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A B S T R A C T

Pests are diverse and the available datasets often contain an uneven number of examples for different
pests (a.k.a., the long-tail distribution). This poses a great challenge to learning-based classification methods,
especially deep networks, and often leads to degraded performance, especially for the minority (tail) classes.
This paper presents a deep learning integration architecture based on decoupling training and fusion learning,
which integrates different models with complementary performance on pest datasets with a long-tailed
distribution to improve the overall classification performance of pests. A deep neural network is designed that
fuses two complementary deep learning models at the feature level, which consists of a convolution neural
network (ConvNeXt) and a Swin Transformer model for decoupling training. Experiments are conducted using
three datasets (d0, insect, and IP102), and evaluation on accuracy, recall, and F1-Score is reported. For the
large-scale pest dataset with long-tailed distribution IP102, the accuracy achieves 76.1%, which outperforms
the state-of-the-art methods. In addition, the accuracy for d0 and insect datasets are 98.5% and 92.3%,
respectively.
. Introduction

Pests are one of the primary causes of crop losses, which affect a
road range of crops, e.g., rice, wheat, maize, soybeans, sugarcane,
tc. According to the Food and Agriculture Organization, pest-related
rop losses account for approximately 40% of the world’s total crop
ield each year, amounting to at least 70 billion USD (IPPC Secretariat,
021). Integrated pest management requires pest identification and
lassification in situ (Bollis et al., 2022) to assist decision of appropriate
nsecticides, as well as implement effective pest control methods to
revent it from the occurrence.

The natural habits and physiological characteristics of pests lead
o the relatively similar appearance and low discrimination of some
pecies of pests, as shown in Fig. 1(a). With the development of imaging
nd computer vision technologies, an automatic solution requires high-
uality pest image data for machine learning model development.
owever, obtaining pest images in the natural environment and an-
otation is difficult. This leads to a long-tailed distribution (LTD) in
est datasets as shown in Fig. 1(b). When training a model using an
TD dataset, the tail category has little influence on the calculation of
he loss due to the small number of examples, which leads to a bias
owards the head categories. The performance is, hence, high for the
ead categories but much lower for the tail categories. In practice,
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missing some rare, yet deadly pest in the early stage of pest control
could end up a disaster in a later stage.

Many pest classification and recognition methods (Setiawan et al.,
2022; Liu et al., 2022b) fail to address the LTD issue. A small number
of samples for those tail classes poses a challenge in training a fair
model and finding a proper decision boundary for the tail classes (Yuan
et al., 2018; Yang et al., 2022). The existing solutions are mainly built
from two aspects: model and data. Methods (Setiawan et al., 2022;
Zhang et al., 2022; Yu et al., 2022) extend the existing models (such
as convolution neural networks (CNNs), Vision Transformers, and mask
self-supervised learning) by supplementing training data with augmen-
tation and pretraining technology. Other methods (Yang et al., 2021;
Sambasivam and Opiyo, 2021) use class rebalancing and information
augmentation. LTD is commonly seen in real-world applications, where
some classes have much fewer examples due to the less frequent occur-
rence. One popular strategy is to balance the data for all classes via data
augmentation, which, however, could lead to degraded performance
when the trained model is applied to the real data.

Recent deep CNN methods use convolutions and pooling operations
to extract local features of different scales (Geirhos et al., 2018; Naseer
et al., 2021). But the feature scope is limited. An alternative network
structure leverages a Transformer that enables the extraction of global
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Fig. 1. Sample pest images (a) and their distribution in the IP102 data set (b).

features. The question is if merging these complementary deep features
helps improve the classification of pests and overcome the difficulty
induced by LTD. This motivates us to explore the integration archi-
tecture of feature extraction and fusion to improve the classification
performance of the tail classes in LTD pest datasets and hence improve
the overall performance of pest classification.

Such a fusion model learns different types of features of pest images
with LTD. Designing a network architecture to integrate complemen-
tary deep-learning models requires investigation and is the focus of this
study. Vision Transformers perform well for the head classes, but the
performance degrades significantly for the tail classes, whereas CNNs
much better performance for the tail classes. In our evaluation, we also
demonstrate the complementarity of inductive bias of CNNs and Vision
Transformers. The former learns the local detail features of pest images,
while the latter learns the global features. Such a combination of the
two models addresses the LTD problem.

This paper aims at improving the classification accuracy of pest
images in natural environments by developing a deep fusion net-
work that integrates two backbone networks for extracting and fusing
complementary features. The contributions of this paper include:

1. A deep network that fuses complementary features for pest
classification. The network employs a training strategy that de-
couples the training and feature fusion processes to reduce train-
ing costs and improve classification performance. This strategy
allows us to leverage the backbones with different network
architectures to fit the application scenarios.

2. We demonstrate the complementarity of the image features ex-
tracted by convolutional networks (e.g., CNNs) and transformer
networks (e.g., Vision Transformer) on data sets with LTD.

The rest of this paper is organized as follows: Section 2 reviews the
elated work. Section 3 describes our proposed fusion-based deep net-
ork. Section 4 discusses the experimental results. Section 5 concludes

his paper with a summary and future work.

. Related work

Class rebalancing is a common technique for learning from long-
ailed training data (Zhang et al., 2021). As the training progresses,

f more instances are sampled from a class, the sampling probability
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of that class will gradually decrease in the subsequent sampling pro-
cess. Sambasivam and Opiyo (2021) used SMOTE (Chawla et al., 2002)
(Synthetic Minority Over-sampling Technique) to solve the problem of
unbalanced cassava pest datasets. This approach generates an even dis-
tribution of all classes. Alternatively, Yang et al. (2021) simultaneously
applied instance-balanced and reversed samplings to generate atten-
tion maps and data augmentation is used to solve the LTD problems.
The sampling-based methods assume that the real data distribution
is mostly even. In cases such as pest control, the number of pests
varies over the season, which results in a decline in performance.
Because the sampling strategy manipulates data distribution, oversam-
pling introduces limited varieties for model learning (Yang et al., 2022),
whereas under-sampling leads to a waste of examples and possible over-
fitting. In addition, the sampling rate is difficult to decide, making the
sampling strategy inapplicable in many real-world applications.

Information augmentation is also often used to deal with imbal-
anced data, which includes transfer learning and data augmentation
(Zhang et al., 2021). Transfer learning leverages pretraining models
developed from large-scale datasets and fine-tunes the model using
the dataset with an LTD. Peng and Wang (2022) used the ensemble
model with pretraining on ImageNet21k (Deng et al., 2009) to classify
pests and found that using pretraining parameters can improve the
recognition performance of the model compared to directly training on
the classification dataset. Mallick et al. (2022) realized the automatic
identification and classification of soybean diseases and pests using
transfer learning. The data augmentation methods use new data to
supplement the dataset to solve the problem of insufficient training
data for the model. Nanni et al. (2022, 2020) improved the recognition
accuracy of a large-scale pest dataset with an LTD by integrating differ-
ent data augmentation methods. Kusrini et al. (2020) optimized CNNs
in mango pest identification utilizing data augmentation. Setiawan
et al. (2022) improved the performance of the lightweight network
mobilenet (Howard et al., 2017) on a large-scale pest dataset with an
LTD using the Cut Mix (Yun et al., 2019) augmentation and sparse
coding. Data augmentation helps learn invariant features. However,
without prior knowledge of the data distribution, it is difficult to
make intelligent augmentation. Instead, fusing complementary features
allows learning invariant features and eliminate the impact of the
individual model’s induction bias.

To deal with the LTD problem, recent efforts focus on represen-
tation learning, classifier design, decoupled training, and ensemble
learning (Zhang et al., 2021). CNNs play an important role in the task
of pest classification. Wang et al. (2021) improved CNNs by using
a capsule network and adding an attention module to optimize the
learning ability of the model and realized the fine-grained identification
of pests. Wei et al. (2022) used dilated convolution to increase the
receptive field of the model and fused the deep and shallow features
through skip connections. Yu et al. (2022) used the fruit fly optimiza-
tion algorithm to optimize the deep learning model for tomato pest
identification. There are many lightweight models (Zhou and Su, 2020;
Li et al., 2021; Zhang et al., 2022; Chan et al., 2015; Aiadi et al.,
2022), some of which are used for the classification and identification
of pest data with LTD, and most recent transformer methods (Liu et al.,
2021; Touvron et al., 2021) applied to the classification of pest data
with LTD. Bollis et al. (2022) used an attention mechanism and acti-
vation map to achieve weakly supervised location and classification of
pests. Liu et al. (2022b) used VIT masked self-supervised learning (He
et al., 2021) (MAE). These methods improve the model’s representation
power to address the LTD problem.

Although progress has been made with the aforementioned single
backbone models, the performance of such a single backbone network
with specific inductive biases for the tail classes of LTD data varies
greatly. For example, there is a large difference in recognition accu-
racy between the Vision Transformer head and tail classes, while the
CNNs are more balanced in terms of accuracy for each class. To take
advantage of models of diverse learning bias, ensemble methods have
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been proposed. Ayan et al. (2020) used a genetic algorithm to integrate
different CNNs for crop pest classification. Khanramaki et al. (2021) de-
signed a voting mechanism for the results of multiple CNN feedback to
determine the final pest classification. Xia et al. (2022) used CNNs and
Vision Transformer as large-scale and small-scale feature extractors,
respectively, and applied voting to achieve the final classification.

Compared with other methods, ensemble-based methods generally
obtain better overall classification performance of pest data with an
LTD. However, most current ensemble-based methods use the inte-
gration interaction of multiple models to collect the features of each
location of the LTD, which still falls into the class rebalancing concept.
Therefore, this ensemble solution leads to the problem of complex
hyperparameter settings and high calculation costs of backbones. A
single backbone in the ensemble cannot learn the multitype features
of the dataset with an LTD, thus failing to ensure optimal performance.
In addition, the accumulated training stage hinders decoupling training
integration with the existing well-designed models and makes the
ensemble solution unable to replace backbones flexibly.

