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A B S T R A C T

Diagnosis of compound faults remains a challenge owing to the coupling of fault characteristics and the
exponential increment of the number of possible fault types. Current compound faults diagnostic methods often
require a large number of training data for each type of compound fault. In real-world scenarios, training data
of compound faults are usually difficult to acquire and sometimes even inaccessible. In contrast, single fault
samples are much easier to obtain. Thus in this paper inspired by the idea of zero-shot learning, we present
a novel label information vector generative zero-shot model to identify unknown compound faults, using only
single fault samples as the training set. This model comprises several modules, namely label information vector
(LIV) definition, feature extractor, and generative adversarial modules, respectively responsible for representing
the prior knowledge of specific class labels for the single fault and compound fault, extraction of fault features,
and mapping the relationship between the fault features and the fault LIVs. By adversarial training between
the samples and LIVs of single faults, the model can generate compound fault features using the compound
fault LIVs. Thus the unknown compound faults are identified by measuring the distance between the features
extracted from the testing compound fault samples and the generated features from LIVs. The proposed method
is evaluated on a self-built experimental platform. The results demonstrate that without any compound fault
samples in the training set, the compound fault classification accuracy of the model reaches 78.10%.
1. Introduction

Bearings are important basic parts of complex rotating machines.
Fault diagnosis of bearings is an important aspect of ensuring equip-
ment safety. Compound fault means that more than two interrelated
and interacting faults occur at the same time. If there exist coupling
among some components, the number of compound fault grows expo-
nentially. These compound faults exhibit different characteristics which
are coupled together and hidden in the collected vibration signals.
Therefore, the diagnosis of compound faults is the most challenging
issue in the fault diagnosis of bearings (Deng et al., 2022; Dibaj et al.,
2021; Li et al., 2015; Xu & Li, 2021).

Traditional compound fault diagnosis methods mainly include qual-
itative experience-based (Chatti et al., 2014; Ubar et al., 2012), analyti-
cal model-based (Mhamdi et al., 2013; Piacentino & Talamo, 2013), and
signal analysis-based (Li et al., 2019; Tang et al., 2020) methods. These
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methods require empirical knowledge and engineering experience from
experts, which is difficult to apply in industrial scenarios.

The development of machine learning, especially deep learning, has
prevalently emerged in the field of compound fault diagnosis (Gao
et al., 2022; Guo et al., 2019; Zhao et al., 2019). Consequently, several
learning model-based methods have been proposed to automatically
learn fault features and identify compound faults from raw sensory data
instead of experts. However, these methods require a large number of
labeled data for each type of compound fault for model training. In
realistic scenarios, it is difficult and sometimes impossible to obtain
samples of every compound fault type, which limits the application of
such methods (Xing et al., 2022).

Given that the single fault samples are relatively easy to obtain,
studies have been conducted on decoupling learning models to apply
single fault samples to train models for the identification of compound
faults. The idea entails training a decoupled classifier, from the single
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fault samples, to decouple compound faults into a combination of
multiple single faults, then classify the compound faults by identifying
multiple single faults. Huang et al. (2019) designed an intelligent com-
pound fault diagnosis network based on a deep capsule network and
ensemble learning. Liang et al. (2019) combine the convolutional neu-
ral network with the wavelet transform and multi-label classification
(WT-MLCNN) to diagnose compound faults for the gearbox. However,
these decoupling learning models need several independent loss func-
tions for each fault class, which greatly increases model parameters and
thereby aggravates its complexity and computational cost.

In contrast, zero-shot learning (ZSL) models identify unknown
classes using data from the known classes, supplemented by prior
knowledge to represent the specific class labels of the unknown classes,
to train a certain learning model (Rahman et al., 2020; Xu et al.,
2022a; Zhuo & Ge, 2021). Thus the classification problem of unknown
classes is transformed into a supervised learning problem, without
additional data collection, complex model combinations, and increased
computational effort.

Inspired by the idea of ZSL, using the samples of single faults to
build a zero-shot learning compound fault diagnosis model becomes a
promising attempt to enable the compound fault diagnosis with no or
extremely scarce examples.

To the best of our knowledge, there are limited studies on the zero-
shot learning model for fault diagnosis of bearings. Xing et al. (2022)
proposed a label description space embedded model for zero-shot diag-
nosis of compound faults (LDS-IFD). In our previous works (Xu et al.,
2022b), we proposed a zero-shot learning compound fault diagnosis
model of bearings (ZLCFDM). The two studies both established a label
information vector (LIV) space to construct the relationship between
single faults and compound faults, then embedded all the fault features
and label information vectors into a certain space and finally classified
the compound fault samples according to the similarity measurement.

Noted that the aforementioned two models embed high-dimensional
fault features into a low-dimensional label information vector space.
When the distance between different fault features is very close, it is
difficult for the models to find the fault label information vectors closest
to the fault feature, thus the classification ability of the models will be
seriously degraded (Shigeto et al., 2015).

Different from the aforementioned embedded ZSL models, we at-
tempt a new perspective from the generative model to tackle the dimen-
sional constraint problem of embedded models. Specifically, through
adversarial training of the single fault samples, the model focuses on
learning the mapping from the signal-derived fault LIVs to generate the
correspondingly high-dimensional fault features, such that they have
a matched dimensionality with the feature extracted from the original
samples. Then the trained model generates features of compound faults
by using the corresponding LIVs. The compound faults are identified by
computing the Euclidean distance between the extracted features from
samples and the generated features from signal-derived LIVs.

The main contributions of this article are summarized as follows.

1. We propose a novel generative zero-shot compound fault diag-
nosis framework using only single fault samples. The training
process of our model generates high-dimensional fault features
from the signal-derived fault LIVs via adversarial training of both
for facilitating the classification of the model. The trained model
identifies the compound faults by computing the Euclidean dis-
tance between the extracted features from examples and the
generated features from signal-derived LIVs.

