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A B S T R A C T

Object-based image analysis (OBIA) has become a key research topic for decades and represents
an attractive paradigm leading to accurate features classification and recognition. It is based on a
key fundamental technical support, named segmentation, which produces physically and seman-
tically image objects with homogeneous pixels, and it can be used in whole or in part for research
related to object-oriented analysis. This paper reviews all the steps comprising segmentation and
the methods for each step by reviewing literature published in relevant remote sensing journals
between 2000 and 2022. In addition, segmentation methods are discussed, compared, and cate-
gorized into general and detailed categories. The SOTA researches focusing on the most advanced
methods at all steps are also presented while highlighting future research opportunities and
needs. The novelty of the review is the adoption of a new classification of segmentation methods
by time scale, which reveal the evolution history and trend based on their internal relations. Par-
ticularly, this work covers all the approaches and methods that make up the segmentation steps,
with analyses, comparisons, and future research perspectives. Finally, conclusions about the
SOTA methods, critical conclusions about open challenges, and directions and recommendations
for future research are presented.

1. Introduction
Remote sensing (RS) has evolved by developing satellite image processing methods for extracting spatial information. Initially,

classification was pixel-based and qualified by conventional classification algorithms (Costa et al., 2018). However, several limita-
tions appeared in the pixel paradigm, which was criticized in the late 1990s (Blaschke et al., 2014). Indeed, the approach is based on
low and medium-resolution images, where the objects of interest are small or the same size as the corresponding pixels, and a pixel
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can have one or more objects of interest, depending on the spatial resolution of the image. However, with the advent of very high-
resolution (VHR) images such as IKONOS, Quickbird, WorldView-1, RapidEye, GeoEye-1, WorldView-2 and WorldView-4, GaoFen,
GeoEye-2 and SPOT6 and 7, the spatial resolution has become much finer (1.5 m), and objects of interest often contain multiple
(Blaschke et al., 2014)- (Zhang et al., 2020a). Consequently, the pixel-based approach for VHR images, unmanned aerial vehicle
(UAV), light detection and ranging (LiDAR), or even sonar data has become limitative. There is a growing awareness of object-based
image analysis (OBIA) methods. OBIA has made significant progress in spatially explicit information extraction workflows for spatial
planning, monitoring, mapping, and management programs (Blaschke, 2010; Ruiz et al., 2021), (Teodoro and Araújo, 2016). It has
become the rising paradigm in RS and geographic information systems (GIS) (Blaschke et al., 2014), (Blaschke, 2010). OBIA was sup-
ported by the release of commercial software for object-based analysis, “eCognition”, in 2000 to meet the growing demand for fast
and accurate classification results (Blaschke et al., 2014).

OBIA bridges between the raster RS images and vector data of Geographic Information System (GIS) (Hay and Castilla, 2008), by
using both data types to extract and classify information from RS images. This raster and vector data integration enables a more com-
prehensive and accurate RS data analysis. It allows for integrating RS data with other types of spatial data (e.g., digital elevation
model, vector data etc.). A growing number of OBIA-related publications and applications have emerged to support geographic intel-
ligence, i.e., relevant information in a geographic context (Kucharczyk et al., 2020). The trends behind the significant and rapid
growth in publications in the field of OBIA are mainly related to the arrival of VHR satellite image data and the advent of eCognition
software, which supports OBIA. It is used by more than 50% of papers for this purpose, and its success has spurred the development of
other software (Blaschke, 2010). However, it is a proprietary software.

OBIA comprises two main steps: (1) segmentation of the image into homogeneous and (2) mutually exclusive regions or meaning-
ful objects of interest (Gonçalves et al., 2019), where image objects are the basic spatial units of analysis (Costa et al., 2018). Objects
are defined as a set of connected pixels with homogeneous features (Ming et al., 2015). Image segmentation is not an end; it plays a
crucial role in OBIA workflows and thus represents a step in the processing chain to obtain “meaningful objects.” In contrast, OBIA de-
pends primarily on the appropriate choice of a segmentation technique.

Segmentation is a crucial step in OBIA approach, in which the quality of the segmented objects determines the quality of the final
result. OBIA included the segmentation covers multiple fields such as damaged buildings (Yan et al., 2019), crop inventories (Duarte
et al., 2018), geological and environmental research (Mikes et al., 2015), urban planning, GIS map dressing and updating (Grinias et
al., 2016), roads and buildings (Grinias et al., 2016), change detection (Wang et al., 2018a), snow seasonality studies (Thompson and
Lees, 2014), landslide inventories (Martha et al., 2012), invasive exotic plant detection (Gonçalves et al., 2019), imperviousness de-
tection and different land cover classes (Verbeeck et al., 2012), and many other applications (Teodoro et al., 2011).

Hot research areas and subtopics of the OBIA approach are the specific concepts of OBIA hierarchy and scale (Ming et al., 2015),
(Wang et al., 2019)- (Shen et al., 2019), OBIA segmentation (Kucharczyk et al., 2020), (Yan et al., 2019), (Hossain and Chen, 2019)-
(Yang et al., 2017b) OBIA change detection (Cheng and Han, 2016) OBIA accuracy evaluation (Costa et al., 2018), (Clinton et al.,
2010)- (Costa et al., 2015), segmentation combined with classification (Troya-Galvis et al., 2017), (Zanotta et al., 2018), (Na et al.,
2021a) and Deep Learning (DL) combined with OBIA (Kucharczyk et al., 2020), (Tong et al., 2018)- (Zhao et al., 2017), fully sematic
segmentation with DL Indeed (Pastorino et al., 2022), generally OBIA studies shifted toward deep learning applications and develop-
ing specific models for segmentation problems (Zhang et al., 2018). The combination of OBIA and change detection analysis methods
is a significant area of research in RS. It allows for detecting and monitoring changes in land use and land cover at the object level
over time, providing a more detailed and nuanced understanding of environmental change (Punitha and Sutha, 2019)- (Persello and
Bruzzone, 2012). Furthermore, dynamic research fields in the segmentation stage comprise improvement and standardization of seg-
mentation steps, feature extraction and space reduction, and accuracy evaluation (Kucharczyk et al., 2020).

It must be mentioned that segmentation has received and will continue to receive significant attention in the RS community; for
this, Hay and Castilla (2008) and Louw and van Niekerk (Louw and Van Niekerk, 2018) labeled segmentation as a “poorly posed
problem or unstructured problem,” leading to a statement about the advanced techniques focused on the development of methods ap-
plicable to any setting deemed necessary and strongly recommended.

