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Sankey diagrams are widely used to visualize event sequence data. However, when the
data volume is large, its readability is affected by dense edge crossings, excessive swing
amplitude, and small crossover angles, while it is computationally intensive to obtain
an optimal layout. In this paper, we propose NeatSankey, a balanced method that gen-
erates Sankey diagrams smoothly. It can be laid out quickly with good readability when
Sankey diagrams are very complex. At the same time, to comprehensively evaluate
the readability of Sankey diagrams, we use three evaluation metrics: crossing number,
swing amplitude, and layout coverage. Firstly, we use a heuristic layout algorithm and
a force-directed algorithm to adjust the node layout to minimize the edge crossings and
swing amplitude with edge widths considered. Secondly, to better reduce the dense
confusion caused by edge crossings, we introduce a edge bundling algorithm based on
attribute similarity. We present three evaluations: a comprehensive comparison of our
results with state-of-the-art techniques, user studies with thirty volunteers, and a case
study of two datasets. Our evaluations demonstrate the effectiveness and practicability

of the NeatSankey.

© 2023 Elsevier B.V. All rights reserved.

1. INTRODUCTION

Sankey diagrams are beneficial in presenting the trends of
data flow [1]. Edges represent flowing data. Widths of edges
indicate specific values. Nodes represent different classifica-
tions. The width of the edges is proportional to the flow rate.
Because showing how data flows is essential in many appli-
cations. Sankey diagrams have been used to represent the life
cycle assessment (LCA) of products [2], household budgets [3],
changes in energy generation [4].

Since Sankey diagrams are directed acyclic graphs, they have
some evaluation metrics in common such as the number of
edge crossings [5] and the area of edge crossings [6]. Besides,
Sankey diagrams are mainly controlled by drawing nodes and
edges. Variants of Sankey diagrams have been proposed to re-
duce confusion by optimizing these two factors. Sugiyama et al.
[7] developed a four-stage heuristic algorithm to draw hierar-
chical networks, aiming to reduce edge crossings. Since nodes
belonging to the same class are at the same hierarchy, Sankey
diagrams are mostly drawn using a hierarchical network layout.

Therefore, the Sugiyama algorithm is often used in the drawing
of Sankey diagrams. In addition, to obtain the optimal result,
Zarate et al. [6] introduced an integer programming approach
and considered the weights of the edges. However, when the
amount of data is large and the number of edge crossings is
high, Sankey diagrams will inevitably become visually confus-
ing.

From a brief review and previous assessments, we believe
that the current Sankey diagrams are able to reduce the number
of edge crossings relatively well but still need to be strength-
ened, while other limitations need further consideration. We de-
fine the readability of Sankey diagrams as measured by Cross-
ing Number (CN), Swing Amplitude (SA), and Layout Cover-
age (LC).

e Edge crossings. Previous approaches treat edges of dif-
ferent widths equally or assign higher weights to thicker
edges, which can lead to ignoring the intersection of thin
edges. However, we believe that within a dense region, the
intersection of thin edges can also create a great deal of
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confusion.

e The amplitude of the swing. According to the theory of
shortest edges in directed graphs, short edges help improve
aesthetics. In drawing Sankey diagrams, if the edge swing
is too large, then it will be difficult to track the data flow,
which will cause visual confusion.

e The coverage of layout. The information of space needs
to be considered in node layout and edge layout to leave
large blank areas to enhance the visualization of the di-
agram. The confusion in Sankey diagrams comes mainly
from the crossing of edges and the area of coverage. When
the edges are bundled together, there will be less crossover
and less ink on the canvas. Therefore, we propose the
space utilization metric, the smaller the metric, the better
the performance.

In this paper, we propose NeatSankey, a two-step algorithm,
which can minimize the effects of the above three limitations.
In the first step, a node layout algorithm, including a reordering
algorithm and a force-directed algorithm, is proposed to switch
the nodes and determine their position. The reordering algo-
rithm is introduced to get the order of nodes with width con-
straints. Then, a force-directed algorithm is designed to fix the
position of the nodes after the ordering. (see Fig 2)

In the second step, after the node layout is completed, edge
bundling is performed to further reduce the clutter generated by
edge crossings, especially the layout coverage. By hierarchical
clustering, edges at the same level are clustered together for
bundling. To show the exact connections, only edges with the
same source or destination node can be clustered into one class.
To accommodate large datasets, we will cluster again based on
the directional angle of the edges. One interesting part is that we
can bundle edges with different widths by dividing wide edges
into thin edges. To our best knowledge, no one has done this
while drawing Sankey diagrams. According to the result of the
clustering, we bundle them to better use of space. Although
it will distort the representation of cardinality, our method can
still reflect the flow of an edge by the ends of the edge.

Our primary contributions are as follows.

o The readability of Sankey diagrams is enhanced by de-
signing the node positioning algorithm and edge bundling
algorithm to reduce the visual confusion caused by edge
crossings with edge widths considered.

e We propose a novel edge bundling method for Sankey dia-
grams, which can bundle edges with different widths with-
out adding new confusion to the original Sankey diagrams,
and can show the exact connections.

o We evaluate the quality of NeatSankey quantitatively and
conduct a user study of 30 volunteers to illustrate the ef-
fectiveness and practicability of our method.

2. RELATED WORK

Sankey diagrams and their variants have been studied signif-
icantly in data visualization. The Sankey diagram is one of the
vital diagrams for observing the flow of data, which can help us
understand the information. Sankey diagrams appear in multi-
ple disciplines and help explain complex systems to non-experts

who may play an essential role in the system’s operation [8].
By observing the Sankey diagram, we can better understand the
flow of data and provide support for decisions. Sankey dia-
grams are highly relevant to graphical visualization, and a great
deal of work has focused on improving the visual effect.