2. A new fault LIV definition method is designed to obtain a
representative set to bridge the known single faults and the un-
known compound faults. The single fault LIVs are designed from
thresholding peaks of the vibration signals, whereas the LIVs of
the compound faults are derived from the fault semantics of the
single fault. This enables learning from single-fault examples and
classifying the compound faults. The feasibility of our method is
2

confirmed by the experimental results.
The remainder of this article is organized as follows. Section 2
introduces the related work. Section 3 presents our proposed zero-shot
model. Section 4 discusses the experimental results including compar-
ison studies with the state-of-the-art methods. Section 5 concludes this
paper with a summary.

2. Related work

ZSL classification is an effective method for solving the problem
of missing class labels when the classes of the training set and the
testing set are disjoint (Feng & Zhao, 2020; Lampert et al., 2013). The
basic idea of zero-shot learning is to use some data of known classes,
supplemented by relevant common knowledge information or prior
knowledge as attribute labels (hereinafter referred to as label informa-
tion vector), to train a certain learning model and finally identify the
data of unknown classes (Demirel et al., 2019; Ding et al., 2018).

In ZSL models, label information vectors are a kind of prior knowl-
edge to represent the specific categories of objects. Thus LIVs that
bridge the known and unknown classes are a core problem of ZSL.
The quality of the LIV greatly impacts the performance of models.
Previous LIVs definition approaches mainly include manual definition-
based (Chen et al., 2019; Lampert et al., 2013) and learning-based
(Mikolov et al., 2013; Pennington et al., 2014).

Manual definition-based methods design each dimension of LIVs by
the prior knowledge to express certain attributes of the class. Lampert
et al. (2013) proposed an object attributes-based approach to defining
semantic vectors, where high-level descriptions of objects such as color,
shape, and size are used. Chen et al. (2019) used the attributes such
as fault signal mean value, standard deviation, and peak-to-peak value
to define the fault semantic vectors. Both of these methods treat each
attribute as one dimension of the semantic vector and use one-hot en-
coding to indicate whether each attribute is present in the description of
the fault class. Ultimately, these attributes are defined as the semantic
vectors for the faults. However, such definitions of LIV are not specific
or clear enough to capture all the characteristics of bearing faults and
may suffer from subjectivity or inconsistency in practice.

Correspondingly, learning-based methods use some pre-trained
models (e.g., Word2Vec and GloVe), to learn the vector representation
for each class as its LIVs. Mikolov et al. (2013) proposed an improved
Skip-gram model that learns the mapping to represent the input center
word as a vector and the surrounding words as other vectors, which
can capture semantic and contextual relationships between words. Pen-
nington et al. (2014) proposed a word representation tool called global
vectors for word representation to form the semantic vector. The tool is
based on a global word frequency statistical method, which represents a
word as a vector of real numbers that captures semantic characteristics
such as similarity and analogy between words. All of these vectors
form a semantic vector space. However, if we use the learning-based
method to define the fault LIV, similar words of fault classes, e.g., inner
ring faults, outer ring faults, and rolling body faults are converted into
the LIV of the classes by the pre-trained models. The high similarity
of their words makes them close to each other in the semantic space,
which is difficult to distinguish between them and greatly degrades the
classification ability of the model.

All in all, the aforementioned two LIV definition methods are in-
applicable fault classifications because they have drastically different
label information from vibration signals collected from machinery.
More importantly, the mapping of machinery faults to a label informa-
tion space is ill-posed. The LIV of vibration signal for fault diagnosis
has not yet been well defined. Hence, this paper proposes a novel fault

LIV definition method for fault diagnosis.
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3. Methodology

We formulate the compound fault diagnosis problem as a ZSL prob-
lem. The training set of single fault 𝐷𝑠 =

{

𝑥𝑖, 𝑦𝑖, 𝑆𝑖 ∣ 𝑥𝑖 ∈ 𝑥𝑠, 𝑦𝑖 ∈ 𝑌𝑠,
𝑆𝑖 ∈ 𝑆𝑠

}𝑁
𝑖=1 includes 𝐾 classes and 𝑁 samples, where 𝑥𝑠 =

{

𝑥1, 𝑥2,… , 𝑥𝑁
}

and 𝑌𝑠 =
{

𝑐1, 𝑐2,… , 𝑐𝐾
}

are the training samples and
labels, 𝑆𝑖 is the LIV of the 𝑖th training sample with dimension 𝐶 × 1,
𝑆𝑠 =

{

𝑆1, 𝑆2,… , 𝑆𝑁
}

is the label set of single faults.
The testing set for vibration signal of compound faults is given by

𝐷𝑢 =
{

�̂�𝑖, �̂�𝑖, �̂� 𝑖 ∣ �̂�𝑖 ∈ 𝑥𝑢, �̂�𝑖 ∈ 𝑌𝑢, �̂�𝑖 ∈ 𝑆𝑢
}𝑀
𝑖=1, including 𝐿 classes and

𝑀 samples, where 𝑥𝑢 =
{

�̂�1, �̂�2,… , �̂�𝑀
}

is the testing samples, 𝑌𝑢 =
{

𝑐1, 𝑐2,… , 𝑐𝐿
}

represents the class label set, �̂� 𝑖 is the LIV of the 𝑖th
testing sample with dimension 𝐶 × 1, 𝑆𝑢 =

{

�̂�1, �̂�2,… , �̂�𝑀
}

represents
the label information set of all compound faults in the set space 𝑆,
𝑆 = 𝑆𝑠 ∪ 𝑆𝑢. Notably, 𝑌𝑢 as an unknown class of the compound faults,
is not involved in the model training and testing. It is only used to
evaluate the accuracy of classification results of the compound faults.
The dataset and class sets satisfy

𝐼(𝑝(𝑥𝑠); 𝑝(𝑥𝑢)) = 0; 𝑌𝑠 ∩ 𝑌𝑢 = ∅; and 𝜑(𝑆𝑠) = 𝑆𝑢

where 𝑥𝑠 and 𝑥𝑢 follow different distributions and 𝑌𝑠 and 𝑌𝑢 are disjoint.
The mutual information of distributions 𝑝(𝑥𝑠) and 𝑝(𝑥𝑢) is calculated
with 𝐼(⋅). The compound label 𝑆𝑢 is obtained based on function 𝜑(⋅)
with single label 𝑆𝑠.

