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A B S T R A C T

This paper aims to address the challenges posed by complex scenery image classification. Most of the existing
deep learning networks are trained and evaluated using ImageNet. However, when these models are applied
to scenery images, dramatic performance degradation is observed due to the change in data characteristics.
To challenge the prevailing practices in network design, we investigate the impact of altering data on the
performance of deep networks. Specifically, we introduce a novel data-oriented network design to emphasize
the importance of considering the unique characteristics of the data. Our proposed approach is a Deep-Narrow
Network, which incorporates a Dilated Pooling module built upon the ResNet architecture. Compared to
ResNet, our approach achieves a significant reduction of floating-point operations by 51.5% and in the number
of parameters by 54.5%. Remarkably, despite the reduction in computational complexity and model size, our
design exhibits a 0.4% increase in overall accuracy. This approach offers an efficient and effective means of
scaling the network according to the data characteristics while maintaining highly competitive performance.
1. Introduction

Since the introduction of AlexNet (Krizhevsky, Sutskever, & Hinton,
2012), there have been numerous advancements in deep Convolu-
tional Neural Networks (CNNs). Researchers have explored different
strategies to enhance network performance, such as increasing network
depth or width. Deepening the networks by adding more convolutional
layers has shown promising results (He, Zhang, Ren, & Sun, 2016;
Simonyan & Zisserman, 2015; Szegedy, Vanhoucke, Ioffe, Shlens, &
Wojna, 2016), while widening the networks (i.e., increasing the number
of channels in a CNN layer) has also gained traction. Zagoruyko and
Komodakis (2016) proposed wide deep residual networks that out-
performed ResNet (He et al., 2016) models, achieving state-of-the-art
performance on ImageNet (Jia et al., 2009) and CIFAR (Krizhevsky,
Sutskever, & Hinton, 2014). Similarly, Xie, Girshick, Dollár, Tu, and
He (2017) introduced ResNeXt, which widened the residual blocks
and utilized group convolution, resulting in improved performance on
ImageNet-5K and COCO object detection datasets (Lin et al., 2014)
compared to ResNet. Building upon these advancements, Zhang et al.
(2022) introduced ResNeSt, which preserved the wider network layout
and multi-branch strategy while incorporating a modulated architec-
ture to enhance feature learning. The proposed ResNeSt networks
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demonstrated further improvements in performance on the ImageNet
dataset.

Integrating multiple networks has been developed for scene recogni-
tion in the era of deep learning, enjoying wide adoption in the research
community (Cheng, Lu, Feng, Yuan, & Zhou, 2018; Qiao, Yuan, &
Elhoseny, 2020; Zhu, Deng, & Newsam, 2019). By concatenating or
integrating network outputs, a unified scene feature representation
is generated, resulting in improved performance (Cheng et al., 2018;
Herranz, Jiang, & Li, 2016; Jia et al., 2009; Qiao et al., 2020; Selvaraju
et al., 2017; Wang, Wang, Wang, Zhang, & Qiao, 2017; Xia, Zeng, Leng,
& Fu, 2019; Zhou, Lapedriza, Khosla, Oliva, & Torralba, 2017a). In
addition to network integration, various methods employing different
algorithms and network architectures have been developed to tackle
the scene recognition challenge (Gupta, Sharma, Dinesh, & Thenkani-
diyoor, 2021; Lin et al., 2022; Lv, Dong, Zhang, & Xu, 2023; Rehman,
Saleem, Khan, Jabeen, & Shafiq, 2021; Shi, Zhu, Yu, Wu, & Shi, 2019;
Wang, Peng, & De Baets, 2020). These studies typically utilize pre-
trained deep networks as feature extractors and aggregate them with
other network structures to accomplish scene recognition tasks. Recent
research has also introduced add-on modules to enhance performance,
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such as adaptive learnable models that assign weights to different scales
in scene recognition tasks (Qiao, Yuan, Zhuang, & Meyarian, 2021;
Yuan, Qiao, & Meyarian, 2022). Despite these advancements, the design
of the network backbone, which constitutes the core architecture, has
received limited attention in the existing literature. This highlights the
existing gap between the state-of-the-art generic deep neural network
design and the design specifically tailored for scene recognition. Con-
sequently, there is an urgent and imperative need to incorporate the
most advanced network design theories and practices into the domain
of scene recognition.

To address the challenges of classifying complex scenery images that
contain multiple objects of varying sizes, we need to maximize both the
depth and width of the network while considering computational con-
straints. However, using larger networks requires a substantial amount
of training data, making it a less feasible option. Therefore, it is crucial
to understand the roles of network layers and channels in order to
determine whether deeper networks or more channels are more suitable
for better comprehension of complex scenery images. Previous studies
have explored this question.

Lu, Pu, Wang, Hu, and Wang (2017) argued that a combination of
depth and width provides neural networks with expressive power. Tan
and Le (2019) emphasized the importance of balancing network depth
and width by maintaining a constant depth/width ratio, demonstrating
its effectiveness on ResNet and MobileNet architectures. In addition to
manually designed networks, Deep Neural Architecture Search tech-
niques have been proposed to optimize network depth and width (Guo,
Wang, Li, & Yan, 2020; Zoph & Le, 2017).

Most existing methods have been developed and evaluated us-
ing datasets like ImageNet (Jia et al., 2009) and CIFAR (Krizhevsky
et al., 2014). These datasets primarily consist of object-centric images,
where a single object dominates the image with a relatively homo-
geneous background. The focus is on recognizing the object itself.
However, scenery images present a more complex view with multiple
objects of different sizes and background clutter. Correctly classifying
such images requires understanding the collective characteristics of
many objects. This difference in dataset characteristics may lead to a
bias in the design of convolutional neural networks (CNNs) towards
object-centric features.

