
Signal Processing: Image Communication 118 (2023) 117016

L
W
X
a

b

c

d

A

K
L
V
I
G
C

1

l
i
d
w
c
i
l
n
a
f
i
e

S
R
(

c

h
R
A
0

Contents lists available at ScienceDirect

Signal Processing: Image Communication

journal homepage: www.elsevier.com/locate/image

ow-light image enhancement based on virtual exposure✩

encheng Wang a,∗, Dongliang Yan b, Xiaojin Wu a,∗∗, Weikai He b, Zhenxue Chen c,
iaohui Yuan d, Lun Li a

College of Machinery and Automation, Weifang University, Weifang, 261061, China
ShanDong JiaoTong University, Jinan, 250062, China
College of Control Science and Engineering, Shandong University, Jinan, 250061, China
College of Engineering, University of North Texas, Denton, TX, 76207, USA

R T I C L E I N F O

eywords:
ow-light image enhancement
irtual exposure

mage fusion
amma correction
amera response function

A B S T R A C T

Under poor illumination, the image information captured by a camera is partially lost, which seriously
affects the visual perception of the human. Inspired by the idea that the fusion of multiexposure images can
yield one high-quality image, an adaptive enhancement framework for a single low-light image is proposed
based on the strategy of virtual exposure. In this framework, the exposure control parameters are adaptively
generated through a statistical analysis of the low-light image, and a virtual exposure enhancer constructed by
a quadratic function is applied to generate several image frames from a single input image. Then, on the basis
of generating weight maps by three factors, i.e., contrast, saturation and saliency, the image sequences and
weight images are transformed by a Laplacian pyramid and Gaussian pyramid, respectively, and multiscale
fusion is implemented layer by layer. Finally, the enhanced result is obtained by pyramid reconstruction rule.
Compared with the experimental results of several state-of-the-art methods on five datasets, the proposed
method shows its superiority on several image quality evaluation metrics. This method requires neither image
calibration nor camera response function estimation and has a more flexible application range. It can weaken
the possibility of overenhancement, effectively avoid the appearance of a halo in the enhancement results, and
adaptively improve the visual information fidelity.
. Introduction

Digital image processing systems are widely used in video surveil-
ance, intelligent transportation, remote sensing, and play an increas-
ngly important role in every aspect of human’s lives. However, un-
er poor lighting conditions such as indoors, nighttime, and overcast
eather, the light reflected from the surface of an object is weak,

ausing color distortion and noise and thus poor quality of the acquired
mage [1–3]. In the 24 × 7 scenarios, such as video surveillance, intel-
igent transportation, and autonomous driving, low-light environments
ot only influence the visual perception of the human eye but also
ffect the recognition accuracy of machine systems, even causing the
ailure of these systems [4]. Traditional schemes using supplementary
nfrared lighting can yield clear images in a completely light-free
nvironment but can generate only monochrome (grayscale) images
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that lack color information and are affected by noise. Therefore, in
various fields, the details of low-light images acquired under poor
lighting conditions must be enhanced, and the color information of
scene images require maximal restoration [5]. Fig. 1 shows some
images captured in poor lighting environments, i.e., nighttime, overcast
weather, uneven illumination, and backlighting. It can be seen that
the partial overexposure or underexposure result in the loss of edge
information and texture details.

Therefore, it is valuable to make images more consistent with
human subjective visual perception and to improve the computer vision
capability through image enhancement. Many effective algorithms have
been proposed; however, these methods often have many parameters
and tend to overenhance some local areas with uneven illumination;
moreover, they struggle to strike a balance between processing speed
and effect. Against this background, we developed a method for en-
hancing single low-light images by using image fusion strategy. This
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Fig. 1. Various conditions that negatively affect image quality, such as (a) nighttime;
b) overcast; (c) uneven illumination; and (d) backlighting.

ethod automatically simulates the exposure of each image, then uses
he contrast, saturation, and saliency of the image as the criterion
o calculate the perceived quality, and, under the guidance of the
bove quality metrics, chooses useful pixels from the sequence to fuse
nto a final result. Compared to previous work, our method offers the
ollowing contributions:
 It is a simple and effective image enhancer based on the strategies

f virtual exposure and image fusion. This method can reveal more
nformation in extremely dark areas while preserving the details of
hole image;
 In this framework, exposure control parameters are adaptively

enerated through the statistical analysis on a single input low-light
mage, which requires neither image calibration nor camera response
unction;
 A virtual exposure enhancer constructed by means of a quadratic

unction is applied to generate several image frames from only one
ow-light image;
 This method does not need a large number of data sets for

raining, and has a flexible application range; it and can produce the
atisfied results with less computational complexity.

The rest of this paper is organized as follows. The second section
riefly introduces previous work about low-light image enhancement.
n the third section, the proposed algorithm and the strategy of com-
ining the virtual exposure technique with the multiscale image fusion
echnique are described in detail. In Section 4, the experimental results
re analyzed, and the conclusion is presented in Section 5.

. Related works

In this section, the related work on low-light image enhancement
s introduced. The current methods can be divided into four cat-
gories: histogram-based methods, retinex-based methods, dehazing-
ased methods and learning-based methods.

Histogram-based methods can enhance images by regulating the
ray-level distribution [6]. For example, Kim et al. [7] proposed an
daptive histogram equalization method with block iteration. Reza
t al. [8] proposed the contrast-limited adaptive histogram equalization
CLAHE) algorithm, which can avoid image overenhancement. Later,
LAHE was improved by integrating a learning-based hyperparameter
election method to enhance the image contrast while preserving the
aturalness of the image content [9]. Celik et al. [10] used a two-
imensional histogram and context information model of input image
o perform nonlinear mapping and proposed a variable-contrast algo-
ithm to realize low-light image enhancement. Parihar et al. [11] pro-
osed an entropy-based dynamic subhistogram equalization method, in
hich a new dynamic range is assigned to each subhistogram in accor-
ance with the entropy and gray levels. Gu et al. [12] applied a quality
valuation model to optimize the histogram parameters in order to
ffectively address the problem of overenhancement. Liu et al. proposed
stratified parametric-oriented histogram equalization method, which

an effectively achieve a regional enhancement effect without visual
rtifacts [13]. Zarie et al. proposed a robust enhancement method,
2

i.e., triple clipped dynamic histogram equalization based on the stan-
dard deviation (TCDHE-SD), which separates the image histogram into
three parts [14]. Histogram equalization algorithms can effectively
improve the contrast and detail information of low-light images but
also can easily cause color loss and image distortion. Therefore, these
algorithms are often used in combination with other methods.

