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Abstract 

Glioma, which is a malignant tumor, is present in the glial tissue region of the human brain. Segmentation of such tumor 
cells in the brain region is still challenging and needs experts. Because of the overlap between the intensity distributions of 
tissue with edema, non-edema, and enhancing features, the segmentation process is a significant challenge for neurosurgeons 
and radiologists. As per the current state of the art in medicine and surgery, artificial intelligence is gaining attention in 
effective detection and segmentation in the area of medical diagnosis. In MICCAI 2020, the authors prepare an algorithm 
for the semantic segmentation of brain tumors from multimodal MRI images for further treatments such as observing 
treatment, monitoring recovery, and evaluating the effects of the treatment on patients. This paper’s objective is to develop 
an efficient deep learning model which performs semantic segmentation using a multi-modal modified Link-Net model 
which uses Squeeze and Excitation ResNet152 model is used as a backbone for the segmentation. A model developed by 
Manipal Hospital in Bangalore is compared with the traditional state-of-the-art models, and its accuracy is verified by 
neurosurgeons there. This model imbibes the multi-modal MRI dataset which includes T1 weighted images, Flair images, 
and T2-weighted MRI images of the human brain, model perform comparably well, which shows that our model is robust 
for tumor segmentation. The accuracy of this model is 99.2. 
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1. Introduction 

It has been demonstrated that, when combined with Positron Emission Tomography (PET), computed 
tomography CT, and SPECT, MRI will be owned to study tumor regions in the human brain, but segmentation 
of the tumor remains challenging. Fusion of MRI and CT images was also adopted to extract detailed information 
about tumor regions as in [1], [2]. Contrast Enhanced MRI is the recently preferred imaging modality for the 
diagnosis of brain diseases because of the sensitivity and better contrast in soft tissue regions [3]. Glioma is the 
type of tumor that occurs in glial cells of the human brain. Glioma may be catalogued into Low Grade Glioma 
LGG and High Grade Glioma HGG, which are, dependent on the rate of the tumor development [4]. The rate of 
growth of the tumor is faster in the case of High Grade Glioma HCG when comparable with Low Grade Glioma 
LCG. A person having HGG will have a short life span comparable to LGG [5]. Automatic and Semiautomatic 
methods in segmentation of tumor portion from the imaging modality are therefore necessary since manual 
segmentation requires more time and effort and also that is subjective. The major challenge in the segmentation 
of brain tumors is that the tumor may occur in any part of the brain and of any size [6]. Recently FCN (Fully 
Convolutional Neural Networks) is found the most efficient for segmentation of biomedical images. 

The demand for fully automatic brain tumour segmentation is increased for the diagnosis of Gliomas, which 
includes the usage of multi-modal MRI images [7]-[9]. Researchers found it difficult for the heterogeneous 
nature of the tumour such as appearance, size, shape, and location of tumours. In addition, obtaining the dataset 
is found to be difficult and limited in quantity. Biomedical images require expert reviews and it is time-
consuming and labourintensive. Only a few publicly available datasets are available for bio-medical data until 
now. 

Researchers are paying attention to Deep Learning models [10, 11] in medical image analysis in the past few 
years. Various Convolution Neural Network does bio-medical image segmentation operations. Deep CNNs 
comprehend various features of the image automatically which deals with complicated biomedical images. Deep 
learning is becoming increasingly popular for processing natural images in addition to biological images [12]-
[16]. The evolution of biomedical imaging has been aided by the implementation of CNNs since then [17]-[19]. 
Using this approach, [20] has designed deep learning architectures tailored for different levels of glioma. 

T-1, T-1c, T2c, and fluid-attenuated inversion recovery (FLAIR) are a few types of imaging techniques that 
reveal different factors about the tumour characteristics, which are shown in Fig 1. [21] – [23]. Researchers 
frequently ignore the significance of complex relationships among different image modalities, in spite of the 
high performance achieved by previous methods. For example, some modalities might be insensitive to changes 
in another, even though previous methods have achieved remarkable results. 

To address the segmentation task, a novel deeper encoder cum decoder kind of network was developed, which 
adopts the co-related info of various multi-modal brain MRI images. This segmentation model is based on the 
MultiModal Link-Net segmentation algorithm, which comprises three main components: a multimodal encoding 
engine, a multimodal fusion engine, and the decoder that is shared. After that data acquired from each modality 
is sliced, and the depth values are compared. Following that layer, data are passed through four modal 
independent encoders. After that, the features are extracted cross-modally. A shared decoder is then used to up 
sample the shared multi-modality features. This study makes the following main suggestions. 