Several literature reviews have focused on the segmentation topic. Mikeš et al. (Mikes et al., 2015) benchmarked and compara-
tively evaluated segmentation techniques and methods of great interest in RS. Ming et al. (2015) conducted an interesting literature
review on scaling parameter selection based on spatial statistics. Liu et al. (2017) conducted a literature review on scaling through
multi-scale segmentation techniques. Ez-zahouani et al. (Ez-zahouani et al., 2023) performed a recent review on the determination of
segmentation parameters for OBIA from conventional to recent approaches. Ma et al. (2017) performed an exhaustive meta-analysis
of general issues considered in OBIA studies. They reviewed 173 scientific articles and derived multiple endpoints from different stud-
ies to test correlations between the extracted endpoints for further evaluation. Moreover, El-naggar (El-naggar, 2018) conducted a re-
view dedicated to the optimization of segmentation parameters. Costa et al. (2018) researched supervised methods for evaluating seg-
mentation accuracy. Chen et al. (2018) examined emerging trends and future opportunities for OBIA. Hossain and Chen (2019). pro-
vided a comprehensive review of OBIA techniques and discussed different segmentation techniques and algorithms. Kucharczyk et al.
(2020) published a review introducing and detailing the future directions of geographic object-based image analysis. Sun et al. (2021)
reviewed road segmentation for Synthetic Aperture Radar (SAR) images. Neupane et al. (2021) performed a meta-analysis on DL se-
mantic segmentation of urban features in RS images. However, Yuan et al. (2021), Ma et al. (2019), and Zhu et al. (2019) reviewed DL
methods for semantic segmentation of RS images in literature reviews. More recently, Kotaridis and Lazaridou (2021) performed a
meta-analysis on the advances and progress of RS image segmentation. The reviews already cited are of great importance for the ad-
vancement of knowledge as they are references in the field of segmentation and OBIA. Furthermore, our review is characterized by fo-
cusing on segmentation while covering all steps through description, analysis, criticism and future needs.
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Based on the information mentioned before, there are several reviews in OBIA, especially in the domain of RS image segmenta-
tion. Nevertheless, these reviews considered one or two segmentation steps, for instance, the determination and selection of optimal
parameters of segmentation (Ming et al., 2015) (Liu et al., 2017) (El-naggar, 2018) (Ez-zahouani et al., 2023), or segmentation meth-
ods and algorithms (Mikes et al., 2015) (Hossain and Chen, 2019) (Ma et al., 2017) (Neupane et al., 2021), evaluation of segmenta-
tion quality (Costa et al., 2018) (Jozdani and Chen, 2020), etc. In contrast, this study reviews all steps of OBIA as shown in Fig. 1, in-
cluding (1) determination and selection of optimal segmentation parameters, (2) segmentation methods and tools, (3) optimization of
segmentation parameters, (4) feature extraction and reduction, (5) evaluation of segmentation quality. In this context, this paper pro-
vides a focused and encompassing view of the RS image segmentation steps and all its sub-steps, specifying future directions and per-
spectives of each step.

This review covers all steps of the segmentation procedure (Fig. 1) and is divided into several parts.
This work is motivated by several reasons, as already mentioned. In general, the growing importance of RS imagery, the popular-

ity of the OBIA approach for RS image analysis, and the rapid technological progress that this field has experienced, especially with
deep learning algorithms. In particular, it is expected to overcome the lack of comprehensive, in-depth studies; Although several
works are available on RS image segmentation in object-based analysis, comprehensive studies need to summarize the different meth-
ods, optimization techniques, and quality assessment measures commonly used. Overall, this review article's expected results can
help consolidate the existing knowledge, identify research gaps, provide a comprehensive and up-to-date summary of the current
state-of-the-art, and identify future research directions that can further advance this field.

2. Methodology
To carry out this literature review, we collected and analyzed data on remote sensing imagery segmentation for object-based im-

age analysis: optimization, methods, and quality evaluation. The systematic search on this topic was performed using the SCOPUS
bibliographic database, which covers most international remote sensing journals and also MDPI database.

It was used two queries to retrieve the appropriate data. The keywords used to perform the queries are related to segmentation and
remote sensing, namely ''Remote sensing'' AND ″Segmentation'' OR ″OBIA″, and ''Remote sensing'' AND ″Segmentation'' AND ″OBIA″,
for the first and second queries, dated from 2000 to 2022, 11 942 and 320 publications were returned, respectively. We used the data-
base retrieved from the second query; 126 publications were retained for detailed analysis after filtering and manual analysis of titles,
abstracts, and conclusions. The following rules were formulated to purge the literature and case studies related to segmentation man-
ually.
• Studies that apply the OBIA technique include the segmentation and segmentation step.
• Studies specifically dealing with segmentation.
• Applied research studies devoted to a single segmentation step, such as determining segmentation parameters or segmentation

algorithms.
• A literature review on the topic.
• Studies that briefly mentioned segmentation methods without providing detailed information were not included.

For this literature review, a specific and concise database was developed to provide a basis for comparison. Additionally, the data-
base includes all literature identification fields, such as title and author. The latter also includes information fields for segmentation,
namely:
• The segmentation parameters to be determined and the segmentation methods and criteria used to determine the parameters.
• The optimization methods used to determine the segmentation parameters.
• Segmentation algorithms.
• Tools used.
• Methods for feature selection, extraction, and reduction.

Fig. 1. The segmentation steps.
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• Methods and metrics for assessing segmentation quality.

3. Determination and selection of optimal segmentation parameters
The quality of the segmentation results is directly related to the optimal selection of the segmentation parameters, which require

adequate parameterization. These parameters supervise the segmented objects' size, shape, and boundaries. However, parameters
change from one segmentation method to another, but the most well-known and used are the compactness, shape, and scale of consid-
ering the multi-resolution algorithms (El-naggar, 2018), (Gibril et al., 2018). Scale is the most important of these parameters for many
techniques (Ming et al., 2015). Generally, scale relates to the range of study, resolution ratio, heterogeneity, cartographic scale and
semantic granularity. Scale takes a different name depending on the segmentation algorithm, e.g., absolute and relative scales
(Blaschke, 2010); scales in the form of windows or functions (Blaschke, 2010); pixel-based, object-based, and pattern-based scales
(Ming et al., 2011); and the so-called spatial or spectral scale (Liu et al., 2017).

3.1. Methods for determining optimal segmentation parameters
To determine optimal segmentation parameters, a distinction must be made between manual methods based on a trial-and-error

and semi-automatic or automatic methods approaches (Johnson and Jozdani, 2018), (Drăguţ et al., 2014). Automatic approaches are
divided into supervised and unsupervised methods (Wang et al., 2019), (Clinton et al., 2010), (Liu et al., 2012)- (Grybas et al., 2017).

Supervised methods measure the arithmetic or geometric similarity or overlap between segmented and reference objects. Methods
used include Euclidean distance (ED2 and ED3) (Witharana and Civco, 2014), adjustment equation (Ma et al., 2015), and fuzzy logic
(Yan et al., 2019) to compute segmentation metrics. In addition, the under-segmentation and over-segmentation metrics were used
(Bialas et al., 2019) to determine the optimal segmentation parameters. These methods are subjective and produce results that vary
by interpreter but are widely used (Liu et al., 2017).