Retinex-based methods operate on the basis of a color constancy
theory known as retinal-cortex, or retinex theory. Initially, the single-
scale retinex algorithm was proposed for image enhancement. It was
then further developed into classic algorithms such as the multiscale
retinex (MSR) algorithm, the MSR with color restoration (MSRCR) al-
gorithm [15,16] and the MSR with chromaticity preservation (MSRCP)
algorithm [17]. In addition, Xu et al. [18] present a novel struc-
ture and texture aware retinex (STAR) model for illumination and
reflectance decomposition of a single image to improve the perfor-
mance of low-light image enhancement. Wang et al. [19] proposed
a naturalness-preserving enhancement method by combining a bright-
pass filter with neighborhood information, which can not only improve
the contrast of an image but also weaken local overenhancement. Fu
et al. realized image enhancement by developing a weighted varia-
tional model for simultaneous reflection and illumination estimation
(SRIE) [20]. After separating the reflection and brightness compo-
nents based on retinex theory, some scholars have incorporated filter
factors to avoid noise amplification [21,22] or have adjusted the de-
grees of enhancement for different brightness values to weaken color
distortion [23]. Gu et al. proposed a retinex-based fractional-order
variational model for severely low-light images, which can yield an
appropriate estimate of reflectance and preserve small-magnitude de-
tails in the enhancement results [24]. Ren et al. introduced a robust
low-light enhancement approach based on the low-rank regularized
retinex model (LR3M) to suppress noise in the reflectance map and
achieved satisfactory enhancement and denoising performance [25].
Retinex-based algorithms have a clear physical meaning and are easy
to implement; however, these algorithms have a high computational
complexity and can easily produce halo artifacts in the restored images.

The dehazing-based approach was first developed based on the
observation that the characteristics of an inverted low-light image are
similar to those of a hazy image [26]. Later, the related algorithms
were optimized. For example, Yu et al. [27] adopted a convolutional
neural network (CNN) to solve for the transmittance and used the
local atmospheric light value as the global atmospheric light value.
The resulting enhanced images show good performance in terms of the
average gradient and information entropy. Zhang et al. [28] proposed a
real-time enhancement method that combines dehazing technology and
filtering technology, in which a dark channel prior (DCP) is used for
parameter estimation and a bilateral filter is used for noise reduction.
Later, Hu et al. [29] proposed a fast enhancement algorithm that com-
bines retinex theory and DCP for processing low-light video sequences.
As an alternative form of a DCP, a bright channel prior (BCP) is usually
used in combination with a retinex enhancement algorithm [30]. Tao
et al. [31] combined a BCP with CNNs to train an image enhancement
model, while Park et al. used an unsupervised loss function and a sim-
ple encoder–decoder architecture to achieve satisfactory experimental
results [32]. The dehazing-based methods offer good performance with
low computational complexity. However, their physical interpretability
is somewhat lacking, and they are still susceptible to overenhancement
in some areas.

Learning-based methods for image enhancement have seen rapid de-
velopment in recent years. For example, Lore et al. [33] used a stacked
sparse denoising autoencoder in an image enhancement framework
and trained a self-encoder on the characteristics of various low-light
images to achieve adaptive brightness adjustment and denoising. Shen
et al. [34] analyzed the performance of the MSR algorithm from the
CNN perspective and proposed a low-light image enhancement method
using an MSR network with a CNN architecture. Tao et al. proposed a
low-light CNN (LLCNN) [35], in which multilevel characteristic images



W. Wang, D. Yan, X. Wu et al. Signal Processing: Image Communication 118 (2023) 117016
are used to form enhanced images by learning the features of low-
light images with different kernels. Wei et al. assumed that images
could be decomposed into reflectance and illumination components
and proposed a deep network called RetinexNet [36] after collecting
a low-light (LoL) dataset consisting of low-light/normal-light image
pairs. Lv et al. proposed a multibranch low-light enhancement network
(MBLLEN) consisting of a feature extraction module, an enhancement
module and a fusion module (FM) [37], which outputs images via
feature fusion. Gharbi et al. designed a deep bilateral learning frame-
work to realize real-time image enhancement [38]. Wang et al. [39]
designed a global illumination-aware and detail-preserving network
(GLADNet) based on a global prior and the original images and used
a convolutional network to reconstruct the image details. Li et al.
designed a network called LightenNet [40] that takes a weakly illu-
minated image as its input and outputs a corresponding illumination
map, which is subsequently used to generate an enhanced image based
on the retinex model. Zhang et al. built a simple yet effective net-
work called the Kindling the Darkness network (KinD) [41], which
is composed of a layer decomposition net, a reflectance restoration
net and an illumination adjustment net, and trained it on pairs of
images captured under different exposure conditions. Meng et al. [42]
proposed a generative adversarial network (GAN)-based framework for
nighttime image enhancement, which takes advantage of the powerful
ability of GANs to generate images from real data distributions; their
results demonstrated its effectiveness. Methods of this kind perform
well, but their computational models often require too much time or
too many resources for training.

3. Virtual exposure for image enhancement

The details of the different areas in each image are related to
the degree of exposure of the acquisition device. When images are
captured with low exposure, the details of well-lit areas are visible,
but those of dark areas are largely lost; conversely, when images are
captured with high exposure, the details of dark areas are visible, but
those of well-lit areas are lost [43,44]. To solve this problem, the
multiexposure fusion technique was developed, which can fuse images
with different exposure levels to generate a new image with rich details.
This technique has been widely used in the generation of high-dynamic-
range images. However, since this method requires multiframe images
of the same scene, its applicability is limited. More recently, methods
based on the fusion of different images derived from a single low-
light image have been proposed. For example, Fu et al. [45] carried
out image fusion after applying the tangent transform and the CLAHE
operation to the intensity component in order to enhance the brightness
of low-light images, while Ancuti et al. [46] realized underwater image
enhancement by fusing white-balanced and filtered images. However,
these algorithms neither simulate the physical process of image expo-
sure nor enhance the color; hence, they are not suitable for uneven-light
image enhancement.

Inspired by the above ideas, we have designed a virtual exposure
enhancer that converting single image into a multiframe sequence of
images based on the analysis of various low-light images, and combin-
ing this process with the multiscale image fusion technique to achieve
adaptive low-light image enhancement. The whole framework of the
algorithm is shown in Fig. 2. When the input is a single low-light
image, virtual exposure images are obtained by processing the original
image through the virtual exposure enhancer, which is constructed
by means of a brightness correction function. A weight map for each
image in the sequence is then generated based on three information
factors: contrast, saturation, and saliency. The generated images are
subjected to Laplacian pyramid decomposition, while Gaussian pyramid
decomposition is applied to the corresponding weight maps. The virtual
exposure images with the same resolution are then multiplied by the
weight maps at the corresponding scale. Finally, the image information
is added together, and the enhanced image is obtained through pyramid
reconstruction once fusion is completed.
3

3.1. Virtual exposure enhancer

The multiexposure fusion technique allows us to use a sequence of
images with different exposure levels to synthesize the clear informa-
tion of that image sequence into a new image; it can effectively improve
the rate of utilization of image information to facilitate either human
visual observation or computer processing. Its working principle can be
expressed as follows:

𝐼𝑒 = 𝐹
{

𝐼𝑖
}

, (1)

where 𝐼𝑖 is the 𝑖th image of the image sequence to be fused, 𝐼𝑒 is the
fused image, and 𝐹 {} is the fusion function.