In the training phase, a model 𝐹 (𝑥𝑠, 𝑆𝑠; 𝜃) is trained with examples
𝑥𝑖 and labels 𝑆 𝑖 of single faults, that learns a mapping function

𝐹 (𝑥𝑠, 𝑆𝑠; 𝜃) ∶ (𝑥𝑖, 𝑆𝑖) → 𝑦𝑖 (1)

where 𝜃 = 𝑎𝑟𝑔min
∑𝑁
𝑖 𝐷𝑖𝑠(𝑥

𝑖, 𝑆𝑖) and 𝐷𝑖𝑠(⋅) is the distance metric
function. Note that compound fault samples are not used in the training
process.

In the testing phase, samples �̂�𝑗 and labels �̂�𝑗 of the compound
faults are input into the model, which makes a prediction of the fault
class 𝑐𝑘, 𝑐𝑘 ∈ 𝑌𝑢:

𝐹 (𝑥𝑢, 𝑆𝑢; 𝜃) ∶ (�̂�𝑗 , �̂�𝑗 ) → 𝑐𝑘 (2)

3.1. Model structure

Fig. 1 depicts our proposed label information vector generative zero-
shot method that is composed of five parts: data preprocessing module,
label information vector definition module, feature extractor module,
generative adversarial module, and classifier module.

To extract the useful information from the vibration signals, Wavelet
Transform (WT) is used to derive the details in the data preprocessing
module:

𝑊 𝑇 (𝑎, 𝑏) = 1
√

𝑎 ∫

+∞

−∞
𝜙(𝑡) ∗ 𝜓( 𝑡 − 𝑏

𝑎
)𝑑𝑡 (3)

where 𝜓(𝑡) = 𝑒(−𝑡2∕2)𝑐𝑜𝑠(5𝑡) and 𝑎 is the scale factor and 𝑏 is the
translation factor, 𝜙(𝑡) is the time-domain vibration signal sequence.
We use WT to convert every set of 256 time-domain data points into
a 64 × 64 2D binary time–frequency domain image. The center rate is
0.8125.

The label information vector is defined based on the vibration
signals of a single fault. Assume that we have a set of 𝐶 data points of
the vibration signals (e.g., the vibration signal of the outer ring fault)

𝜙 = (𝑥𝑖1, 𝑥
𝑖
2,… , 𝑥𝑖𝑘,… , 𝑥𝑖𝐶 ). (4)

where 𝑥𝑖𝑘 is the 𝑘th data point, 𝑖 is the fault class. The signal 𝜙 contains
amples that are greater than one period of the vibration signal to
nsure that the LIV contains the effects of fault. The LIV of a single
ault 𝑆 𝑖 is
𝑖 =

{

𝑎𝑖 , 𝑎𝑖 ,… , 𝑎𝑖 ,… , 𝑎𝑖
}

(5)
3

1 2 𝑘 𝐶
here 𝑎𝑖𝑘 is the 𝑘th dimension of the 𝑆𝑖. We select 𝐶 data points of the
riginal vibration signal to obtain the maximum from the data points
𝑖
𝑘 in all single faults 𝜙 as the threshold 𝜇, i.e., 𝜇 = max(𝜙). We obtain
he LIV 𝑆𝑖 with 𝐶 dimension for any single fault as follows:

𝑎𝑖𝑘 =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

0, 𝑥𝑖𝑘 ≤ 𝜇∕5

1, 𝑥𝑖𝑘 ≥ 𝜇∕5, 𝑥𝑖𝑘 ≤ 2𝜇∕5

2, 𝑥𝑖𝑘 ≥ 2𝜇∕5, 𝑥𝑖𝑘 ≤ 3𝜇∕5

3, 𝑥𝑖𝑘 ≥ 3𝜇∕5, 𝑥𝑖𝑘 ≤ 4𝜇∕5

4, 𝑥𝑖𝑘 ≥ 4𝜇∕5, 𝑥𝑖𝑘 ≤ 𝜇

(6)

imilarly, we obtain the LIV set of single faults 𝑆𝑠 =
{

𝑆1, 𝑆2,… , 𝑆𝑁
}

.
Combining the theoretical relationships between the compound

fault and its corresponding single faults, the LIV set of the compound
fault 𝑆𝑢 is expressed as:

𝑆𝑢 = {�̂�1,2, �̂�1,3,… , �̂�1,2,…,𝑅} (7)

�̂� 𝑖,𝑗,…,𝑅 =
{

𝑎𝑘 ∣ 𝑎𝑘 = max(𝑎𝑖𝑘, 𝑎
𝑗
𝑘,… , 𝑎𝑅𝑘 ), 𝑎

𝑖
𝑘 ∈ 𝑆 𝑖

}

(8)

where 𝑖, 𝑗, 𝑅 belong to different fault classes.
The feature extraction is achieved with a CNN. We use labeled

single fault samples to train the CNN feature extractor and obtain the
mapping function 𝑓 (⋅) for extracting single fault features 𝑣𝑠, 𝑣𝑠 = {𝑣𝑖𝑠 ∣
𝑣𝑖𝑠 = 𝑓 (𝑊 𝑇 (𝑎, 𝑏); 𝜃1)}. The unlabeled compound faults are processed to
obtain the compound fault features 𝑣𝑢, 𝑣𝑢 = {𝑣𝑗𝑢 ∣ 𝑣

𝑗
𝑢 = 𝑓 (𝑊 𝑇 (𝑎, 𝑏); 𝜃1)}.