Deep networks with more layers are effective in extracting distinc-
tive scale features through diverse receptive fields, while networks
with more channels excel in capturing fine-grained patterns (Tan &
Le, 2019). In many applications, both types of information are crucial
for accurate image recognition, but their relative prominence is often
overlooked.

This paper introduces a new neural network design strategy, fo-
cusing on the importance of learning the spatial layout of objects
for a comprehensive understanding of a scene. Object-centric images
typically contain a single object, where the spatial layout contributes
less to the semantic meaning of the image. Due to subtle differences
between objects, the detailed patterns and textures of individual objects
become more representative. Networks that prioritize learning various
features are better suited for object recognition tasks. Considering the
distinct characteristics of scenery images, we hypothesize that, for
scene recognition, learning the spatial information encoded in network
layers has a greater impact on performance compared to learning
channel-wise information.

In the following sections, we present comprehensive experimental
results that demonstrate the benefits of deeper networks for scenery
images, while the impact of altering network width is marginal. Build-
ing upon these observations, we propose a Deep-Narrow Network for
complex scenery image classification. This network increases network
depth while reducing its width, and incorporates a Dilated Pooling
module to enhance the spatial and scale features of objects.

Our key contributions include the following:
2

1. We conducted an empirical analysis of the deep network design
with respect to the prioritization of the data characteristics. For
tasks such as scenery image recognition, learning the spatial
layout is crucial, whereas tasks such as object recognition benefit
more from learning various features.

2. From the perspective of image characteristics, we conducted an
in-depth analysis of the impact of depth and width in CNNs on
scene recognition tasks. Our extensive experiments revealed that
deeper networks are more suitable for scene recognition com-
pared to wider networks. Spatial information plays a vital role
in scene recognition, enabling networks to better understand the
overall spatial layout of a scene. This differs from object-centric
images, where the detailed patterns and textures of objects are
more significant.

3. To enhance spatial and scale features, we propose a Deep-
Narrow Network, which incorporates a Dilated Pooling compo-
nent. Through extensive experimentation, we demonstrate the
significant benefits of deepening the network for scene images
in terms of both efficiency and accuracy. Our approach provides
valuable insights into scaling the network based on the specific
characteristics of the data, allowing for improved performance
without compromising efficiency.

The remainder of this paper is organized as follows. Section 2
reviews the network design strategies, with a specific focus on the net-
work width and depth design. Additionally, we delve into the existing
studies on scene recognition to provide a comprehensive understanding
of the current state of the field. Section 3 presents the distinctive
characteristics of scenery images and introduces our proposed Deep-
Narrow Network with Dilated Pooling strategy. Section 4 discusses
our experimental results including a comparison study using object
classification and scene recognition datasets. Section 5 concludes our
paper with a summary and directions for future research.

2. Related work

Deep & Wide Networks The depth of a network plays an important
role in the success of convolutional neural networks (CNNs). As the
network becomes deeper, it becomes capable of approximating the
target function more precisely, resulting in improved performance. This
significance of network depth was further highlighted by the success of
VGGNet (Simonyan & Zisserman, 2015) and Inception (Szegedy, Ioffe,
Vanhoucke, & Alemi, 2017; Szegedy et al., 2015, 2016) in the ILSVRC
competition. The introduction of ResNet (He et al., 2016), as a continu-
ation of deeper networks, revolutionized the depth of deep networks by
introducing residual learning and identity mapping concepts to CNNs.
ResNet’s innovative approach allows for extremely deep networks and
has demonstrated enhanced performance in image recognition tasks.
Recent studies have placed significant emphasis on advancing deep net-
works through various techniques. One notable approach involves the
incorporation of dense shortcuts, as explored in the work of Zhang et al.
(2021), which has shown improvements in gradient flow and overall
performance for deep networks. Another technique gaining attention
is the integration of Multi-Layer Perceptron (MLP) components into
convolutional networks, as demonstrated by Li, Hassani, Walton, and
Shi (2023) and Shen et al. (2023). These efforts exemplify the ongoing
endeavors to refine and optimize deep network architectures for a wide
range of applications. By integrating such techniques, there is potential
to enhance the capabilities and effectiveness of deep learning models
in tackling complex tasks.

Network width has also emerged as a crucial parameter in deep
network design. Wide ResNet (Zagoruyko & Komodakis, 2016) in-
troduced an additional factor to control the width of ResNet, and
experimental results demonstrated that widening the network could
be a more effective approach for improving performance compared

to simply increasing its depth. Xception (Chollet, 2017), an extreme
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version of the Inception architecture, employed wider structures by
modifying the original inception block, leading to improved perfor-
mance. ResNeXt (Xie et al., 2017) introduced the concept of cardinality
to increase the width of ResNet, achieving remarkable results in the
2016 ILSVRC classification task. The success of ResNeXt has established
the notion that widening deep networks is an effective strategy for
enhancing model performance. ResNeSt (Zhang et al., 2022) further
built upon the wide architecture of ResNeXt and achieved superior
performance in image and object recognition tasks. Most recently, Chen
et al. (2022) proposed WGNet, a graph convolutional neural network
designed for 3D point cloud classification. WGNet incorporates local
dilated connections and context-aware features to improve accuracy,
emphasizing the importance of a wider network for capturing complex
decision boundaries.