When a single low-light image is considered, to generate other
image sequences for fusion, the simplest processing method is to di-
rectly enhance the low-light image by using a tone mapping operator,
in which each gray-level enhancement is equivalent to performing
grayscale expansion and brightness enhancement on a certain region in
a targeted manner so that 𝐼𝑖 ← 𝐼0. Suppose that the original image is
represented as 𝐼0, and 𝑓𝑖(⋅) is the image grayscale conversion function.
Then, the image after processing is completed is as follows:

𝐼𝑖 = 𝑓𝑖(𝐼0), (2)

In Eq. (2), 𝑓𝑖 must meet the monotonicity and boundedness require-
ments:

F ∶= {𝑓 |𝑓 (0) = 0, 𝑓 (1) = 1, 𝑥 ≥ 𝑦 ⇔ 𝑓 (𝑥) ≥ 𝑓 (𝑦)} , (3)

Since the brightness conversion result is not derived from the true
exposure, it is referred to as a virtual exposure enhancer. For a virtual
exposure enhancer to obtain different brightness conversion functions
𝑓𝑖, a control parameter 𝑘 must be set up so that different conversion
functions are obtained to achieve different exposure levels:

𝑓𝑖 = 𝑓 (𝑘𝑖), (4)

Combining Eq. (4) with Eq. (2) yields

𝐼𝑖 = 𝑓 (𝐼0, 𝑘𝑖), (5)

Suppose that the parameter of image conversion is nonlinearly cor-
related with the overall brightness of the image scene. Then, inspired
from the idea from Zero-DCE [4], the input–output relation of the
virtual exposure enhancer established based on the image luminance
control parameter can be expressed as a quadratic function:

𝑓 ∶ {𝑦 = 𝑥 + 𝑘 × 𝑥(1 − 𝑥)}, (6)

In Eq. (6), the parameters of 𝑥 and 𝑦 represent the input and
output, respectively, and 𝑘 is the control coefficient. The function is
differentiable in a certain range, and the slope decreases with the
increasing input.

The low-light image is designated 𝐼0, and the grayscale range is [0,
1]. Then, the pixel value of the 𝑖th virtual image 𝐼𝑖 can be expressed as

𝐼𝑖 =
{

𝐼0 + 𝑘𝑖 × 𝐼0(1 − 𝐼0), 𝑖𝑓 𝐼0 + 𝑘𝑖 × 𝐼0(1 − 𝐼0) < 1
1, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

, (7)

where 𝑘𝑖 (from 𝑘1, 𝑘2, 𝑘3 … , 𝑘𝑁 ) is the control coefficient of the 𝑖th ex-
posure level. Although the gamma correction can also realize nonlinear
enhancement of the image, its enhanced value cannot break through
the limit of the output value of 1; thus, the process of strong exposure is
difficult to simulate. In addition, the computational complexity gamma
transform is far greater than quadratic function. After all the 𝑘𝑖 values
are input one by one into the virtual exposure enhancer, 𝑁 virtual
exposure images can be obtained. Fig. 3 shows a curve whose output
is a function of the variable 𝑘. Clearly, as 𝑘 increases, the slope of the
curve also increases, as does the image brightness enhancement, indi-
cating that the brightness of the generated image completely depends
on the parameter of the virtual exposure enhancer and that by setting

an appropriate 𝑘 value, the desired image brightness can be obtained.
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Fig. 2. Framework of the proposed algorithm. In this framework, single low-light image is converted into a multiframe sequence of images, and multiscale image fusion technique
s adopted to achieve adaptive low-light image enhancement.
Fig. 3. Image conversion function curve. (The left curve is from Eq. (6) when 𝑘 = 1,
nd the right is from Eq. (7) with the changes of k.)

To improve the adaptability of the algorithm, the average value
f the virtual exposure image is used as the expected maximum to
alculate 𝑘. Suppose that the average gray value of a virtual exposure
mage is 𝜇𝑘 and that the expected value is 𝜉; then, the value of 𝑘 that
llows 𝜇𝑘 to maximally approximate 𝜉 is used as the control parameter.
n addition, since the content and degree of exposure of the low-light
mages are different, to restrict the enhancement of virtual exposure,
e constrain the estimated �̂� empirically and set the maximum and
inimum thresholds (𝑘𝐿 ≤ �̂� ≤ 𝑘𝐻 ). Therefore, the estimated �̂� can

e expressed as follows:

̂ = arg min𝑘
|

|

𝜇𝑘 − 𝜉|
|

(𝑘𝐿 ≤ �̂� ≤ 𝑘𝐻 ), (8)

In practice, the expected value 𝜉 is set to 0.5 (the range of image
gray values is [0, 1]), 𝑘𝐻 = 12 and 𝑘𝐿 = 6.

Using Eq. (8), the value of 𝑘 that allows the average image gray
value to be 𝜉 after the enhancement is the maximum exposure, and after
adjustment of the virtual exposure enhancer 𝑘𝑖, 𝑁 images are obtained.
The calculation formula is as follows:

𝑘𝑖 = (𝑖 × 𝑘)∕𝑁, (9)

In this work, the number of images was set to 5, i.e., a virtual
exposure image sequence of five images with different exposure values
was obtained. Fig. 4 shows the four virtual exposure images obtained
through the extension using the above method and their corresponding
histograms and pseudocolor images. It can be seen that the virtual
exposure processing of low-light images through the function is equiv-
alent to the extension and luminance stretch on a region in a targeted
manner; thus, the underexposed image can well present the well-lit
areas of the actual scene, while the overexposed image can well present
the poorly lit areas of the actual scene. In addition, the original low-
light images under different circumstances reveal that although the
4

Fig. 4. Low-light image and its virtual exposure image sequence (the first row presents
the virtual exposure images, the second row contains the histograms, and the third row
shows the false-color luminance images).

Fig. 5. Changes to the image statistical indicators with eight virtual exposure levels.
(a)–(c) are used the indicators of mean value, standard deviation and information
entropy, respectively.

information in the underexposed areas is partially hidden in the dark,
well-exposed areas still have a good visual outcome and do not require
the enhancement operation. Accordingly, to better utilize these pieces
of information in the original image, the original low-light image needs
to be included in the image sequence to be fused; thus, the image
after enhancement appears more natural. The changes to the mean,
standard deviation, and information entropy from before to after the
enhancement of eight virtual exposures are shown in Fig. 5.