Unsupervised methods rely on statistical and mathematical measures to determine the quality of segmentation results (Wang et
al., 2019). These measures maximize intra-segment homogeneity and inter-segment heterogeneity by satisfying predetermined condi-
tions (Johnson and Jozdani, 2018). Table 1 below summarizes the methods used in this category.

It is essential to note that most of the methods for determining the optimal scale or scale range for segmentation are based on local
variance, ROCLV, local variance ratio (LVR), average local variance (AVL), variograms, and semi-variograms. Furthermore, only one
scale can be used for segmentation (Zhang et al., 2009), (Hamedianfar and Gibril, 2019), especially for homogeneous areas, and in
most cases, multi-scale image segmentation is performed.

Other interesting remarks are that the methods for determining the segmentation parameters are based on a posteriori evaluation
of the multi-scale segmentation rather than the pre-estimation of optimal scale parameters. To this end, Ming et al. (2015) applied
spectral and geospatial statistical methods to cluster-based pattern recognition using spatial and spectral bandwidths and fusion
thresholds, relying on ALV. Liu et al. (2017) used ALV and ROCLV for posterior methods. Meanwhile, Louw and van Niekerk (Louw
and Van Niekerk, 2018). extended ALV to object boundary local variance (OBLV) to measure topographic changes and decide
whether object boundaries intersect morphological discontinuities and LVR, assuming that topographical differences throughout
morphological boundaries will be more pronounced than changes within landform components. In addition, Qiu et al. (2016) pro-
posed a method combining adaptive pre-estimation of scale parameters based on spatial statistics and mean shift segmentation. Ming
et al. (2016) used an adaptive pre-estimation method of optimal scaling parameters based on spatial statistics for cropland extraction,
and the results confirmed the method's effectiveness. More recently, Xu et al. (2019) extracted cropland from remotely sensed images
using stratified pre-estimation of segmentation parameters.

Table 1
Different unsupervised methods used for determining optimal segmentation parameters.

Methods References

Local variance (LV). (Hay et al., 2001) (Kim et al., 2008; Drăguţ et al., 2009,
2010; Karl and Maurer, 2010), (Drăguţ et al., 2014)

Global score (GS). (Johnson and Xie, 2011), (Böck et al., 2017)
Overall goodness (OG). Johnson et al. (2015)
Global objective function based on the spatial autocorrelation of the Moran index and variance. Espindola et al. (2006)
Estimation Scale Parameters (ESP) tool and ESP2 (Drăguţ et al., 2010), (Drăguţ et al., 2014)
Estimation of optimal segmentation parameters in two stages of global and local evaluation, using

Moran's weighted variance and Moran's I-index, respectively, and local heterogeneity statistics.
Johnson and Xie (2011)

Weighted sum of intra-segment homogeneity and inter-segment heterogeneity. Zhang et al. (2012)
Classical semi-variogram method. Ming et al. (2012)
Modified rates of change of local variance (ROCLV) method. Zhao et al. (2012)
Local-scale parameter (SP) optimization procedure by substituting Moran's I-index with Geary's index. Cánovas-García and Alonso-Sarría (2015)
Energy function method to improve the intra-segment homogeneity, calculated using the average

spectral angle in a segment.
Yang et al. (2015a)

Unsupervised scale parameter optimization method and tool (USPO) by measuring intra-segment
homogeneity using area-weighted variance (WV) and inter-segment heterogeneity employing overall
Moran's I.

Johnson et al. (2015)

The robust Taguchi statistical process combined with the objective function proposed by Espindola et
al. (Espindola et al., 2006).

(Hamedianfar and Gibril, 2019), (Tonbul and kavzoglu,
2020)
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Regarding the criteria used, the existing literature mainly uses homogeneity measures, marginalizing the contribution of hetero-
geneity measures (Wang et al., 2019). Some criteria for homogeneity and heterogeneity measurements are a spectrum, color, shape,
size, texture, context, and spectral angle (Shen et al., 2019; Louw and Van Niekerk, 2018; Dey et al., 2010). In contrast, several re-
searchers use both homogeneity and heterogeneity measures, such as Espindola et al. (2006), Tian and Chen (Tian. and Chen, 2007),
Kim et al. (2008), He et al. (2009), Corcoran et al. (2010), Johnson and Xie (2011), Ming et al. (2015), Chen et al. (Wang et al., 2019),
and Zhang et al. (2020b).

3.2. Advances/Novel methods for optimal segmentation parameters selection
Trends in determining scaling parameters are local approaches, such as adaptive scaling and scaling by geographic objects (Hu et

al., 2017; Su, 2019). The idea for object-specific optimization started with Felzenszwalb and Huttenlocher in 2004 (Felzenszwalb and
Huttenlocher, 2004), followed by Akçay and Aksoy (2008) with unsatisfactory results. Moreover, Yi et al. (2012) also studied scale
synthesis methods. As Zhang and Du (2016). they mentioned two methods; the first is based on local adjustment called structure-
specific local optimization strategy (Yang et al., 2015a), (Su, 2019), (Zhou et al., 2017)- (Xiao et al., 2018), and the second is to seg-
ment the image into different regions and then use a global evaluation metric to find the optimal segmentation scale for every region
(Zhang et al., 2020b), (Kavzoglu et al., 2017)- (Georganos et al., 2018). Shen et al. (2019) showed that scaling parameters must be
adapted for different areas or land covers. Zhang et al. (2020b) conducted a study to find the optimal segmentation scale for each geo-
graphic object by exploiting the variation in the homogeneity of each segment between neighboring segmentation scales; the result is
a set of minimum and maximum segmentation scales, which improves the segmentation quality by considering coarse and fine ob-
jects. In addition, Wang et al. (2019) used an unsupervised approach to select segmentation parameters using within-segment homo-
geneity (WSH), between-segment heterogeneity (BSH), and F-measure; and implying common boundaries between each segment and
its neighbors; this approach could not determine the optimal scale. More recently, Wang et al. (2022) used variational scaling seg-
mentation based on spectral indices and local spatial statistics to determine the optimal scales and represent different geographical
objects. They also developed a watershed transformation based on a scalable evolutionary watershed method. Moreover, several re-
search papers have used adaptive scaling parameter calculation (Liu et al., 2017), (Yang et al., 2014)- (Chini et al., 2014). More
specifically, they use physical image parcels (PIPs), whose scale parameters gradually change and whose spectral homogeneity de-
creases until they become similar to semantic image objects (SIOs) by adapting to real-world objects in the image. Liu et al. (2018)
pointed out that solutions are needed to adaptively compute appropriate scaling parameters to describe heterogeneous and homoge-
neous ranges of adjacent pixels in spatial and spectral space for simultaneous segmentation.

