
different airport delay data. The hidden state hi is weighted
by αi and the sequence correlation feature at time step t is
obtained as follows:

cs,t =
∑t

i=t−D+1
αi hi , (6)

where cs,t ∈ Rm .
2) Condition Attention Network: There are many potential

factors that cause delays, such as time condtition, weather
condition, air traffic control signals, and many others. These
various factors do not equally affect airport delay and are
intertwined together to affect the airport delay condition. The
sequence attention network fails to detect condition patterns
useful for airport delay prediction. In this case, this paper
introduces the Temporal Pattern Attention (TPA) network [33]
for local feature learning to dynamically capture the impact
of different factors on the execution of that flight. The TPA
network structure is shown in Fig. 4.

The original airport delay data is processed by the encoder
to obtain the hidden state hi at each time step, to obtain the
hidden state matrix H = {ht−D+1, ht−D+2, · · · , ht }. For the
hidden state matrix, the row vector represents a state factor at
all time steps such as the weather condition while the column
vector represents all state factors in a certain time step.

In the TPA network, the input hidden layer is firstly
subjected to feature extraction through a one-dimensional

Fig. 4. TPA network structure.

convolutional layer, and the size of the convolutional kernel is
set to 1 × T . T indicates the range covered by the attention
mechanism, which is believed T = D. The number of
convolutional kernel C is m. The convolutional kernels are
convolved along the row vectors of the output matrix of the
hidden layer to obtain the condition feature matrix HC , where
HC
∈ Rm×k , which is calculated as:

HC
r,k =

D∑
l=1

Ck,T−D+l ∗ Hr,(t−D−1+l), (7)

where, HC
r,k denotes the condition feature value obtained by

convolving the r -th row vector with the k-th convolution
kernel. Then, scoring the condition feature matrix can obtain
the impact weights of different factors on airport delay, which
can be calculated as:

βr = sigmoid( f (HC
r , st−1)), (8)

where HC
r and st are both m-dimensional vectors, then the

scoring function f (HC
r , st−1) is defined as follows:

f (HC
r , st−1) = (HC

r )Tst−1. (9)

The condition relevance feature vector cv,t at time step
t is obtained by making βr and the corresponding hidden
layer output vector HC

r multiply and sum, as shown in
Equation (10), where HC

r is the r -th row of the state feature
matrix.

cv,t =
∑r

i=1
βi HC

i . (10)

3) Attention Fusion Procedure: As shown in Fig. 5, the
vector obtained from the sequence attention network and the
output of the condition attention network are fused to obtain
the fusion feature vector cmix,t , which is calculated as follows:

cmix,t = cs,t + cv,t , (11)

where cs,t , cv,t , and cmix,t ∈ Rm . Finally, the fusion feature
vectors are delivered to the decoder, where the decoder hidden
layer states are connected for decoding to obtain the prediction
results of airport delay time.
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Fig. 5. Attention fusion network structure.

IV. HYPERPARAMETER OPTIMIZATION ALGORITHM

The selection of hyperparameter values in a deep learning
model is crucial to the model’s performance [42]. The hyperpa-
rameters in deep learning are often determined manually based
on experience and data analysis [43]. Moreover, grid search,
random search, and Bayesian optimization algorithms [16] are
also commonly used for hyperparameter optimization.

Grid search determines the optimal value by finding all
points on the grid in the hyperparameter space. Grid search
is computationally intensive, especially when the number of
hyperparameters is enormous. Random search finds the global
optimum by taking random sample points in the search range.
Random search is generally faster than grid search. However,
each search step of grid search and random search did not
consider the situation of the explored points. These methods
usually require extensive experiments to determine the optimal
combination of hyperparameters for the model. The Bayesian
optimization algorithm uses the available experimental data,
dramatically improves the efficiency and effectiveness of
hyperparameter estimation, and has a more sound theoretical
basis and convergence guarantee. Compared with other hyper-
parametric optimization methods, the Bayesian optimization
algorithm finds optimal solutions faster on average, requires
less computational resources, and can identify reasonably good
solutions.