2.1. Sankey Diagram Visualization

Multilevel digraphs, called hierarchies, constitute an impor-
tant subclass of digraphs [9]. A hierarchical network diagram
is used to represent the dependencies between components that
belong to different layers. Hierarchical graph layout is the pre-
ferred method for visualizing a general flow direction (e.g., data
or information) in relational data [10]. As an important diagram
to show data flow, the Sankey diagram can describe multi-level
relationships and classify nodes by level. Since nodes belong-
ing to the same class can be grouped into the same hierarchy,
Sankey diagrams are mostly drawn using a hierarchical network
layout. Sugiyama et al. [7] developed a four-stage heuristic
method to draw hierarchical networks. The first two stages of
this method handle cycle removal and the assignment of nodes
to layers. The third stage, a barycentric method, is mainly used
to reduce edge crossings. Based on it, most of the current vari-
ants apply different node layout algorithms and several other at-
tempts for domain-specific applications. In this paper, inspired
by it, we not only optimize the node layout of the diagram but
also reduce the visual clutter.

Sugiyama et al. [7] used a barycentric heuristic algorithm
to control ordering of nodes in hierarchical networks. In this
heuristic method, the nodes in the free layer are placed in the
barycentric coordinates of their neighboring nodes in the previ-
ous layer. After determining the order of the nodes in the free
layer, the layer is fixed. Then the nodes of the next layer are
moved with that fixed layer. Eades and Wormald [11] show an
alternative way to set the free nodes’ positions by the median
of their neighbor nodes rather than the barycentric. However,
their works focus mainly on reducing the number of crossings.
Still, they do not consider the weights when edges with differ-
ent widths cross, i.e., the different effects of different widths of
edges crossing together on the readability of the graph.

When drawing Sankey diagrams, previously published stud-
ies are limited to the number of crossings. To eliminate this
limitation, Alemasoom et al. [12] introduced the weights of the
edges and developed a two-step criterion. First, they extend the
barycentric heuristic algorithm that Sugiyama et al. presents to
find a node ordering with fewer edge crossings. Then, to min-
imize the sum of the distance between two nodes, they apply
a linear programming approach to adjust the positions of the
nodes, thus minimizing the distance between nodes. However,
this layout is not optimal. Minimizing the number of crossings
is an NP-hard problem. Garey et al. [13] proved that com-
puting the crossing number of a graph is an NP-hard problem.
Jiinger et al. [14] computed the sparse instances to obtain exact
optima for the problem of two-layer straight-line crossing min-
imization, even though the problem is NP-hard. In some cases,
some NP-hard problems can be optimized easily once modeled
as integer linear programmings (ILPs). Zarate et al.[6] created
an optimal Sankey diagram using an ILP model, which sets the
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Fig. 1: The dataset has 4 layers and contains 40 nodes, showing the relationship between js chart library, chart types, chart uses, etc. From the diagram we can
clearly see that Sankey diagrams are the main view for making standalone visualizations and are widely used, and that Sankey diagrams are mainly drawn by d3.js.
Our NeatSankey method employs a two-step algorithm, first controlling the position of nodes through a force-directed node layout algorithm, and then reducing the
confusion caused by crossings through an edge-bundling algorithm. Also, we use the hover marker to identify the flow of the edge. The line width represents the

data flow from the source node to the destination node.

cross area as the optimization objective. ILP solvers, however,
have a high cost in terms of running time, which means it is un-
suitable for highly interactive layouts. To balance the runtime
and layout effects, NeatSankey uses a heuristic layout algorithm
and a force-directed algorithm to minimize the edges’ crossings
and swing amplitude.

With the increasing applications of Sankey diagrams, espe-
cially in energy visualization, the demand for interaction has
been promoted. Riehmann et al. [15] presented a system for vi-
sualizing electric power that supports various techniques such
as overview, detail, and process tracing. However, the edges in
the system suffer from the vertical-horizontal illusion [16] and
are semi-automatic in layout. Later, Riehmann et al. [12] made
further improvements by introducing the Energy Viz system that
integrates multiple visualization techniques to explore tempo-
ral, spatial, and multi-attribute features. Muh et al. [17] used
Sankey diagrams for drug-target visualization, and improved
the response time, the number of crossings, and the color. When
Mathis et al. [18] explored the design space of Sankey diagrams
for the food-energy-water nexus, they chose to make all edges
a uniform width and represent the flow magnitude numerically.
Validated on tasks designed by experts, the method achieves
good results. Porter et al. [19] augment the hierarchical Sankey
diagram by simply examining inflow links and levels of detail.
Most of these methods, however, are oriented toward specific
domains, such as energy and medicine. Our NeatSankey, on the
other hand, adds an edge bundling method, allowing the under-
standing of charts more easily and broader fields of application.

Several empirical evaluations are available for directed or hi-
erarchical diagrams, including Sankey diagrams. Gansner et al.
[5] proposed three aesthetic principles in drawing graphs: the
same direction, the number of edge crossings and sharp bends,

short edges and balance. To draw Sankey diagrams with good
readability, Riehmann et al. [12] evaluated several aesthetic
criteria, including edge crossing reduction, short edges, and
straight edges. Barth et al. [20] calculated the overall blank ra-
tio in the generated layout. These studies show the effectiveness
of these evaluation metrics. Accordingly, a large-scale quanti-
tative evaluation was conducted on 25 datasets using aesthetic
principles such as the number of edge crossings, swing ampli-
tude, and layout coverage.

2.2. Edge Bundling

Network graphs typically suffer from visual clutter caused by
edge crossings. The visual clutter caused by dense edges can
be used by bundling similar edges together to form edge bun-
dles. Since the introduction of edge bundling by Holten [21]
when drawing composite graphs, it has been a general research
direction in reducing-edge clutter in graphs. At present, there
are various methods to bundle edges, such as hierarchical edge
bundling [21], geometry-based methods that use a control mesh
[22, 23], force-directed edge bundling [24], and image-based
methods [25, 26]. Bundles provide a good overview of connec-
tivity in dense graphs as the confusion caused by edge crossings
is greatly reduced.