3.2. Weight maps

The simulated exposure image sequences are from the same scene,
with highly related target contents but different focuses. Images with
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proper exposure can show rich texture details and color information,
while the overexposed and underexposed areas hardly convey any
information; therefore, the choice of the weights is very important.
To enable the fused image to be in line with the characteristics of
the human visual system, among the 𝑁 virtual exposure images, the
smooth regions or unsaturated regions caused by overexposure or
underexposure should be given a lower weight, while those with proper
exposure and rich details should be given a higher weight. Against this
background, three metrics, i.e., contrast, saturation, and visual saliency,
are introduced in this study to fuse and restore image information.

(1) Contrast represents the degree of image detail: the higher the
contrast is, the better the image detail presentation, and the easier
the human eye can distinguish things in it. In this work, the absolute
value after Laplacian filtering is used as the contrast factor, and the
weight coefficient is obtained by calculating the changes at the image
edges. Specifically, the image is first converted to a grayscale image,
the pixel values are normalized to the [0, 1] interval, and the Laplacian
filter is applied to the image, with the following expression and filter
template:

𝐶𝑖𝑗,𝑘 = ℎ ∗ 𝐼, (10)

=
|

|

|

|

|

|

|

0 1 0
1 −4 1
0 1 0

|

|

|

|

|

|

|

, (11)

In Eq. (10), 𝐶 is the contrast, 𝐼 is the image whose contrast is to be
alculated, and ℎ is the Laplacian filter.

The contrast calculated through this coefficient is mainly used to
istinguish the gaps between one pixel and its neighbors; hence, the
bsolute value of the pixel at this position is taken as the final contrast
arameter.

(2) Saturation is an important indicator that reflects the vividness
nd colorfulness of an image; the higher the saturation is, the more
ivid the image. Saturation can quantify the red (R), green (G), and blue
B) channels of each pixel in an image and is obtained by calculating
he standard deviations of the three chrominance channels. Specifically,
he R, G, and B components of an image are extracted. Then, the
verages of the R, G, and B components of each pixel in the image are
alculated. Last, the standard deviation of the image color is calculated
o determine the saturation coefficient 𝑆𝑖𝑗,𝑘:

𝑖𝑗,𝑘 =

√

(𝐼𝑅 − 𝜇)2 + (𝐼𝐺 − 𝜇)2 + (𝐼𝐵 − 𝜇)2

3
, (12)

= 1
3
(𝐼𝑅 + 𝐼𝐺 + 𝐼𝐵), (13)

In Eqs. (12) and (13), 𝐼𝑅, 𝐼𝐺, and 𝐼𝐵 are, respectively, the pixel
values of the three chrominance channels (R, G, and B), and 𝜇 is the
mean of 𝐼𝑅, 𝐼𝐺, and 𝐼𝐵 .

(3) Saliency can accurately represent the importance of a pixel
relative to its neighboring pixels [47]. Therefore, the construction of
a fusion weight map based on saliency can effectively highlight the
important parts of each fusion source without introducing noise. The
construction of the saliency subweight graph can be expressed as:

𝐴𝑖𝑗,𝑘 = ‖

‖

‖

𝐼𝑢,𝑘 − 𝐼𝑔,𝑘
‖

‖

‖

, (14)

In Eq. (14), 𝐴𝑖𝑗,𝑘 is the saliency subweight map corresponding to
the fusion source 𝐼𝑘; 𝐼𝑢,𝑘 is the overall average of the fusion source in
the three channels of the Lab color space; and 𝐼𝑔,𝑘 is obtained through
Gaussian blurring of the fusion source in the Lab color space under
a filter cutoff frequency of 𝜔𝑔 = 𝜋∕2.75. The saliency map is used
to highlight the saliency areas in an image and enhance the contrast
between the saliency area and its adjacent areas, thereby improving
the global contrast of the image.
5

Fig. 6. Distribution of weight factors of a virtual multiexposure image. The first
row presents the virtual exposure image sequence the second row corresponds to the
contrast weight, the third row offers the saturation weight, the fourth row corresponds
to the saliency weight, and the last row presents the normalized weight.

3.3. Multiresolution pyramid fusion

Traditional multiexposure fusion algorithms usually do not perform
any image transformation on source images and do not take into
account the correlations between pixels. Instead, they directly perform
fusion processing on the corresponding pixels in the source image
to yield a new image. Although simple and computationally light,
these methods are unable to well represent the features in the source
image, causing serious loss of texture details. Therefore, the existing
spatial domain-based fusion rules must be improved and optimized
to enhance the quality of image fusion without significantly affecting
the computational complexity. The final weight is the product of the
three weights, and the three weights simultaneously constrain the final
weight. The formula is as follows:

𝑊𝑖𝑗,𝑘 = (𝐶𝑖𝑗,𝑘)𝜔𝑐 × (𝑆𝑖𝑗,𝑘)𝜔𝑠 × (𝐴𝑖𝑗,𝑘)𝜔𝑎 , (15)

where ij, k is the pixel (i, j) of the 𝑘th image; 𝐶𝑖𝑗,𝑘, 𝑆𝑖𝑗,𝑘, and 𝐴𝑖𝑗,𝑘 are,
respectively, the contrast, saturation, and saliency of pixel (i, j) of the
𝑘th image; and 𝜔𝑐 , 𝜔𝑠, and 𝜔𝑎 are used to control the impacts of the
contrast factor C, the saturation factor S, and the saliency factor A on
the weight map. For each fusion source, the weight map is equally
important; thus, the algorithm sets 𝜔𝑐 = 𝜔𝑠 = 𝜔𝑎 = 1, i.e., the three
factors have the same impact on the generation of the new weight map.

Fig. 6 shows the weight distribution of images with different expo-
sure levels, in which the first row presents the virtual exposure image
sequence 𝐼𝑘, the second row corresponds to the contrast weight 𝐶𝑘, the
third row offers the saturation weight 𝑆𝑘, the fourth row corresponds
to the saliency weight 𝐴𝑘, and the last row presents the normalized
weight 𝑊𝑘. Fig. 7 shows that the constructed saliency subweight map
can effectively outline the essential part of the image, being able to
effectively enhance. unexposed regions of the low-light image while
effectively retaining the properly exposed regions of the original image
without introducing any artifacts.

To obtain consistent results, the weight of each exposure image is
normalized to obtain the weight of pixel (𝑖, 𝑗) of the 𝑘th image of the
𝑁 multiexposure images:

�̂�𝑖𝑗,𝑘 =

[ 𝑁
∑

(𝑊𝑖𝑗,𝑘) + 𝜀

]−1

(𝑊𝑖𝑗,𝑘), (16)

𝑘=1
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Fig. 7. Influence of different weight combinations. (b)–(d) are the fusion results using
the contrast, saturation, and saliency weights, respectively; and (e)–(h) are the fusion
results using the contrast + saturation, contrast + saliency, saturation + saliency
weights, and contrast + saturation + saliency weights.

In Eq. (16), to avoid the situation where the denominator is zero, 𝜀
s introduced. Here, we set 𝜀 = 10−12.