• It is possible to exploit relationships between different modes when segmenting brain tumors in 3D MRI 
with an encoder cum decoder network that combines multi-modality encoders. In that each modality 
presents brain tumor separately, the multimodal encoder assists in disentangling info that elsewhere may 
have done fusion earlier, reducing the capacity of the network to capture relationships across modalities. 

• The correlation between multiple modalities is modeled using a Link-Net format based on encoders and 
decoders. Combining encoders for different modalities, Link-Net integrates features in both a top-down 
and bottom-up manner. By exploiting the complex relationship between various modalities, Link-Net 
Model is able to improve segmentation accuracy. 

http://crossmark.crossref.org/dialog/?doi=10.1016/j.procs.2023.01.053&domain=pdf
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Fig. 1. MRI Image of various Modalities from BraTS2020 Dataset 

2. Literature Survey 

The segmentation of biological images, especially brain tumours, can be accomplished with deep learning 
algorithms or deep convolutional neural networks (DCNNs). In medical image segmentation, the vast majority 
of models work with 3D images [24]-[26]. Nevertheless, 3D networks require a lot of parameters, as well as 
computer processing power. A few models extract patches of 3D data rather than the entire volume of 3D data, 
in an effort to reduce computational costs during training. Patch-based methods [20], [27] involve creating a 
network of patches from an image; this re-computing is overlapping, resulting in slow training. The researchers 
neglect to think about the structure of information, which is global, such as the content of images along with co-
relations among labels, instead of focusing on small sections of sliding windows. Additionally, segmenting a 
3D volume in 2D can be achieved by splitting it up into multiple 2D slices [13], [28]. Adapting depth-slicing to 
fit this dataset would reduce this problem. 

U-Net [29] and A-UNet [29] use encoder-decoder-like networks as segmentation tools. Both tools have been 
used not only for biomedical image segmentation. In order to perform the task of segmentation successfully, 
both semantic and spatial information is required, which is why U-Net [29] uses a decoder that gets its 
information via skip connections from the lower layers of the encoder. In recent years, researchers have focused 
on preserving important information during feature extraction from input images. A method was developed in 
[30] in which encoding and decoding phases were used simultaneously, leading to greater brain segmentation 
performance. The authors are the winners of the BraTS2018 Challenge with this method. A variation auto 
encoder (VAE) branch was recommended to regularize the model during training. In each stage of the hierarchy, 
these networks share the same parameters. Using this sharing technique, these networks become modules that 
can be used with any encoder-decoder unit to reduce the size of the unit. 

The recent studies that have been conducted have typically used early fusion strategies, Assuming the 
relationship between the methodologies is linear, multiple methodologies are combined as one input. In many 
situations, different modalities are stacked with several different channels, which does not consider the co-
relations among various modalities [31], [32]. The late fusion strategy thrives on the complex relationship 
between these modalities, unlike the early fusion strategy [33]. Recently, studies have effectively shown that a 
late fusion strategy outperforms early fusion with regard to medical segmentation problems because of the many 
representations and correlation structures present in each modality. Cross-modal convolution is proposed to 
combine information from multiple modalities using a technique known as late fusion [34][35]. This technique 
exploits the correlations between different modalities. The study demonstrate the limitations of modeling 
modalities with a single layer by incorporating each modality separately into this model and assessing the 
complex relationships among them by using the late fusion strategy. 

The link-net algorithm is based on encoders and decoders, which are used to create semantic segmentation 
based on the responses between these complex multimodal correlations [36] The correlations among the 
modalities have yet to be fully investigated, despite the productivity of the late strategy method. In [37], [38] 
While multimodality is often viewed as separate channel; there is not much acknowledgment of their 
correlations. Nonetheless, [38] developed a convolution, which is cross-modal to reveal the mechanisms 
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underlying the response of various modalities. And hence the layers are down-sampled, and some information 
will be lost during the feature extraction process. Authors used link-net in a biomedical image segmentation 
process to optimize multi-scale feature fusion using a principled approach in their model. This model, therefore, 
incorporates a bi-directional Link-Net unit, as it was inspired by [35] and [39] to constitute multi modal fusion. 