Effects of Depth and Width Although depth and width are proven
o be essential parameters in network architecture design, the effect
f depth and width, i.e., what deep and wide networks learn remains
eldom explored. Most of the existing literature focuses on the effect of
idth and depth separately or the trade-off between depth and width in

he network design (Lu et al., 2017). Nguyen and Hein (2018) suggest
hat having a hidden layer that is wide enough is crucial to ensure that
he network is capable of creating separate decision boundaries. Veit,

ilber, and Belongie (2016) studied the mechanism behind ResNet and
uggested deep residual networks have indicated that they might not
e functioning as a single deep network, but instead, they could be
perating as a collection of multiple relatively shallow networks. They
mplemented a group of similarly shallow networks and demonstrated
hat these networks perform better than the conventional deep residual
etworks. Tan and Le (2019) claimed that deep networks can make use
f a larger receptive field while wide networks can better capture fine-
rained features. Nguyen, Raghu, and Kornblith (2021) explored the
ffects of width and depth and found a characteristic structure named
lock structure. They demonstrated that for different models, the block
tructure is unique, but the representations outside the block structure
rends to be similar despite the setting of depth and width. In our paper,
e analyze the effect of depth and width in CNNs from the perspective
f image characteristics.

In recent years, there has been notable progress in the theoreti-
al analysis of deep and wide networks across different sub-domains.
irzadeh et al. (2022) conducted an investigation into the relationship

etween network width and catastrophic forgetting. They proposed a
ypothesis emphasizing the importance of high orthogonality among
radients from different tasks, which is induced by wider networks,
ncreased gradient sparsity, and a lazy training regime. Bordelon and
ehlevan (2022) introduced a path integral formulation to study the
radient flow dynamics in infinite-width networks within the feature
earning regime. They developed a polynomial-time numerical pro-
edure to solve the saddle point equations for deep networks and
emonstrated, through numerical experiments, that the solutions pro-
ide valuable insights into network training across different feature
earning strengths, widths, and depths. Their theory was compared to
arious approximate methods, including perturbation theory.

In a similar vein, Radhakrishnan, Belkin, and Uhler (2023) explored
he benefits of network depth and highlighted that very deep networks
an achieve optimality with careful selection of activation functions.
hey established that deep networks with activations such as ReLU or
anh do not reach optimality. Furthermore, they discussed the advan-
ages of using infinitely wide and deep networks for classification tasks
ompared to regression settings, where these networks are far from
ptimal. Despite the increasing focus on theoretical analysis of deep and
ide networks, limited research has been conducted on investigating

heir effects based on data preference.
Scene Recognition The integration of multiple networks has been

idely adopted in the scene recognition community as a pioneering ap-
roach in the era of deep learning (Cheng et al., 2018; Qiao et al., 2020;
3

hu et al., 2019). These methods typically concatenate or integrate
the outputs of multiple networks to generate a unified scene feature
representation, leading to improved performance (Cheng et al., 2018;
Herranz et al., 2016; Jia et al., 2009; Qiao et al., 2020; Selvaraju et al.,
2017; Wang et al., 2017; Xia et al., 2019; Zhou et al., 2017a). While
some studies have devised trainable integration methods (Seong et al.,
2019; Seong, Hyun, & Kim, 2020), the backbone network architectures
remain unchanged.

In addition to network integration, there are alternative methods
that employ different algorithms and network architectures to tackle
the scene recognition challenge (Gupta et al., 2021; Rehman et al.,
2021; Shi et al., 2019; Wang et al., 2020). For instance, Wang et al.
(2020) proposed an ‘‘adaptive discriminative metric learning’’ (DFF-
ADML) method to address the complexity of scene images. DFF-ADML
utilized pre-trained CNNs to extract multiple features from training ex-
amples and employed linear transformations to map these features into
a common space, preserving more information about the scene images.
This adaptive fusion of features enhanced the preservation of compre-
hensive content and improved scene recognition performance. Another
study by Rehman et al. (2021) combined the conventional Bag of Visual
Words (BOVW) technique with AlexNet by fusing the features extracted
from both models. They extensively experimented with different BOVW
sizes and carefully designed and tested their pipeline components,
resulting in an effective scene recognition method. Similarly, Gupta
et al. (2021) utilized pre-trained CNNs for feature extraction and pro-
posed a threshold-based approach to select the most prominent features
and filter out less informative ones. They also integrated a grouping-
based method to remove redundant features, leading to improved
performance. Furthermore, Lin et al. (2022) leveraged two pre-trained
CNNs to extract original feature maps and employed techniques such
as class activation mapping to identify salient regions and extract local
scene features. They also incorporated bidirectional long short-term
memory to capture contextual information of objects within the scene.
Additionally, Lv et al. (2023) proposed a region-based adaptive associ-
ation learning framework consisting of two sub-networks that extract
features related to semantic distribution and contextual arrangement
separately. Deep fusion networks are then employed to combine these
features in a joint and boosting manner. However, in these studies,
while different components for scene recognition are leveraged, the
network backbones are still used as feature extractors.

Despite the progress made in scene recognition, the current methods
primarily utilize deep neural networks as feature extractors, over-
looking the unique characteristics of scenery images. Recent studies
have shown promising results by introducing additional modules for
scene recognition (Qiao et al., 2021; Yuan et al., 2022), exploring the
use of adaptive learnable modules for assigning weights to different
scales in scene recognition tasks. These approaches have demonstrated
improved performance compared to conventional networks. However,
the design of the network backbone, which forms the core architecture,
has received limited attention in the existing literature. This reveals a
gap between the state-of-the-art generic deep neural network design
and the design of networks specifically tailored for scene recognition. It
is crucial and urgent to incorporate the most advanced network design
theories and practices into the field of scene recognition to bridge this
gap and further advance the performance of scene recognition models.

3. Materials and method

The inception of the data-oriented network design can be traced
back to our experimental observations. Specifically, we noted that
modifying the depth and width of a network had varying impacts on
object-centric and scene-centric data. To validate this hypothesis, we
conducted a series of extensive experiments, which sought to confirm

our initial conjecture.
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Table 1
Top-1 and top-5 accuracy (%) comparison by changing the network depth.