The final enhanced image is obtained by fusing the multiexposure
mages with the weight map, and the resulting image can be expressed
s follows:

𝑖𝑗 =
𝑁
∑

𝑘=1
�̂�𝑖𝑗,𝑘 × 𝐼𝑖𝑗,𝑘, (17)

here 𝑅𝑖𝑗 is the pixel value of the fused image at (i, j); 𝐼𝑖𝑗,𝑘 is the pixel
alue of the corresponding position of the 𝑘th input image; and �̂�𝑖𝑗,𝑘 is

the normalized weight. This method is essentially a weighted average
fusion method. If the fusion is performed directly, obvious gaps will
appear due to sharp changes in the weight map.

Fig. 7 shows the results of direct fusion using different weighting
factors, in which Fig. 7(a) is the source image; Fig. 7(b)–(d) are the
fusion results obtained using the contrast, saturation, and saliency
weights, respectively; and Fig. 7(e)–(h) are the fusion results obtained
using the contrast + saturation weights, contrast + saliency weights,
saturation + saliency weights, and contrast + saturation + saliency
weights, respectively. On the basis of a human evaluation, the influ-
ences of different weight combinations in Fig. 7 do not show significant
differences, except for (d). Therefore, the information entropy is pro-
vided to explain the influences. The results indicate that the overall
image fusion effect is not good and that it is prone to cause a discrete
halo effect in the final enhancement result. Although Gaussian smooth-
ing or bilateral filtering can be used to eliminate the halo effect, either
can introduce blurs at the edges.

To avoid the halo effect caused by sharp weight changes, the pyra-
mid strategy is introduced into the algorithm to decompose the image
and achieve image fusion in a multiresolution way. First, the multiex-
posure images are subjected to Laplacian pyramid decomposition and
the weighted maps are subjected to Gaussian pyramid decomposition
to generate images with different resolutions, in which G and L, re-
spectively, represent the Gaussian pyramid operation and the Laplacian
operation.

The 𝑙th layer of image A is designated as 𝐿{𝐴}𝑙 after the Laplacian
pyramid decomposition, and the 𝑙th layer of image B is designated as
𝐺{𝐵}𝑙 after the Gaussian pyramid decomposition. Then, when Eq. (18)
is applied to each layer, the weighted sum is obtained using the weights
in the weight map pyramid and the Laplacian pyramid coefficient of
the corresponding position, which is the new Laplacian pyramid after
fusion:

𝐿{𝑅}𝑙𝑖𝑗 =
𝑁
∑

𝑘=1
𝐺{�̂� }𝑙𝑖𝑗,𝑘 × 𝐿{𝐼}𝑙𝑖𝑗,𝑘, (18)

In Eq. (18), N is the number of input images; I is the number of
input images with different exposure levels; ij is the pixel (i, j); �̂� is
the weight after normalization; and l is the number of layers of the
pyramid decomposition (0 ≤ 𝑙 ≤ 𝑀), with a default maximum number

of 5.

6

Finally, the Laplacian pyramid 𝐿𝑅𝑙 is reconstructed to generate the
fused image R. The fusion process is as follows:

𝑅𝑖𝑗 =
𝑀
∑

𝑙=0
𝐿{𝑅}𝑙𝑖𝑗 ↑

𝑑 , (19)

In Eq. (19), ↑𝑑 is the upsampling operator, and d is the sampling
factor (𝑑 = 2𝑙−1).

Fig. 8 shows the effect of the number of pyramid layers on the
fusion effect. In which, (a) is original image; (b)–(e) fusion results
obtained when the number of pyramid layers is set to 1, 3, 5, and 7,
respectively. Clearly, the multiscale fusion method can effectively avoid
the halo effect, and the increase in the number of layers can improve
the overall visual effect of the image and highlight the scene details
while enhancing the perception of reality.

3.4. Algorithm pipeline

The full processing pipeline of the proposed algorithm is as fol-
lows.1

4. Experimental results analysis

To test the effectiveness of the proposed algorithm, we built an ex-
perimental platform (computer processor: Intel (R) Core™ i7-6700 CPU
@3.4 GHz; RAM: 16 GB) and designed experiments on five databases:
the LDR dataset [48], the IEC dataset [49], the PMEA dataset [50], the
LoL dataset [36] and a self-built dataset with 300 images. The common
feature of those images is that each image has the regions of low
brightness. Some typical experimental results are shown in Fig. 9, for
each image, the dark region is from the low-light image, and the bright
part is from the enhanced image. To better present the comparisons,
each image was divided into two regions: one part is from the low-light

1 https://github.com/pumpkin8000/low-light-image-enhancement

https://github.com/pumpkin8000/low-light-image-enhancement
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Fig. 8. Change in the image fusion effect with the number of pyramid layers. (a)
riginal image; (b)–(e) fusion results when the number of pyramid layers is set to 1,
, 5, and 7, respectively.

Fig. 9. Typical experimental results (for each image, the darker region is from the
source image, and the brighter part is from the enhanced image).

Fig. 10. Edge detection results of images before and after enhancement. (a) is the
original image; (b) is the edge detection on (a); (c) is the Enhanced image of (a); (d)
is the edge detection on (c).

image, and the other part is from the enhanced image. Fig. 9 shows that
after being processed with our algorithm, the dark regions of the low-
light images were enhanced while avoiding overenhancement, which
indicated that the proposed method performs well in low-light image
enhancement.

To test the influence of image enhancement on feature extraction,
we also designed edge detection and image matching experiments.
Fig. 10 shows the edge detection result obtained using the Canny oper-
ator, in which Fig. 10(a) is the low-light image, Fig. 10(b) is the edge
detection result obtained on the image in Fig. 10(a), Fig. 10(c) is the
enhanced image, and Fig. 10(d) is the edge detection result obtained
on the image in Fig. 10(c). The results show that the information under
low light is visible and that the enhanced image has richer edges, which
indicates that the proposed method can improve the image feature
extraction performance.

Fig. 11 shows the result of image feature matching using the SIFT
operator, in which images in the first and second rows are the low-
light images and the enhanced images, respectively. Fig. 11(a) and (b)
7

Fig. 11. Effect of image enhancement on image matching. (a) and (b) are two images
to be matched, (c) shows the connections of the matching points, (d) is the matching
result, and (e) is the enlargement of the area in the red rectangle shown in (d).

are two images to be matched, Fig. 11(c) shows the connections of the
matching points, Fig. 11(d) is the matching result, and Fig. 11(e) is
the enlargement of the area in the red rectangle shown in Fig. 11(d).
Based on the processing data, 205 and 42 key points were detected
in the two low-light images, respectively, from which 21 matching
points were locked. Compared with the low-light images, 2425 and
2495 key points were found in the two enhanced images, from which
676 matching points were ultimately locked. The matching results in
Fig. 11(d) and (e) show that the matching results of the two low-light
images included mismatches, but accurate matching was achieved on
the enhanced images using the same method. Therefore, the virtual
multiple-exposure fusion algorithm proposed in this paper can improve
both the visual effects and feature extraction.