As the scale and complexity of the network grow, with
limited display space, edge-congestion [27, 9, 28] and edge-
ambiguity [29, 11, 30] have become trending topics in network
visualization research. Luo et al. [31] consider ambiguities in
the edge-bundling process by requiring that only edges sharing
common nodes can be merged, thus helping the user to trace
the edges. However, this edge bundling is still based on vi-
sual metrics, such as the closeness of two edges and the de-
gree of bundling may be very limited in dense graphs. To bun-
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dle more edges, Toeda et al. [32] group nodes only if edges
are connected to the same node. Similarly, the Power Graphs
proposed by Bach et al. [33] use the hierarchical aggregation
of nodes to reduce edge congestion while displaying the com-
plete set of nodes and conveying precise connectivity between
them. Furthermore, to support hierarchical graphs, Toeda et al.
[34] bundle edges at their midpoints while converging edges
at their endpoints. Wallinger et al. [35] introduced Edge-Path
Bundling, which clusters each edge along a weighted, shortest
path to limit its deviation from a straight line.

Most of the previous edge bundling methods bundle edges of
the same width, so it is a challenge for us to apply edge bundling
algorithms to Sankey diagrams in which the edges have width.
Inspired by the work of Mathis et al. [18], we unify the widths
of the edges and conduct a user study set by experts. Mean-
while, in order to compensate for the influence of edge region
distortion caused by edge bundling on maintaining the visual
display of data volume, we have made some detailed designs,
such as adding hover markers to each edge to show the detailed
values of the edges. Both quantitative experiments and user
studies show that our method can reflect data flow better.

In summary, since the main function of Sankey diagrams are
to show the data flow, we need to provide a clear visual edge
pattern [30]. In NeatSankey, the edges in similar directions are
clustered first to reduce edge congestion better. Then a baseline
is chosen to bundle the other edges in the same cluster.

3. NEATSANKEY

In this paper, a Sankey diagram is defined as a directed graph
G = (V,E) with n layers, consisting of a set of nodes V =
(VO V@ V™) and a set of edges E = {EV, E?, ..., E®=D},
Table 1 lists the notations we use in this paper. The following
discussion topic is about nodes V*® = {v(lk),v(zk), ...} and edges
E® = {e(]k]),e(lg), ...} in layer k. For brevity, we will omit the
layer numbers above the right of symbols unless necessary.

In this section, we present a two-step method to draw Sankey
diagrams with good readability, which is shown in Fig 1. First,
a heuristic node layout and force-directed algorithm are used
to determine the node position. Edge bundling is applied to
the generated Sankey diagrams, producing less ambiguous edge

bundling.

3.1. Node Positioning

We propose a two-stage algorithm based on node position-
ing. First, the node sequences in every layer are reordered to
reduce crossover according to the widths of the edges. Second,
to minimize excessive overlap between the intersecting edges, a
force-directed model is designed to adjust the distance of nodes,
and then the final position will be determined.

Node Reordering. Taking account of the edges with differ-
ent widths in Sankey diagrams, we propose a heuristic order-
ing algorithm. To reduce crossing between edges with similar
widths, we introduce the function ¢ (w(k) w(.k)) shown in Eq.1.

iq °
5’;) connecting node vﬁk) and node vg‘”)

connecting node vi,k) and node vﬁ,k”), the function

If there is edge e as well

(k)

as edge e
gee,

Table 1: Key notations in this paper

Symbol | Meaning
ef.f) Edge connecting node vf.k) in layer k and node v.(,vkm in layer k + 1
vi.ﬁ) Meta-node (see Fig 3) connected to the edge e;’;]
wf,’;) Width of the edge egf), fixed by how much flow it represents
ag‘.') Angle of the edge egl;)
w® | Sum of the widths of all edges incident on the node v("’ in E®)
ff’]‘) Force between node vf.k) and node Vi'k) in layer k
df? Distance between node vf.k) and node vi.k) in layer k
s® Distance between layer k and layer k + 1
X Width of canvas
Y Height of canvas
[ -] Size of a set or absolute value

will have a positive value otherwise zero. To prevent division

by zero, we limit the maximum value of ¢ (wg), WEI;)))
1 (k) (k) (k)
® . ® Dy €€, € B
q Jr
"D(Wiq ’ij) = (e))
0 otherwise.

From the perspective of the visual effect, the crossing be-
tween edges of similar width will lead to severe visual clutter,
while different width edges can help alleviate it. Although the
width of the edge is considered by Riehmann et al. [15], the
weight is directly assigned according to the edge width, which
may result in a large number of overlapping thin edges. There-
fore, an objective function Eq.2 is defined considering the edge
width to find the crossing and reduce the crossing of the edges
with the similar width. As shown in Fig 4, we need to find the
appropriate sequence of nodes by switching the order of nodes
so that the value of the objective function is as small as possi-
ble. The simulated annealing method [36] is used to optimize
the order and reduce time consumption compared with the iter-
ative algorithm [37].

[V®|-1 |v®]| ([vED]-1 [vED]|

> elt)| @

g=p+1

min
=1 j=it1\ p=1

Force Direction. The order is determined after Node Re-
ordering. We employ the force-directed algorithm to determine
the final position (X, y coordinates) in the canvas and reduce
the overlap crossing edges. The distance of nodes and layers
should be considered. Inspired by the Fruchterman-Reingold
algorithm [38] which reflects the connection between nodes by
introducing attraction and repulsion, we present our two sub-
stages force-directed algorithm. As shown in Fig 4, the dis-
tance between nodes in each layer is adjusted first and then the
distance between each layer.

First, the y coordinate of nodes in the same layer will be de-
termined. Nodes with similar widths are kept as far away as
possible to alleviate visual clutter. Initial y coordinates of nodes
are assigned to each layer according to the size and the sequence
of nodes. Since the order of nodes has been settled, we limit the
activity boundary of nodes to a specific range according to the
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Node Positioning

=

Input Graph Sequence Arrangement

Coordinate Assignment

Edge Bundling

=

Rendering Coloring

Fig. 2: An overview of our method. NeatSankey is invented to generate a neater graph when data is complex. It divides the Sankey diagrams drawing into two steps.
The first step is to use a heuristic layout algorithm and a force-directed algorithm to minimize the crossings and swing amplitude of the edges. The second step is to
apply an edge bundling algorithm without ambiguity based on hierarchical clustering to make edge crossings less confusing.

ah 7\,
// B s

meta-node [/ a1l I\
meta-node “ a2 ‘ ad ‘ d H\
| \ /
\ /“ \ N\
\
node \ (b e

/ be 1\ /,'