The Bayesian optimization algorithm uses a continuously
updating probabilistic model and updates the posterior prob-
abilities of the optimization function a few times of the
objective function evaluation [44]. Finally, the optimal com-
bination of network model hyperparameters is obtained. The
objective function is denoted as fobj (u). The set of hyperpa-
rameter combinations is denoted as U = {u1, u2, · · · , un}, and
u∗ denotes the combination of hyperparameters that makes
fobj (u) achieving the maximum value, then the Bayesian
optimization formulation [45] can be expressed as:

u∗ = arg max
u∈U

fobj (u). (12)

Based on the Bayesian theorem, the probability distribution
of the Bayesian optimization process is obtained to satisfy:

P( f |D1:t ) ∝ P(D1:t | f )P( f ), (13)

where f denotes the unknown objective function. D1:t =

[(u1, yobserve,1), (u2, yobserve,2), · · · , (ut , yobserve,t )] denotes
the set of observed parameters and observations, where ut
denotes the observed parameter combination and yobserve,t
denotes the observations. P( f |D1:t ) denotes the posterior
probability. P(D1:t | f ) denotes the likelihood distribution, and
P( f ) denotes the prior probability of f .

In this paper, the Bayesian optimization algorithm is
used to optimize DA-BILSTM. The steps of optimizing the
DA-BILSTM using the Bayesian optimization algorithm are
as follows.

Step 1: Determine which of the DA-BILSTM’s hyperpa-
rameters should be optimized. Set the hyperparameter range,
randomly generate initialized sample points, input the ini-
tialized sample points into the Gaussian process, train the
DA-BILSTM, and use the loss function value of the objective
function of the DA-BILSTM to modify the proxy Gaussian
model, so that the proxy model is gradually closer to the real
function distribution.

Step 2: Select the next set of sample points to be evaluated in
the modified proxy model using the acquisition function. And
input the new sample points into DA-BILSTM for training to
obtain the new output value of the objective function D1:t .
Thereby updating the set of samples and the proxy model.

Step 3: If the loss value of the objective function corre-
sponding to newly selected sample points ui is the minimum,
the algorithm will be terminated. The optimal combination of
parameters for the current model is obtained.

Step 4: If the objective function value corresponding to the
newly selected sample point ui does not meet the requirement,
(ui , yobserve,i ) is added to the sample set. Then proceed
Step 2 to continue the correction of the Gaussian model until
the requirement is met.

V. EXPERIMENTS AND ANALYSES

The experiment is based on the deep learning framework
PyTorch 1.10.1 and written in Python language. The computer
hardware configurations used are as follows: the processor
is AMD Ryzen 53500 × 6-core processor. The memory is
16.00 GB, and the operating system is windows 10. The work-
flow of the data pre-processing, and how the DA-BILSTM is
obtained is shown in Fig. 6.

A. Datasets

In order to accurately test the proposed method, this paper
conducts simulation experiments based on two real flight
datasets.

Dataset 1 is the operational records of Atlanta airport in
2015, in which the operational flight records were obtained
from the Bureau of Transportation Statistics (BTS) of the
United States 2015. Airline On-Time Performance (AOTP)
records and meteorological records are from Quality Con-
trolled Local Climatological Data (QCLCD) provided by
the National Climatic Data Center (NCDC). We employ the
dataset fusion method [46] to combine flight records and mete-
orological records. Dataset 2 is obtained from the operational
records of an airport in China in 2019 from Feiyou Technology
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Fig. 6. The workflow of DA-BILSTM.

TABLE II
CLASSIFICATION OF THE INFLUENCING FACTORS IN DATASETS

Company (https://data.variflight.com), which contains 208,152
records. Table II presents the three major categories of airport
delay factors.

Flight factors: The flight factors record the flight operations.
For example, the average route distance represents the average
route distances of all the flights in this airport per hour. And
the average sailing time represents the average sailing time of
all the flights in this airport per hour.

Weather Factors: The weather factors consider weather
changes, such as humidity, temperature, etc. Weather condi-
tions affect the operation of airport flights during that period.
For example, airport flights have to be delayed during extreme
weather to ensure the safety of airport flights.

Time Factors: The time factors analyze the specific time of
the flight from different dimensions, which can also influence
the airport flight operation. Due to the difference in flight
volumes between weekdays and weekends during the week,
the probability of delays at the airport will also change as the
number of flights changes.