The generative adversarial module of our method consists of a
discriminator 𝐷 and a generator 𝐺 that performs a zero-sum game
mechanism. The discriminator 𝐷 maximizes the loss function
𝐿𝐷 = 𝐸𝑣∼𝑝𝑟 [𝐷𝑤(𝑣)] − 𝐸�̂�∼𝑝𝑔 [𝐷𝑤(𝐺𝜃2 (𝑆, 𝑧))]

− 𝜆𝐸�̃�∼𝑝�̃� [(‖𝛥�̃�𝐷𝑤(�̃�)‖2 − 1)2]
(9)

while network 𝐺 minimizes

𝐿𝐺 = 𝐸�̂�∼𝑝𝑔 [𝐷𝑤(𝐺𝜃2 (𝑆, 𝑧))] (10)

where 𝐸(⋅) denotes expectation, 𝑝𝑟 is the data distribution of extracted
fault features, 𝑝𝑔 is �̂� = 𝐺𝜃2 (𝑆, 𝑧), the generated fault features data
distribution, 𝑝�̃� samples uniformly from the data distribution 𝑝𝑟 and
generator distribution 𝑝𝑔 . 𝑧 is the Gaussian distribution noise, 𝑣 and
�̂� are the fault feature of the real sample and the generated sample,
respectively, �̃� is uniformly sampled from 𝑣 and �̂�, 𝑆 is a LIV, 𝜆 is the
gradient penalty coefficient.

The generator uses the single fault label information 𝑆𝑠 and Gaus-
sian noise 𝑧 to generate single fault features �̂�𝑠, �̂�𝑠 = {�̂�𝑖𝑠 ∣ �̂�𝑖𝑠 =
𝐺𝜃2 (𝑆

𝑖, 𝑧), 𝑆𝑖 ∈ 𝑆𝑠} and 𝑆𝑖 is the LIV of the 𝑖th single fault sample. The
discriminator decides the real single fault features 𝑣𝑠 and the generated
features �̂�𝑠 to guide the generator to create high-quality single fault
features. The trained generator uses compound fault label information
𝑆𝑢 and Gaussian noise 𝑧 as inputs to generate compound fault features
�̂�𝑢, �̂�𝑢 = {�̂�𝑗𝑢 ∣ �̂�𝑗𝑢 = 𝐺𝜃2 (�̂�

𝑗 , 𝑧), �̂�𝑗 ∈ 𝑆𝑢}, where �̂�𝑗 is the LIV of the 𝑗th
compound fault sample.

The classification maps 𝐹 (𝐺(𝑆, 𝑧), 𝑣; 𝜃) of fault features 𝑣 extracted
by FE to the generated fault features by the generator. The model opti-
mizes parameter 𝜃 and matches the fault features 𝑣 with the generated
fault features 𝐺(𝑆, 𝑧).

Using the fault features generated from the compound fault label
information as the center point, the Euclidean distance between the
compound fault features of the test samples extracted by the FE and the
center point is calculated, and the test sample features of the compound
fault are labeled as the class with the nearest center point. The formula
is as follows:

𝑌𝑢 =
{

𝑐𝑘 ∣ 𝑘 = 𝐻(𝑚𝑖𝑛(𝐷𝑖𝑠(𝑣𝑖𝑢, �̂�
𝑗
𝑢))), 𝑖 = 1, 2,… ,𝑀

}

(11)

𝑖 𝑗
𝐻(𝑑𝑘) = 𝑘, if 𝑑𝑘 = 𝑚𝑖𝑛(𝐷𝑖𝑠(𝑣𝑢, �̂�𝑢)) (12)
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Fig. 1. The architecture of our proposed method.
where 𝐷𝑖𝑠(𝑣𝑖𝑢, �̂�
𝑗
𝑢) = {𝑑𝑗 ∣ 𝑑𝑗 =

√

(

𝑣𝑖𝑢 − �̂�
𝑗
𝑢

)2
, 𝑗 = 1, 2,… , 𝐿}, 𝑣𝑖𝑢 is the

compound fault sample features extracted by the feature extractor, �̂�𝑗𝑢
is the compound fault features of different classes generated by 𝐺. 𝐻(⋅)
is to determine the categories of the unknown compound fault samples,
by calculating the closest distance between the features extracted from
the unknown compound fault samples 𝑣𝑖𝑢 and the generated compound
fault feature �̂�𝑗𝑢. 𝑐𝑘 is the label of the compound fault class.

3.2. Objective function

The training of our model includes the training of a feature ex-
traction module and a generative adversarial module. The feature
extraction module is trained to distinguish fault features from the la-
beled single fault samples. The loss function 𝐿1 of the feature extraction
module is

𝐿1 = −
𝑁
∑

𝑖
𝑦𝑖 log 𝑝𝑖 + (1 − 𝑦𝑖) log (1 − 𝑝𝑖) (13)

where 𝑝𝑖 is the predicted value of the feature extractor module.
The generative adversarial module obtains a generator that pro-

duces high-quality fault features and the loss function integrates 𝐿𝐷
and 𝐿𝐺 in Eqs. (9) and (10):

𝐿2 = 𝐸�̂�∼𝑝𝑔 [𝐷𝑤(𝐺𝜃2 (𝑆, 𝑧))] − 𝐸𝑣∼𝑝𝑟 [𝐷𝑤(𝑣)]

+ 𝜆𝐸�̃�∼𝑝�̃� [(‖𝛥�̃�𝐷𝑤(�̃�)‖2 − 1)2] (14)
4

+ 𝐸(‖𝑣 − 𝐺𝜃2 (𝑆, 𝑧)‖2)
The first term is the difference between the expectation of 𝐷𝑤(𝑣) and
the expectation of 𝐷𝑤(𝐺𝜃2 (𝑆, 𝑧)) to make the real fault features 𝐷𝑤(𝑣)
and the generated fault features 𝐷𝑤(𝐺𝜃2 (𝑆, 𝑧)) as close as possible.
The second term ensures that 𝐷𝑤(𝐺𝜃2 (𝑆, 𝑧)) is close to 𝐷𝑤(𝑣) but not
exceeding 𝐷𝑤(𝑣), we add a penalty term for stabilizing the gradient.
The third term is the mean squared error, which reduces the distance
between the real sample features and the generated sample features.

3.3. Training and application of our proposed method

Training and application of our proposed model consist of two
phases: constructing the fault LIVs of single and compound faults,
correspondingly training the model using the single faults samples, and
testing the fault samples of compound faults. The algorithm is presented
in Table 1.