In addition to these two approaches, a general approach for estimating appropriate scaling parameters is often employed. Johnson
and Jozdani (2018). were performed a meta-analysis and mathematical modeling via a nonlinear regression tree (RT) to determine
the segmentation parameters, especially scale. This approach yielded beneficial results for all land cover classes except the “water”
class.

However, we concluded that some studies perform segmentation without directly performing parameterization and intensive
computations (Witharana and Lynch, 2016), (Martha et al., 2010)- (Jozdani et al., 2018), and often segmentation is combined with
classification (Son et al., 2014), (Troya-Galvis et al., 2017)- (Zanotta et al., 2018), (Chini et al., 2014).

4. Segmentation methods and tools
Segmentation divides an image into uniform segments or regions, named segments, objects, or regions (El-naggar, 2018). Segmen-

tation approaches, methods, techniques, and algorithms have been classified into various groups in previous studies, namely, color-or
spectrum-based and texture-based algorithms (Guo et al., 2005). Segmentation methods are classified into different categories: first,
there are four most common ones, namely (i) edge-based algorithms, (ii) point/pixel-based algorithms, (iii) region-based algorithms,
and (iv) hybrid approaches (Dey et al., 2010). In another perception, bottom-up approaches combine pixels or groups of pixels into
objects, while top-down approaches divide the whole image into objects based on heterogeneity criteria (Dey et al., 2010), (Benz et
al., 2004). Furthermore, the three conventional segmentation approaches in previous work are (i) pixel-based, (ii) edge-based, and
(iii) region-based segmentation methods (Blaschke et al., 2014). Spectrum-based (Fig. 3) and region-based methods include several
other methods or sub-methods (Tilton et al., 2015). There are further categorizations into supervised and unsupervised methods (Ma
et al., 2017), and unsupervised methods can be divided into edge-based, region-based algorithms, and hybrid approaches (Hossain
and Chen, 2019). These unsupervised methods can be divided into spectral, regional, hybrid, and semantic approaches (Kotaridis and
Lazaridou, 2021). Furthermore, segmentation is based on the properties of the satellite image, i.e., texture, color or brightness, con-
text, and geometry (Sun et al., 2021). According to Wang et al. (2022), these properties allow segmentation methods to fall into four
categories: thresholds or feature groups, edge detection, region growth or extraction, and iterative pixel classification. Alternatively,
image segmentation algorithms can belong to two or more categories.

The choice of the segmentation method depends on several criteria, such as image type, tools used, research objectives, and over-
coming some challenges related to own study. Fig. 2 presents our categorization scheme of the methods. For simplicity, the concep-
tual details of these techniques are clarified, and mathematical details are evaded.

4.1. Spectrum-based methods
Spectrum-based methods serve as effective segmentation techniques. Leveraging the spectral information present in the data,

these methods enable the partitioning of the image into distinct regions.
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Fig. 2. Classification/categorization of segmentation methods adopted in this literature review.

Fig. 3. Spectrum-based methods representative scheme.

4.2. Space based methods
Space-based segmentation methods rely on the assumption that neighboring pixels or regions that are spatially close to each other

are more likely to belong to the same object or class. These methods (Figs. 4 and 5) typically use some measure of spatial similarity or
distance between pixels or regions as a criterion for grouping them. Overall, space-based segmentation methods leverage spatial rela-
tionships between pixels or regions to guide the segmentation process and are widely used in remote sensing and other image analysis
applications.

4.2.1. Edge-based approach
Edge-based approaches have emerged as a promising technique to enhance segmentation accuracy and efficiency. By focusing on

detecting and utilizing edge information within an image, these methods enable the identification of object boundaries and finer de-
tails, contributing to a more precise and contextually aware segmentation process
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Fig. 4. Edge-based methods representative scheme (Carleer et al., 2005; Gonçalves et al., 2012).

Fig. 5. Merge-division based segmentation methods representative scheme.

4.2.2. Region-based approaches
4.2.2.1. Merge-division based segmentation. Merge-division based segmentation is used to partition an image into coherent regions or
objects. This technique combines merging and dividing regions iteratively to achieve a more refined segmentation result.
4.2.2.2. Segmentation based on region growth. Regarding to Fig. 6 and to overcome the problems encountered with region growth,
multiresolution segmentation (MRS) emerged (Baatz et al., 2000a, 2000b). It is based on the Fractal Net Evolution Approach (FNEA)
(Table 2), a hierarchical region fusion segmentation. It is a bottom-up approach, starting with a unique pixel. It also includes a hier-
archical relationship between various levels; each coarser level receives entry from the finer level; when an object is determined as
the coarser level, it repeats its representativeness at each finer level, which is considered similitude (Ming et al., 2015), (Hossain and
Chen, 2019), (El-naggar, 2018). SRM groups data in pairs using local homogeneity criteria (Louw and Van Niekerk, 2018).

Furthermore, multi-scale segmentation strategies remain popular in inter-object heterogeneity, with large-scale segmentations
suitable for distinguishing large objects, while small scales are for small objects (Benz et al., 2004). This approach is most employed to
produce multi-scale segmentation by setting different thresholds (Zhang et al., 2020b). The MRS approach is complex but can yield
promising results if implemented correctly, especially when dealing with large-scale difficulties (Dey et al., 2010). Also, the multi-
scale concept can be combined with any other segmentation approach or method. Xi et al. (2019) proposed an effective spatio-



Remote Sensing Applications: Society and Environment 32 (2023) 101031

8

B. Ez-zahouani et al.

Fig. 6. Region growth segmentation methods representative scheme.

temporal multiresolution segmentation (ST-MRS) method that uses a new spatiotemporal model (ST) as a new spatiotemporal unit.
This way, existing single-time MRS methods can be extended to the spatiotemporal domain to partition satellite image time series
(SITS) into relatively uniform ST-cubes. Zhang et al. (2020b) used segmentation based on multi-scale hierarchical region fusion and
developed coarse and fine fusion strategies to generate the final optimized segmentation. Yan et al. (2019) used a multifunctional
composite segmentation method based on enhanced fast scan algorithm merging (FSAM), spectral, shape, and local and global texture
heterogeneity computation with promising results.

Region merging can be performed by MRS and other popular algorithms, such as mean shift (MS). It is a robust and adaptive non-
parametric density estimation clustering algorithm, where image segmentation is done by clustering the spatially and spectrally clos-
est pixels. It is designed to analyze complex spaces (Lourenço et al., 2021), with the advantages of specific scaling parameters and hi-
erarchical relationships between segmentation levels. Also, hierarchical stepwise optimization (HSWO) is a clustering method that
initiates with a single data point and decreases clusters number by fusing. In contrast, the recursive hierarchical segmentation method
(RHseg) represents an improvement result of HSWO.