Below, the proposed method is compared with various state-of-the-
art algorithms developed in recent years, such as the camera response
model (CRM) [51], the fractional-order fusion model (FFM) [52], the
Gaussian total variation model (GTV) [1], the linking synaptic com-
putation network (LSCN) [53], SRIE [20], KinD [41], MBLLEN [37],
RetinexNet [36], and ZeroDCE [4], from the perspectives of subjective
visual evaluation and objective quantitative analysis [54].

4.1. Subjective evaluation

Figs. 12 and 13 show the results of a comparison between the pro-
posed method and various mainstream methods. In which, (a) includes
the low-light images, and (b)–(k) are the images enhanced using the
CRM, KinD, MBLLEN, FFM, GTV, RetinexNet, LSCN, ZeroDCE, SRIE,
and proposed methods, respectively. In Fig. 13, the enlarged regions
indicated by the red rectangles are shown in rows 2, 4 and 6 on
three images (‘Rail’, ‘Girl’, and ‘Tower’). The results show that different
degrees of improvement are achieved on the low-light images in terms
of clarity and contrast after enhancement and that more details that are
absent from the low-light image, revealing good enhancement effects.

Compared with other images, the enhanced images in (d), (h), and
(j) show insufficient enhancement and noise amplification in dark re-
gions, with much of the information remaining untapped. Particularly,
for the ‘Girl’ and ‘Tower’ images, the MBLLEN and SRIE methods are
unable to restore the color of low-light pixels, resulting in the under-
enhancement shown in (d) and (j). The CRM, KinD, LSCN, RetinexNet
and ZeroDCE methods enhance the overall brightness of the image, but
the RetinexNet yields a hue shift, and the LSCN methods excessively
enhance the gradient information of the image, leading to obvious
overenhancement of the color or edges, while the CRM and ZeroDCE
methods result in generally too bright images with inadequate contrast.
In Figs. 12–13, (e) and (f) show that the FFM and GTV methods
perform poorly in processing the light/dark-interlaced area, exhibiting
an overall poorer effect than that of the proposed method, while the
proposed method strikes a balance between contrast and brightness,
generating a better enhancement effect. The comparison of local details
of the frame region shows that the RetinexNet and LSCN methods
give rise to noise in the edge area derived from overenhancement; the
CRM and ZeroDCE methods result in poorer contrast; and the MBLLEN
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Fig. 12. Example of the experimental results. (a) includes the low-light images, and (b)–(k) are the images enhanced using the CRM, KinD, MBLLEN, FFM, GTV, RetinexNet, LSCN,
eroDCE, SRIE, and proposed methods, respectively.
Fig. 13. Example of the experimental results with zoom-in regions. (a) includes the low-light images, and (b)–(k) are the images enhanced using the CRM, KinD, MBLLEN, FFM,
GTV, RetinexNet, LSCN, ZeroDCE, SRIE, and proposed methods, respectively.
and SRIE methods cause various problems such as underenhancement
and shadows in some local areas. In contrast, the proposed method
shows a significant improvement in both color and contrast, achieving
a significantly better visual result than the other methods, such as clear
details and well-retained colors.

Fig. 14 shows the results of the enhancement effect relative to a
reference image using the IEC database [49]. Fig. 14(a) and Fig. 14(b)
are, respectively, the low-light image and reference image (normal-light
image) of the same scene. The image pairs are named ‘‘Blanket.jpg’’,
‘‘Building.jpg’’, and ‘‘Car.jpg’’. Fig. 14 (c)–(k) shows images enhanced
with the CRM, KinD, FFM, GTV, RetinexNet, LSCN, ZeroDCE, SRIE and
proposed methods, respectively. The results show that relative to the
low-light images (Fig. 14(a)), the enhanced images obtained using the
above nine algorithms restore the color to a large extent and markedly
increase overall brightness as well as the information content of the
images. Compared with the reference images (Fig. 14 (b)), the SRIE,
GTV, and FFM methods perform poorly in presenting details; the LSCN
method causes color distortion; the RetinexNet method causes overen-
hancement and loss of color information; and the CRM method perform
similarly to the proposed method and have better contrast than the
KinD and ZeroDCE methods, although the CRM method generally fails
to present details. The images processed using the proposed method
are similar to the reference images in terms of the overall color and

contrast.
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The above results show that the images enhanced by the proposed
method show clearer image contours and a more natural overall ef-
fect than those obtained through other advanced methods, making it
easier for viewers to see the key information displayed in each image.
Therefore, from the perspective of a subjective evaluation, the proposed
method well able to enhance low-light images.

4.2. Objective analysis and evaluation

When evaluating image quality with the human eye, individuals
may have different perceptions; thus, one-sidedness in the subjective
evaluation result can easily occur. Therefore, in this section, objective
quality evaluation indexes are introduced to assess the performance of
the algorithms in terms of the objective data, and adequate data support
is achieved regarding the image processing effectiveness [55].

(1) Evaluation of image quality without a reference
No-referenced indexes are usually used for evaluation [56–58]. In

this paper, four no-reference evaluation indexes, i.e., entropy, CEIQ
[59], JPEGC [60], and NIQE [61], were adopted as objective assess-
ment metrics to measure the performances of the different methods.
According to the theory of entropy, the higher the entropy value is, the
greater the amount of information in an image and thus the richer the

details. The CEIQ and JPEGC reflect the overall contrast of an image;
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Fig. 14. Experimental comparisons with reference images. (a) includes the low-light images, (b) includes the reference images, (c)–(k) are the images enhanced using the CRM,
KinD, FFM, GTV, RetinexNet, LSCN, ZeroDCE, SRIE, and proposed methods, respectively.
Table 1
Objective quality evaluation of images in Fig. 13.

Metrics CRM KinD MBLLEN FFM GTV RetinexNet LSCN ZeroDCE SRIE Ours

Group 1
CEIQ 2.97 3.36 3.45 3.06 3.08 3.15 2.92 3.34 3.10 3.48
JPEGC 29.27 34.66 33.54 19.48 14.06 30.44 25.30 25.07 19.79 34.28
NIQE 2.90 3.84 3.71 3.31 2.47 6.39 4.80 2.86 2.71 3.21
Entropy 7.20 7.25 7.53 6.82 6.92 6.91 6.84 7.25 6.97 7.61

Group 2
CEIQ 3.34 3.50 3.47 3.34 3.40 3.53 3.29 3.51 3.20 3.66
JPEGC 33.11 39.18 33.12 34.34 30.81 46.51 47.88 39.27 33.00 46.08
NIQE 2.89 2.76 2.87 2.99 3.16 4.13 5.05 3.16 2.85 3.31
Entropy 7.58 7.65 7.69 7.43 7.52 7.62 7.46 7.64 7.35 7.81

Group 3
CEIQ 3.22 3.42 3.22 3.31 3.21 3.26 3.10 3.35 3.25 3.58
JPEGC 37.83 41.86 43.06 36.45 32.66 43.59 39.39 40.00 37.51 47.01
NIQE 2.47 2.73 3.11 2.65 2.41 5.43 4.73 3.23 2.76 2.95
Entropy 7.42 7.44 7.46 7.36 7.21 7.27 7.18 7.40 7.32 7.69

(The best result is bolded and the second best one is underlined.)
,

the higher the CEIQ and JPEGC are, the higher the contrast and thus
the richer the details. For the NIQE, a smaller value is better.