Fig. 3: The illustration of nodes, meta-nodes and edges. Node b is a node, while
node a is divided into meta-node al and a2 which are the source nodes of edge

B O VR YLV S

Fig. 4: The Node Reordering algorithm takes account of the edges with different
widths in Sankey diagrams to reduce the crossing of a similar width. The Force-
directed algorithm introduces the attraction and repulsion to determine the final
position and reduce the overlap of the crossed edges.

size of nodes and ensure that there is no overlap between the
activity boundary of nodes. The activity boundary is the fixed
scope that a node can be placed in. That is, the node can’t be
placed beyond the boundary to maintain order and avoid over-
lapping. For nodes of the same layer, the repulsive force will
be apparent between nodes with similar widths, while the at-
tractive force will be evident between nodes with a significant
difference in width. For node v; and node v;, the edge width
difference is defined as

W, — W,

AW;; = AW;; = ‘m 3)
i J

To describe it, we define attractive forces and repulsive forces
as
2, 2
i,j i.J
rp(di) =
Dij f L] ( 1»1) d

i.j

Y
pij = wi,m/m 5)

w;j = ﬂm (6)

faij (di, j) “)

where p; ; is

and w; ; is

related to the edge width and the distance between nodes,
can be adjusted by experiment. To prevent division by zero, we
limit the maximum value of w.

The median of all AW, ; in layer k is chosen as AW, to distin-
guish attraction or repulsion, then

faij(dij) AWz W,
fii(dij) = %)
Srij (di,j) AW; ;< W,

Note that when the difference between the two edge widths goes
larger, the value of w approaches 1, and the equation is trans-
lated into the basic Fruchterman-Reingold equation [38]. When
the difference is small, w goes to infinity, and p also goes to in-
finity. For attraction, it will approach zero, and for repulsion,
it will approach infinity, as expected. Based on it, we use the
simulated annealing method for several iterations to determine
the y coordinates of all nodes in each layer and reduce time
consumption.

After the y coordinates of nodes in each layer are determined,
all nodes in each layer are regarded as one big node then to de-
termine the distance between layers. At this point, the edges of
each layer are kept as flat as possible, especially if there are too
many edges. Similar to the previous work, we restrict the nodes
to a certain range according to the fixed node order and adopt
the force-directed algorithm. Since the relationship between
nodes in this sub-stage is relatively simple, we only introduce
the effect of attraction to avoid the complex calculation. The
number of edges connected between two big nodes |[E®)] is set
to be a parameter. The greater it is, the smaller the attractive
force is. Let w® = 9{E®| in Eq.6. Obviously, the larger |[E®|
is, the less attraction is, and vice versa.

3.2. Edge Bundling

In order to understand the difficulties existing in our method
better, the ambiguities incurred in edge bundling will be further
described. The two ambiguities have occurred in some methods
and were concretely defined by Wallinger et al. [35].

Path Endpoint Ambiguity. Fig 6 shows this ambiguity.
Edge bundling is used to reduce the confusion caused by many
edges crossing. However, after bundling edges, it can be diffi-
cult to tell whether there is a path existing between the nodes,
for example, ¢ does not connect d and f.

Edge Crossing Ambiguity. Fig 7 shows this ambiguity.
When two edges cross, ambiguity may exist if the crossing an-
gle is shallow [39]. Edges that cross at nearly 90° are less likely
to be confusing than those crossing at acute angles.
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Bundling Edges Rendering

Fig. 5: An overview of our edge bundling method. Our edge bundling method has five steps: Determining cluster orientations, Clustering edges, Determining

baseline, Bundling edges, and Rendering.

N N
© @
| - | | N |
| (b : e | |
| - | | | | |
c f
N

(a) No bundling

(b) Edge bundling

Fig. 6: Path endpoint ambiguity. A connection does exist between (b, f), (c, )
and (c, f) in (a). When edges are strongly bundled, we might get false percep-
tions.

\ A\

la {¢c)

(a) Acute angles (b) nearly 90 degrees
Fig. 7: According to Huanget al. [39], the left is more confusing than the left
when two edges cross.

In graph visualization, edge-ambiguity problems usually lead
users to perceive incorrect relations between nodes or require
intensive effort to read the graph. For Sankey diagrams, the
exact information of each edge is needed. Compared to the
conventional methods, the main idea of our method is to bundle
edges that share at least one endpoint. Meanwhile, since edges
in Sankey diagrams have different widths and are not working
well when using previous edge bundling methods directly, the
granularity of the edge drawing is adjusted. Fig 5 illustrates an
overview of our method. We propose a specific edge bundling
technique for Sankey diagrams, which has the following five
steps: Determining cluster orientations, Clustering edges, De-
termining baseline, Bundling edges, and Rendering.

The determining clustering orientations step chooses one di-
rection by calculating the relationship between the number of
source nodes and destination nodes. The clustering edges step
is performed by grouping edges with the same source node or
destination node into one cluster. In this process, the maximum
of the directional angular deviation is limited in a cluster. The
determining baseline step is to select a wide and flat line in each
cluster. The bundling edges step is based on the selected base-
line bundling the other edges in that cluster. The rendering step
is to adjust the granularity of the edge drawing and choose the
same color for each cluster to provide an excellent visual per-
ception for the user.

Determining Cluster Orientations. Before clustering is
performed, we determine the direction of clustering first, i.e.,
whether to bundle near the source node (from the source node
to the destination node) or the inverse. In NeatSankey, we spec-
ify that the bundle direction is consistent between layers aiming

to have a better aesthetic result. The cluster direction is deter-
mined by comparing |[V®| and [V&*D| If [V®| < [V*+D| the
clustering direction is from the source node to the destination
node. Otherwise, the clustering direction is from the destination
node to the source node. The clustering direction we discuss is
from the source node to the destination node below.

Clustering Edges. The bundling points are usually in two
places, one at the midpoint of the edge and the other at the end-
point. Usually, bundling at the midpoint of the edges can dis-
play the main structure of the graph better, but some edges can
be difficult to identify. To avoid the ambiguity that occurred in
edge bundling, only edges with the same source or destination
node can be bundled together. Our method is an edge direc-
tion clustering method based on angular neighborhood, which
is able to deal with direction clustering problems with a small
computational cost.