Regarding to methods, MRS, Mean Shift, and Simple Linear Iterative Clustering (SLIC) are popular segmentation methods in re-
mote sensing, each offering distinct characteristics and performance attributes. MRS is widely used and stands out for its adaptability
and ability to handle complex landscapes, adjusting adaptively the segmentation scale to produce homogeneous regions and ensuring
spatial coherence in segmented objects, it is known also for its ability to handle images with varying spatial resolutions and complex
landscapes (Baatz et al., 2000a, 2000b). On the other hand, Mean Shift (Ming et al., 2012), (Karl and Maurer, 2010) is a non-
parametric clustering algorithm, that excels in identifying spatially cohesive regions with irregular shapes and varying densities, mak-
ing it suitable for object extraction in cluttered scenes, it also offers robustness against noise. However, its computational cost and pa-
rameter tuning requirements should be considered, especially for large datasets (Lourenço et al., 2021). SLIC, a superpixel-based
method, strikes a balance between accuracy and efficiency, generating regular and compact superpixels of uniform size; it combines
the advantages of both superpixel and clustering techniques (Zhang et al., 2019a, b, c). This makes SLIC beneficial for region-level
analysis and processing of large datasets. Ultimately, the choice among these segmentation methods should be driven by the specific
requirements of the remote sensing application, dataset characteristics, and the desired trade-offs between accuracy, computational
efficiency, and adaptability (Csillik, 2017).
4.2.2.3. Graph-based algorithms. The process is viewed as a graph dividing issue, where nodes illustrate single pixels or regions,
and edges join spatially neighboring vertices. Edges weights represent the (dis)similarity between adjacent pixels/regions con-
nected using edges (Dezsős et al., 2012). Then, the main concept is to identify subgraphs correlating to the image scene regions
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Table 2
Different categories of image segmentation methods, their sub-methods, and algorithms.

Methods Sub-methods Algorithms References

Space-based Edge-based Watershed Transform. (Li and Xiao, 2007), (Yang et al., 2017a)
Morphological profiles based. Lv et al. (2014)
Edge-constrained. Susan et al. (2012)
Marker. Gaetano et al. (2015)
Edge-embedded. Li et al. (2010)
Grey Level Co-occurrence Matrix (GLCM). Na et al. (2021b)
Optimal edge detector. Ma and Manjunath (2000)
Hierarchical. Guimarães et al. (2012)
Hierarchical Watershed (HW). Zhao and Popescu (2007)

Graph-based Seeded. (Jain Preetha et al., 2012), (Jain et al., 1995)
Mean shift (MS). (Ming et al., 2012), (Karl and Maurer, 2010)
Region Adjacency Graph (RAG). (Zhang et al., 2015a), (Zhang et al., 2017b)
Statistical sorting. Hossain and Chen (2019)
Multiple features. Liu et al. (2021)
Structural constraints. Wang et al. (2017)
Scale-space filtering. Tzotsos et al. (2011)

Region merging Spectral variance difference. Chen et al. (2015)
Hierarchical Multiple Markov Chain. Scarpa et al. (2009)
Hierarchical Split Merge Refinement. Wuest and Zhang (2009)
Tree-Structured Markov Random Field (TS-
MRF).

D'Elia et al. (2003)

Texture Fragmentation and Reconstruction
(TFR).

Gaetano et al. (2009)

Recursive-TFR (R-TFR). Scarpa et al. (2012)
Hybrid

segmentation
Region Based, Watershed Algorithms. Hanbury (2008)
Quatree, Merging region growing algorithm
spectral.

Ventura et al. (2022)

Spectral Angle (SA), Watershed
Transformation (WT), and RAG.

Zhang et al. (2019b)

WT, Average constrat maximization. Ciecholewski (2017)
WT, threshold-based region merging. Yang et al. (2017b)
FNEA, WT. (Liu, 2018), (Baatz, 2000)
WT, heterogeneity-change-based merging. Chen et al. (2014)
Gravitational field-based segmentation,
hierarchical region merging.

Zhang et al. (2017c)

Edison operator, FNEA, ant colony
optimization.

Chen et al. (2022)

R-tree, RAG. Hu et al. (2016)
Quadtree, RAG. Fu et al. (2013)
Canny edge detector, boundary adjustment,
MRS.

Zhang et al. (2008b)

Morphological information, region merging. Liu et al. (2015)
Gradient, WT, and region merging. Castilla et al. (2008)
Region merging, region splitting. Jain Preetha et al. (2016)
WT, RAG, NNG, and objective heterogeneity
and relative homogeneity (OHRH) for region
merging.

Tzotsos et al. (2018)

WT, objective heterogeneity (OH) for region
merging.

Yang et al. (2017b)

WT, Full Lambda-Schedule algorithm (FLSA). Tzotsos et al. (2018)
Random Forest (RF), region merging. Su et al. (2020)
Hierarchical split and merge rule (HSMR),
fuzzy logic.

Wuest and Zhang (2009)

Statistical region fusion (SRM), minimum
heterogeneity rule (MHR) for object fusion.

Zhang et al. (2017c)

Dynamic hierarchical classifier (DHC)
combine TS-MRF and R-TFR.

Mikes et al. (2015)

Semantic
segmentation

Machine
Learning

RF, SVM, k-NN, K-means, CRF, DT, AdaBoost
BN …

(Su et al., 2020), (Bialas et al., 2019), (Du et al., 2015), (Huang and Zhang,
2013)

DL:
Convolutional
Neural
Network (CNN)

AlexNet, ImageNet, VGGNet and their
versions, GoogLeNet, ResNet, DenseNet,
ShuffleNet, StixelNET, DeconvNet, MAP, R–
CCN, ResNet, ZFNet …

(Zhao et al., 2017), (Punitha and Sutha, 2019), (Neupane et al., 2021),
(Yuan et al., 2021), (Ma et al., 2019), (Zhu et al., 2019), (Paisitkriangkrai et
al., 2015), (Borba et al., 2021), (Zang et al., 2021), (Zhang et al., 2018), (He
et al., 2017), (Kemker et al., 2018), (Zhao et al., 2017)

(continued on next page)
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Table 2 (continued)

Methods Sub-methods Algorithms References

DL:Fully
Convolutional
Network (FCN)

U-Net, SegNet, DeepLab and their versions,
FCN and their versions, VGG and their
versions, Fast-FCN …

(Zhang et al., 2020a), (Neupane et al., 2021), (Yuan et al., 2021), (Ma et al.,
2019), (Zhu et al., 2019), (Borba et al., 2021), (Zang et al., 2021), (Pastorino
et al., 2022), (Deng, 2019)

in this graph. Two algorithms were successfully applied to RS applications: (1) optimal forests and (2) normalized cuts. The grow-
ing interest in image segmentation using graph-based algorithms makes it a powerful tool (Wang et al., 2018b). Graph-based al-
gorithms encounter first-order dependencies when pixels have the same distinction as adjacent regions and second-order depen-
dencies when pixels have the same measure of variation in multiple regions. Well-performing algorithms include effective graph-
based Felsenzwalb image segmentation, optimal forest coverage, and normalized cuts (Felzenszwalb and Huttenlocher, 2004).
These algorithms raise the amount of data to be treated (several edges per pixel). Nevertheless, they are still useful tools, popular
for their ability to visualize global features. In addition to being computationally complex, this limits their implementation in
practical applications.