Training: The vibration time-domain signal of a single fault is
transformed into a 2D time–frequency image via WT. We use the
feature extractor to extract high-dimensional fault features of the time–
frequency image. Based on the proposed LIV definition method, the
LIVs of the single faults and compound faults are devised from the
vibration samples of the single faults. The generator uses the LIV of the
single faults to generate fault features of the single faults. Thereafter,
the generated and real fault features of the single faults are sent to the
discriminator to distinguish true or false. Through adversarial training
of the generator and discriminator, the generator learns the accurate
mapping relationship from fault LIV to fault features.
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Table 1
Algorithm of the proposed method.
Require: 𝑁 , 𝐾, 𝐼 , 𝜃1, 𝜃2, 𝛽1, 𝛽2, 𝜆, 𝑛𝑐𝑟𝑖𝑡𝑖𝑐 , 𝑚, 𝛼
1: for 𝐼 epochs do
2: Extract training features

{(

𝑣1𝑠 , 𝑦
1) ,… ,

(

𝑣𝑛𝑠 , 𝑦
𝑛)}

3: ∇𝜑𝐿1 ← ∇𝜑
∑𝑁
𝑖=1

(

𝑦𝑖 log 𝑝𝑖 +
(

1 − 𝑦𝑖
)

log
(

1 − 𝑝𝑖
))

4: 𝜑← Adam
(

∇𝜑𝐿1 , 𝜃1 , 𝛽1 , 𝛽2 , 𝜀 = 10−4
)

5: end for
6: Select 𝐶 data point from the original vibration signal 𝑆 𝑖 ← (𝑎𝑖1 , 𝑎

𝑖
2 ,… , 𝑎𝑖𝑘 ,… , 𝑎𝑖𝐶 )

7: for i to 𝑁
8: for k to 𝐶
9: Calculate the value of 𝑎𝑖𝑘 according to formula 11
10: end for
11: end for
�̂� 𝑖,𝑗,…,𝑀 ←

{

𝑎𝑘 ∣ 𝑎𝑘 = max(𝑎𝑖𝑘 , 𝑎
𝑗
𝑘 ,… , 𝑎𝑀𝑘 ), 𝑎𝑖𝑘 ∈ 𝑆 𝑖

}

𝑆𝑢 ←
{

�̂�1,2 , �̂�1,3 ,… , �̂�1,2,…,𝑀}

13: while 𝜃2 has not converged do
14: for 𝑡 to 𝑛𝑐𝑟𝑖𝑡𝑖𝑐
15: for 𝑖 to 𝑚:
16: Sample real data 𝑣 ∈ 𝑃𝑟, latent variable 𝑧 ∈ 𝑝(𝑧), random number 𝜖 ∈ 𝑈 [0, 1].
17: �̂�𝑖𝑠 ← 𝐺𝜃2 (𝑆

𝑖 , 𝑧)
18: �̃�𝑖𝑠 ← 𝜖𝑣𝑖𝑠 + (1 − 𝜖)�̂�𝑖𝑠
19: 𝐿(𝑖)

2 ← 𝐷𝑤(�̂�𝑖𝑠) −𝐷𝑤(𝑣𝑖𝑠) +𝜆(‖𝛥�̂�𝐷𝑤(�̃�𝑖𝑠)‖2 − 1)2 + 𝐸(‖𝑣𝑖𝑠 − �̂�
𝑖
𝑠‖2)

20: end for
21: 𝑤 ← 𝑅𝑀𝑆𝑝𝑟𝑜𝑝(𝛥𝑤

1
𝑚

∑𝑚
𝑖=1 𝐿

(𝑖)
2 , 𝛼)

22: end for
23: Sample a batch of latent variables

{

𝑧(𝑖)
}𝑚
𝑖=1 ∈ 𝑝(𝑧)

24: 𝜃2 ← 𝑅𝑀𝑆𝑝𝑟𝑜𝑝(𝛥𝜃2
1
𝑚

∑𝑚
𝑖=1 −𝐷𝑤(𝐺𝜃2 (𝑆

𝑖 , 𝑧)), 𝛼)
25: end while
26: Input compound fault features 𝑣𝑢, LIV 𝑆𝑢 and noise 𝑧
27: 𝑌𝑢 = argmin𝐷𝑖𝑠(𝑣𝑢 , 𝐺𝜃2 (𝑆𝑢 , 𝑧))
Testing: The vibration time-domain signal of compound fault is
ransformed to generate a 2D time–frequency image via WT, followed
y extraction of fault features of compound faults. The generator uses
he LIV of the compound faults to generate fault features of the testing
ample. The model compares the distance between the real fault fea-
ures and the generated fault features. It predicts that the fault category
f the testing samples belongs to the closest generated fault feature of
he compound faults.

. Experiments

.1. Experiment description

We collected the vibration signals of the fault bearing through a
ab-built experimental platform to evaluate our proposed method, as
hown in Fig. 2. Our platform includes an AC variable frequency drive
otor, a shaft system consisting of a front bearing and its bearing seat,
radial load-bearing, and its bearing seat, the faulty bearing and its

earing seat, a gearbox with 75 large teeth and 55 small teeth, a base,
nd an electrical control box. To control the bearing speed, we used a
hree-phase motor with a flexible coupling. An acceleration sensor was
laced in the faulty bearing seat to collect the vibration signals, which
ere acquired using a data acquisition card. Fig. 3 depicts the bearings
ith different faults, acceleration sensors, and data acquisition cards in

he lab-built testbed.
The working load of the bearings is 0 HP, and the speed of the

earings is 1500 rpm. We collected vibration signals with the sampling
requency of 51.2 kHz and the sampling length is 10 s. Then we
egmented the vibration data using a sliding window approach with
window size of 512 and a sliding stride of 180, resulting in obtaining
000 fault samples per class, with each sample containing 512 data
oints.

Fig. 4 illustrates a few examples of the vibration signal sections.
hese examples of signals are the health conditions of the bearings.