Fig. 8: Edge direction clustering based on angular neighborhoods.

Each edge has two endpoints corresponding to a source meta-
node and a destination node. To minimize ambiguity, only
edges with the same source meta-node or destination node can
be bundled. The core of edge direction clustering is to process
the directional angles of edges so that the edges with less dif-
ference in directional angles are classified into the same cluster.
As shown in Fig 8, for the edge in set E® connecting the node
vgk) , the direction angle a/gf) of each edge ef/;) is calculated.

Through the direction angle al(f) , the edges are clustered
again. Since the order of the nodes is fixed (determined by the
node positioning), the angle Ac,, ,+1 between the adjacent edge
in the set E® is calculated according to the order. The edges are
classified satisfying Eq.8 as one cluster and obtain a bundling

(k) k k) _ (k) (k)
cluster ¢’ € C® and ¢ = fej]seijys)-

1
|aip - a’ip+l| <T (8)

leil—1 lci

Ai = Z Aap,p-H =
p=1

where T denotes the restricted angular neighborhood and
Aa,, 541 is the angle between e;; and ¢;;,;. In accordance with
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node positioning, T = 30° is used as a constraint for the edges
to join the bundling clusters, which is suitable to create a bun-
dle.

Determining Baseline. When clustering, direction angles
are used to limit the range of clustering in order to avoid too
many edges contained in one cluster. An edge is chosen to rep-
resent the main direction in a bundling cluster to avoid time-
consuming calculations for better interactivity. Then, the other
edges will be bound in the same bundling cluster to the base-
line in the bundling edges step. For the orientation of the base-
line, we want it to preferably be in the middle of the clus-
ter so that the bending of the other edges can be minimized
when bundling. The edges are added to the candidate edge set
Ci» = {eig, €ig+1, ...} when their direction angles meet Eq.9

@+ @+

0< a, < >
where «; is the maximum of the edge angle in bundling cluster
¢; while @; is the minimum, and § is set 10° through experi-
ments.

We not only select some edges in the more intermediate part
of the node cluster but also choose the edges with wider widths.
The edges in the candidate edge set c;. are sorted in descending
order by width w, and the edge with the largest width among
them is selected as the baseline. Iterate over all clusters, and we
will get a baseline in each bundling cluster.

Bundling Edges. Compared with the classic method like
force-directed edge bundling and image-based edge bundling,
our technique is based on the geometrical structure. The Sankey
diagram is a hierarchical network structure that is very regu-
lar in structure and contains fewer edges in a bundling cluster.
Based on the simplicity in structure, we only need to converge
the other edges in the node clusters toward the baseline and then
flow into the corresponding nodes separately without massive
calculation.

In each layer, the distance of edge expansion is consistent
to keep the symmetrical beauty and structural similarity as
much as possible. A good expansion point contributes a lot
to the reduction of edge crossing ambiguity for it increases the
crossover angle. In different layers, the distance is related to
the direction angles and widths of the edges. Let ngk) be the
expansion coeflicients. It is defined as follows.

+0 9

[cil

ni= = ) wig s 1Aag. (10)

14

Aa, . is the angle between edge e, and the baseline in bundling
cluster ¢;. Because the symbol of the angles only indicates the
direction, but not the magnitude, the absolute value needs to be
calculated. Here we consider the influence of weights w;, on
the performance and compute the weighted sum. A is set to 5
through experiments to adjust the sensitivity.

The final expansion distance from left to right, is defined as
x0 = p® . ¢®_ Finally, we use Bezier’s method to draw the
edges in D3 js.

Rendering. After bundling edges, the result seems a little
unnatural since edges with different widths are bundled together

(a) dy = maz (b) dy =16 (c)d, =8

Fig. 9: Examples of Sankey diagrams generated on the edge bundling using
different parameter d,.

and the overlapping region is not regular enough. For this rea-
son, we propose a new method to bundle edges that are different
in widths. Instead of drawing edges all at once with the orig-
inal width, one wide edge is replaced with a combination of
multiple thin edges of the same width. When the width of the
edge is less than the division width, no division is performed.
The width of the thin edge d, is set as a constant quantity and
can be edited by the users depending on their datasets. Typi-
cally, we set d, = 8 while d, is measured in pixel units. Fig
9 provides some illustrations of the edges divided into different
levels. Typically, we suggest d, set close to the minimum edge
width like (c).

With the clusters divided above, colors are added simply. In
the same layer, edges in the same cluster are drawn with the
same color. But the clusters of different layers can have the
same color, and there is no correlation between the colors of
different layers.

4. EVALUATION

In this section, we compare NeatSankey with other Sankey
diagram algorithms through quantitative analysis, a user study,
and a case study. The experiment data is available at
https://github.com/NeatSankey/NeatSankey-supp.

4.1. Quantitative Analysis

Metrics. The following three metrics are used to evaluate the
readability of the generated Sankey diagram quantitatively:

o Crossing Number(CN) is an aesthetic metric of diagrams
proposed by Gansner et al. [5] for measuring the number
of edge crossings in a generated layout. Whether the two
edges cross is judged between the coordinate of the end-
point of the edge and count the number of all the crossed
edges. The smaller the value of CN is, the fewer edges in-
tersect in the layout. To some extent, it reflects the clutter.

e Swing Amplitude(SA). Gansner et al. [5] proposed the
shortest edge as the metric. Swing amplitude further ex-
tends the shortest edge. The swing amplitude of the edge
can be obtained by calculating the slope of the edge. We
approximate the slope as the swing amplitude.

e Layout Coverage(L.C). Barth et al. [20] proposed this met-
ric in order to measure the total proportion of blank space
in the generated layout. The generated images are con-
verted without text into grayscale images and obtained LC
by calculating the number of pixels in the images. There-
fore, a smaller LC often means clearer visuals.