Data Model Top-1 Top-5

ResNet-18 54.22 84.63
Places365 ResNet-50 55.69 85.80

ResNet-101 56.47 86.25

ResNet-18 70.52 89.56
ImageNet ResNet50 76.02 92.80

ResNet-101 77.78 93.72

Table 2
Top-1 and top-5 accuracy (%) comparison by changing the network width. The numbers
within the parenthesis are the width scaling factors.

Data Model Top-1 Top-5

ResNet-50 (×1) 55.69 85.80
ResNet-50 (×2) 56.21 86.11

Places365 ResNet-50 (×.5) 55.07 85.12
ResNet-50 (×.25) 52.16 82.85
ResNeXt-50 55.77 85.99

ResNet-50 (×1) 76.02 92.80
ResNet-50 (×2) 78.51 94.09

ImageNet ResNet-50 (×.5) 72.08 90.78
ResNet-50 (×.25) 64.04 85.76
ResNeXt-50 77.80 94.30

3.1. Data sets and characteristics

3.1.1. Data sets
To understand the impact of network structure on datasets and

ultimately applications, we use the ImageNet 2012 (Jia et al., 2009)
and Places Standard dataset (Zhou, Lapedriza, Khosla, Oliva, & Tor-
ralba, 2017b) as our evaluation datasets. ImageNet2012 and Places365
Standard are widely recognized as standard datasets that have signif-
icantly contributed to the advancement of computer vision research.
ImageNet2012, introduced in 2012, comprises over 1.2 million metic-
ulously labeled images across 1000 object categories, serving as a
benchmark for training and evaluating object-centric image classifi-
cation algorithms. An image in ImageNet 2012 usually contains a
single object that is highly distinctive from the background. In contrast,
Places365 Standard focuses on scene recognition, offering more than
1.8 million labeled images categorized into 365 diverse scene classes,
including both indoor and outdoor scenes. The images in the Places365
Standard dataset present more complex scenery contents.

3.1.2. Impact of network structure to model performance
In deep learning, network structure and training data play important

roles in model performance. Using ResNet as the baseline model, we
conducted a comparison study using two popular datasets: Places365
and ImageNet. Table 1 presents the model performance by varying
the network depth. Three ResNet variants are included: ResNet-18,
ResNet-50, and ResNet-101. By increasing the network depth from 50
to 101, i.e., ResNet-50 and ResNet-101, we obtained a performance
improvement of 1.40% and 2.32% on Place365 and ImageNet datasets,
respectively, in terms of Top-1 accuracy. Theoretically, if widening
the network is more effective in improving performance as stated in
the literature, we are expecting more accuracy improvement when the
network width is increased. Table 2 presents the model performance by
varying network width. The network depth of all models is 50. Besides
ResNet-50, ResNeXt-50 is included. By doubling the network width,
we achieve an increase of top-1 accuracy by 3.28% using ImageNet,
but only 0.94% using Place365. More surprisingly, for ResNeXt, which
also doubled the network width, the relative performance increase on
ImageNet is 2.34% in terms of top-1 accuracy, but the number is only
0.14% on Place365.

The trend that model performance on ImageNet is more sensitive
to changes in network width compared to Place365 is also observed
4

Table 3
Top-1 and top-5 accuracy (%) comparison by changing the network depth using 100
randomly selected classes.

Data Model Top-1 Top-5

Places365 ResNet-18 70.63 94.32
ResNet-50 71.14 94.56

ImageNet ResNet-18 81.17 94.50
ResNet50 83.19 95.42

Table 4
Top-1 and top-5 accuracy (%) comparison by changing the network width using 100
randomly selected classes. The numbers within the parenthesis are the width scaling
factors.

Data Model Top-1 Top-5

ResNet-50 (×1) 71.14 94.56
Places365 ResNet-50 (×.5) 71.04 94.21

ResNet-50 (×.25) 70.14 93.76

ResNet-50 (×1) 83.19 95.42
ImageNet ResNet-50 (×.5) 80.17 94.06

ResNet-50 (×.25) 76.93 92.62

when we decrease network depth or narrow down the width. When
the network depth was reduced from 50 to 18, ImageNet experienced
a 7.23% relative top-1 accuracy decrease, while for Place365 it was
2.71%. The drop of top-1 performance using ImageNet was approxi-
mately 2.7 times than that of the top-1 performance drop using Places.
However, when we reduce the width of ResNet-50 by half, this ratio
changed to 4.7. The claim that widening the network might provide a
more effective way to improve performance is probably biased towards
ImageNet (an object-centric dataset) and overlooks the characteristics
of scenery images.

Since Places365 has 365 classes while ImageNet has 1000 classes,
to avoid the bias caused by the different number of classes between
the two datasets, we randomly selected 100 classes from each dataset
and conducted comparison experiments. As we reduced the size of the
datasets, we observed under-fitting when we applied relatively small
datasets to large models. Therefore, we only include the comparison
results for small models in Tables 3 and 4. We observed that for the
Places365 dataset, switching from ResNet-50 to ResNet-18 led to a
0.72% top-1 accuracy drop on Places and a 2.49% top-1 accuracy drop
on ImageNet, i.e., the performance drop on ImageNet was around 3.46
times the drop on Places. Meanwhile, narrowing the width of ResNet-50
to 1/2 and 1/4 of the original width led to a 0.14% and 1.41% top-1
performance drop on Places365. For ImageNet, the accuracy decrease
was 3.6% and 7.5%. The performance drop caused by halving the
width on ImageNet was 25.7 times the performance drop on Places,
which verified our hypothesis that altering network width has a less
significant effect on scenery data and is not biased towards the number
of classes.