Table 1 shows the objective evaluation results of the images in
Fig. 13 enhanced using the CRM, KinD, MBLLEN, FFM, GTV, RetinexNet
LSCN, ZeroDCE, and SRIE method. It can be seen that our method
can perform the best or second best values on the metrics of CEIQ,
JPEGC and Entropy. However, like other deep-learning-based methods
such as MBLLEN, RetinexNet, ZeroDCE, our method does not achieve
satisfactory results on NIQE. This may be because there are too many
artifacts in the image generated by fusion or deep learning, which affect
the natural properties of the image itself.

To show the universality of the proposed method, the images from
our self-built database, the LDR database, the IEC database, and the
PMEA database were experimentally tested, in which the results of the
same method on different images were averaged as the final result,
using the following formula:

𝜆 =
𝑛
∑

𝑖=1
𝜆𝑖, (20)

where 𝜆𝑖 is the calculation result of the 𝑖th image and 𝜆 is the average
f the indicator values of all images in the database. Table 2 shows
comparison of the proposed method with nine traditional methods

n the four databases. The results show that the values of all three
ndexes (i.e., CEIQ, JPEGC, and entropy) of the proposed method are
igher than those of the other methods when applied to the self-
uilt database, the LDR database, and the PMEA database. On the
EC database, the proposed method outperforms the other methods in
erms of the entropy and CEIQ. To the metric of NIQE, as discussed on
able 1, our method, KinD, MBLLEN, RetinexNet, ZeroDCE, achieved
o best results, while FFM and GTV shows the excellent performance
n this index.

Over all, the results show that among the twelve groups of data,
he proposed method outperforms the other methods on eight groups
f data, indicating that the proposed method performs better overall
han the other methods.

(2) Image quality assessment with reference images
The image pair (low-light image and its reference image) shown in
ig. 14 was evaluated and compared in terms of the peak signal-to-noise

9

ratio (PSNR), structural similarity index (SSIM) [62,63], visual informa-
tion fidelity (VIF) [64], and information fidelity criterion (IFC) [65].
The PSNR reflects the difference in the image before and after process-
ing. The higher the PSNR value is, the smaller the difference. The SSIM
reflects the correlation between adjacent pixels, conveys the structural
information of the objects in a scene, and measures the structural
distortion of an image. The higher the SSIM value is, the higher the
structural similarity between two pixels. The evaluation results of the
images in Fig. 14 are shown in Table 3. The results show that for the
four evaluation indicators, the proposed method has the highest values
on images ‘Blanket’ and ‘Building’. For image ‘Car’, the values of the
PSNR and IFC of the proposed method are lower than those of the KinD
method and the ZeroDCE method, respectively, but the values of the
other two indexes of the proposed method are higher than those of all
other methods, which demonstrates the outstanding performance of the
proposed algorithm.

To verify the generality of the results, the IEC database [49] and LoL
database [36] were used in the experiment. The results in Table 4 show
that in terms of the VIF and IFC, the proposed method is superior to all
the other methods, while in terms of the SSIM and PSNR, it is inferior
to the KinD and FFM methods. Out of all eight indicators, our method,
KinD and FFM achieve the best values for four, three and one of them,
respectively. The above results indicate that the proposed method can
enhance the brightness of an image while avoiding the distortion of
information, such as color and structure, thereby maintaining a high
similarity with the images acquired under fine lighting conditions.

All the above results calculated on various databases indicate that
in terms of objective quality assessment metrics, the images enhanced
using the proposed method are superior to those enhanced using other
methods, which is consistent with the conclusion of the subjective
evaluation. Overall, our results verify that it is effective and feasible to
use the abovementioned indicators to evaluate the quality of enhanced
images.

4.3. Adaptive analysis

The enhancement of images acquired under extremely poor lighting

conditions has long been challenging, as conventional methods are
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Table 2
Objective quality evaluation on images from Self-built database, LDR database, IEC database, and PMEA database, enhanced with different methods.

Metrics CRM KinD MBLLEN FFM GTV RetinexNet LSCN ZeroDCE SRIE Ours

Self-built database
CEIQ 3.16 3.23 3.31 3.14 3.08 3.13 3.04 3.21 3.13 3.38
JPEGC 25.45 30.04 29.33 22.16 15.90 29.26 24.31 24.85 22.96 32.71
NIQE 3.36 3.41 3.63 3.23 3.21 4.42 4.56 3.51 3.30 3.41
Entropy 7.23 7.16 7.33 7.02 6.97 6.98 6.91 7.13 7.08 7.44

LDR database
CEIQ 3.18 3.20 3.33 3.20 3.12 3.17 3.03 3.21 3.15 3.29
JPEGC 23.26 32.45 26.61 21.98 15.14 29.82 22.92 23.93 21.33 31.37
NIQE 3.07 3.36 3.46 2.93 3.11 4.37 4.33 3.41 3.22 3.43
Entropy 7.29 7.09 7.37 7.12 7.04 7.07 6.88 7.18 7.11 7.35

IEC database
CEIQ 3.21 3.09 3.32 2.88 2.87 2.77 3.09 2.93 3.00 3.35
JPEGC 23.07 25.51 30.70 12.88 7.38 15.40 16.49 13.98 14.59 22.98
NIQE 3.75 3.91 4.44 3.65 3.80 4.94 6.05 3.96 3.67 3.88
Entropy 7.33 6.92 7.27 6.57 6.62 6.53 6.97 6.67 6.83 7.36

PMEA database
CEIQ 3.09 3.31 3.33 3.11 3.09 3.15 2.91 3.28 3.15 3.51
JPEGC 26.25 30.84 31.18 22.12 15.94 28.86 20.88 25.99 24.04 35.49
NIQE 3.21 3.42 3.71 3.18 3.01 4.46 4.29 3.44 3.18 3.18
Entropy 7.19 7.32 7.42 7.01 7.00 7.03 6.78 7.24 7.13 7.62

(The best result is bolded and the second best one is underlined.)
Table 3
Objective quality evaluation on images in Fig. 14 enhanced using different methods.