Data & Settings. A total of 25 datasets were used for the
overall assessment, including 10 real-world (see Table 3 top 5)
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and 15 randomly generated datasets (see Table 3 last 5). Multi-
ple datasets were selected with different layers and node num-
bers. We implemented BC, ILP, and our algorithm for each
dataset. Three quantitative metrics (CN, SA, and LC) were cal-
culated to measure the result. In the experiment, the BC algo-
rithm and our algorithm are implemented in Python, and the ILP
algorithm is implemented according to the ILP solver provided
by its author. We then render the resulting chart with d3.js. All
experiments were conducted on a computer with an 17-9750H
kernel, 2.60GHz, 16.0G RAM, and Windows 10 operating sys-
tem.

Result. For the metrics CN, SA, and LC, we quantitatively
calculate the corresponding values. Boxplots show the compar-
ison of our algorithm with the BC and ILP algorithms in Fig 10.
For the metric CN, a smaller CN means fewer edge crossings.
The results of our method are similar to OptimSankey, which
has the best performance in terms of the median. For the metric
SA, we believe it is more representative of the overall confusion
than CN. A smaller SA value means that the slope of the edge
is smaller. Due to the effectiveness of our node positioning al-
gorithm, our results in SA outperform the other two techniques.
Additionally, LC measures spatial coverage. When the value of
LC is small, it means that there are many blank spaces. If there
are many edge crossings in a thin space, it may lead to serious
visual clutter. Thanks to our edge bundling method, the blank
areas in the layout are significantly increased, and the visual
clutter is greatly reduced.

OptimSankey
CN | NeatSankey e
BCSankey
0 1000 2000 3000 4000 5000 6000 7000
OptimSankey f T 1 {
SA | NeatSankey 1T
BCSankey } {
0 0.1 0.2 0.3 0.4 0.5
OptimSankey } 1 }
LC | NeatSankey H T H—
BCSankey e T I |
0 0.2 0.4 0.6 0.8 1

Fig. 10: Comparison of three metrics (crossing number, swing amplitude
and layout coverage) and three methods (OptimSankey, NeatSankey and BC-
Sankey) on 25 datasets, small values are better.

In experiments for measuring running time (see Table 2), the
results show that NeatSankey takes longer to obtain results than
the traditional method by Sugiyama et al. However, even in
that case, we can still get the result by NeatSankey within 1
second in most cases. The time cost of the ILP method, on the
other hand, is much higher in most cases, taking more than 10
seconds to obtain the results.

4.2. user study

We conducted a user study comparing the readability of
NeatSankey with other Sankey diagrams implemented by dif-
ferent algorithms.

Participants and Apparatus. A total of 30 volunteers were
invited. Among them, 25 students (17 males and 8 females,

Table 2: Running time of the three algorithms

dataset | BCSankey cost(s) | OptimSankey cost(s) | NeatSankey cost(s)
1 0.035 3.00 0.371
2 0.051 13.00 0.336
3 0.070 16.00 0.438
4 0.238 69.00 0.750
5 0.297 20.00 0.387
6 0.129 11.00 0.563
7 0.051 24.00 0.430
8 0.043 7.00 0.223
9 0.680 24.00 0.934
10 0.063 1.00 0.211

aged 19-21, 15 majored in computer science, 5 majored in eco-
nomics, and 5 majored in mechanisms) and 5 teachers (4 males
and 1 female, aged 25-40) from a university participated in the
survey. The teachers had Sankey diagram drawing experience,
and the rest didn’t.

Conditions. The readability of NeatSankey was compared
with the integer linear programming algorithm [6] and the
barycentric heuristic algorithm [7]. To reduce the influence of
coloring on the results, all Sankey diagrams were drawn in gray.
The captions of BC and ILP were used only for recording and
analyzing results. To avoid user bias, the captions of the algo-
rithm used for Sankey diagrams wouldn’t be shown during the
study. The diagram drawn by different algorithms appeared at
random.

Datasets. Our user study will be carried out on 5 datasets. In
order to accurately judge the practicability of Sankey diagrams,
real-world datasets (see Table 3 top 5) are used. Our dataset is
about energy flows, government budgets, etc., all of which are
common problems in life. The parameter max / min width rep-
resents the ratio of the maximum width to the minimum width
of the edge.

Table 3: Five real-world datasets and typical five generated datasets

dataset layers | nodes number | links number | max / min width

City of Oakland Budget 3 40 67 5810.41
Canadian Energy Flows 4 40 85 230.0
Production of Products 4 19 21 797
Icon Made 4 40 58 8.00

Energy Source 4 17 42 1300.0
auto-generated-1 4 34 108 93.0
auto-generated-2 5 95 191 37.0
auto-generated-3 6 97 219 78.0
auto-generated-4 7 146 319 421.0
auto-generated-5 8 153 340 193.0

Tasks. Mathis et al. [18] proposed 7 tasks through review-
ing Sankey diagrams literature and expert discussions. To fully
evaluate the readability of Sankey diagrams, 3 tasks are selected
to compare the performance between different algorithms. All
participants were asked to complete three tasks designed to as-
sess the readability of Sankey diagrams. The tasks and reasons
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are as follows.

Tfiow It evaluates the observing ability of the Sankey diagrams
data flow. The flow is analyzed based on the work of Lee
et al. [40]. A data flow path is given, and the participants
are asked to judge whether the path exists in the Sankey
diagrams.

T, It assesses the understanding of participants to the node re-
lationships. Link analysis is performed based on the work
of Lee et al.[40]. Given a node and options, participants
are asked to select the data flow of these nodes.

It is mainly about flow volume in Sankey diagrams. Based
on the work of Amar et al. [9], extreme value identifica-
tion is performed. For different layers of the Sankey dia-
grams, participants are required to select the node of the
maximum value in each layer.

Tdam

Procedure. The independent variables are task, Sankey di-
agram algorithm, and dataset, while the dependent variables
are accuracy and completion time. Each participant must com-
plete tasks for all independent variables and finish in 45 trials
(3 tasks, 3 Sankey diagram algorithms, and 5 datasets). The
user study involved 30 participants and 1,350 trials. To ensure
that participants did not identify the algorithms used in the di-
agrams, the appeared order of Sankey diagrams with different
algorithms was shuffled.