Given these problems in the current classification methods of pests
with LTDs, we propose an ensemble method of deep learning models
with complementarity for the classification of pests with LTD, for
example, the CNN model with better classification performance in the
tail class and the Swin Transformer model with better classification per-
formance in the head classes. In the proposed method, the classification
performance of backbones in the ensemble, as well as the inductive
bias of backbones, are complementary. The use of backbones in the en-
semble is more flexible: they can learn all data samples independently,
each achieving its best performance. The proposed method designs a
deep neural network to fuse and re-learn the features extracted by
backbones, which has a more robust generalization performance and
robustness than the ensemble voting mechanism. At the same time,
the decoupling design training strategy enables the proposed method
to obtain better classification performance while saving computing
resources.

3. Methodology

3.1. System model

The architecture of the proposed FNSTC model is illustrated in
Fig. 2(a). It consists of a two-stream network: the backbone part and
the fusion module (a multilayer residual block, MIX-Block for short).
The backbone part of FNSTC includes two types of backbone models: a
CNN model and a Vision Transformer model. As one of the backbones
in FNSTC, Swin Transformer is one of the Vision Transformer models,
while ConvNeXt (a CNN model) is another backbone in FNSTC. The
MIX-Block module fuses the output features from the two backbones
for pest classification tasks.

The workflow of FNSTC is presented in Fig. 3. In step 3, the
training of the two backbones is conducted independently. There is no
interaction between backbones during the training process to achieve
the best performance of each backbone. In step 5, the MIX-Block is
trained using the output features from the backbones, and there is
no direct interaction with the backbones during the training process.
Therefore, compared with the joint interactive training method, the
decoupling training method adopted in this paper has lower complexity
and has certain advantages in saving computing resources.

3.2. Backbone networks

Our method employs the ConvNeXt model, which uses a larger
convolutional kernel than ResNet. Max pooling is changed to down-
sampling in two linear layers, with the introduction of nonoverlapping
convolutional blocks to enhance the extraction of global information.

Another modification is the replacement of batch normalization with
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layer normalization. A series of the above tuning operations result in a
better performance of ConvNeXt in the image classification task.

The Swin Transformer model is used as the complementary back-
bone, which broke down each image into patches of equal sizes. How-
ever, unlike VIT, the Swin Transformer implements the attention mech-
anism within the windows of patches. These patches are rearranged
within the windows, and the window size is progressively increased to
obtain global information. Their workflows as backbones of FNSTC are
as follows:

1. Separately train ConvNeXt and Swin Transformer using the same
training dataset.

2. Delete the last fully connected layer of ConvNeXt and Swin
Transformer and take the means for the output eigenvectors of
each model.

3. Connect the modified ConvNeXt and Swin Transformer as the
backbones to MIX-Block.

3.3. MIX-Block

The available methods combining the Transformer model with the
CNN model include AlterNet (Park and Kim, 2022), CvT (Wu et al.,
2021), Convformer (Wei et al., 2022), and VITDet (Li et al., 2022).
However these methods stack the convolution blocks and multi-head
Attentions (MSAs), and their training cost is high. The Conformer
model (Peng et al., 2021) adopts another combination method, in
which many binding structures perform feature conversion between
each layer of both backbones. However, these binding structures also
imply high training costs and complex expansion. Utilizing the strong
representation ability of the multilayer neural network, we design a
multilayer residual block (MIX-Block) to fuse the features extracted by
both backbones. Compared to some ingeniously designed combination
models, MIX-Block has a simpler network structure, and the pretraining
model of backbones can be used more conveniently.

MIX-Block has seven layers, including two downsampling layers,
with the number of dimensions halved, two feature merging modules,
and one classification layer, as shown in Fig. 2(b). Each feature merging
module consists of two linear layers with dimensions being invariant.
The seven linear layers can be divided into three stages working in turn.
In the first stage, MIX-1 contains a downsampling layer, two activation
functions, and a feature merging module. In the second stage, MIX-
2 has the same construction as MIX-1. The classification results are
obtained at the third stage at the classification layer. The downsampling
layer in MIX-1 is used to compress the spliced features and filter out the
repeated features extracted by the two backbones. The downsampling
layer in MIX-2 further compresses and filters the initial fusion features
from MIX-1 to reduce the computational cost. Feature merging module
in MIX-1 and MIX-2 uses a two-layer linear layer to learn more complex
deep features. The fused features are compressed and learned by two
modules with the same structure, MIX-1, and MIX-2, which can obtain
deeper image feature information. The subsequent experiments also
verify the effectiveness and rationality of this design.

The specific algorithm flowchart and corresponding input and out-
put data are illustrated in Fig. 4. The activation function is used in the
construction of MIX-Block. In particular, the skip connection structure
is also added to prevent overfitting and improve training efficiency.
Introducing skip connections can break the network symmetry and
improve the model’s overall expression ability (Shang et al., 2016).

The addition of the activation function increases the nonlinear
factors of the model and prevents overfitting. MIX-Block uses a Gaus-
sian error linear unit (GELU) (Hendrycks and Gimpel, 2016) as the
activation function as follows:

𝐺𝐸𝐿𝑈 (𝑥) = 𝑥𝛷 (𝑥) (1)

𝑥𝛷 (𝑥) = 𝑥 ⋅
1
2
[1 + 𝑒𝑟𝑓 (𝑥∕

√

2)] (2)

where 𝛷(𝑥) is a normal distribution of random parameters.
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Fig. 2. The architecture of our proposed network.

Fig. 3. The workflow of FNSTC.

4



C. Wang, J. Zhang, J. He et al. Engineering Applications of Artificial Intelligence 124 (2023) 106563

W
g
p

4

4

4

i
d
r
s
s
i

w
d
o
c
A
d
a
l
p
a
d

v
S

Fig. 4. Flow chart of MIX-Block.
After entering the MIX-Block, the fused features go through the
calculation process, as shown in Fig. 4. Assuming that after the down-
sampling layer of MIX-1, the fused feature vector is downsampled and
represented as v. In the feature merging module of MIX-1, after the
conversion of two linear layers, GELU(v) is represented as w. The formal
description of output 𝑂1 of MIX-1 is as follows:

𝑂1 = 𝐺𝐸𝐿𝑈 (𝑤 + 𝑣) ∗ 𝑀 (3)

𝑀 ∼ 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖 (𝑝) (4)

where M is a vector of Bernoulli distribution with probability p.
MIX-2 and MIX-1 have the same structure and calculation processes.

e use Adam (Kingma and Ba, 2014) as the optimizer and SoftTar-
etCrossEntropy (Hinton et al., 2015) as the loss function to train the
roposed model.

. Experiments

.1. Data sets and experimental settings

.1.1. Data sets
Three public and commonly used pest datasets, namely, IP102,

nsect, and d0, are used for evaluating FNSTC feasibility. The imbalance
egree of the long-tail distribution can be measured by the imbalance
atio (IR), that is, the number of samples in the class with the most
amples divided by the number of samples in the class with the fewest
amples (Zhu et al., 2020). The larger the IR value, the higher the
mbalance degree of a dataset.

IP102 contained images of forest and field pests, the quality of
hich is uneven, and some are noisy. IP102 is also a large-scale pest
ataset with a severe LTD, and its IR value reaches 82. IP102 contains
ver 75000 pest images belonging to 102 classes, in which the largest
lass contains 3444 images, and the smallest one includes 42 images.
nother challenge of the IP102 dataset is that it contains images of
ifferent growth stages of the same pest, including eggs, larvae, pupae,
nd adults. However, there are differences in pests’ morphology and
iving environment at each stage, especially some pests with metamor-
hosis. In this study, the IP102 dataset is subdivided into training, test,
nd validation sets with a 6:3:1 ratio. The image pixels of IP102 are
ifferent, and the length and width of pixels are between 150 and 400.

The other two datasets, insect and d0, are used as supplementary
alidation datasets to prove the effectiveness and applicability of FN-

TC. The insect dataset contains 2251 pest images belonging to nine
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Table 1
Datasets used in our evaluation.

Dataset Classes Training Validation Test Total

IP102 102 45 095 7508 22 619 75 222
Insect 9 1981 – 270 2251
d0 40 3140 451 909 4500

classes, with 1981 images in the training set and 270 images in the test
set. To strengthen the LTD, we process the insect dataset by deleting
random numbers of images in random classes. The image pixels of
insects are different, and the length and width of pixels are between
200 and 350. The IR value of the processed insect dataset is 6. The d0
dataset contains 4500 pest images belonging to 40 classes, subdivided
into the training, test, and validation sets at a 7:1:2 ratio. The IR value
of d0 is 4.76, with the largest and smallest classes containing 238 and
50 images, respectively. The image pixels of d0 are all 200X200. All
the above datasets are in the ImageNet1k format (Deng et al., 2009).
All images are cropped to 224 × 224 pixels and normalized. Batch mix-
up (Zhang et al., 2017) is used as the data augmentation method. The
images in the same batch are randomly added in pairs at a ratio of 0.2.
Their details are listed in Table 1.

4.1.2. Experimental settings
All images used for the experiments had a resolution of 224 × 224.

The learning rate is 5 × 10-7 for the first twenty rounds and 5 × 10-
4 afterward. The same regularization rules and data augmentation
methods are applied to all models. Four NVIDIA RTX 3090 cards are
used for computing. The batch size is set to 128. The same original
hyperparameter configurations as Swin Transformer and ConvNeXt are
used for comparing models.