 
3. Proposed Methodology 

MM-Link-Net is an encoder-decoder network that Encoder-decoder models composed of fully convolutional 
representations are completely convolutional. You can visualize the left hand portion in the image in which the 
model has 4 encoders each having the same mode of input (FLAIR, T1, T1c, and TM2). The multi-modal MRI 
features are fused together and are given to an encoder -decoder based LinkNet Architecture and pre-trained 
ResNET152 architecture is being used as backbone discriminator architecture for segmentation. The Proposed 
architecture for the segmentation model is shown in Fig 2. 

 

Fig. 2. Link-Net Architecture 

3.1. Patch Generation 

Since all the MRI images are three dimensional, segmentation of three-dimensional images may lead the 
training to be slow with the huge size of the dataset. To resolve this and to reduce the cost of computation, the 
architecture is generating the two dimensional volume slices or patches of MRI, which can have the size of 
128×128 instead of having the original size240×240×155. After extracting the two-dimensional patches for the 
input images from different modalities, the MRI patches are given as input for the encoder region of the Link-
Net architecture. . 
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3.2. Multi-Modal Fusion Encoder 

Our MM-LinkNet architecture utilizes ResNet152 [13], which has two paths, a contracting path, and an 
expanding path. Contraction, also called an encoder, uses high-level feature representation for the input image 
to collapse it into compact representations, while expansion, or decoding, uses these feature values to build the 
mask for segmentation. Compared to a typical auto decoder, the Link Net encoder-decoder architecture [13] also 
includes skip connections to maintain missing data that can occur during compression. For Limited Dataset, 
ResNet152, as our baseline to minimize any risk of information loss is chosen, during the segmentation 
prediction. Link Net was constructed for assisting segmentation of biomedical datasets, and since our dataset is 
limited, we chose ResNet to assist with segmentation. 

An important challenge for the process of multi-modal images was exploiting the compound interrelationship 
across the modality dimensions. As a result of the multi-modal encoding, each modal is encoded in the 
ResNet152 layer (Link-Net) to combine responses from all modality encoders. (inspire from [39]). Nodes on 
Link-Nets are not restricted to a single origin node, and can therefore combine information from a variety of 
sources, allowing for the fusion of low-level features with high-level features. Link-Net architecture blends 
feature both from the top-down direction and in the bottom-up directions to let the algorithm determine cross-
scale features efficiently. The proposed architecture concatenate each convolutional block of every single 
modality to form the input for our Bi-Link-Net modeling model 

3.3. Shared Encoder 

In contrast with existing neural network architectures for segmentation, the study novel in that each encoder 
is linked with a decoder. Multiplying down sampling operations results in the loss of some spatial information. 
The encoder’s output can be down sampled but this will not give you back all of the lost information. [41] Using 
indices that are not trainable, the encoder and decoder are linked together. To segment their audio, some methods 
use their encoder output directly as input to a decoder. For every encoder layer’s input, we also bypass the output 
of the decoder layer. The decoding function and its up sampling functions will be able to make use of the 
recovered spatial information. Decoding may also require fewer parameters because the encoder shares 
knowledge learned at every layer. This results in a network that is more efficient and uses real-time operations, 
compared to the existing state-ofthe-art segmentation networks. 

4. Details of Implementation 

4.1. Dataset 

Data is obtained from Brain Tumour Segmentation Challenge for 2020[43], which constitutes 369 MRI sets 
of Training phase and 125 MRI sets of validation phase. 5 times of cross validation is performed in the training 
phase for BraTS2020 and for validation phase respectively. Dataset comprises of scan in four different formats 
i.e .nii format including native T1-weighted MRI, ContrastEnhanced-T1 weighted MRI images, T2-weighted 
MRI, FluidAttenuation inversion recovery-FLAIR. For these MICCAI BraTS initiative, the layers are 
interpreting MRI brain images for the classification of Low Grade Glioma LGG and High Grade Glioma HCG. 
Each dataset contained 293 sets of High Grade Glioma with 79 sets of High Grade Glioma that were manually 
marked by expert neurologists and identified types of tumour labels I. Necrotic non-enhancing tumour II. 
Peritumoral edema III. Densely enhanced tumour ET, and label O for remaining parts. The area of intersection 
or union is obtained by calculating the ratio of intersections to unions, while the area of pixels incorrectly 
segmented as labels is determined by FPR. 