We did not train users before the trial (the effect of experi-
ence on the results will be analyzed later). Before starting the
task, we record the user’s age and major. Major can evaluate
whether our Sankey diagram is friendly for non-specialists and
whether it can be used with the same ease as a computer profes-
sional. In each task, participants answered 3 questions covering
the Sankey diagrams with 3 different algorithms and 5 datasets.
T tiow> Trer and T4y, are multiple choice questions. The chart
was at the top of the page for each task, with four options be-
low, and participants were asked to view the chart without any
additional tool. When they have answered a question, they click
a button to go to the next question. We record the participants’
answers and the completion time of each question.

In addition, NeatSankey is tested by the five-point SUS
system availability table. Participants were asked to rate the
Sankey diagrams generated by NeatSankey based on their aes-
thetic preferences and perceived readability. The user study
took about 40 minutes for each participant.

Results & Analysis. We evaluated the readability of each
Sankey diagram by analyzing the completion time and accuracy
of the three tasks proposed above. Fig 11 shows the average
time taken to complete the task and its accuracy. NeatSankey
outperforms the BC algorithm and OptimSankey in both accu-
racy and completion time. Overall, the accuracy of the three
tasks is not very high, because the dataset selected is relatively
complex. Ty, has the lowest average accuracy of the three
tasks, indicating that the task is the most difficult. The per-
formance of NeatSankey and OptimSankey is similar in terms
of completion time, and the Sankey diagram designed by the
BC algorithm takes the most time to observe. Ty, takes the
shortest time to complete because it only examines the ability
to perceive the data size and only needs to judge the maximum
value, which is relatively simple.

Mean: Timecost (seconds)
I

Accuracy (%)
I

Sugiyama

T1 P

NeatSankey

Sugiyama
T2 P

NeatSankey
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|
|
|
|
|
|
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|
|
|
[{]
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|
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\
|
|
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|
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| |
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Fig. 11: For the three tasks of determining the readability of Sankey diagrams,
the accuracy and time to complete the three algorithms are compared.

For readability tasks, NeatSankey performs better on aver-
age than BC and ILP. Among the tasks, the ILP, considered the
optimal layout, had the lowest accuracy. We believe that the
reason may be that ILP thinks the number of edge crossings
and the high weight of edges, but ignores the intersections of
thin edges. Our algorithm has the best performance because
the effects of swing amplitude and layout coverage on visual
clutter are considered. The overall average accuracy is low for
Tf10. We suspect it is due to the complexity of the task, data
flow across multiple layers, and the accumulation of numerous
clutter. The overall accuracy is relatively high for T,,; because
node relationships can be obtained without analysis of multi-
ple layers and reducing-edge crossings improve the accuracy
of the task. For T,,, we think that the task can be easily fin-
ished whichever the algorithms, so the accuracy of the three
algorithms is similar, and all are high.

For readability tasks, NeatSankey took the least time on av-
erage. We found that though ILP was less accurate than BC,
it was better in terms of completion time. We think that ILP
can obtain the optimal layout through the ILP algorithm, but
there will be some ambiguity. For example, a large number
of edges crossed at a small angle will lead to ambiguity, and
this problem is solved through an edge bundling algorithm. For
T 10w, the task is complicated, so the overall completion time
is long. For T,.;, ILP and NeatSankey are close in completion
time. We believe that ILP also has a similar effect of reducing-
edge swing amplitude through node positioning. For 74, ILP
and NeatSankey times are close, indicating that users are sure
of the answer.

In addition, people in different majors were analyzed to test
the three algorithms. As can be seen from Fig 12(a), for teach-
ers with Sankey diagrams design experience, the accuracy of
the ILP algorithm is the lowest, and the accuracy of the BC al-
gorithm is similar to our algorithm at a high level, indicating
that our algorithm can improve the accuracy for experienced
people. For people in computer science majors, their average
score is the highest. Our algorithm has also achieved the high-
est accuracy. We believe that it is because computer students
are often in touch with charts similar to the Sankey diagram,
which can arouse resonance. Economics students and mechan-
ical students have the same accuracy rate, with the highest ac-
curacy rate of our algorithm, which shows that our algorithm is
not limited to people in computer major. From Fig 12(b), we
notice that the teacher takes the shortest time, probably because
they are familiar with the Sankey diagrams. On the whole, the
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Fig. 12: The accuracy rate and completion time of the users of different majors
were answered in three algorithms.

BC algorithm takes the longest time, while the ILP algorithm
can improve the efficiency of judgment. However, our algo-
rithm has the shortest completion time, which can well display
data flow and help the task completion of the Sankey diagrams.
Furthermore, there seems to be some relationship between ac-
curacy and majors. Whether between professional scholars and
students, or between different majors, the accuracy rates differ
less, which means that our Sankey diagrams are easy to under-
stand.

The SUS system availability table questionnaire is a stan-
dardized questionnaire developed by Brook et al. [19]. It is
a famous usability test questionnaire for final subjective evalu-
ation and can be used as a measure of usability. Fig 13 shows
the SUS questionnaire scores of the participants, including total
score, usability score, and learnability score, respectively. Our
method outperforms OK for readability scores and comes close
to GOOD. However, the learnability needs to be strengthened.
We think that the complex dataset and the complicated ques-
tions may also be the factors leading to a low learnability score.

@: Total
® (OX@) @: Usability
@): Learnability
F [ c [ B A
Worst Best

X GOOD  Excellent
Imaginable

0 10 20 30 40 50 60 70 80 90 100

Poor OK ¥
Imaginable

Fig. 13: The total score, usability score and learnability score of NeatSankey
were obtained by the SUS questionnaire. Scores are counted on a percentage
scale.

Based on the results from user study, we can find out these
phenomena below: With NeatSankey, users can find the cor-

rect answer more quickly; NeatSankey brings the change that
users can sense; The influence of NeatSankey is stable with low
variance.

4.3. Case Study

In this section, our results are compared with state-of-the-
art techniques such as BCSankey and OptimSankey. A case
study on two datasets is conducted to further demonstrate the
effectiveness and tractability of NeatSankey.