Table 2 presents the computational complexity (in terms of GFLOPs)
and network size (in terms of the number of parameters) of the com-
pared methods, which are ordered based on GFLOPs. The GFLOPs of
our proposed FNSTC are at 8.3, which is the median GFLOPs among all
methods. Models with fewer parameters tend to have lower computa-
tional complexity. Therefore, we compare FNSTC with the models with
a similar number of parameters. As shown in Table 2, it can be found
that the GFLOPs of models with parameter size of between 50–100M
are mostly greater than 10 except for Efficientnet b7, while FNSTC
is only 8.3. The number of parameters of our method is 64 which is
greater than the median network size. Despite that our network has
more than 30 million parameters compared to the median network size

among all methods, the computational complexity is moderate.
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Fig. 5. Histogram of differences in recall of all classes.
Table 2
Parameters and computational complexity of models under comparison.

Model &method of Parameters (Million) GFLOPs

mobilenet v3 (Howard et al., 2017) 4.3 0.22
Efficientnet b0 (Tan and Le, 2019) 4.3 0.7
resnet 50 (He et al., 2015) 25 3.9
ConvNeXt tiny (Liu et al., 2022a) 28 4.16
ConvNeXt V2 (Woo et al., 2023) 28 4.5
Swin Transformer tiny (Liu et al., 2021) 28 4.5
Efficientnet b7 (Tan and Le, 2019) 64 4.9
CvT (Wu et al., 2021) 32 7.1
ConvNeXt base (Liu et al., 2022a) 88 8.1
FNSTC 64 8.3
conformer (Peng et al., 2021) 32 9
PIM (Chou et al., 2022) 46 9
VIT small (Dosovitskiy et al., 2020) 49 9.22
resnet 152 (He et al., 2015) 58 10.82
densenet 201 (Huang et al., 2017) 69 12.2
VIG (Han et al., 2022) 88 15.4
Swin Transformer base (Liu et al., 2021) 88 15.7
Ensemble (Xia et al., 2022) > 100 > 10
VIT base (Dosovitskiy et al., 2020) 88 16.37

In Table 2, we list the models and methods included in the compar-
tive experiments, mainly including some vision baselines, recent pest
lassification methods, and methods specifically oriented to the long-
ailed distribution. Compared to the other models, FNSTC requires less
omputational power under the same parameter quantity.

.2. Verification of complementarity between models

Four groups of experiments are conducted to assess the Swin Trans-
ormer and ConvNeXt suitability for extracting different types of fea-
ures. The complementarity of the two models and the synergetic effect
f combining them is demonstrated in terms of the classification results
nd feature extraction mechanism.

.2.1. Recall of different classes
As shown in Fig. 5, Swin Transformer and ConvNeXt are applied

o recall experiments for each class in IP102. The histogram of the
ifference in the recall is constructed by subtracting the recall of
onvNeXt from that of the Swin Transformer. In Fig. 5, the x-axis
epresents the class (in descending order of the number of images
6

belonging to each class), and the y-axis is the difference in accuracy
between the Swin Transformer and ConvNeXt for each class.

It can be seen in Fig. 5 that the Swin Transformer had a higher recall
than the ConvNeXt transformer overall. Swin Transformer is superior to
ConvNeXt in the first 50% of classes, exhibiting no apparent advantages
in the last 50% of classes, which samples only accounted for 18.6%
of the total data samples. For the last 10% of classes (with samples
accounting for 1.4% of the total data samples), the recall of ConvNeXt
exceeded that of Swin Transformer. This implies a complementarity
between the two models for the learning of small sample classes in
the LTD. We further constructed feature heatmaps based on the above
classification results for further analysis.

4.2.2. Feature extraction
We performed a detailed analysis of the feature extraction process of

the Swin Transformer and ConvNeXt and compared the output features
in each layer. As shown by the feature heatmaps in Fig. 6, the Swin
Transformer and ConvNeXt differed in the feature extraction process
in the following aspects:

First, as shown by the images in the first row, the Swin Transformer
focused more on larger objects, while ConvNeXt extracted features in a
less focused manner. The same conclusion is confirmed by analyzing
the fourth row of images. Second, as shown by the images in the
third row, the features extracted by the Swin Transformer are more
aggregated along the margins of the pest’s body at the beginning, while
those extracted by ConvNeXt are scattered all over the pest’s body.
According to the feature heatmaps, the colors are deeper in aggregated
extracted features, indicating that the Swin Transformer had a more
robust feature aggregation ability than ConvNeXt. Finally, as shown by
the images in the second row, the Swin Transformer aggregated feature
maps. However, the feature focus decreased by a large margin after
going to the second layer.

After going through the third layer, the Swin Transformer focuses
on two parts of the image. The features focused on ConvNeXt in the
first layer are equally scattered as those of the Swin Transformer.
However, the feature focus did not decrease with ConvNeXt, in contrast
to the Swin Transformer as we went deeper. We separately trained
the two backbones on IP102 and performed the Fourier transform for
the output feature maps of each layer. Fig. 7(a) and (b) show the
relative logarithmic amplitude (𝛥log amplitude) of the high-frequency
components (1.0𝜋) in the Fourier transformed feature map for the
Swin Transformer and ConvNeXt on IP102, respectively. The gray
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Fig. 6. Feature heatmaps of the Swin Transformer and ConvNeXt.
Fig. 7. 𝛥log amplitude for the Fourier transform.
and white areas in Fig. 7(a) are the 𝛥log amplitudes of Multi-headed
Self-attentions (MSAs) and MLPs, respectively, at the high frequency
(1.0𝜋).

In Fig. 7(b), the white areas are the 𝛥log amplitude of the convolu-
tion module at the high frequency (1.0𝜋), and the blue areas are the

log amplitude of the downsampling module at the high frequency
1.0𝜋). In the left inset, the MSAs of the Swin Transformer (gray
reas) usually reduced the high-frequency components of the feature
aps, while MLPs (white areas) amplified them. In the right inset, the

onvolution module (white areas) of ConvNeXt always amplified the
igh-frequency components. The only exception is at the early stage of
he model. At this stage, the Swin Transformer’s MSAs shared a working
echanism similar to the convolution module. That is, the MSAs in the

win Transformer also increased the amplitude.
The convolution module in ConvNeXt always increases the high-

requency amplitude. As shown in Fig. 8, the feature maps from each
ayer of the network are subjected to a Fourier transform for different
requencies. 𝛥log amplitude on the ordinate is the difference in 𝛥log
mplitude between the normalized frequency of 0.0𝜋 (center) and 1.0𝜋
boundaries). The analysis shows that the MSAs reduced the high-
requency components while the convolution module amplified them.
7

In other words, MSAs act as low-pass filters, while the convolution
model is a high-pass filter.

We investigate the variance of feature maps between the two mod-
els. We measure the variance of the feature mapping for each layer
of the two models. Fig. 9(a) depicts the feature variance of ConvNeXt.
The white shade highlights the convolution, and the gray shade repre-
sents the normalization and the activation of the down-sampling layer.
Fig. 9(b) shows the feature variance of the Swin Transformer, where
the white shade highlights MLPs and the gray shade shows the MSAs.
The variance in the feature map of ConvNeXt is much greater than that
of the Swin Transformer. The variance of ConvNeXt increases sharply
in the shallow layers but decreases as the network depth increases.
The variance of the Swin Transformer, however, is fairly stable. The
MSAs of the Swin Transformer tend to reduce the variance, whereas the
convolution module of ConvNeXt and MLPs of the Swin Transformer
increases the variance. This indicates that the features extracted by
ConvNeXt are more scattered and the features extracted by Swin Trans-
former are more concentrated. Reducing the feature map uncertainty
helps optimization by stabilizing the feature maps (Park and Kim,
2021). That is, the features extracted by MSAs and the convolutions are
different and largely complementary, which enables diversified features
and improved performance for pest classification.
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Fig. 8. Relative log amplitudes of the Fourier-transformed feature maps.
Fig. 9. Feature map variance with respect to the normalized depth.
4.3. Performance analysis

We design two sets of comparative experiments to compare the
proposed FNSTC with several methods in terms of accuracy, average
recall, and F1 score. The evaluation values of these performance metrics
are derived from our self-test using interval estimates. The first set of
experiments is conducted on IP102. The experiments are divided into
two parts. In the first part, all reference models are trained and tested
directly on IP102. In the second part, the classification performance of
all models is compared based on the pretraining on Imagenet1K (Deng
et al., 2009). The second set of experiments is conducted on the d0 and
insect datasets further to verify our method’s effectiveness.

4.3.1. Evaluation on IP102
We compare FNSTC with five recent methods for pest image clas-

sification (ResNet50 MMM (Zhang et al., 2022), Attention-based MIL-
Guided (Bollis et al., 2022), CRN (Yang et al., 2021), MIL-Guided (Bollis
et al., 2020) and GAEnsemble (Ayan et al., 2020)) and some baseline
models. The backbones of FNSTC are pre-trained on IP102 and then
frozen before MIX-Block training. FNSTC is trained for 50 epochs, and
the other models are trained for 300 epochs. The experimental results
in Table 3 show that FNSTC outperforms other methods in accuracy,
recall, and F1-Score, achieving 71.6%, 71.2%, and 0.714, respectively.

Table 4 shows the model classification performance after pre-
training on large-scale dataset ImageNet1K (Deng et al., 2009). After
8

the pre-training on ImageNet1K, the classification performance of
FNSTC has been further improved to 76.1% on IP102. Compared
with the latest pest classification methods MSCD (Liu et al., 2022b),
VFL (Setiawan et al., 2022), CTF (Peng and Wang, 2022), the accuracy
of FNSTC is 1.3% higher than that of the best method (CTF). Compared
with recent integration models Ensemble (Xia et al., 2022), CvT (Wu
et al., 2021), PIM (Chou et al., 2022), and conformer (Peng et al.,
2021), the accuracy of FNSTC is 2.6% higher than that of the best
method (Ensemble).