3.1.3. Complexity of images
Our first hypothesis is that the performance difference is caused

by the complexity of scenery images. This hypothesis is based on
the distinct complexity difference between scene images and object-
centric images: object-centric images contain one dominant object that
occupies a large portion of the view, while scene images consist of
multiple objects in different sizes and background clutters. Fig. 1 shows
two samples from the benchmark object-centric dataset (ImageNet)
and the benchmark scene dataset (Place365), respectively. Fig. 1(a)
is labeled as ‘‘bald eagle’’, in which the eagle stands in the center of
the view and occupies a large portion of the entire image. Fig. 1(b) is
labeled as ‘‘forest-broad leaf’’, and the entire view consists of not only
a bird but a few tree branches and leaves. As the correct recognition
of scenery images relies on multiple components, a scene image is

typically considered more complex than an object-centric image.
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Fig. 1. Example images from benchmark object recognition dataset ImageNet
(a), benchmark scene recognition dataset Places365 (b), and fine-grained dataset
Caltech-UCSD Birds-200-2011 (c and d).

To evaluate this hypothesis, we use CUB-200-2011 dataset that
is widely known to be ‘‘complex’’ fine-grained image classification
dataset. The fine-grained classification is considered a more complex
task as the classes in the dataset can only be discriminated by lo-
cal and subtle differences. CUB-200-2011 consists of 200 different
species of birds, which serves as a benchmark dataset for fine-grained
classification tasks. Fig. 1(c) and (d) depict samples of the CUB-200-
2011 dataset. In Fig. 1, the black-footed albatross (c) and sooty alba-
tross (d) are considered two different categories in classification. The
two albatrosses are similar in appearance, and differentiating them
is challenging due to the subtle traits that characterize the different
species.

We conducted experiments using the two complex datasets
(Places365 and CUB-200-2011) and one object centric dataset (Im-
ageNet). The results are shown in Table 5. Using the benchmark
ResNet-50 as the backbone, we observed that on CUB-200-2011, the
relative top-1 accuracy increased by 1.81% when doubling the width
and dropped by 4.28% when we narrowed the width to half of the
original. This performance change caused by altering the width is
much more acute compared to the result on Places365 (0.94% and
1.11%, respectively, for doubling and halving the width) under the
same settings, which demonstrated that a wide network is able to
effectively enhance the recognition of complex, fine-grained features.
5

Table 5
Top-1 accuracy (%) of ResNet-50 on Places365, ImageNet, and Caltech-UCSD
Birds-200–2011 by changing network width.

Width Scaling Factor Places CUB ImageNet

2 56.21 71.53 78.51
1 55.69 70.26 76.02
0.5 55.07 67.25 72.08
0.25 52.16 61.29 64.04

This result does not support our first hypothesis: if the performance
difference originated from the complexity of the data, we should
observe a moderate performance change on the CUB-200-2011 dataset
along with the changing of network width. The results demonstrate that
the performance variance on different datasets is not a consequence of
the complexity (rich fine-grained details) of the data. We found that
the variance in performance across different datasets cannot be solely
attributed to the level of complexity, specifically the rich fine-grained
details.

3.2. Deep-narrow network for scenery image classification

3.2.1. Spatial and channel features for scenery image recognition
Based on our observations, we formulated a second hypothesis: for

scene recognition tasks, learning spatial information is more crucial
than learning more fine-grained features. As defined in Fan, Xian,
Losch, and Schiele (2020), spatial information refers to the spatial
ordering on the feature map. Intuitively, the semantic meaning related
to spatial layout is limited for images that only contain one object, but
for scene images, the spatial structures or contextual information are
likely to contribute more to the understanding of the scene. Therefore,
we hypothesized that learning spatial information is more important
for scene recognition tasks.

We conducted the experiments by gradually feeding low and high-
frequency information of Place365 and ImageNet datasets to the net-
work. Generally speaking, the high-frequency information in the image
refers to the regions where the intensity of the image (brightness/gray-
scale) changes drastically, which are often called the edges or bound-
aries; the low-frequency information in the image refers to the regions
where the image intensity changes smoothly, such as large patches
of color. As shown in Fig. 2, the image filtered by low-pass filters
tends to present proximate or blurred patterns/features of the original
image, the images filtered by high-pass filters better preserved the
spatial information, i.e., high-frequency information are more spatially
informative features compared to low-frequency information.

To understand the importance of low and high-frequency informa-
tion in different datasets, we designed low-pass and high-pass filters
based on Fourier Transform. We transformed the testing images into
the frequency domain using Fourier Transform and applied both low
and high-pass filters to test how low/high-frequency information can
affect the model performance on different datasets. Fig. 3 shows the
design of the filters: for low-pass filters, we masked the high-frequency
Fig. 2. Results on scenery image using low-pass and high-pass filters.
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Fig. 3. Illustration of low and high pass filters. In (b) and (c), the mask (black region) denotes information removed by corresponding filters; the length of the red lines denotes
the corresponding filter size.
Fig. 4. Top-1 accuracy (%) on Place365 and ImageNet datasets using low-pass filters (left) and high-pass filters (right). The 𝑥-axis denotes the size of the corresponding filters.
Note that for the 100-class ImageNet and Place365 data sets, the top-1 accuracy on ImageNet is 16.9% higher.
Fig. 5. In the schema of a Deep-Narrow Network, we increased depth and decreased the width of the network and added a Dilated Pooling module to persevere more spatial
information.
components, and for high-pass filters, we masked the low-frequency
components. Low pass filters preserve low-frequency features; high pass
filters preserve high-frequency/spatial structure information.