When dealing with missing values, the direct deletion of
missing values may lose important information. Given the
temporal nature of the data in the dataset, we replace the
missing values with the average of the data before and after
the column in which the missing values are located. To avoid
the impact of the difference in magnitudes in the data on the
prediction accuracy, the Min-Max Normalization method is
adopted in the datasets, which is calculated as follows:

x∗ = (x − min) / (max − min) . (14)

Fig. 7. The flowchart for splitting data for regression.

We divide both datasets into two parts at a ratio of 8:2, with
one part used for training and the other part as the test set [47].
During training, the K-fold (K=8) cross-validation is used
to split the training dataset into 8 equal subsets, conducting
8 experiments by selecting one subset as the validation set
and the remaining subsets as the training set each time. The
flowchart for splitting data is shown in Fig. 7.

B. Verification of DA-BILSTM Structure

In this paper, the backpropagation algorithm is used to train
the network, and the RMSprop optimizer is selected to train
and obtain the values of the model parameters. To evaluate
the performance of the model, mean absolute error (MAE),
root mean squared error (RMSE), mean squared error (MSE),
and normalized root mean squared error (NRMSE) are chosen
as the evaluation criteria of the method performance [23]
in this paper, and the calculation formulas are shown in
Equation (14), Equation (15), Equation (16), Equation (17) and
Equation (18) [13]. ŷi denotes the predicted value of airport
delay time and yi denotes the real delay time.

M AE =
1
N

N∑
i=1

|(ŷi − yi )|, (15)

RM SE =

√√√√ 1
N

N∑
i=1

(ŷi − yi )2, (16)

M SE =
1
N

N∑
i=1

(ŷi − yi )
2, (17)

N RM SE =

√√√√ 1
N

N∑
i=1

(ŷi − yi )
2

/
1
N

N∑
i=1

yi , (18)

M AP E =
1
N

 N∑
i=1

|

∧
yi − yi

yi
|

 . (19)

The proposed DA-BILSTM uses a three-layer BILSTM
network as the encoder-decoder network, and to seek the
best neural network structure and to determine the degree
of influence of different attention mechanisms on the model
performance, the network structures are divided into four
components:

(1) Seq2Seq: the original sequence-to-sequence network
without an attention network.

(2) Seq2Seq+SA: the Seq2Seq network with sequence
attention network.
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TABLE III
COMPARISON OF MODEL STRUCTURE EFFECTS ON PREDICTION OF A

SINGLE TIME STEP

(3) Seq2Seq+CA: the Seq2Seq network with condition
attention network.

(4) DA-BILSTM: the Seq2Seq network with both sequence
attention network and condition attention network.

Based on Dataset 1 and Dataset 2, the performance of the
Seq2Seq network without attention network, Seq2Seq+SA
network with only sequence attention network, Seq2Seq+CA
network with only condition attention network, and
DA-BILSTM network with both sequence attention network
and condition attention network are compared for single-step
prediction of airport delay, and the results of 100 single-step
prediction experiments are shown in Table III.

Table III illustrates that the MAE values of the delay
prediction on the two datasets for Seq2Seq without attention
mechanism are 10.94 minutes and 14.42 minutes respectively.
The RMSE values on the two datasets are 12.09 minutes
and 15.33 minutes respectively. The MSE values on the two
datasets are 146.17 and 235.01, and the NRMSE values
are 0.13 and 0.30 respectively. After adding the sequence
attention network and condition attention network respectively
to Seq2Seq, the MAE values, the RMSE values, the MSE
values, and the NRMSE values of the delay time prediction
on the two datasets are reduced. When the attention fusion
network is embedded into the original Seq2Seq model, the
prediction performance of the model is significantly improved.