4.3.2. Evaluation on d0 and insect
To evaluate the generalization ability of FNSTC, we conduct the

same experiments on d0 and insect datasets. FNSTC is trained for 50
epochs, and the other models are trained for 300 epochs. As shown
in Tables 5 and 6, (2) the performance measures of FNSTC for insect
and d0 datasets are higher than those of the other models. FNSTC
respectively archives 98.5%, 98.2%, and 0.984 in the accuracy, recall,
and F1 score on d0; the accuracy, recall, and F1 score of insects are
93.1%, 92.9%, and 0.93 respectively.

In the d0 data set, most of the insects belong to Hemiptera, which
are hexagonal or elliptical. The morphological differences between
these pests are small; however, in the insect data set, the species
of insects include worms, moths, locusts, etc., and their morphology
is very different. Therefore, for Vision Transformer, which is more
inclined to extract shape features, its performance on the insect data
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Table 3
Classification performance on the ip102 data set.

Model Accuracy Recall F1-Score

mobilenetv3
(Howard et al.,
2017)

63.2% 58.7% 0.609

Efficientnet b0 (Tan
and Le, 2019)

67.5% 63.1% 0.652

Efficientnet b7 (Tan
and Le, 2019)

65.7% 60.9% 0.644

densenet201 (Huang
et al., 2017)

61.2% 56.3% 0.586

resnet50 (He et al.,
2015)

67.0% 63.0% 0.649

resnet152 (He et al.,
2015)

67.3% 63.3% 0.652

VIT small
(Dosovitskiy et al.,
2020)

65.5% 57.7% 0.614

Swin Transformer
tiny (Liu et al.,
2021)

70.0% 69.8 0.699

Swin Transformer
base (Liu et al.,
2021)

70.2% 69.7% 0.699

ConvNeXt tiny (Liu
et al., 2022a)

68.6% 67.5% 0.680

ConvNeXt base (Liu
et al., 2022a)

68.4% 67.2% 0.678

MIL-Guided (Bollis
et al., 2020)

69.5% – 0.690

GAEnsemble (Ayan
et al., 2020)

67.1% 67.1% 0.658

Attention-based
MIL-Guided (Bollis
et al., 2022)

68.3% – 0.680

ResNet50-MMM
(Zhang et al., 2022)

56.1% – –

CRN (Yang et al.,
2021)

70.4% – –

Swin R 68.4% – –
IBloss (Park et al.,
2021)

58.4% – –

BBN (Zhou et al.,
2020)

62.0% – –

FNSTC (proposed
method)

71.6% 71.2% 0.714

* The accuracy of MIL-Guided and Attention-based MIL-Guided for IP102 is from Bollis
et al. (2020) and Bollis et al. (2022), which do not report recall. ResNet50-MMM and
CRN for IP102 are from Zhang et al. (2022) and Yang et al. (2021), which do not
report recall and F1 Score. The symbol ‘‘–’’ indicates that the respective indicator is
not reported in the original literature.

set is better than that on CNNs, while its performance on the d0 data
set is the opposite. Because FNSTC can combine the advantages of CNNs
and Vision Transformer, its performance on two data sets is better than
that of every single backbone.

Experimental results demonstrate that the fusion of features ex-
tracted by the Swin Transformer and ConvNeXt as the backbones
improve the performance of pest classification. FNSTC fully fused the
features extracted by the backbones, thus significantly improving the
classification performance of the pest dataset with LTD, especially for
the tail classes with a small number of samples.

4.3.3. Discussion and analysis
Compared with the small parameter version, the large parameter

version in comparison models has little improvement, and some are
even less effective than the small parameter version. For example, the
accuracy of EfficientNet b0 is higher than that of EfficientNet b7 by
1.8%. Combining two highly complementary small parameter back-
bones, the method to improve the performance of the model is more
cost-effective than deepening the model and increasing the number of
parameters.
9

Table 4
Classification performance with pre-training on imagenet1k for the ip102 data set.
Model Accuracy

Swin Transformer tiny (Liu et al., 2021) 75.6%
ConvNeXt tiny (Liu et al., 2022a) 73.8%
resnet50 (He et al., 2015) 72.9%
resnet152 (He et al., 2015) 73.4%
Efficientnet b0 (Tan and Le, 2019) 73.5%
ConvNeXt v2 (Woo et al., 2023) 75.3%
CTF (Peng and Wang, 2022) 74.9%
MSCD(MobileNetV3l + Sparse + Cut-
Mix + DLR) (Liu et al.,
2022b)

71.3%

VFL(VIT base + FRCF + LSMAE + pre
train) (Setiawan et al., 2022)

74.6%

Ensemble (Xia et al., 2022) 74.2%
conformer (Peng et al., 2021) 40.3%
VIG (Han et al., 2022) 66.3%
PIM + MIXUP (Chou et al., 2022) 72.8%
PIM (Chou et al., 2022) 69.8%
CvT (Wu et al., 2021) 66.8%
FNSTC 76.1%

* The accuracy of resnet50 and resnet152 , Efficientnet b0 for IP102 is from CTF (Peng
and Wang, 2022), CTF , Ensemble , MSCD and VFL for IP102 are from Peng and Wang
(2022), Xia et al. (2022), Liu et al. (2022b) and Setiawan et al. (2022). The symbol
‘‘–’’ indicates that the respective indicator is not reported in the original literature.

Table 5
Performance for the insect data set.

Model Accuracy Recall F1-Score

mobilenetv3
(Dosovitskiy et al.,
2020)

75.9% 69.6% 0.726

Efficientnet b0
(Kusrini et al.,
2020)

83.3% 78.6% 0.809

Efficientnet b7
(Kusrini et al.,
2020)

85.5% 80.6% 0.830

densenet201 (Nanni
et al., 2020)

85.3% 80.2% 0.827

resnet50
(Sambasivam and
Opiyo, 2021)

84.9% 81.2% 0.830

resnet152
(Sambasivam and
Opiyo, 2021)

85.2% 81.1% 0.831

VIT small (Chawla
et al., 2002)

84.2% 76.0% 0.799

Swin Transformer
tiny (Yang et al.,
2022)

92.2% 91.8% 0.920

Swin Transformer
base (Yang et al.,
2022)

92.7% 92.2% 0.924

ConvNeXt tiny (Tan
and Le, 2019)

79.8% 72.2% 0.758

ConvNeXt base (Tan
and Le, 2019)

82.2% 78.4% 0.803

FNSTC 93.1% 92.9% 0.930

The overall performance of the Swin Transformer is better than that
of CNNs and VIT. The Swin Transformer achieves a 1.6% improvement
compared with the best-performing CNNs. The accuracy of FNSTC
exceeds that of the Swin Transformer base by 1.4%, being higher by
3% than that of the best-performing CNN (ConvNeXt).

When compared to the state-of-the-art methods for pest classifi-
cation, ResNet50-MMM (Zhang et al., 2022), Attention-based MIL-
Guided (Bollis et al., 2022), MIL-Guided (Bollis et al., 2020), and
GAEnsemble (Ayan et al., 2020), FNSTC outperforms them, its accuracy
exceeding the best of them (MIL-Guided) by 2.1%.

The average recall and F1 score are calculated for each model. The
results are shown in Table 3. FNSTC had the best average recall and
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Fig. 10. Differences in recall for each class between FNSTC and ConvNeXt, Swin Transfor.
Table 6
Performance for the d0 data set.

Model Accuracy Recall F1-Score

Efficientnet b0
(Kusrini et al.,
2020)

95.1% 92.7% 0.939

Efficientnet b7
(Kusrini et al.,
2020)

96.2% 95.2% 0.957

densenet201 (Nanni
et al., 2020)

98.0% 96.4% 0.972

resnet50
(Sambasivam and
Opiyo, 2021)

97.2% 94.8% 0.960

resnet152
(Sambasivam and
Opiyo, 2021)

96.9% 95.0% 0.959

VIT small (Chawla
et al., 2002)

95.2% 93.6% 0.944

Swin Transformer
tiny (Yang et al.,
2022)

97.6% 96.8% 0.972

Swin Transformer
base (Yang et al.,
2022)

97.7% 96.8% 0.973

ConvNeXt tiny (Tan
and Le, 2019)

98.1% 97.6% 0.979

ConvNeXt base (Tan
and Le, 2019)

97.1% 94.0% 0.955

FNSTC 98.5% 98.2% 0.984

F1 score among all models due to the separate performance optimiza-
tion of its backbones. Besides, its MIX-Block fuses and re-learns the
output features of all backbones, integrating their inductive bias and
improving recognition and classification results.

When the pretraining model is used, the respective results are
obtained and summarized in Table 4. As the performance of each
backbone is improved, that of FNSTC is also enhanced. Compared with
FNSTC without pretraining, the accuracy of FNSTC with pretraining
increases by 4.5%. The accuracy of the two backbones with pretraining
improves by 5.4 and 5.2%, respectively, compared with that of back-
bones without pretraining. Thus, the overall extent of improvement of
FNSTC is lower than that of its integrated backbones. The reason might
be that FNSTC fuses the features from its backbones and expands the
feature space. However, some features might conflict with each other
and negatively impact the classification accuracy of some pest classes.

To further analyze the reasons for the performance improvement of
FNSTC, we conduct the following analysis. Fig. 10 shows the histogram
of the recall differences between Swin and FNSTC and that between
10
ConvNeXt and FNSTC in each class of IP102. The horizontal coordinate
is the class sorted in descending order by the number of samples
belonging to each class.