For a fair comparison, we randomly selected 100 classes from the
Place365 and ImageNet datasets to conduct the experiments. Note
that scene recognition is considered a harder task compared to object
recognition, so the classification accuracy on Place365 is lower despite
the chance being the same. The results are shown in Fig. 4. In both sub-
figures, the 𝑥-axis represents the size of the corresponding low/high
pass filter in the spectrum domain (with a maximum size of 224),
and the 𝑦-axis denotes the top-1 accuracy. Through comparison, we
observed some enlightening phenomena: when gradually feeding the
low-frequency information to the networks, the performance increase
on ImageNet is steeper than on Place365 (Fig. 4(a)). Surprisingly, when
using a low-pass filter of size 33, ImageNet achieved a top-1 accuracy
of nearly 30%, while the chance is only 1%. This suggests that correct
recognition of object-centric images heavily relies on low-frequency
information.

On the contrary, when gradually feeding the high-frequency infor-
mation to the networks, we observe that the model trained on scenery
datasets is more sensitive to high-frequency information (Fig. 4(b)).
6

Notably, when the size of the high-pass filter is around 210 to 214, the
top-1 accuracy on Place365 exceeds the top-1 accuracy on ImageNet,
despite the classification accuracy on ImageNet is 16.9% higher than
on Place365 for 100 classes. This observation demonstrates that recog-
nition of scenery images is susceptible to high-frequency information.

Our observations perfectly fit the experimental results above. The
high and low-frequency information in images approximately represent
the learned spatial and channel-wise information in deep networks.
Wide networks have an expanded number of channels, which enables
the network to learn more fine-grained features. Deep networks have an
increasing number of layers and larger receptive fields, which enables
the network to learn more spatial and scale information. Our experi-
mental results support the hypothesis that learning spatial information
is more crucial than fine-grained features for scene recognition tasks.

3.2.2. Deep-narrow structure
Based on our observations, we argue that designing networks with

a larger depth and a smaller width can potentially be an effective and
efficient option for correctly recognizing scenery images, as this task is
highly dependent on learning spatial information. As shown in Figs. 5
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Fig. 6. The convolution block of ResNet (left), Wide ResNet (middle), and Deep-Narrow Network (right). C denotes the number of channels.
Fig. 7. The schema of the down-sample component in ResNet and Dilated Pooling module.
Fig. 8. The schema of the down-sample component in ResNet and Dilated Pooling module from the view of spatial dimension. (a) The down-sample component in ResNet from
the view of spatial dimension. During the down-sampling process, 3/4 of the spatial information is discarded and the number of channels is doubled. (b) Dilated Pooling module
from the view of spatial dimension.
and 6, we propose a Deep-Narrow architecture that differs from the
popular Wide ResNet (Zagoruyko & Komodakis, 2016), which uses the
factor K to increase the width of the ResNet. Instead, we increase the
number of layers in ResNet and decrease the width of the network using
width factor K. In our designed Deep-Narrow Network, the value of K
is set to 2, i.e., we halve the network width used in benchmark ResNet.
7

3.2.3. Dilated pooling
In addition to deepening the network to better process spatial

information, we have also designed a Dilated Pooling module to better
preserve the spatial information in ResNet. As shown in Fig. 7(a),
in ResNet, the downsampling process involves quadrupling the width
of the network and discarding 3/4 of the features along the spatial
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Fig. 9. The schema of and Deep-Narrow Network with Dilated Pooling. The numbers inside convolution blocks denote the kernel size and number of channels in each block. The
numbers under the figure stand for the spatial dimension size of the corresponding feature maps.
Table 6
GFLOPS and number of Parameters using ResNet with different designs and Dilated
Pooling (DP) module. The number of parameters is in million. Please note that for the
cases using Places365-Standard dataset, we calculate the number of parameters based
on 365-class models (Place365).

Data Model GFLOPs # Params

ResNet-50 4.12 24.26
Places365 Deep-Narrow Network 2.00 11.03

Deep-Narrow (with DP) 2.00 11.03

ResNet-50 4.12 25.56
ImageNet Deep-Narrow Network 2.00 11.68

Deep-Narrow (with DP) 2.00 11.68

dimension. Based on our findings, this design is not suitable for scene
recognition as discarding spatial information is likely to significantly
impact the performance. Alternatively, we designed a Dilated Pooling
module to better preserve the spatial information (Fig. 7(b)).

Further details are illustrated in Fig. 8. In a Dilated Pooling module,
instead of directly discarding 3/4 of the spatial information, we divide
the feature maps into four sub-sections along the spatial dimension.
We then conduct convolution on the four feature maps and merge
the results together via summation operation. By leveraging Dilated
Pooling, we can use all the spatial information without increasing the
number of FLOPs and parameters.

Fig. 9 illustrates the overall network architecture of our proposed
method. This network extends ResNet by integrating our Deep-Narrow
structure and dilated pooling modules. The dilated pooling modules are
embedded in between the convolution blocks, which are implemented
with the Deep-Narrow structures.

4. Experimental results and discussion

4.1. Experiment settings

We train deep network models and compute single-crop (224 × 224
pixels) top-1 and top-5 accuracy based on the application of the models
to the validation set. We train each model for 100 epochs on eight Tesla
V100 GPUs with 32 images per GPU (the batch size is 256). All models
are trained using synchronous SGD (Stochastic Gradient Descent) with a
Nesterov momentum of 0.9 and a weight decay of 0.0001. The learning
rate is 0.1 and is reduced by a factor of 10 in every 30 epochs. For
training ResNet and its variants, we follow the settings in He et al.
(2016).