4.2.3. Other space-based models/algorithms
In addition to the space-based models and techniques already discussed above, Markov Random Field and the Fuzzy Model are

also worth mentioning:
⁃ The Markov Random Field (MRF) model is an unsupervised segmentation approach that considers spatial context, texture, and

prior knowledge of interest for image modeling. See Li's book (Li, 2009) for details. Previous studies have used MRF as a
segmentation model with promising results (Grinias et al., 2016), (Sarkar et al., 2002)- (Zhang et al., 2017b) (Jung et al., 2005).
Nevertheless, mathematical formulas and high computing intricacy are the main disadvantages.

⁃ The Fuzzy Model adds fuzzy boundaries to objects. It is derived from fuzzy clustering and fuzzy thresholding methods (Lizarazo,
2012). It is possible and easy to associate fuzzy models with most existing models, such as fuzzy MRF and fuzzy neural models or
histogram thresholding (Dey et al., 2010). The decision to incorporate fuzzy models depends on the obtainable degree of
segmentation complexity, and its advantage is ambiguity resolution.

4.3. Hybrid methods
Hybrid segmentation (HS) has been the subject of several works (Table 2), including using two or three segmentation methods (Su

et al., 2020). It considers boundary and region information (Tzotsos et al., 2018). HS combines initial segmentation and subsequent
region merging has recently received increasing (Hossain and Chen, 2019; Hanbury, 2008). Among other segmentation algorithms,
the MRS algorithm is the most requested for HS (Johnson and Jozdani, 2018). It stems from several practical needs. First, consider
that edge-based methods can accurately identify segment edges but often have difficulty closing them; region-based methods create
closed segments but often find it challenging to delineate segment boundaries accurately (Hossain and Chen, 2019). However, HS
methods overcome these limitations by combining these forces to find segment edges by employing edge-based methods and growing
closed segments by region-based methods (Wang et al., 2018a; Yang et al., 2017b). For the HS approach, Chen et al. (2014) and
Johnson and Xie (2011) suggested using local parameters and equally considering intra-segment homogeneity and inter-segment het-
erogeneity criteria. However, existing HS algorithms face some limitations, such as they usually employ a unique global parameter to
supervise the region merging procedure, which limits the excellent quality of adjustment between segments and geo-objects, as ho-
mogeneous and heterogeneous segments are considered in the same way (Yang et al., 2017b) challenging to implement. HS provides
better results than other approaches, uses local and global homogeneity criteria, eliminates noise effects, and has efficient seed selec-
tion.

4.4. Semantic segmentation
It is a supervised learning approach that consists in assigning each pixel a class label of its encompassing image object, assigned by

ML using a set of algorithms, namely: MRF, Bayesian Network (BN), Neural Networks (NN), Nearest Neighbors (k-NN), Support Vec-
tor Machine (SVM), Active Support Vector Machine (aSVM), Decision Tree (DT), and Random Forest (RF). Deep learning improves
segmentation performance, a promising approach for unsupervised image segmentation due to its ability to integrate neighborhood
relationships (Neupane et al., 2021), (Wahbi et al., 2023). Especially convolutional neural networks (CNNs) (Wang et al., 2015) and
fully connected networks (FCNs) have achieved remarkable results in multiple domains, as have conditional random fields (CRFs) for
smooth region labeling (Paisitkriangkrai et al., 2015). Also, multiscale semantic segmentation has been implemented to address crop-
ping issues in VHR images. However, it has some limitations, such as DL models usually require setting many parameters, which may
lead to non-essential details in some image objects, provide results on low spatial resolution, and to a large extent, it is necessary to
split the image into several fractions to analyze it. Moreover, blurring class boundaries and reducing object details are complex tasks.
Besides FCN and CNN approaches and their derivatives, the “Segment Anything Model” (SAM) is a deep learning image segmentation
model in planetary data that outperforms previous approaches. SAM was trained in 2023 in a high-quality dataset of millions of im-
ages and billions of masks, significantly larger than previous databases. It is a shape detector that focuses on circular/elliptical shapes;
SAM has enormous potential as a crater detection algorithm (CDAs) and as a planetary tool for pattern recognition in general and
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craters in particular. For other uses and terrestrial observations, transfer learning can be successfully applied to exploit the strength of
SAM (Giannakis et al., 2023). For further information on semantic methods, see reviews by Yuan et al. (2021), Ma et al. (2019).

4.5. Tools
Compared to segmentation tools, based on analysis by Kotaridis and Lazaridou (2021) in 65% of cases studies, the most used soft-

ware was eCognition; this is consistent with the findings of Ma et al. (2017); among the 254 cases studied, eCognition was also used in
about 81% of cases, ENVI was used in about 4%, and the other software was mainly SPRING and ERDAS. OTB/Monteverdi and Ar-
cGIS with MSS segmentation algorithm proved good software. Lourenço et al. (2021) showed that open source software could be used
to analyze VHR images like proprietary software, such as open source software OTB/Monteverdi is an excellent and cheap classifica-
tion option. The emergence of a new R package named SegOptim combines various segmentation algorithms, including open source
and proprietary software (GRASS GIS, Orfeo Toolbox, RSGISLib, SAGA GIS, TerraLib, ESRI ArcGIS) (Gonçalves et al., 2019). Table 3
lists some segmentation software, algorithm types, and availability.

5. Optimization, extraction and reduction feature of segmentation parameters
5.1. Optimization of segmentation parameters

This step could be attached to the deterministic part of the segmentation parameters or as the continuation of the method part
since it precedes the final segmentation. It aims to 1) improve the accuracy of the results and 2) determine the optimal and appropri-
ate parameters for segmentation. Several works have optimized segmentation parameters; Table 4 below lists the methods.

Furthermore, different combination strategies lead to different parameter optimization results. Several consulted papers prove
that no single combination strategy is the best for getting suitable segmentation parameters in all cases. Therefore, the study of new
combination strategies and appropriate selection methods in a specific application is also desired and a vital topic for the future
(Wang et al., 2019). In this regard, future work should focus on improving object-specific optimization measures from two considera-
tions: (1) design optimization measures to eliminate scale range limitations; (2) design class-specific optimization measures to opti-
mize segmentation for every land use category (Zhang et al., 2020b); (3) and design a computational approach in an application or
software, and general scope that optimizes the segmentation results of multiple algorithms.