Fig. 10(a) and (b) show the differences in recall for each class
between FNSTC and the Swin Transformer, all other parameters being
equal. The Swin Transformer, ConvNeXt, and FNSTC differ little in
the overall recall distribution for various classes. The highest and
lowest recalls of the Swin Transformer for all classes are 97 and 12%,
respectively. The highest recall of ConvNeXt is 91%, with the lowest
one of 10%. The highest recall of FNSTC is 96%, and the lowest one is
13%.

The above histograms strongly indicate that the proposed model is
closer to a better backbone in the overall distribution of recall. For the
50% of head classes, the recall of FNSTC is the same as that of the
better-performing backbone. Among them, the recall of some classes
has increased or decreased. In general, the increased range exceeded
the decline range. For the 50% of tail classes, the recall of FNSTC
significantly increased in half of these classes, especially in the last
10%. Therefore, the improvement in the recall of tail classes is the main
reason for enhancing overall classification performance. This is because
FNSTC learns more features through MIX-Block and fully utilizes the
complementarity between backbones.

4.4. Ablation study

We conduct two ablation studies: 1. Evaluation of the impact of the
number of MIX-Block and inclusion of skip connection; 2. An analysis of
the impact of using different backbone networks for feature extraction.
In the first set of experiments, MIX-Block is fine-tuned to assess how
FNSTC achieves the optimal classification performance. In the second
set of experiments, we compare the performance gap between every
single backbone and the integration of two backbones using FNSTC
and prove that FNSTC combined with CNN and Vision Transformer can
effectively improve the classification performance. All experiments are
conducted on IP102. The performance measures are accuracy and the
epoch for obtaining the best model.

Experiment 1: We studied the impact of network depth and resid-
ual MLP on performance. Fig. 11 depicts the accuracy of different
MIX-Blocks. An accuracy of 71.1% is attained for MIX-Block3 with a
three-layer MLP. By increasing the depth of the network, MIX-Block7
contains seven MLP layers and its accuracy achieves 71.38%. However,
adding another MLP layer decreases the accuracy to 71.2%. By adding
skip connections, the loss surface becomes smoother (Li et al., 2017),
which makes the model easier to optimize and reduces the risk of
over-fitting. We observe that the accuracy of MIX-Block 7 with skip
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Fig. 11. Accuracy of using different MIX-Blocks.
Fig. 12. The number of epochs for getting the best results.
Table 7
Accuracy of different mix-block designs.

Model Accuracy Epoch

MIX-Block_3 71.10% 34
MIX-Block_4 71.30% 100
MIX-Block_5 71.28% 141
MIX-Block_6 71.30% 141
MIX-Block_7 71.38% 141
MIX-Block_8 71.20% 139
MIX-Block_7 + Skip
connection

71.60% 11

MIX-Block_7 + Skip
connection + pretrain

76.10% 11

* Note: MIX-Block_n is a fusion module with n-layer MLP.

connection (i.e., MIX-Block 7+SC) improved to 71.6%. We replaced the
backbone in FNSTC with those pre-trained on ImageNet (i.e., MIX-Block
7+SC+pre) and achieved improved classification accuracy at 76.1%.
Table 7 reports the average accuracy for all cases.

Table 7 also reports the number of epochs that yield the best results.
As shown in Fig. 12 As the network depth is increased, the number of
epochs needed for obtaining the best model increases. When the depth
is at 6 and above, the number of epochs needed for the best model
changes little. This implies a balance is achieved with the complexity
of the network and the number of training examples. We added skip
connections to the MIX-Block. MIX-Block 7+SC with the residual MLP
reduced the epoch for obtaining the best model from 150 to 11.

Experiment 2: FNSTC is an ensemble of models. We experimented
with different network architectures, including Efficientnet b0, Resnet,
ConvNeXt tiny, Swin Transformer, and VIT small, to evaluate the
performance and efficiency of the combinations. MIX-Block 7 + skip

connect is used. The accuracy of the combinations is reported in

11
Table 8
Average accuracy of different backbone combinations.

Method Accuracy

VIT (Dosovitskiy et al., 2020) 65.50%
Resnet50 (He et al., 2015) 67.00%
Efficientnet b0 (Tan and Le, 2019) 67.50%
ConeNeXt (Liu et al., 2022a) 68.60%
Swin Liu et al. (2021) 70.00%

Resnet50 + VIT 68.70%
Efficientnet b0 + VIT 69.30%
ConvNeXt + VIT 69.70%
Efficientnet b0 + Swin 70.90%
Resnet50 + Swin 71.30%
Swin + ConvNeXt 71.60%

Table 8. Fig. 13 depicts a bubble plot of accuracy and GFLOPs. The
size of the bubbles represents the number of parameters. As shown
in Fig. 13, the number of parameters in the combination method is
relatively large, so the GFLOPs of the combination method are higher
than that of a single backbone. However, the combination method
can achieve higher classification accuracy than a single backbone.
MIX-Block effectively fused the features extracted by different back-
bones. The classification performance after MIX-Block fusion is better
than that of a single backbone, demonstrating the effectiveness of the
proposed method.

5. Conclusion

Our proposed method FNSTC improves the performance of classi-
fying pest images by balancing the recall of tail and head classes of
the imbalanced dataset. Using Fourier transform, we illustrate that the
features extracted by ConvNeXt focus on the high-frequency compo-
nents, whereas the features extracted by Swin Transform are mostly
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Fig. 13. Bubble diagram of GFLOPs vs Accuracy.
in the low-frequency range. That is, the features are complementary,
which scaffold the improved performance of insect classification. By in-
tegrating different deep networks, we demonstrate that FNSTC achieves
improved performance by 1.6% in accuracy. Compared with the state-
of-the-art methods, FNSTC achieved the best results in accuracy, recall,
and F1 scores at 71.6%, 71.2%, and 0.714, respectively. This is the best
result known for the IP102 data set. The accuracy, recall, and F1 score
of FNSTC from the other two data sets are also superior. The number
of parameters and GFLOPs of FNSTC are 64M and 8.3 respectively,
which has advantages over other models with a similar number of pa-
rameters. Our method addresses the problems of imbalanced real-world
pest image sets. This enables image-based agricultural pest control for
increased economic, ecological, and social benefits.

Although the proposed FNSTC network achieved superior perfor-
mance compared to the state-of-the-art methods, the choice of back-
bone networks for feature extraction has an unneglectable impact. The
key idea is the extraction of complementary features that capture global
and local properties for better discriminant for all classes including the
ones with fewer examples. In theory, a two-stream network based on
distinct backbones helps; yet a careful selection of proper networks is
important in practice. In our future work, we plan to explore the analy-
sis of deep features and seek means of quantifying feature significance
for the target applications.

CRediT authorship contribution statement

Chao Wang: Conceptualization, Methodology, Writing – original
draft, Writing. Jinrui Zhang: Software, Experiments, Writing. Jin He:
Results analysis, Resources. Wei Luo: Experimental design, Results
analysis. Xiaohui Yuan: Conceptualization, Formal analysis, Writing &
editing. Lichuan Gu: Conceptualization, Validation, Resources, editing.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Data availability

Data will be made available on request.

Acknowledgments

This work is supported by the National Natural Science Foundation
of China (31771679, 31671589), Major Scientific and Technological
12
Projects in Anhui Province, China (201903a06020009), Anhui Natural
Science Foundation (2108085MF209), The foundation of Key Labo-
ratory of Agricultural Electronic Commerce, Ministry of Agriculture
of China (AEC2021001), Natural Science Research Project of Anhui
Provincial Department of Education (KJ2020A0107, KJ2021A1550),
The University Synergy Innovation Program of Anhui Province (GXXT-
2022-046, GXXT-2022-055, GXXT-2022-040).

References

Aiadi, Oussama, Khaldi, Belal, Saadeddine, Cheraa, 2022. MDFNet: An unsupervised
lightweight network for ear print recognition. J. Ambient Intell. Humaniz. Comput.
1–14.

Ayan, Enes, Erbay, Hasan, Varçın, Fatih, 2020. Crop pest classification with a ge-
netic algorithm-based weighted ensemble of deep convolutional neural networks.
Comput. Electron. Agric. 179, 105809.

Bollis, Edson, Maia, Helena, Pedrini, Helio, Avila, Sandra, 2022. Weakly supervised
attention-based models using activation maps for citrus mite and insect pest
classification. Comput. Electron. Agric. 195, 106839.

Bollis, Edson, Pedrini, Helio, Avila, Sandra, 2020. Weakly supervised learning guided
by activation mapping applied to a novel citrus pest benchmark. In: Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops.
pp. 70–71.

Chan, Tsung-Han, Jia, Kui, Gao, Shenghua, Lu, Jiwen, Zeng, Zinan, Ma, Yi, 2015.
PCANet: A simple deep learning baseline for image classification? IEEE Trans.
Image Process. 24 (12), 5017–5032.

Chawla, Nitesh V., Bowyer, Kevin W., Hall, Lawrence O., Kegelmeyer, W. Philip, 2002.
SMOTE: Synthetic minority over-sampling technique. J. Artificial Intelligence Res.
16, 321–357.

Chou, Po-Yung, Lin, Cheng-Hung, Kao, Wen-Chung, 2022. A novel plug-in module for
fine-grained visual classification. arXiv e-prints, arXiv:2202.03822.

Deng, Jia, Dong, Wei, Socher, Richard, Li, Li-Jia, Li, Kai, Fei-Fei, Li, 2009. Imagenet:
A large-scale hierarchical image database. In: 2009 IEEE Conference on Computer
Vision and Pattern Recognition. Ieee, pp. 248–255.