4.2. Computational cost analysis

This section presents an evaluation of the computational efficiency
of our proposed design compared to the canonical ResNet-50. Table 6
shows the results of our evaluation in terms of computation efficiency,
measured in GFLOPs, and the number of parameters in millions.

Our design achieved a significant improvement in computational
efficiency, with only 2.00 GFLOPs consumed, which is less than half of
the 4.12 GFLOPs consumed by the canonical ResNet-50. Additionally,
8

Table 7
Top-1 and Top-5 accuracy (%) using ResNet with different depth and width. The
numbers within the parenthesis are the width scaling factors.

Data Model Top-1 Top-5

ResNet-50 (×1) 55.69 85.80
Place365 ResNet-50 (×.5) 55.07 85.12

Deep-Narrow Network 55.58 85.80

ResNet-50 (×1) 76.02 92.80
ImageNet ResNet-50 (×.5) 72.08 90.78

Deep-Narrow Network 74.99 92.31

Table 8
Top-1 and top-5 accuracy (%) using Deep-Narrow Network and Dilated Pooling (DP)
module. The numbers within the parenthesis are the width scaling factors. The best
results are highlighted in bold.

Data Model Top-1 top-5

ResNet-50 (×1) 55.69 85.80
Place365 Deep-Narrow 55.58 85.80

Deep-Narrow (with DP) 55.91 86.12

ResNet-50 (×1) 76.02 92.80
ImageNet Deep-Narrow 74.99 92.31

Deep-Narrow (with DP) 74.63 92.13

we were able to reduce the number of parameters used in our design
to 11.68 million, compared to the 24.26 million parameters used in
ResNet-50. Furthermore, we evaluated the impact of inserting our Di-
lated Pooling (DP) module on the efficiency of the network. Our results
show that the efficiency of the network is not compromised when the
Dilated Pooling module is inserted. We will further show the reduction
in parameters is achieved without sacrificing the performance of the
network. With the help of DP module, we can even improve the model
accuracy on scenery data set.

4.3. Performance analysis

Table 7 shows the performance comparisons among the bench-
mark ResNet-50 (i.e., ResNet-50 (× 1)), ResNet-50 with half the width
(i.e., ResNet-50 (×.5)), and our Deep-Narrow Network on the Place365
dataset. The Deep-Narrow Network achieves comparable evaluation
scores with the benchmark ResNet-50 while using less than half of
the FLOPs and parameters, with a relative top-1 accuracy drop of
only 0.20%. On the ImageNet dataset, the Deep-Narrow Architecture
obtained a relative top-1 accuracy drop of 1.35%. These results reaffirm
that scene recognition is highly dependent on learning spatial informa-
tion. We demonstrate that data have their preferences and the network
design should rely on the characteristics of the data rather than blindly
following the assertion that widening the network might provide a
more effective way to improve model performance over making ResNet
deeper.

As shown in Table 8, we integrated the Dilated Pooling module with
our Deep-Narrow Network design, resulting in better performance than
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Table 9
GFLOPS and number of Parameters using ResNet with different designs using different
backbones. The numbers within the parenthesis are the width scaling factors. The
number of parameters is in million. Note that we calculate the number of parameters
based on 365-class models (Place365). The best results are highlighted in bold.

Model GFLOPs # Params

ResNet-50 (×1) 4.12 24.26
ResNet-Ave 2.26 11.03
ResNet-Max 2.26 11.03
ResNet-D 2.26 11.03
Antialiased-CNN 2.26 11.03
Deep-Narrow Network 2.00 11.03
Deep-Narrow Network (with DP) 2.00 11.03

the benchmark ResNet on the Place365 dataset while using less than
half of the FLOPs and the number of parameters. Specifically, adding
Dilated Pooling to our Deep-Narrow Network resulted in a relative top-
1 accuracy increase of 0.59% (Table 8), while causing only a 0.48%
relative top-1 accuracy drop on ImageNet. This demonstrates the effec-
tiveness and efficiency of our data-oriented network design approach
and emphasizes the importance of designing networks according to the
characteristics of the data.

4.4. Comparison with the state-of-the-art methods

To evaluate the effectiveness of our proposed method, we compared
it against several state-of-the-art approaches that aimed to minimize in-
formation loss caused by reducing spatial resolution. These approaches
included ResNet-D (He et al., 2019) and Antialiased-CNN (Zhang,
2019), which employed average pooling and convolution-based pooling
strategies, respectively, to preserve more spatial information. Addition-
ally, we implemented two baseline strategies, ResNet-Ave and ResNet-
Max, which utilized averaging and max-pooling operations instead of
discarding three-quarters of the information.

Table 9 presents the resource efficiency of our model compared
to the aforementioned methods. Overall, our method used 0.26 fewer
9

Table 10
Top-1 and top-5 accuracy (%), precision, recall and F-1 score on Place365 using
different backbones. The numbers within the parenthesis are the width scaling factors.
The best results are highlighted in bold, second best results are underlined.

Model Top-1 Top-5 Precision Recall F-1

ResNet-50 (×1) 55.69 85.80 56.34 54.76 55.53
ResNet-Ave 55.60 85.58 56.51 54.95 55.71
ResNet-Max 55.55 85.56 56.16 54.53 55.33
ResNet-D 55.79 85.93 56.45 54.87 55.65
Antialiased-CNN 55.85 85.93 56.92 55.13 56.01
Deep-Narrow Network 55.58 85.80 56.13 54.53 55.32
Deep-Narrow Network (with DP) 55.91 86.12 56.84 55.26 56.04

GLOPs compared to Antialiased-CNN and variants of ResNets, rep-
resenting an 11.5% computational resource reduction. In contrast to
ResNet-50, i.e., our baseline method, the computation reduction is
by more than 50%. This advantage is also supported by the number
of parameters. Note that the unit for the number of parameters is
millions. The size of our proposed network is only 45.5% of that of
the ResNet-50.