To analyze the impact of the attention network on the
airport delay prediction model, the results of DA-BILSTM
with 100 sets of single-step predictions are plotted in Fig. 8.
It can be seen that the median MAE values and RMSE
values of the Seq2Seq model without an attention network
are the highest among the four models on both datasets. The
data distribution is relatively scattered, and the prediction is
the least accurate. The introduction of the sequence attention
network and condition attention network reduces the median
MAE values and RMSE values on the two datasets. When
the attention fusion network is embedded, the model extracts
the effects of both airport historical data and condition data on
airport delay time, which results in the best model performance
with the lowest median MAE values and RMSE values on both
datasets. Moreover, the model is the most robust and main-
tains accuracy in predicting airport delay time for different
moments.

Fig. 8. Box diagram of the prediction error of different model structures.

TABLE IV
BAYESIAN OPTIMIZATION PARAMETERS

TABLE V
COMPARISON OF NETWORK MODEL LOSS VALUE WITH DIFFERENT

PARAMETER SETTING METHODS

C. Verification of Bayesian Optimization

To verify the performance of different optimization methods
on the model, four hyperparameter optimization methods,
the manual setting, Bayesian Optimization, Grid Search, and
Random Search, were chosen in this article. Based on the
datasets, the Bayesian optimization algorithm, the Grid Search
and the Random Search were used to optimize the number of
LSTM neurons, time steps, batch size, dropout, and learning
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rate, which have a large impact on the network. The number
of LSTM neurons is set in the range of (1, 512). The time step
is set in the range of (1, 64). The size of batch size is set in the
range of (16, 256). The size of dropout is set in the range of
(0.1, 0.8), and the learning rate is set in the range of (0.00001,
0.1). The manual setting method selects the settings by turning
the reference experience. Table IV shows the optimal values
of the hyperparameters of the DA-BILSTM model obtained
by the manual setting method and Bayesian optimization.

The different models obtained by the four parameter setting
methods are iteratively trained 1000 times on Dataset 1 and
Dataset 2, with K-fold values set to 6, 8, and 10, respec-
tively.The comparative loss values of the validation process
are obtained as shown in Table V. When the hyperparameter
values are determined by the manual method, the converged
loss value is 0.40 on both datasets. The Bayesian optimiza-
tion algorithm and the Random search algorithm achieve the
optimal tuning effect when the value of K is set to 8, while
the Grid search algorithm achieves the optimal tuning effect
when the value of K is set to 10. When K is set to 8,
the Bayesian optimization algorithm results in converged loss
values of 0.35 and 0.40 on the two datasets, making it the
best-performing among the four parameter setting methods.
Hence,the Bayesian optimization algorithm is used to optimize
the parameters and K is set to 8 in this article.

In summary, the DA-BILSTM model based on Bayesian
optimization converges with fewer iterations than the origi-
nal DA-BILSTM model, and the loss values of the model
after convergence are smaller. What is more, the manual
setting method of setting hyperparameters needs to keep trying
suitable combinations of hyperparameter values based on
experience, and it causes a lot of time consumption.

D. Model Comparison Experiment

To validate the prediction performance of our proposed
method DA-BILSTM for airport delay, DA-BILSTM is com-
pared with five methods [9], [22], [26], [29], [48]. ARIMA
and LSTM are classic time series data prediction algorithms
and are frequently used as airport delay prediction base-
lines in many studies [22], [26]. GRU, CNN-BILSTM, and
TS-LSTM have been state-of-the-art methods in the field of
airport delay prediction with excellent performance in recent
years [9], [29], [48].

(1) ARIMA: autoregressive integrated moving average
method, which converts the time series into a smooth time
series after differential processing and then fits the prediction.

(2) LSTM: a variant of RNN, commonly used for predicting
time series data.

(3) GRU: a method used in [9], which performs well in
predicting flight departure time.

(4) CNN-BILSTM: a method used in [48], which
uses CNN-BILSTM to integrate information in both
spatio-temporal directions and focuses on similar data through
an attention network, performs well in predicting time series
data.

(5) TS-LSTM: a method proposed in [29], which considers
the correlation of associated airports in time and space and

TABLE VI
COMPARISON OF THE AVERAGE PREDICTION ERROR OF DIFFERENT

METHODS

is able to capture the delay propagation mechanism from
high-dimensional variables adequately.

To ensure a fair comparison, the Bayesian optimization
algorithm is likewise used to optimize the hyperparameters
of those baseline methods. The hyperparameters used by the
baseline methods are tuned to achieve their best predicting
performance. The optimal hyperparameters are as follows.