The examples include signals of three single faults and four com-
ound faults. The three single faults are composed of an inner ring fault
IF) rolling body fault (BF) and outer ring fault (OF) respectively. The
our compound faults include the combination of single faults: inner
ing (IF) & rolling body fault (BF), outer ring (OF) & rolling body fault
5

(BF), inner ring (IF) & outer ring (OF) and inner ring (IF) & outer ring
(OF) & rolling body (BF).

4.2. Performance of different fault diagnosis tasks

We conducted experiments in two groups of compound fault diagno-
sis tasks as shown in Table 2. In different tasks, the number of training
samples and testing samples is different. For instance, the number of
training samples per class (i.e., single faults per class) in Task A1 to
Task A4 is 500, 1000, 1500, and 2000, respectively, thus the total
number of single fault samples from Task A1 to Task A4 is 1500,
3000, 4500, and 6000, respectively. The number of testing samples per
class (i.e., compound faults per class) in Task A1 to Task A4 is 2000,
correspondingly the total number of testing samples from Task A1 to
Task A4 is 6000. The classification accuracy is shown in Fig. 5. As
the number of training samples increases, the classification accuracy
of Task A and Task B is significantly improved. The accuracy of task A
and task B achieves 77.03% and 65.80%, respectively, when the model
is trained with 2000 examples in each fault class.

It should be noted that most learning models require numerous
compound fault samples for training. However, in zero-shot learn-
ing models, the compound fault samples are unavailable for training.
Thereby it is a methodology consensus that the performance of the
zero-shot learning models (not just our model) is inferior to that of the
conventional learning models, which can achieve an accuracy of over
86% (Chen et al., 2023; Yu et al., 2020). To our best knowledge, in the
field of computer vision, the state-of-the-art zero-shot learning models
achieve the highest classification accuracy of 76% on the benchmark
dataset CUB (Ding et al., 2018; Gao et al., 2020; Gull & Arif, 2022; Ye
et al., 2019). In contrast, the classification accuracy of 77.03% for Task
A in our experiment is satisfactory.

In our experiments, the accuracy of Task A is higher than that of
Task B. This is attributed to the complexity of task B. In contrast to
task A, task B is a coupling of three kinds of faults, which makes it
difficult to classify.

To evaluate the performance of the model, we obtain the precision,
recall, and F1-Score on TaskA4 and TaskB4 respectively, as shown
in Fig. 6. In Task A4, the model performs reasonably well on three
kinds of compound faults (IF&OF, IF&BF, and OF&BF), exceeding 66%
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Fig. 2. Lab-built testbed.
Fig. 3. Bearings with different faults, acceleration sensor, and data acquisition card in the lab-built testbed.
Table 2
Description of the diagnosis tasks.

Task Training Faults Testing Faults # of Training Samples
(samples × class)

# of Testing Samples
(samples × class)

Task A1 BF, IF, OF IF & BF, OF & BF, IF & OF 1500 (500 × 3) 6000 (2000 × 3)
Task A2 BF, IF, OF IF & BF, OF & BF, IF & OF 3000 (1000 × 3) 6000 (2000 × 3)
Task A3 BF, IF, OF IF & BF, OF & BF, IF & OF 4500 (1500 × 3) 6000 (2000 × 3)
Task A4 BF, IF, OF IF & BF, OF & BF, IF & OF 6000 (2000 × 3) 6000 (2000 × 3)

Task B1 BF, IF, OF IF & BF, OF & BF, IF & OF, IF & OF & BF 1500 (500 × 3) 8000 (2000 × 4)
Task B2 BF, IF, OF IF & BF, OF & BF, IF & OF, IF & OF & BF 3000 (1000 × 3) 8000 (2000 × 4)
Task B3 BF, IF, OF IF & BF, OF & BF, IF & OF, IF & OF & BF 4500 (1500 × 3) 8000 (2000 × 4)
Task B4 BF, IF, OF IF & BF, OF & BF, IF & OF, IF & OF & BF 6000 (2000 × 3) 8000 (2000 × 4)
for all three metrics. Among them, the precision, recall, and F1-Score
on IF&OF are 83%, 95%, and 89% respectively, which has the most
stable performance in Task A4. In Task B4, the testing set contains the
compound fault of IF&OF&BF. It is coupled with three kinds of single
faults, and its fault features are more difficult to identify. Thus the
performance of the model drops on Task B4, and all three metrics on
four kinds of compound faults (IF&OF, IF&BF, OF&BF, and IF&OF&BF)
are above 51%. Among them, the precision, recall, and F1-Score on
OF&BF are 81%, 78%, and 75% respectively, which has the most stable
performance in Task B4.
6

4.3. Ablation study

To provide further insight into our model, we conduct ablation stud-
ies to evaluate the effect of different feature extractors and generative
modules.

(1) Analysis of feature extractor: We evaluate the impact of using
Principal Component Analysis (PCA) and Autoencoders (AE) as feature
extractors. The proposed model is unchanged except for the feature
extraction module. Note that we only use single fault samples to train
FE in the absence of compound fault samples, and use the pre-trained
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Fig. 4. Vibration signal of seven health conditions: (a) single fault signals; (b) compound fault signals.
Fig. 5. The fault classification accuracy on different diagnosis tasks.
FE to extract the compound fault features. Visualization of the t-SNE
for fault features extracted by PCA, AE, and ours is presented in Fig. 7,
where four different colors represent different fault classes. It can be
seen that the features of the four classes extracted by PCA and AE are
mostly overlapped, while the four features extracted by our FE are quite
separated. This implies that our FE has a better distinguishing ability
at the class level, which is conducive to the final classification.

Fig. 8 illustrates the compound fault classification accuracy using
different feature extractors on tasks A4 and B4. As the number of
iterations increases, for task A4, when the number of iterations exceeds
2000, the classification accuracy using our feature extractor is much
higher (77.03%) than PCA (38.63%) and AE (71.01%). For task B4,
when the number of iterations exceeds 2000, the classification accuracy
using our feature extractor is much higher (65.80%) than PCA (30.68%)
and AE (52.76%).