5.2. Feature extraction
Image features are bridges connecting objects to semantic categories (Du et al., 2015) and are employed in training classification

algorithms, with features serving as explicative variables (Kucharczyk et al., 2020). There are different features: global and local or
visual and size, i.e., texture, spectrum, shape, size, context, and geometry (Grinias et al., 2016), (Dey et al., 2010). Furthermore, the
characteristics of geographic objects for SITS analysis are spatiotemporal heterogeneity, spatiotemporal correlation, and scale charac-

Table 3
Different methods of segmentation and their availability in the most used software.

Tools/Software Algorithms types Availability References

OTB/Monteverdi (ORFEO) Region and edge
base, pixel based.

Open sources Toolbox (2014)

SCRM Based on regions and
edges.

Castilla et al. (2008)
InterIMAGE Costa et al. (2010)
SAGA GIS Böhner et al. (2006)
GRASS GIS GRASS (2014)
SPRING Spring-DPI (2019)
TerraLib Region based. Gonçalves et al. (2019)
RSGISLib RSGISLib (2021)
eCognition Region and edge

base, pixel based.
Commercial eCognition (2013)

ENVI Edge based. ENVI (2022)
IDRISSI Gonçalves et al. (2019)
ERDAS Imagine Li and Xiao (2007)
PCI Region based. PCI Geomatica (2022)
ArcGIS Pro (2021)
InterSeg Happ et al. (2016)
BerkeleyImgseg Region-growing,

region-merging
Imageseg. (2022) (2022)

SEGEN Region-growing,
region-based

Gofman (2006)

RHSeg Region-growing,
spectral clustering

Open sources and commercial
implemented in package

Gonçalves et al. (2019)

NumPy, SciPy, Scikit-Image, Open CV, Pillow/PIL, SimpleITK, Matplotlib,
Pgmagick.

Machine Learning
algorithms

Open sources and commercial Sosa-Rey et al. (2022)

Torch/PyTorch, Caffe2, CNNDroid, TensorFlow, Keras, MXNet, Microsoft
Cognitive Toolkit, Theano, ONNX, DL4J, CoreML, Snapdragon,
DeepLearningKit

Deep Learning
architecture

(Mohammad et al.,
2022), (Deng, 2019)

https://numpy.org/
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Table 4
Different methods used for the optimization of segmentation parameters.

Methods of optimization References

Discrete Markov Random Field (MRF) optimization Grinias et al. (2016)
Genetic algorithms (Gonçalves et al., 2019), (Nikfar

et al., 2012)
Fuzzy logic Wuest and Zhang (2009)
Iterative optimization Wang et al. (2021)
Combination of optimization techniques based on statistical Taguchi technique and F-score segmentation quality metric Hamedianfar and Gibril (2019)
Object-specific optimization method for multi-scale hierarchical segmentation based on the binary partition tree (BPT) model Zhang et al. (2020b)
Espindola et al. method Espindola et al. (2006)
Optimization approach based on region fusion image segmentation error detection and correction approach, using iterative

optimization model, fusion criteria, and region ownership conflict (ROC)
Wang et al. (2021)

Adaptive parameter optimization for multi-scale segmentation Shen et al. (2019)
An unsupervised multiscale optimization method is based on an optimization indicator of local peak (LP) and global

segmentation results, while local sub-segmentation regions are refined after isolation
Xiao et al. (2018)

Multi-resolution segmentation (MRS) with statistical region fusion and minimum heterogeneity rule (MHR) Li et al. (2008)
Graph-based segmentation with MRS Gu et al. (2018)
Novel energy function Yang et al. (2015b)
Mean shift with spectral and spatial statistics for scale selection Yang et al. (2014)
Regression tree model with generalizable scale parameters and SRM Jozdani et al. (2018)
Spatial autocorrelation for scale selection and SRM Johnson and Xie (2011)
Classification driven approach for scale selection Dronova et al. (2012)
An adaptive approach for scale selection Zhang et al. (2017b)
Hybrid metaheuristics approach for parameter tunnig Quirita et al. (2016)

teristics (Xi et al., 2019). In general, features are attributes in the GIS language that can be computed from various images. There are
other composite features such as Histogram of Oriented Gradients (HOG) features and their extensions, Bag of Words (BoW) features,
Sparse Representation (SR) based features, and Haar-type features (Cheng and Han, 2016).

Features are used in a complementary way. Shape and size measurements are often used, referring to a multi-scale/multi-
resolution image segmentation approach to delineating complex objects well (Dey et al., 2010). Moreover, it is often used in joining
with spectral and texture measurements, not to mention the spatial context that defines a pixel's relationship to its neighborhood.
However, few methods use context-based segmentation; otherwise, context-based segmentation and classification usually go through
Markov random field. Besides, it is essential to note that geometric and texture features are more important for classification than
spectral features (Du et al., 2015).

Feature extraction can be performed using filters, such as the Gabor filter (Sirmaçek and Ünsalan, 2010), which allows the ex-
traction of local feature points. After extraction, facultative processes may be conducted to enhance the feature's performance and
appearance, first fusion, then reduction, and in some cases, selection (Cheng and Han, 2016). Linear vector concatenation is a simple
and largely used feature fusion technique. Some nonlinear feature fusion techniques have also been used, like heterogeneous feature
machines (HFM) and the sparse multimodal learning (SMML) approach (Cheng and Han, 2016). Also, normalization is necessary to
overcome bias due to scale differences.

5.3. Feature reduction
Considering the generated object's characteristics leads to process complexity, long processing time, and increased computation.

Additionally, redundant features make noise, reducing classification accuracy (Lu and Weng, 2007). All these hinder the transferabil-
ity of OBIA rulesets to diverse study areas and fields and require feature selection and reduction methods.

Reducing the feature space represents a way to identify and localize the most influential and essential features instead of the
whole (Pedergnana et al., 2013). The reduction techniques maximize separating distances between classes by minimizing the number
of input features. Supervised, semi-supervised and unsupervised methods are used for feature selection (Table 5).

Regarding metaheuristic FS techniques, Schiezaro and Pedrini (2013) mentioned that feature selection using artificial bee colony
(FS ABC) performed higher than particle swarm optimization, ant colony optimization, and genetic algorithm. Furthermore, Hamedi-
anfar et al. (Hamedianfar and Gibril, 2019) found that the same technique outperformed Chi-Square, SVM-REF, VSURF, Boruta, ge-
netic algorithm, and Correlation-based feature selection.