Dosovitskiy, Alexey, Beyer, Lucas, Kolesnikov, Alexander, Weissenborn, Dirk,
Zhai, Xiaohua, Unterthiner, Thomas, Dehghani, Mostafa, Minderer, Matthias,
Heigold, Georg, Gelly, Sylvain, Uszkoreit, Jakob, Houlsby, Neil, 2020. An Image is
Worth 16x16 Words: Transformers for Image Recognition at Scale. arXiv e-prints,
arXiv:2010.11929.

Geirhos, Robert, Rubisch, Patricia, Michaelis, Claudio, Bethge, Matthias, Wichmann, Fe-
lix A., Brendel, Wieland, 2018. ImageNet-trained CNNs are biased towards texture;
increasing shape bias improves accuracy and robustness. arXiv e-prints, arXiv:
1811.12231.

Han, Kai, Wang, Yunhe, Guo, Jianyuan, Tang, Yehui, Wu, Enhua, 2022. Vision GNN:
An image is worth graph of nodes. arXiv e-prints, arXiv:2206.00272.

He, Kaiming, Chen, Xinlei, Xie, Saining, Li, Yanghao, Dollár, Piotr, Girshick, Ross, 2021.
Masked autoencoders are scalable vision learners. arXiv e-prints, arXiv:2111.06377.

He, Kaiming, Zhang, Xiangyu, Ren, Shaoqing, Sun, Jian, 2015. Deep residual learning.
Image Recognit. 7.

Hendrycks, Dan, Gimpel, Kevin, 2016. Gaussian error linear units (GELUs). arXiv
e-prints, arXiv:1606.08415.

Hinton, Geoffrey, Vinyals, Oriol, Dean, Jeff, 2015. Distilling the knowledge in a neural
network. arXiv e-prints, arXiv:1503.02531.

http://refhub.elsevier.com/S0952-1976(23)00747-9/sb1
http://refhub.elsevier.com/S0952-1976(23)00747-9/sb1
http://refhub.elsevier.com/S0952-1976(23)00747-9/sb1
http://refhub.elsevier.com/S0952-1976(23)00747-9/sb1
http://refhub.elsevier.com/S0952-1976(23)00747-9/sb1
http://refhub.elsevier.com/S0952-1976(23)00747-9/sb2
http://refhub.elsevier.com/S0952-1976(23)00747-9/sb2
http://refhub.elsevier.com/S0952-1976(23)00747-9/sb2
http://refhub.elsevier.com/S0952-1976(23)00747-9/sb2
http://refhub.elsevier.com/S0952-1976(23)00747-9/sb2
http://refhub.elsevier.com/S0952-1976(23)00747-9/sb3
http://refhub.elsevier.com/S0952-1976(23)00747-9/sb3
http://refhub.elsevier.com/S0952-1976(23)00747-9/sb3
http://refhub.elsevier.com/S0952-1976(23)00747-9/sb3
http://refhub.elsevier.com/S0952-1976(23)00747-9/sb3
http://refhub.elsevier.com/S0952-1976(23)00747-9/sb4
http://refhub.elsevier.com/S0952-1976(23)00747-9/sb4
http://refhub.elsevier.com/S0952-1976(23)00747-9/sb4
http://refhub.elsevier.com/S0952-1976(23)00747-9/sb4
http://refhub.elsevier.com/S0952-1976(23)00747-9/sb4
http://refhub.elsevier.com/S0952-1976(23)00747-9/sb4
http://refhub.elsevier.com/S0952-1976(23)00747-9/sb4
http://refhub.elsevier.com/S0952-1976(23)00747-9/sb5
http://refhub.elsevier.com/S0952-1976(23)00747-9/sb5
http://refhub.elsevier.com/S0952-1976(23)00747-9/sb5
http://refhub.elsevier.com/S0952-1976(23)00747-9/sb5
http://refhub.elsevier.com/S0952-1976(23)00747-9/sb5
http://refhub.elsevier.com/S0952-1976(23)00747-9/sb6
http://refhub.elsevier.com/S0952-1976(23)00747-9/sb6
http://refhub.elsevier.com/S0952-1976(23)00747-9/sb6
http://refhub.elsevier.com/S0952-1976(23)00747-9/sb6
http://refhub.elsevier.com/S0952-1976(23)00747-9/sb6
http://arxiv.org/abs/2202.03822
http://refhub.elsevier.com/S0952-1976(23)00747-9/sb8
http://refhub.elsevier.com/S0952-1976(23)00747-9/sb8
http://refhub.elsevier.com/S0952-1976(23)00747-9/sb8
http://refhub.elsevier.com/S0952-1976(23)00747-9/sb8
http://refhub.elsevier.com/S0952-1976(23)00747-9/sb8
http://arxiv.org/abs/2010.11929
http://arxiv.org/abs/1811.12231
http://arxiv.org/abs/1811.12231
http://arxiv.org/abs/1811.12231
http://arxiv.org/abs/2206.00272
http://arxiv.org/abs/2111.06377
http://refhub.elsevier.com/S0952-1976(23)00747-9/sb13
http://refhub.elsevier.com/S0952-1976(23)00747-9/sb13
http://refhub.elsevier.com/S0952-1976(23)00747-9/sb13
http://arxiv.org/abs/1606.08415
http://arxiv.org/abs/1503.02531


C. Wang, J. Zhang, J. He et al. Engineering Applications of Artificial Intelligence 124 (2023) 106563
Howard, Andrew G., Zhu, Menglong, Chen, Bo, Kalenichenko, Dmitry, Wang, Weijun,
Weyand, Tobias, Andreetto, Marco, Adam, Hartwig, 2017. Mobilenets: Efficient
convolutional neural networks for mobile vision applications. arXiv preprint arXiv:
1704.04861.

Huang, Gao, Liu, Zhuang, Van Der Maaten, Laurens, Weinberger, Kilian Q., 2017.
Densely connected convolutional networks. In: Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition. pp. 4700–4708.

IPPC Secretariat, 2021. Summary for Policymakers of the Scientific Review of the
Impact of Climate Change on Plant Pests: A Global Challenge to Prevent and
Mitigate Plant Pest Risks in Agriculture, Forestry and Ecosystems. FAO on behalf
of the IPPC.

Khanramaki, Morteza, Asli-Ardeh, Ezzatollah Askari, Kozegar, Ehsan, 2021. Citrus pests
classification using an ensemble of deep learning models. Comput. Electron. Agric.
186, 106192.

Kingma, Diederik P., Ba, Jimmy, 2014. Adam: A method for stochastic optimization.
arXiv e-prints, arXiv:1412.6980.

Kusrini, Kusrini, Suputa, Suputa, Setyanto, Arief, Agastya, I. Made Artha, Priantoro, Her-
lambang, Chandramouli, Krishna, Izquierdo, Ebroul, 2020. Data augmentation
for automated pest classification in Mango farms. Comput. Electron. Agric. 179,
105842.

Li, Yanghao, Mao, Hanzi, Girshick, Ross, He, Kaiming, 2022. Exploring plain vision
transformer backbones for object detection. arXiv e-prints, arXiv:2203.16527.

Li, Yanan, Sun, Ming, Qi, Yang, 2021. Common pests classification based on asymmet-
ric convolution enhance depthwise separable neural network. J. Ambient Intell.
Humaniz. Comput. 1–9.

Li, Hao, Xu, Zheng, Taylor, Gavin, Studer, Christoph, Goldstein, Tom, 2017. Visualizing
the Loss Landscape of Neural Nets. arXiv e-prints, arXiv:1712.09913.

Liu, Ze, Lin, Yutong, Cao, Yue, Hu, Han, Wei, Yixuan, Zhang, Zheng, Lin, Stephen,
Guo, Baining, 2021. Swin transformer: Hierarchical vision transformer using shifted
windows. In: Proceedings of the IEEE/CVF International Conference on Computer
Vision. pp. 10012–10022.

Liu, Zhuang, Mao, Hanzi, Wu, Chao-Yuan, Feichtenhofer, Christoph, Darrell, Trevor,
Xie, Saining, 2022a. A convnet for the 2020s. In: Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition. pp. 11976–11986.

Liu, Honglin, Zhan, Yongzhao, Xia, Huifen, Mao, Qirong, Tan, Yixin, 2022b. Self-
supervised transformer-based pre-training method using latent semantic masking
auto-encoder for pest and disease classification. Comput. Electron. Agric. 203,
107448.

Mallick, M.D. Tausif, Biswas, Shrijeet, Das, Amit Kumar, Saha, Himadri Nath,
Chakrabarti, Amlan, Deb, Nilanjan, 2022. Deep learning based automated disease
detection and pest classification in Indian mung bean. Multimedia Tools Appl. 1–25.

Nanni, Loris, Maguolo, Gianluca, Pancino, Fabio, 2020. Insect pest image detection and
recognition based on bio-inspired methods. Ecol. Inform. 57, 101089.

Nanni, Loris, Manfè, Alessandro, Maguolo, Gianluca, Lumini, Alessandra, Brahnam, Sh-
eryl, 2022. High performing ensemble of convolutional neural networks for insect
pest image detection. Ecol. Inform. 67.

Naseer, Muhammad Muzammal, Ranasinghe, Kanchana, Khan, Salman H., Hayat, Mu-
nawar, Shahbaz Khan, Fahad, Yang, Ming-Hsuan, 2021. Intriguing properties of
vision transformers. Adv. Neural Inf. Process. Syst. 34, 23296–23308.

Park, Namuk, Kim, Songkuk, 2021. Blurs behave like ensembles: Spatial smoothings to
improve accuracy, uncertainty, and robustness. arXiv e-prints, arXiv:2105.12639.

Park, Namuk, Kim, Songkuk, 2022. How do vision transformers work? arXiv e-prints,
arXiv:2202.06709.