(2) Analysis of the generative module: We evaluate the influence
of different compared generative models on the accuracy of fault
classification. Specifically, the proposed model is unchanged except
7

for the generative adversarial module. GAN, VAE, VAE_GAN, and our
model are used to generate compound fault features for classification.
Note that the GAN in our model is different from the comparison GAN
herein. The comparison GAN and our model have the same structure
of generator, while our model improved the loss functions, and the
discriminator structure is also modified, removing the sigmoid in the
last layer.

The 3D visualization of the t-SNE of compound fault features gen-
erated by different generative models on task A4 is shown in Fig. 9,
where the three different colors represent different fault classes. Hence,
the features produced by our generator are more discriminative, ag-
gregative, and structure consistent than the three other generative
models.

Further to intuitively evaluate the compound fault features gener-
ated by different generative models, we generated 100 compound fault
features using different generative models and calculated the center
point of each class of compound fault on task A4. We used Euclidean
distance to metric the distance between center points of different fault
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Fig. 6. Precision, recall and F1-Score results of different tasks: (a) Task A4; (b) Task B4.
Fig. 7. Visualization of the compound fault features on task B4 using different feature extractors: (a) Ours; (b) AE; (c) PCA.
Fig. 8. Compound fault classification accuracy using different feature extractors with the number of iterations.
classes, as shown in Fig. 10. The larger the distance between different
classes of fault features, the smaller the overlap of different fault
features.

Compared with the three other models, our model has the maxi-
mum distance between IF&OF and IF&BF (12.79), IF&OF, and OF&BF
(22.25). With respect to the distance between IF&BF and 0F&BF, our
8

model with a distance of 16.52 is close to the best model VAE_GAN with
a distance of 20.18. Overall the compound fault features generated by
our method have a lower overlap than other methods.

Further, we also use Euclidean distance to metric the distance per
class between center points of generated compound fault features and
the real compound fault features extracted from the compound fault
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Fig. 9. Visualization of compound fault features generated by different generative models on task A4: (a) Our method; (b) VAE; (c) GAN; (d) VAE-GAN.
Fig. 10. The distance between each class of the compound fault features generated by
different generative models on task A4.

samples, as shown in Fig. 11. It can be seen that our method has the
minimum distance between the two. This demonstrates the superior
performance of our method.

Fig. 12 illustrates the compound fault classification accuracy using
different generative models on tasks A4 and B4. As the number of
iterations increases, especially when the number of iterations exceeds
1500, our generative module has superior classification accuracy than
other generative models, with respect to task A4 or task B4.
9

Fig. 11. The distance per class between center points of generated compound fault
features and the real compound fault features.

4.4. Performance of different distance metrics

To understand the impact of distance metrics on our classification,
we evaluate four different metrics in addition to Euclidean distance.
Fig. 13 depicts the fault classification accuracy of using these distance
metrics. The average fault classification accuracy with different dis-
tance metric methods exceeds 73% and 62% on tasks A4 and B4,
respectively. This affirmed that the model had excellent generalization
ability with respect to different distance metrics.

Among them, the classification accuracy using the Euclidean dis-
tance is greater than the other four distance metric methods. After
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Fig. 12. The compound fault classification accuracy using different generative module models with the number of iterations.
Fig. 13. Classification accuracy using different distance metrics.
Fig. 14. Classification accuracy using different LIV definition methods.
analysis, the Manhattan distance is more likely to generate a higher
distance value than the Euclidean distance because it is not the shortest
possible path, while Minkowski distances do not take into account the
distribution of the individual components (expectation, variance, etc.).
On the other hand, the Bray-Curtis distance, which is an asymmetric
index, is more suitable for analyzing community species data. Further-
more, Canberra distance assumes that the variables are independent
of each other, and does not take into account the correlation between
the variables. Therefore, the fault classification accuracy of these four
distance metric methods is inferior to Euclidean distances.
10
4.5. Performance of using different label information vector

We conducted experiments using different label information in our
method, including Feature_Attribute (Chen et al., 2019),
Word_Embedding (Mikolov et al., 2013), CNN_Attribute (Chen, 2018),
Threshold_Attribute (Xu et al., 2022b), and LSD (Xing et al., 2022).
Descriptions for different LIVs are outlined in Table 3. We only change
the construction of LIV of our method and report the accuracy of tasks
A and B. The experimental results are shown in Fig. 14.
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Table 3
LIV methods.

Method Description

Word Embedding
(Mikolov et al.,
2013)

Apply the word vector model to train a fault corpus and convert the labeled words of the fault into fault LIV. We use the Skip-gram
model to convert the labeled words of each fault class into a vector, which is used as the LIV for each class.

Feature Attribute
(Chen et al., 2019)

Twenty-four attributes in the time and frequency domains are extracted, which are normalized to the range of 0 and 1. Each attribute
is binarized using a threshold of 0.5 and used as the LIV.

CNN Attribute
(Chen, 2018)

Design 192-dimensional vectors as the LIV, which is divided into three intervals representing different attributes, and the intervals of
different attributes are corresponding to different single fault features. These 64-dimensional single fault features are extracted from
various single fault samples by CNN. When there is no response to a single fault, the corresponding attribute interval is set to 0. LIV
operation steps are described in Chen (2018).

Threshold Attribute
(Xu et al., 2022b)

Firstly, R vibration signal data points of every single fault are selected, followed by the setting of a threshold value. If the data point is
greater than the threshold value, then the value of dimension is 1, otherwise 0; Thus we obtain the single fault LIV. Finally, compound
fault LIV is constructed by logic OR operation on the single faults LIV.

LDS (Xing et al.,
2022)

Based on the theoretical relationship of features and the LIVs relationship among the compound and single faults. By using the single
fault feature to train N softmax regression models to obtain weight matrices. All the weight matrices are set to construct the LIV of
different faults. More details about LDS can be found in Xing et al. (2022).
Fig. 15. Confusion matrix results using different LIV definition methods on task A4.
For task A, our method achieves the highest classification accuracy
of 77.03%. The classification accuracy of the other five methods is
70.62%, 62.07%, 57.57%, 59.75%, and 58.38%, respectively. Notably,
compared with the other five LIV definition methods, the accuracy
of our method is significantly improved by 9% with respect to the
second-best.