Metrics CRM KinD FFM GTV RetinexNet LSCN ZeroDCE SRIE Ours

Group 1
SSIM 0.54 0.90 0.84 0.68 0.71 0.75 0.91 0.82 0.93
VIF 0.30 0.51 0.42 0.43 0.42 0.37 0.57 0.50 0.58
IFC 2.60 3.95 3.57 4.06 3.06 2.69 4.59 4.09 4.41
PSNR 15.38 23.59 17.17 13.70 16.93 18.76 20.67 15.23 23.40

Group 2
SSIM 0.69 0.89 0.87 0.79 0.77 0.82 0.92 0.79 0.92
VIF 0.44 0.47 0.46 0.46 0.39 0.38 0.54 0.48 0.60
IFC 2.24 2.31 2.34 2.52 1.72 1.72 2.61 2.48 2.81
PSNR 14.93 15.69 12.90 13.05 13.91 15.21 17.51 12.83 20.09

Group 3
SSIM 0.44 0.73 0.76 0.64 0.56 0.68 0.73 0.66 0.84
VIF 0.25 0.35 0.31 0.31 0.26 0.27 0.36 0.33 0.39
IFC 2.46 3.23 3.01 3.19 2.33 2.40 3.35 3.20 3.58
PSNR 10.92 16.57 13.86 11.89 15.28 15.67 16.13 12.09 20.37

(The best result is bolded and the second best one is underlined.)
Table 4
Objective quality evaluation on images from IEC database, LoL database, enhanced using different methods.

Metrics CRM KinD FFM GTV RetinexNet LSCN ZeroDCE SRIE Ours

IEC database
SSIM 0.64 0.82 0.87 0.81 0.66 0.73 0.83 0.85 0.84
VIF 0.41 0.45 0.42 0.41 0.37 0.42 0.47 0.48 0.55
IFC 2.49 2.72 2.75 2.87 2.08 2.29 2.89 3.00 3.16
PSNR 15.62 18.73 17.66 16.68 14.73 17.87 18.58 17.30 18.13

LoL database
SSIM 0.38 0.87 0.72 0.51 0.70 0.58 0.71 0.59 0.73
VIF 0.28 0.43 0.36 0.33 0.31 0.31 0.40 0.39 0.44
IFC 1.38 2.06 2.02 2.00 1.42 1.39 1.98 2.02 2.07
PSNR 11.72 19.71 13.34 10.54 17.03 15.79 14.57 11.56 17.13

(The best result is bolded and the second best one is underlined.)
prone to cause overenhancement, halo effects, or color distortion. To
verify the robustness of the proposed method, it was tested on several
challenging images acquired under extremely low lighting, at night-
time, and with backlighting. The experimental results are shown in
Fig. 15, in which the first and second columns of Fig. 15(a), (b), and (c)
present the low-light images and their corresponding enhanced images,
respectively. The results show that the proposed method exhibits a
satisfactory enhancement effect that increases the brightness of dark
areas while avoiding noise amplification, giving rise to better clarity,
contrast, and color and thereby being consistent with human visual
perception. Especially for the nighttime scenes with uneven lighting,
such as point lighting and backlighting, the proposed method does not
cause marked overenhancement in the well-lit regions when increasing
the brightness of the poorly lit regions, indicating that the proposed
method can adaptively adjust parameters for different scenarios, en-
suring high robustness and adaptability. The proposed method was
also compared with several pieces of commercial application software
that have the function of ‘one-click enhancement’, including the online
10
tools such as Tuyitu2 Meitu,3 and Baidu.4 The testing images captured
under various poor lighting conditions, such as nighttime, overcast,
uneven lighting, and backlighting. The representative results are shown
in Fig. 16. Enhancement of the images using our method significantly
improves the brightness and reveals the detailed information of im-
ages taken under poor lighting. In contrast, the enhancement using
the other methods is poor. These results indicate that the adaptive
enhancement of the proposed method has outstanding advantages that
allow the presentation of details without overenhancement and with
high robustness.

4.4. Comparison of different exposure functions

As discussed in Section 3.1, to the virtual exposure enhancer, we
can also generate the sub-images with other nonlinear functions on the

2 https://www.tuyitu.com/photoeditor/
3 https://xiuxiu.web.meitu.com/main.html
4 https://ai.baidu.com/

https://www.tuyitu.com/photoeditor/
https://xiuxiu.web.meitu.com/main.html
https://ai.baidu.com/
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Fig. 15. Examples of image enhancement under different lighting conditions. (a),
(b), and (c) present the low-light images and their corresponding enhanced images,
respectively.

Fig. 16. Comparison of the proposed method with commercial software. (The testing
mages captured under various poor lighting conditions, such as nighttime, overcast,
neven lighting, and backlighting are compared with Meitu, Tuyitu, Baidu and our
ethod.)

nput image. The experimental results with gamma function (𝛾 is setting
o 0.2, 0.3, 0.4, 0.5, 0.6, 1, respectively) and our quadratic function are
hown in Fig. 17.

It can be seen that, comparing with gamma function method, the
nhanced result of quadratic function method has higher brightness,
tronger contrast and more realistic. Which mainly because our method
an simulate the process of strong exposure while the value of gamma
unction cannot break through the limit of the output value of 1.

.5. Failure cases

Although the proposed method can enhance the dark regions in a
ow-light image, it has obvious weaknesses that it does not have the
bility to suppress the brightness of overexposed areas. Some failure
11
Fig. 17. Comparison of different exposure functions.

Fig. 18. Failure cases of enhancement for the images containing over-exposure areas
(the overenhanced regions are marked with color rectangles).

cases are shown in Fig. 18, in which the overenhanced regions are
marked with color rectangles. It can be seen that the dark areas are
enhanced while the brightness of the overexposed areas are almost
unchanged. The reason of this question is that the key idea of this
method is to mine the information of the enhanced low brightness area
through information fusion, which lacks the mechanism to deal with
the over exposed area. From Eqs. (6) and (7), it also could be proved
that the virtual exposure enhancer could not deal with the overexposed
areas.

5. Conclusions

In this paper, an adaptive single-image enhancement framework
that combines a virtual exposure strategy with image fusion is pro-
posed, aiming at addressing the problem of local under/
overenhancement and the lack of adaptability of parameter setting
in traditional methods. This method is different from the traditional
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multiexposure image fusion in that only a single image is used for
generating multiexposure images with a virtual intensifier, after which
an image sequence with different details can be fused to generate a
clear image. Compared with the state-of-the-art enhancement methods
on five datasets, the results show that the output of our method
has less brightness distortion and color distortion and can effectively
retain the visual information of the image itself, which is more in
line with the visual perception of the human eyes. More importantly,
this method does not require camera response curve calibration and
tracking the exposure time of each photo. The parameters that need to
be transformed are automatically calculated and obtained. It is self-
adaptively and robustness, and can be applied to video monitoring,
scene recovery and other fields. However, because this algorithm could
not deal with the overexposed areas, how to improve the algorithm’s
performance of suppressing the brightness of overexposed areas will be
the next research focus in the future.
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