Park, Seulki, Lim, Jongin, Jeon, Younghan, Choi, Jin Young, 2021. Influence-
balanced loss for imbalanced visual classification. In: Proceedings of the IEEE/CVF
International Conference on Computer Vision. pp. 735–744.

Peng, Zhiliang, Huang, Wei, Gu, Shanzhi, Xie, Lingxi, Wang, Yaowei, Jiao, Jianbin,
Ye, Qixiang, 2021. Conformer: Local features coupling global representations for
visual recognition. arXiv e-prints, arXiv:2105.03889.

Peng, Yingshu, Wang, Yi, 2022. CNN and transformer framework for insect pest
classification. Ecol. Inform. 72, 101846.

Sambasivam, G.A.O.G.D., Opiyo, Geoffrey Duncan, 2021. A predictive machine learn-
ing application in agriculture: Cassava disease detection and classification with
imbalanced dataset using convolutional neural networks. Egypt. Inform. J. 22 (1),
27–34.
13
Setiawan, Adhi, Yudistira, Novanto, Wihandika, Randy Cahya, 2022. Large scale pest
classification using efficient convolutional neural network with augmentation and
regularizers. Comput. Electron. Agric. 200, 107204.

Shang, Wenling, Sohn, Kihyuk, Almeida, Diogo, Lee, Honglak, 2016. Understanding and
improving convolutional neural networks via concatenated rectified linear units.
arXiv e-prints, arXiv:1603.05201.

Tan, Mingxing, Le, Quoc, 2019. Efficientnet: Rethinking model scaling for convolutional
neural networks. In: International Conference on Machine Learning. PMLR, pp.
6105–6114.

Touvron, Hugo, Cord, Matthieu, Douze, Matthijs, Massa, Francisco, Sablayrolles, Alexan-
dre, Jégou, Hervé, 2021. Training data-efficient image transformers & distillation
through attention. In: International Conference on Machine Learning. PMLR, pp.
10347–10357.

Wang, Xianfeng, Wang, Xuqi, Huang, Wenzhun, Zhang, Shanwen, 2021. Fine-grained
recognition of crop pests based on capsule network with attention mechanism.
In: Intelligent Computing Theories and Application: 17th International Conference,
ICIC 2021, Shenzhen, China, August 12–15, 2021, Proceedings, Part I 17. Springer,
pp. 465–474.

Wei, Depeng, Chen, Jiqing, Luo, Tian, Long, Teng, Wang, Huabin, 2022. Classification
of crop pests based on multi-scale feature fusion. Comput. Electron. Agric. 194,
106736.

Wei, Zimian, Pan, Hengyue, Niu, Xin, Li, Dongsheng, 2022. ConvFormer: Closing the
gap between CNN and vision transformers. arXiv e-prints, arXiv:2209.07738.

Woo, Sanghyun, Debnath, Shoubhik, Hu, Ronghang, Chen, Xinlei, Liu, Zhuang,
Kweon, In So, Xie, Saining, 2023. ConvNeXt V2: Co-designing and scaling ConvNets
with masked autoencoders. arXiv e-prints, arXiv:2301.00808.

Wu, Haiping, Xiao, Bin, Codella, Noel, Liu, Mengchen, Dai, Xiyang, Yuan, Lu,
Zhang, Lei, 2021. CvT: Introducing convolutions to vision transformers. arXiv
e-prints, arXiv:2103.15808.

Xia, Wanshang, Han, Dezhi, Li, Dun, Wu, Zhongdai, Han, Bing, Wang, Junxiang,
2022. An ensemble learning integration of multiple CNN with improved vision
transformer models for pest classification. Ann. Appl. Biol. 1–15.

Yang, Guofeng, Chen, Guipeng, Li, Cong, Fu, Jiangfan, Guo, Yang, Liang, Hua, 2021.
Convolutional rebalancing network for the classification of large imbalanced rice
pest and disease datasets in the field. Front. Plant Sci. 12, 671134.

Yang, Lu, Jiang, He, Song, Qing, Guo, Jun, 2022. A survey on long-tailed visual
recognition. Int. J. Comput. Vis. 1–36.

Yu, Helong, Liu, Jiawen, Chen, Chengcheng, Heidari, Ali Asghar, Zhang, Qian,
Chen, Huiling, 2022. Optimized deep residual network system for diagnosing
tomato pests. Comput. Electron. Agric. 195, 106805.

Yuan, Xiaohui, Xie, Lijun, Abouelenien, Mohamed, 2018. A regularized ensemble
framework of deep learning for cancer detection from multi-class, imbalanced
training data. Pattern Recognit. 77, 160–172.

Yun, Sangdoo, Han, Dongyoon, Oh, Seong Joon, Chun, Sanghyuk, Choe, Junsuk,
Yoo, Youngjoon, 2019. CutMix: Regularization strategy to train strong classifiers
with localizable features. arXiv e-prints, arXiv:1905.04899.

Zhang, Hongyi, Cisse, Moustapha, Dauphin, Yann N., Lopez-Paz, David, 2017. mixup:
Beyond empirical risk minimization. arXiv e-prints, arXiv:1710.09412.

Zhang, Li, Du, Jianming, Dong, Shifeng, Wang, Fenmei, Xie, Chengjun, Wang, Rujing,
2022. AM-ResNet: Low-energy-consumption addition-multiplication hybrid ResNet
for pest recognition. Comput. Electron. Agric. 202, 107357.

Zhang, Yifan, Kang, Bingyi, Hooi, Bryan, Yan, Shuicheng, Feng, Jiashi, 2021. Deep
long-tailed learning: A survey. arXiv e-prints, arXiv:2110.04596.

Zhou, Boyan, Cui, Quan, Wei, Xiu-Shen, Chen, Zhao-Min, 2020. Bbn: Bilateral-branch
network with cumulative learning for long-tailed visual recognition. In: Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp.
9719–9728.

Zhou, Shi-Yao, Su, Chung-Yen, 2020. Efficient convolutional neural network for pest
recognition-ExquisiteNet. In: 2020 IEEE Eurasia Conference on IOT, Communication
and Engineering. ECICE, IEEE, pp. 216–219.

Zhu, Rui, Guo, Yiwen, Xue, Jing-Hao, 2020. Adjusting the imbalance ratio by the
dimensionality of imbalanced data. Pattern Recognit. Lett. 133, 217–223.