For task B, except for the feature attribute LIV method on task B4
(53.72%) the classification accuracy of the other four LIV methods
is less than 50%, while the accuracy of our method is significantly
improved. After analysis, we found that the BF features are not obvious
and are easily concealed by other fault features, leading to misclas-
sification. In contrast, our LIV method can effectively eliminate the
aforementioned problem with a classification accuracy is 65.80% on
task B4.

Figs. 15 and 16 depict the confusion matrix for fault classifica-
tion results of task A4 and task B4 using different LIV definition
11
methods. The abscissa and ordinate of the confusion matrix repre-
sent the predicted and actual fault labels, respectively. Each unit rep-
resents prediction accuracy. Our LIV method performed superior in
each fault class, whereas other LIV methods result in indistinguishable
faults. For instance, in Fig. 15, the probabilities of misclassification of
IF&BF to IF&OF and OF&BF are 0.63 and 0.15 using Word_embedding,
respectively.

Fig. 16 illustrates the testing set of compound faults coupled with
three single faults: inner ring, outer ring, and rolling body fault. The
weak features of rolling body faults are covered by other fault features,
which is difficult for the models to distinguish between IF&OF and
IF&OF&BF. For instance, the classification accuracy of IF&OF&BF faults
using Word_embedding, CNN_Attribute, Threshold_Attribute, and LDS
is 0, while our method could further mitigate this problem with the
classification accuracy of 65.80%.
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Fig. 16. Confusion matrix results using different LIV definition methods on task B4.
Table 4
Comparison methods.

Method Description

CADA_VAE
(Schonfeld et al.,
2019)

The CADA-VAE model learns a latent embedding of fault features and class embedding via aligned VAEs optimized with cross-alignment
and distribution alignment objectives and subsequently trains a classifier on latent features of seen and unseen classes.

VZSL (Wang et al.,
2018)

The VZSL model uses the potential spatial distribution of the single faults as the priority for VAE. We learn a set of attribute-specific
latent space distributions and infer attributes of the compound faults to achieve the classification.

DeViSE (Frome
et al., 2013)

The DeVise model embeds the fault feature space and the label information space into the deep fault label information embedding
space and uses the class prototype learned in the embedding space to classify using the nearest neighbor method.

CDL (Jiang et al.,
2018)

The CDL model uses class prototypes to align fault semantic structures, where the discriminative information lying in the fault feature
space is utilized to improve the less discriminative label information space. ZSL recognition can be performed in different spaces by the
simple nearest neighbor approach using the learned class prototypes.

LDS_IFD (Xing
et al., 2022)

Label description space (LDS) is established to construct the relationship between different fault modes. LDS is embedded between the
feature space (FS) and the health condition label space (HCLS). We use a linear supervised autoencoder (LSAE) to construct the
projection between FS and LDS. LDS-IFD identifies compound faults by similarity evaluation in LDS or FS.
4.6. Performance of different zero-shot learning models

We evaluate our model against the state-of-the-art ZSL models
including CADA_VAE (Schonfeld et al., 2019), VZSL (Wang et al.,
2018), DeViSE (Frome et al., 2013), CDL (Jiang et al., 2018), and
LSD_IFD (Xing et al., 2022). Details of the models are presented in
Table 4. We implement these models as our baseline. For a fair compar-
ison, all the models are trained using the labeled single fault samples
and LIVs we proposed, then these models are used to identify the
unlabeled compound fault samples. The fault classification results of
different models are presented in Fig. 17. Notably, our model is superior
to the other five methods in all cases.

In task A, for the methods, CADA_VAE, VZSL, DeViSE, CDL, and
LSD_IFD, the highest average accuracy is from 55.46% to 67.85%, while
our method can reach 77.03%. The improvement with respect to the
second-best (i.e., CDL) is 9.18%. This demonstrates that our proposed
method effectively distinguishes the compound faults in task A.
12
In task B, the improvement of our model is more obvious, with
respect to the second-best (i.e., CDL) is 16.5%. Specifically, the average
accuracy of VZSL and LSD_IFD is below 40%, thereby these two meth-
ods are not applicable herein. In addition, the highest average accuracy
of the CADA_VAE, DeViSE, and CDL methods are dissatisfactory, from
40.83% to 49.30%. The main reason is that the weak features of BF are
covered by other fault features, which makes three comparison methods
fail to distinguish between IF&OF and IF&OF&BF. In contrast, the
highest average accuracy of our proposed method can reach 65.80%,
which effectively alleviates the recognition problem of the weak feature
of BF.

5. Conclusion

To tackle the problem of compound fault diagnosis with no or ex-
tremely scarce examples, in this paper, we propose a label information
vector generative zero-shot model for the diagnosis of compound faults.
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Fig. 17. Comparison of the overall accuracy of our model with the state-of-the-art ZSL models in different tasks.
Our method is trained with only single fault samples and is capable of
identifying compound faults. We devise a unified LIV definition method
for expressing single and compound fault class information. The model
learns the mapping relationship between the fault features and the fault
LIVs through adversarial training. Then the trained generator generates
compound fault features using the compound fault LIVs. The model
identifies the class of compound faults by leveraging the similarity
measurement between the real compound fault features and the gen-
erated compound fault features. We conduct several experiments using
the vibration datasets acquired from our lab-built platform. Extensive
comparison results demonstrate that the proposed method achieves
a superior classification accuracy over the state-of-the-art methods
despite the lack of compound fault examples.

This paper focuses on the traditional zero-shot learning classifica-
tion, that is, only multi-classification on compound fault samples. In the
future, we will explore the generalized zero-shot learning method, that
is, multi-classification in single fault and compound fault samples. This
will help to accurately identify and classify various faults, promoting
the application of an intelligent fault diagnosis system. Meanwhile, in
this study, the severity of different faults is constant due to the limita-
tions of vibration sample collection. In future work, it is interesting to
identify compound fault severities in the testing stage while different
severities are applied in the training stages.
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