In the ARIMA method, the auto-regressive term number
is 3, the sliding average number of terms is 1, and the step
number is 3. In the LSTM method, the LSTM unit is 64, the
timestep is 20, the batch size is 200, the dropout is 0.3, and
the learning rate is 0.01. In the GRU method, the GRU unit is
50, the timestep is 20, the batch size is 32, the dropout is 0.3,
and the learning rate is 0.01. In the CNN-BILSTM method,
the filter number is 64, the kernel size is 20, the LSTM unit is
64, the timestep is 20, the batch size is 200, and the learning
rate is 0.01. And in the TS-LSTM method, the LSTM unit is
80, the LSTM layer is 2, the timestep is 20, the batch size is
200, and the learning rate is 0.01.

Based on the two real datasets, the overall prediction per-
formance of DA-BILSTM is compared with other comparison
methods. The experiment results are shown in Table VI, where
the average error MAE and RMSE results are shown for
the multi-step prediction of airport delay in the next five
time steps from t+1 to t+5 for the DA-BILSTM and the
comparison methods. Table VI shows that the DA-BILSTM
outperforms the other comparison methods in terms of the
multi-step prediction performance of airport delay.

Compared with the shallow learning model, the
DA-BILSTM maintains the highest prediction performance
for the next five steps from t+1 to t+5. That is because
ARIMA cannot capture the complex relationships among
airport delay factors. The benchmark deep learning model,
LSTM and GRU, predict more accurately than ARIMA
but predict less accurately than other models compared
in this paper. Because LSTM and GRU only capture the
sequence information but fails to learn the condition factors.
A comparison of deep learning models shows that the
overall prediction accuracy of DA-BILSTM is higher than
CNN-BILSTM and TS-LSTM. That is because TS-LSTM
cannot learn the influence weights of factors adaptively
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Fig. 9. Comparison of airport delay prediction errors of different methods.

TABLE VII
COMPARISON OF THE PREDICTION ERROR OF DIFFERENT METHODS

without an attention mechanism. And CNN-BILSTM cannot
learn the influence weights of condition factors adaptively.
DA-BILSTM is a deep learning model, which is able to
portray the complex relationship between the factors of
airport delays. Moreover, the attention fusion network of
DA-BILSTM is more suitable for capturing the historical
information on airport delay and the intrinsic relationship
between the factors on the airport delay status that needs to
be predicted.

Based on the comparison of the overall average prediction
error of the two datasets, the comparison and analysis of
the multi-step prediction performance of the two datasets are
continually conducted. Table VII presents the MAE values
of DA-BILSTM and other algorithms for predicting airport
delay at time steps t+1, t+2, t+3, t+4, and t+5. Fig. 9
visually depicts different algorithms’ comparative multi-step
prediction performance on the two datasets. From Table VII
and Fig. 9, it can be observed that DA-BILSTM outper-
forms ARIMA, LSTM, GRU, CNN-BILSTM, and TS-LSTM
in terms of prediction performance at all five-time steps.
ARIMA performs the worst among the compared methods
due to its limited capability of capturing complex temporal
features. As benchmark deep learning models, LSTM and
GRU show better prediction performance than ARIMA, but

they underperform compared to other deep learning methods.
This is because LSTM and GRU can only capture time depen-
dencies and fail to capture sequence and condition features
that may affect airport delays. Especially in the case of long-
time steps, the prediction performance of ARIMA and LSTM
decreases significantly. LSTM-based state-of-the-art models
like CNN-BILSTM-ATTENTION and TS-LSTM maintain
high prediction accuracy under short time steps. However,
the prediction error gradually increases when the time steps
get longer. DA-BILSTM can still perform well in multi-step
prediction, particularly exhibiting significant superiority over
other algorithms at time steps t+4 and t+5.