http://arxiv.org/abs/1704.04861
http://arxiv.org/abs/1704.04861
http://arxiv.org/abs/1704.04861
http://refhub.elsevier.com/S0952-1976(23)00747-9/sb17
http://refhub.elsevier.com/S0952-1976(23)00747-9/sb17
http://refhub.elsevier.com/S0952-1976(23)00747-9/sb17
http://refhub.elsevier.com/S0952-1976(23)00747-9/sb17
http://refhub.elsevier.com/S0952-1976(23)00747-9/sb17
http://refhub.elsevier.com/S0952-1976(23)00747-9/sb18
http://refhub.elsevier.com/S0952-1976(23)00747-9/sb18
http://refhub.elsevier.com/S0952-1976(23)00747-9/sb18
http://refhub.elsevier.com/S0952-1976(23)00747-9/sb18
http://refhub.elsevier.com/S0952-1976(23)00747-9/sb18
http://refhub.elsevier.com/S0952-1976(23)00747-9/sb18
http://refhub.elsevier.com/S0952-1976(23)00747-9/sb18
http://refhub.elsevier.com/S0952-1976(23)00747-9/sb19
http://refhub.elsevier.com/S0952-1976(23)00747-9/sb19
http://refhub.elsevier.com/S0952-1976(23)00747-9/sb19
http://refhub.elsevier.com/S0952-1976(23)00747-9/sb19
http://refhub.elsevier.com/S0952-1976(23)00747-9/sb19
http://arxiv.org/abs/1412.6980
http://refhub.elsevier.com/S0952-1976(23)00747-9/sb21
http://refhub.elsevier.com/S0952-1976(23)00747-9/sb21
http://refhub.elsevier.com/S0952-1976(23)00747-9/sb21
http://refhub.elsevier.com/S0952-1976(23)00747-9/sb21
http://refhub.elsevier.com/S0952-1976(23)00747-9/sb21
http://refhub.elsevier.com/S0952-1976(23)00747-9/sb21
http://refhub.elsevier.com/S0952-1976(23)00747-9/sb21
http://arxiv.org/abs/2203.16527
http://refhub.elsevier.com/S0952-1976(23)00747-9/sb23
http://refhub.elsevier.com/S0952-1976(23)00747-9/sb23
http://refhub.elsevier.com/S0952-1976(23)00747-9/sb23
http://refhub.elsevier.com/S0952-1976(23)00747-9/sb23
http://refhub.elsevier.com/S0952-1976(23)00747-9/sb23
http://arxiv.org/abs/1712.09913
http://refhub.elsevier.com/S0952-1976(23)00747-9/sb25
http://refhub.elsevier.com/S0952-1976(23)00747-9/sb25
http://refhub.elsevier.com/S0952-1976(23)00747-9/sb25
http://refhub.elsevier.com/S0952-1976(23)00747-9/sb25
http://refhub.elsevier.com/S0952-1976(23)00747-9/sb25
http://refhub.elsevier.com/S0952-1976(23)00747-9/sb25
http://refhub.elsevier.com/S0952-1976(23)00747-9/sb25
http://refhub.elsevier.com/S0952-1976(23)00747-9/sb26
http://refhub.elsevier.com/S0952-1976(23)00747-9/sb26
http://refhub.elsevier.com/S0952-1976(23)00747-9/sb26
http://refhub.elsevier.com/S0952-1976(23)00747-9/sb26
http://refhub.elsevier.com/S0952-1976(23)00747-9/sb26
http://refhub.elsevier.com/S0952-1976(23)00747-9/sb27
http://refhub.elsevier.com/S0952-1976(23)00747-9/sb27
http://refhub.elsevier.com/S0952-1976(23)00747-9/sb27
http://refhub.elsevier.com/S0952-1976(23)00747-9/sb27
http://refhub.elsevier.com/S0952-1976(23)00747-9/sb27
http://refhub.elsevier.com/S0952-1976(23)00747-9/sb27
http://refhub.elsevier.com/S0952-1976(23)00747-9/sb27
http://refhub.elsevier.com/S0952-1976(23)00747-9/sb28
http://refhub.elsevier.com/S0952-1976(23)00747-9/sb28
http://refhub.elsevier.com/S0952-1976(23)00747-9/sb28
http://refhub.elsevier.com/S0952-1976(23)00747-9/sb28
http://refhub.elsevier.com/S0952-1976(23)00747-9/sb28
http://refhub.elsevier.com/S0952-1976(23)00747-9/sb29
http://refhub.elsevier.com/S0952-1976(23)00747-9/sb29
http://refhub.elsevier.com/S0952-1976(23)00747-9/sb29
http://refhub.elsevier.com/S0952-1976(23)00747-9/sb30
http://refhub.elsevier.com/S0952-1976(23)00747-9/sb30
http://refhub.elsevier.com/S0952-1976(23)00747-9/sb30
http://refhub.elsevier.com/S0952-1976(23)00747-9/sb30
http://refhub.elsevier.com/S0952-1976(23)00747-9/sb30
http://refhub.elsevier.com/S0952-1976(23)00747-9/sb31
http://refhub.elsevier.com/S0952-1976(23)00747-9/sb31
http://refhub.elsevier.com/S0952-1976(23)00747-9/sb31
http://refhub.elsevier.com/S0952-1976(23)00747-9/sb31
http://refhub.elsevier.com/S0952-1976(23)00747-9/sb31
http://arxiv.org/abs/2105.12639
http://arxiv.org/abs/2202.06709
http://refhub.elsevier.com/S0952-1976(23)00747-9/sb34
http://refhub.elsevier.com/S0952-1976(23)00747-9/sb34
http://refhub.elsevier.com/S0952-1976(23)00747-9/sb34
http://refhub.elsevier.com/S0952-1976(23)00747-9/sb34
http://refhub.elsevier.com/S0952-1976(23)00747-9/sb34
http://arxiv.org/abs/2105.03889
http://refhub.elsevier.com/S0952-1976(23)00747-9/sb36
http://refhub.elsevier.com/S0952-1976(23)00747-9/sb36
http://refhub.elsevier.com/S0952-1976(23)00747-9/sb36
http://refhub.elsevier.com/S0952-1976(23)00747-9/sb37
http://refhub.elsevier.com/S0952-1976(23)00747-9/sb37
http://refhub.elsevier.com/S0952-1976(23)00747-9/sb37
http://refhub.elsevier.com/S0952-1976(23)00747-9/sb37
http://refhub.elsevier.com/S0952-1976(23)00747-9/sb37
http://refhub.elsevier.com/S0952-1976(23)00747-9/sb37
http://refhub.elsevier.com/S0952-1976(23)00747-9/sb37
http://refhub.elsevier.com/S0952-1976(23)00747-9/sb38
http://refhub.elsevier.com/S0952-1976(23)00747-9/sb38
http://refhub.elsevier.com/S0952-1976(23)00747-9/sb38
http://refhub.elsevier.com/S0952-1976(23)00747-9/sb38
http://refhub.elsevier.com/S0952-1976(23)00747-9/sb38
http://arxiv.org/abs/1603.05201
http://refhub.elsevier.com/S0952-1976(23)00747-9/sb40
http://refhub.elsevier.com/S0952-1976(23)00747-9/sb40
http://refhub.elsevier.com/S0952-1976(23)00747-9/sb40
http://refhub.elsevier.com/S0952-1976(23)00747-9/sb40
http://refhub.elsevier.com/S0952-1976(23)00747-9/sb40
http://refhub.elsevier.com/S0952-1976(23)00747-9/sb41
http://refhub.elsevier.com/S0952-1976(23)00747-9/sb41
http://refhub.elsevier.com/S0952-1976(23)00747-9/sb41
http://refhub.elsevier.com/S0952-1976(23)00747-9/sb41
http://refhub.elsevier.com/S0952-1976(23)00747-9/sb41
http://refhub.elsevier.com/S0952-1976(23)00747-9/sb41
http://refhub.elsevier.com/S0952-1976(23)00747-9/sb41
http://refhub.elsevier.com/S0952-1976(23)00747-9/sb42
http://refhub.elsevier.com/S0952-1976(23)00747-9/sb42
http://refhub.elsevier.com/S0952-1976(23)00747-9/sb42
http://refhub.elsevier.com/S0952-1976(23)00747-9/sb42
http://refhub.elsevier.com/S0952-1976(23)00747-9/sb42
http://refhub.elsevier.com/S0952-1976(23)00747-9/sb42
http://refhub.elsevier.com/S0952-1976(23)00747-9/sb42
http://refhub.elsevier.com/S0952-1976(23)00747-9/sb42
http://refhub.elsevier.com/S0952-1976(23)00747-9/sb42
http://refhub.elsevier.com/S0952-1976(23)00747-9/sb43
http://refhub.elsevier.com/S0952-1976(23)00747-9/sb43
http://refhub.elsevier.com/S0952-1976(23)00747-9/sb43
http://refhub.elsevier.com/S0952-1976(23)00747-9/sb43
http://refhub.elsevier.com/S0952-1976(23)00747-9/sb43
http://arxiv.org/abs/2209.07738
http://arxiv.org/abs/2301.00808
http://arxiv.org/abs/2103.15808
http://refhub.elsevier.com/S0952-1976(23)00747-9/sb47
http://refhub.elsevier.com/S0952-1976(23)00747-9/sb47
http://refhub.elsevier.com/S0952-1976(23)00747-9/sb47
http://refhub.elsevier.com/S0952-1976(23)00747-9/sb47
http://refhub.elsevier.com/S0952-1976(23)00747-9/sb47
http://refhub.elsevier.com/S0952-1976(23)00747-9/sb48
http://refhub.elsevier.com/S0952-1976(23)00747-9/sb48
http://refhub.elsevier.com/S0952-1976(23)00747-9/sb48
http://refhub.elsevier.com/S0952-1976(23)00747-9/sb48
http://refhub.elsevier.com/S0952-1976(23)00747-9/sb48
http://refhub.elsevier.com/S0952-1976(23)00747-9/sb49
http://refhub.elsevier.com/S0952-1976(23)00747-9/sb49
http://refhub.elsevier.com/S0952-1976(23)00747-9/sb49
http://refhub.elsevier.com/S0952-1976(23)00747-9/sb50
http://refhub.elsevier.com/S0952-1976(23)00747-9/sb50
http://refhub.elsevier.com/S0952-1976(23)00747-9/sb50
http://refhub.elsevier.com/S0952-1976(23)00747-9/sb50
http://refhub.elsevier.com/S0952-1976(23)00747-9/sb50
http://refhub.elsevier.com/S0952-1976(23)00747-9/sb51
http://refhub.elsevier.com/S0952-1976(23)00747-9/sb51
http://refhub.elsevier.com/S0952-1976(23)00747-9/sb51
http://refhub.elsevier.com/S0952-1976(23)00747-9/sb51
http://refhub.elsevier.com/S0952-1976(23)00747-9/sb51
http://arxiv.org/abs/1905.04899
http://arxiv.org/abs/1710.09412
http://refhub.elsevier.com/S0952-1976(23)00747-9/sb54
http://refhub.elsevier.com/S0952-1976(23)00747-9/sb54
http://refhub.elsevier.com/S0952-1976(23)00747-9/sb54
http://refhub.elsevier.com/S0952-1976(23)00747-9/sb54
http://refhub.elsevier.com/S0952-1976(23)00747-9/sb54
http://arxiv.org/abs/2110.04596
http://refhub.elsevier.com/S0952-1976(23)00747-9/sb56
http://refhub.elsevier.com/S0952-1976(23)00747-9/sb56
http://refhub.elsevier.com/S0952-1976(23)00747-9/sb56
http://refhub.elsevier.com/S0952-1976(23)00747-9/sb56
http://refhub.elsevier.com/S0952-1976(23)00747-9/sb56
http://refhub.elsevier.com/S0952-1976(23)00747-9/sb56
http://refhub.elsevier.com/S0952-1976(23)00747-9/sb56
http://refhub.elsevier.com/S0952-1976(23)00747-9/sb57
http://refhub.elsevier.com/S0952-1976(23)00747-9/sb57
http://refhub.elsevier.com/S0952-1976(23)00747-9/sb57
http://refhub.elsevier.com/S0952-1976(23)00747-9/sb57
http://refhub.elsevier.com/S0952-1976(23)00747-9/sb57
http://refhub.elsevier.com/S0952-1976(23)00747-9/sb58
http://refhub.elsevier.com/S0952-1976(23)00747-9/sb58
http://refhub.elsevier.com/S0952-1976(23)00747-9/sb58

	A two-stream network with complementary feature fusion for pest image classification
	Introduction
	Related Work
	Methodology
	System Model
	Backbone Networks
	MIX-Block

	Experiments
	Data sets and Experimental settings
	Data sets
	Experimental settings

	Verification of complementarity between models
	Recall of different classes
	Feature extraction

	Performance Analysis
	Evaluation on IP102
	Evaluation on d0 and insect
	Discussion and analysis

	Ablation Study

	Conclusion
	CRediT authorship contribution statement
	Declaration of Competing Interest
	Data availability
	Acknowledgments
	References