Author name / Procedia Computer Science 00 (2019) 000–000 

4.2. Experimental Section 

In our experiment, GeForce GTX TITAN Black of 6GB RAM is used . Computing system also used Python 
3.6 and PyTorch 1.9.1. MM-LinkNet model were trained using Adam optimizer and used cross-category loss to 
train the network. This model is trained for 80 epoch for learning rate of 0.001.MM-LinkNet with backbone 
network ResNet152 is compared with U-Net , FCN (Fully Convolutional Network ) and FPN (Feature Pyramid 
Network) and 
SegNet with loss function - categorical cross entropy, Adam optimizer and learning rate of 0.001 

4.3. Network Architecture 

In Figure 2, the RESNET152 [13] structure is modified, as it is based on the RESNET152 structure. There 
are three main components of the network: 1) Each of the four encoders encodes information independently 
based on modality;2) the Link-Net layer, Correlation between multiple modalities is derived from this method, 
3) Segmentation results are produced by means of one of two paths decoders: an expanding path decoder and a 
reclaiming path decoder. 
4.4. Training Phase 

A convolutional network needs to be trained to identify all non-tumor tissues in a BraTS dataset, which is 
very challenging. This model predicts non-tumor tissue in every pixel as a result, quickly reaching its minimum 
value. The model, therefore utilize median frequency balancing [47] to deal with the data imbalance problem, 
as proposed in [46]-[48], The weight is assigned for cross-entropy loss function to each class as follows: 

MedianFrequnecy Frequency(c) 
 Wc =  (1) 

Median-Frequency and Frequency (c) look at the class frequencies of all medians, respectively, along with the 
total count of pixels divides the total no. of pixels in classes in all image, having the entire count of pixels into 
account, for all image. The medial frequency balancing thus applied in our experiment should help maintain a 
balanced training process whereby the background of the image and tissues that are normal are assigns the 
smallest weight. 

5. Experimental Results 

5.1. Measurable Result 

A performance evaluation for the network proposed was conducted by computing Dice coefficient, 
sensitivity, positive predictive value, and similarity index of the three regions. The values of Dice Similarity 
index, Sensitivity, Positive predicted value and Jaccard Index are evaluated for the model and compared with 
other state of art models which is shown in the Table 1. 

Network Dice Coefficient Sensitivity PPV Jaccard Index 
U-Net 0.7535 0.7400  0.8125 0.6312 

FCN 0.7343 0.6616  0.8666 0.6071 

FPN 0.8107 0.7108  0.8880 0.6972 

SegNet 0.7320 0.716  0.827 0.6920 

MM- LinkNet 0.7773 0.7662  0.8965 0.7169 
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• Dice Similarity Coefficient: In other words, Dice similarity coefficient is the measure of how closely 
segmented results and ground truth overlap. 

• Sensitivity According to segmented results, sensitivity is a measure of the proportion of positive voxels 
in the ground truth 

• Positive Predicted Value: Positive predicted value i.e PPV is the measure of the precision of the results. 
• Jaccard Index: By dividing the ground truth result by the predicted result, this value measures the 

intersection between the results. 

5.2. Subjective Result 

In Fig 3, the visual segmentation of the trained model is illustrated using four input modalities for encoders 
on the BraTS2020 data set. Using the FLAIR modality, the methodology selected four BraTS2020 cases at 
random and presented the segmented results separated from their normal background. Red areas indicate the 
core tumor. Because of this visual comparison, the enhanced tumor segmentation structure is done by MM-
LinkNet compared with other models. 

6. Conclusion 

This study presents, to make multi modal brain tumor images more useful, a bi-directional feature fusion 
method using multiple encoders and a shared decoder. In the testing of the proposed methods against the 
BraTS2020 datasets, 

 

Fig. 3. Performance Results of Segmentation 

it is found that they effectively integrated the tumor information in multimodality images and provided an 
improved segmentation. The RESNET152, which is used as a backbone of the LinkNet Architecture makes the 
architecture deep enough to segment the tumour portion with more accuracy. Experimental results on 
BraTS2020 validation dataset shows that our model outperformed in sematic segmentation and is relatively 
competitive with our compared models. Various other backbone Pre-trained models such as inceptionv3, vgg16 
and resnet152 are also used for validation of the LinkNet Model in sematic segmentation. 

7. Future Scope 

Although, the proposed model performs well in segmentation, it is quite computationally expensive and time 
consuming because of the depth of layers in architecture and separation of encoders being used. Thus, It is 
important to extract information related to pixel-relationship and used to train the model to obtain high-accurate 
results. 
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