By applying the identical model to both datasets, we observe
that ARIMA, LSTM, GRU, CNN-BILSTM, TS-LSTM, and
DA-BILSTM demonstrate superior overall predictive perfor-
mance on Dataset 1 compared to Dataset 2. Despite both
datasets containing variables of the same nature, there exists
a disparity in data balance between them. Dataset 1 exhibits
a higher level of balance in contrast to Dataset 2, as the
number of observations varies significantly across different
delays, resulting in an uneven distribution of data. Notably,
DA-BILSTM achieves superior performance on both Dataset
1 and Dataset 2, indicating its robust generalization ability.
However, it is worth noting that the prediction performance of
DA-BILSTM diminishes in the presence of imbalanced data
within the dataset.

According to the experiment results, it can be found that
the prediction time step has a significant influence on the
prediction performance of the model. We further analyze
and compare the prediction performance of ARIMA, which
represents the shallow learning model, TS-LSTM, which rep-
resents the deep learning model, and DA-BILSTM for different
time steps on Dataset 1. Fig. 10 illustrates the prediction
errors of the three methods in predicting delay times under
single-step prediction t+1 and multi-step prediction t+5 con-
ditions. The horizontal axis indicates the observed time step,
and the vertical axis indicates the delay time value. From
Fig. 10, it can be seen that DA-BILSTM prediction accuracy
outperforms ARIMA and TS-LSTM for different time-step

Authorized licensed use limited to: University of North Texas. Downloaded on October 12,2024 at 15:19:06 UTC from IEEE Xplore.  Restrictions apply. 



WEI et al.: MULTI-STEP REGRESSION NETWORK WITH ATTENTION FUSION 7103

Fig. 10. Comparison of ground truth value and different time steps (t+1 and t+5) predicted delay time value of different models.

Fig. 11. Comparison of airport delay prediction differences of different methods.

prediction cases. Furthermore, the disparity in performance
among the various methods in single-step prediction is min-
imal. However, as the time steps increase, both ARIMA and
LSTM experience a significant decrease in performance, while
only DA-BILSTM maintains a relatively higher accuracy of
airport delay prediction.

Fig. 11 illustrates the delay prediction differences among
ARIMA, TS-LSTM, and DA-BILSTM under single-step pre-
diction t+1 and multi-step prediction t+5 conditions. The
green line represents the absolute difference between the
predicted and actual delay times using ARIMA. Similarly,
the blue line represents this difference for TS-LSTM, while
the orange line represents it for DA-BILSTM. Analysis of
Fig. 11 reveals that in the single-step prediction scenario, DA-
BILSTM exhibits significantly lower prediction differences
compared to the other methods, indicating higher accuracy.
In the multi-step prediction condition, the three models’
prediction difference is more significant than the single-step
prediction. ARIMA exhibits the highest variability in its
prediction difference curve, while DA-BILSTM demonstrates
the least amount of variation, indicating relatively consistent
performance in multi-step prediction.

VI. CONCLUSION AND FUTURE WORK

In this paper, we present an attention fusion network-based
deep learning framework DA-BILSTM for multi-step airport

delay prediction. Specifically, an attention fusion network is
designed to capture the correlation characteristics of histori-
cal information and condition information of airport delays.
The Bayesian algorithm is introduced to optimize the model
hyperparameters. The experimental results demonstrate that
DA-BILSTM optimized by the Bayesian algorithm converges
at lower loss values with fewer iterations.

The proposed DA-BILSTM is evaluated with two real-world
datasets and compared against state-of-the-art methods. Our
model achieved superior performance in multi-step airport
delay prediction. The embedding of the attention fusion net-
work dramatically improves the accuracy and robustness of
the model for predicting airport delays, with average MAE
reductions of 55.21% and 35.78% for the two datasets, respec-
tively. The use of Bayesian optimization algorithms resulted in
a 50% and 62.5% increase in model convergence speed on the
two datasets. Compared with the optimal mainstream method,
the average MAE of the two datasets is reduced by 4.12%
and 12.59%, respectively. Furthermore, the average MAE is
reduced by 7.33% and 12.42% for the multi-step prediction.

The proposed method could be extended further in future
studies if relevant data is available. For example, considering
the fact that spatial factors, such as the mutual propagation of
delay between different airports, also influence airport delay
prediction. It would be interesting to integrate the temporal
and spatial factors to predict airport delay. Moreover, besides
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being suitable for airport delay prediction, the proposed model
could also be applied to other temporal forecasting tasks.
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