Table 10 presents a comprehensive comparison of different models
based on their performance metrics for scene recognition using the
Place365 dataset. Our Deep-Narrow Network with Dilated Pooling
achieves the highest top-1 accuracy of 55.91% among all the models.
Moreover, it attains the highest top-5 accuracy of 86.12%, outperform-
ing the other models. These results demonstrate the model’s ability
to provide accurate predictions within the top 5 classes for the given
scenes. Furthermore, the Deep-Narrow Network with Dilated Pooling
consistently achieves greater precision, recall, and F-1 scores. In sum-
mary, our results indicate that the Deep-Narrow Network with Dilated
Pooling achieves superior accuracy compared to the state-of-the-art
methods while utilizing much fewer computational resources.

4.5. Case analysis

Fig. 10 depicts instances where the vanilla ResNet model misclassi-
fies the images, while our proposed Deep-Narrow Network with Dilated
Fig. 10. Examples that are miss-classified by the vanilla ResNet but correctly classified by our method.



Expert Systems With Applications 234 (2023) 121018Z. Qiao et al.
Fig. 11. Examples that are miss-classified by our method.

pooling accurately classifies them. These images represent diverse in-
door and outdoor scenarios, exhibiting intricate spatial information.
The successful recognition of these scenes by the Deep-Narrow Network
with Dilated Pooling underscores its ability to effectively handle scenes
with intricate spatial details.

Fig. 11 illustrates examples of misclassified images from our ex-
periments. We observed that the misclassification can be categorized
into three distinct types: (1) misclassification of object-centric images.
When an image contains a prominent object, such as the airplane in
Fig. 11(a), with a limited or unrepresentative background, our model
may focus too much on the object and misclassify the overall scene.
(2) misclassification of scene mixing images. These images combine
different scenes, leading to confusion for the classifier. In Fig. 11(b), the
amusement park includes a building resembling a castle, which creates
ambiguity and challenges the classifier’s ability to assign the correct
scene category accurately. (3) misclassification of rare cases. The back-
ground of an image can be misleading. In Fig. 11(c), the apartment
10
buildings situated near a river, a scenario not well-represented in our
training dataset, can lead the classifier to mistakenly associate it with
a river house scene.

To examine how our models preserve detailed spatial informa-
tion, we utilized Grad-CAM (Selvaraju et al., 2017) as a visualization
tool. Fig. 12 presents the heat map of six scene images using differ-
ent network architectures. The row of ‘‘ImageNet‘‘ shows the results
of a ResNet trained with the ImageNet dataset, while the row of
‘‘Places365’’ shows the results of a ResNet trained with the Places365
dataset. By comparing these heat maps, we can evaluate the preser-
vation of spatial details in our proposed models. Fig. 12 depicts that
our method tends to preserve more spatial details, which are indicative
of the semantic meaning of the scene. For example, when examining
images of categories ‘‘building facade’’, ‘‘castles’’, and ‘‘water tower’’,
our model successfully captures distinguishing architectural elements
such as windows, minibars in mosques, and water tanks with their
bases. Additionally, our model not only captures prominent compo-
nents like flowers in a greenhouse, furnishings in a banquet, and
desks in office cubicles but also identifies specific features like green-
house shelves, tableware, and computers. These additional details serve
as strong indicators of the respective scenes. The ability to leverage
these detailed spatial features empowers our Deep-Narrow Network
with Dilated Pooling to achieve favorable performance on the scene
recognition task while utilizing reduced computational resources. This
highlights the effectiveness of our model in capturing and utilizing
spatial information.

5. Conclusion

This paper investigates the impact of complex scenery images on
network architecture design using ImageNet (an object recognition
Fig. 12. Heat maps of various images generated using Grad-CAM (Selvaraju et al., 2017). Warmer color denotes a higher value. ‘‘ImageNet‘‘ and ‘‘Place365 Standard’’ denotes
vanilla ResNet pre-trained using the corresponding dataset. Our design preserves comprehensive information that represents the semantic meaning of the scenes.
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dataset) and Places365 (a scene recognition dataset) as examples.
Through a series of carefully designed experiments, we demonstrate
that the characteristics of datasets can significantly affect the perfor-
mance of models. Specifically, wider networks tend to perform better
in recognizing images with prominent objects but have less impact
on recognizing scenery images. We further validated this hypothesis
through comparison experiments and showed that learning spatial in-
formation is more critical in scene recognition tasks compared to object
classification tasks. This explains why deepening the networks is more
effective than widening them for scene recognition, as deeper networks
can better learn spatial information in the training examples. Therefore,
deploying networks with a greater depth and a smaller width and
emphasizing spatial information learning can benefit scene recognition
backbone designs. Our proposed Deep-Narrow Network and Dilated
Pooling module demonstrate the effectiveness and efficiency of taking
advantage of data properly. Our design achieves better accuracy than
the benchmark ResNet-50 on the canonical scenery data set using less
than half of the computation resources.

Scene recognition continues to pose challenges, primarily due to
limitations in available datasets and gaps in theoretical research. In our
future work, we plan to investigate self-supervised learning methods.
The recent integration of self-supervised learning techniques shows
promise in reducing the dependence on labeled scenery data. By lever-
aging unlabeled samples, meaningful representations can be learned,
thereby enhancing scene recognition capabilities, and enabling bet-
ter real-world applications. In addition, taking advantage of recent
advancements in computer vision foundational models and artificial
intelligence-driven graphics computing presents new opportunities for
advancing scene recognition.
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