Fig 14 shows the City of Oakland budget dataset through
Sankey diagrams generated by our method, the BC method, and
the ILP method, respectively. Compared with the BC method
(b) and the ILP method (c), our method can show the clearer
budget flow. The BC method (b) has dense edge crossings in
the black-boxed area marked in the bottom right corner. There
is also a doubt about whether the edges flow from the node Gen-
eral Fund to the node Finance, City Clerk, City Attorney, and
others. Also, the multiple thick edge crossings bring a destruc-
tive visual impact. This may be caused by an indiscriminate
node reordering algorithm, which doesn’t take into account the
edge widths. Although the ILP method (c) solves the clutter
caused by the large area of edge crossings, it generates new
confusion simultaneously. On the left side (see left black box)
and right side (see right black box) of figure (c), multiple edges
cross in a dense space so that the destination of node General
Fund is difficult to determine, such as Mayor, City Administra-
tor, Finance, Information Technology, and others.

Meanwhile, some sources of the node General Fund are also
diffcult to recognize. The edges cross slightly, which may lead
to edge ambiguity. The more it is, the harder it is to determine
the data flow direction. But in our algorithm (a), the angle of
every edge crossing is close to 90°, preventing this problem.
With the force-directed algorithm, the nodes’ relative positions
can be optimized. In this case, a better spatial layout is ob-
tained. From node General Fund to node Finance or City Clerk,
we can always see a straighter edge connecting two nodes. In
addition, the figures generated by our method are more readable
because the improved node layout and edge bundling algorithm
make the whole graph less spatial coverage, larger white space,
and less visual clutter. Though, it also shows a problem with
NeatSankey. In figure (b), we can see how much percent of
node General Fund comes in from the various elements on the
leftmost (input) row. In figure (a), however, it is impossible to
see this since the bundling aggregates node Business License
Tax with several other nodes in the leftmost input layer. All we
can see is a split of node General Fund into two groups of in-
puts. Assigning different colors to different types of flow can
solve this problem.

The Holidays dataset mainly describes the activities of peo-
ple with different occupations during holidays and is displayed
in Fig 15. This dataset is relatively simple, with only two layers,
but it can illustrate many potential problems of the Sankey di-
agram. Here, both the BC algorithm (b) and the ILP algorithm
(c) suffer from serious ambiguity. The ILP algorithm consid-
ers the weights of the edges and solves the optimal solution by
integer programming, mainly reducing the crossover of thick
edges with thick ones. However, from the black box in Fig 15,
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(a) NeatSankey

(b) BCSankey

(c) OptimSankey

Fig. 14: The City of Oakland through Sankey diagrams which are generated by our method, the BC method and ILP method, respectively

(a) NeatSankey

(b) BCSankey

(c) OptimSankey

Fig. 15: Holidays through Sankey diagrams which are generated by our method, the BC method and ILP method, respectively

many edges cross each other at a smaller angle which causes lo-
cal confusion. Meanwhile, the excessive aggregation of edges
also causes the same visual confusion. Our algorithm adjusts
the order as well as the spacing of nodes and bundles the edges
from the same source node or the same destination node. The
improved Sankey diagram not only has a better field of view
with less spatial coverage but also obtains edges crossing close
to 90°, dramatically reducing the possibility of visual clutter.

From the three studies above, we can see that our method re-
duces clutter visually. Quantitative evaluation metrics (CN, SA,
LC) demonstrate the effectiveness of our method. user study
shows volunteers can finish three tasks well with NeatSankey
in a short completion time with high accuracy. Our generated
Sankey diagram (Fig 14, Fig 15) in the Case Study is more clear.
However, we also find some limitations.

Many Sankey diagrams are drawn with the width of the edges
indicating the volume of the data low, which is the primary
way the Sankey diagrams convey cardinality. Our NeatSankey
greatly improves readability by using the edge bundling algo-
rithm. In order to compensate for the influence of edge region
distortion caused by edge bundling on maintaining the visual
display of data volume, we have made some detailed designs. In
this paper, our method can reflect the flow volume by the width
of the edge endpoints. At both ends of the edge, that is, the part
close to the nodes, the width of the edge doesn’t change, pre-
senting the amount of data flow. Meanwhile, in order to achieve
a balance between aesthetics and the original characteristics of
Sankey diagrams, we add hover markers to show the flow of the
edges. Fortunately, through tasks (T fiow, Trel, Tdata) proposed
by previous users and experts in the user study, we found that
volunteers could still accomplish these tasks well with Neat-
Sankey despite the change in the width of the middle part. The
results show that it outperforms the other two methods in ac-
curacy and time, proving that our method can effectively reflect
data flow. Meanwhile, we can see that for the 10 datasets shown
in Table 2, our method is slightly less computationally efficient
than the initial method BCSankey but substantially better com-
pared to OptimSankey. It isn’t a significant limitation because

understanding the graph accurately should be more important
than a short response time [20].

5. DISCUSSION AND FUTURE WORK

We propose a method to reduce visual clutter in Sankey di-
agrams when the data volume is large, proposing a newly in-
vented method to generate neater diagrams. Compared to pre-
vious methods, our approach achieves a balance between effec-
tiveness and time, improving the readability observably. The
major contribution of this technique is that it minimizes the
cross area as well as swing amplitude of the edges and makes
edge crossings less confusing by two-step algorithm. It is worth
noting that our method can bundle edges with different widths.
To the best of our knowledge, no previous studies have applied
edge bundling method in the field of Sankey diagrams.After
bundling, we can still find the edge from the source node to the
destination node, because we only bundle the edges which have
the same source node or the destination node. It is worth noting
that our edge bundling algorithm will not cause secondary am-
biguity. A quantitative evaluation, user studies and a case study
demonstrate the effectiveness and practicability of NeatSankey.

Although NeatSankey has improved the readability of
Sankey diagrams, it still has several limitations and we are
ready to solve it in future work. First, in node positioning, we
improve the result by adding constraints for the force-directed
algorithm. The time complexity increases after adding restric-
tion optimization, requiring more time to reach the optimal re-
sult. Besides, our approach draws Sankey diagrams through
D3.js, which lacks some customizability. Additionally, our
method may cause partial confusion by distorting the width of
the middle side. Finally, while our method is visually more
readable than other methods, cognitive research is needed to
explore the deep perception of visualization quality in Sankey
diagrams.
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