Comparing these methods, the most commonly used are feature space optimization (FSO), Jeffreys-Matusita distance, CTA, RF,
CART, CFS, DT distance, and Wrapper (Ma et al., 2017). Nevertheless, it is possible to use manually identified features and their com-
binations for further classification. So, ML methods have become famous for feature space reduction, and some researchers are reduc-
ing features using the most advantageous non-parametric ML solutions. Despite so many methods, Ma et al. (2017) observed that just
22% of research studies used space reduction, and eCognition's FSO is one of the most widely used methods. Chen et al. (2018)
recorded that no consensus exists in the GEOBIA community on reducing feature space. Also, it recorded that feature space reduction
can be built into a classifier. Finally, feature reduction involves selecting the most relevant features. In contrast, selection allows fea-
tures or feature combinations to be ordered by importance.
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Table 5
Most used methods for reduction features of segmented objects.

Approaches Methods References

Unsupervised feature selection Principal component analysis (PCA) Chen et al. (2015)
Minimum noise fraction (MNF) Chen et al. (2015)
Particle swarm optimization (PSO) a Alizadeh Naeini et al. (2018)

Supervised feature selection RF Duro et al. (2012)
Classification and regression trees (CART) Shahi et al. (2017)
Classification tree analysis (CTA) Shahi et al. (2017)
Chi-square Shahi et al. (2017)
Correlation-based feature selection (CFS) Ma et al. (2015)
SVM with recursive feature removal (SVM-RFE) Huang and Zhang (2013)
Boruta Li et al. (2017)
Variable selection using RF (VSURF) Georganos et al. (2018)
Genetic algorithm (GA) Shi et al. (2018)
Partial least squares Kembhavi et al. (2011)
Linear Discriminant Analysis (LDA) Hariharan et al. (2012)
Ficher Discriminant Analysis Sugiyama (2007)
Feature space optimization (FSO) Ma et al. (2017)
Jeffreys-Matusita distance (JM) Ma et al. (2017)
Winnowing and minimum relevance maximum redundancy (mRMR) Ma et al. (2017)

Unsupervised/Supervised feature selection Artificial bee colony (ABC) optimization techniquea Belgiu and Drăguţ (2016)
DT distance Ma et al. (2017)
Wrapper Ma et al. (2017)

Semi-supervised feature selection Ant colony optimization (ACO)a Al-Ruzouq et al. (2018)
a Metaheuristic FS techniques.

6. Evaluation of the segmentation quality
Generally, the segmentation results will encounter over-segmentation (OS) and under-segmentation (US) anomalies. OS occurs

when the image is divided into segments whose area is smaller than the segmented object, while the US is the opposite (El-naggar,
2018).

In addition to time-consuming, subjective visual interpretation with reproducible results (Van Coillie et al., 2014) and application-
based indirect evaluation (Li and Xiao, 2007), qualitative evaluation of segmentation results is done by supervised and unsupervised
(Fig. 7, Table 6) and geometric and non-geometric approaches (Costa et al., 2018).

Recently, the research on metrics has taken a new and more intensified dimension. Costa et al., [2018] (Costa et al., 2018) evalu-
ated image segmentation accuracy and quality in coverage mapping applications and reviewed supervised methods and 66 metrics.
Jozdani and Chen (2020). compared 21 metrics for evaluating the segmentation of buildings of different shapes.

To clarify the supervised approach, reviews from Clinton et al. (2010), Räsänen et al. (2013), Whiteside et al. (2014), (Montaghi et
al., 2013), Costa et al. (2018), and Jozdani and Chen (2020) compared dozens of metrics. These reviews are beneficial for exploring
image segmentation accuracy aspects and quality evaluation. On this basis, the following lessons were learned:
⁃ There are no tested metrics to track the changes a segment undergoes across various segmentation processes. These metrics only

assess the quality of the final segmentation, presenting errors or inaccuracies in the outcomes. It is highly recommended to
establish metrics that store segments' information and integrate this into the computational process (Jozdani and Chen, 2020).

Fig. 7. Difference between supervised and unsupervised approaches for evaluating segmentation quality (Dekavalla and Argialas, 2018; Zheng et al., 2020).
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Table 6
Most used metrics for evaluating segmentation quality.

Approaches Metrics used References

Unsupervised
methods

Fuzzy classifiers. Yang et al. (2017a)
ESP tool. Drăguţ et al. (2014)
GS. Cheng and Han (2016)

Supervised methods Purity Index (PI). Van Coillie et al. (2014)
Segmentation Evaluation Index (SEI). Yang et al. (2015b)
Potential Segmentation Error (PSE). (Liu et al., 2012), (Yang et al., 2015b)
Number of Segments Ratio (NSR). (Liu et al., 2012), (Yang et al., 2015b)
Bilateral Overlap Index. (Zhang et al., 2017a),
OS. (Costa et al., 2018), (Clinton et al., 2010), (Johnson and Jozdani, 2018), (Su and Zhang,

2017)
US. (Costa et al., 2018), (Clinton et al., 2010), (Johnson and Jozdani, 2018), (Su and Zhang,

2017)
Fitness Function (F). (Tian. and Chen, 2007), (Costa et al., 2008)
ED2 and ED2. (Liu et al., 2012), (Yang et al., 2015b)
D-metric. (Clinton et al., 2010), (Zhang et al., 2015a)
F-measure (F-score). (Zhang et al., 2015b), (Zhang et al., 2020b), (Johnson et al., 2015)
Precision-recall curves. (Zhang et al., 2015b), (Zhang et al., 2018)
Precision and recall to measure US and
OS.

(Johnson et al., 2015), (Tian. and Chen, 2007), (Zhang et al., 2020b)

Geometric-thematic evaluation method Costa et al. (2015)
Area Fit Index (AFI) (Kavzoglu and Tonbul, 2018), (Mohan Vamsee et al., 2017), (Kavzoglu and Tonbul, 2017)
Quality Rate (Qr) (Kavzoglu and Tonbul, 2018), (Mohan Vamsee et al., 2017), (Kavzoglu and Tonbul, 2017)

⁃ Efficient use of ML methods is vigorously desired, especially since ML can share the robustness of supervised and unsupervised
evaluation techniques and determine the most accurate segmentation method (Zhang et al., 2008a). These techniques already
exist but are immature and need to be researched. For this, focusing on more general and intelligent metrics is essential. On this
issue, Jozdani et al. (2018) attempted to (1) create and develop metrics that could account for the variation of unique segments
crossing a reference polygon at different points; and (2) exploit the ability of machine learning algorithms to evolve more flexible,
reliable, and general solutions.

⁃ There are a large variety of metrics that capture US/OS errors, and they are not reliable. However, they can be used to
understand the type of error encountered and to parameterize an algorithm. In some cases, the choice of metrics must best suit the
specifics of the study. For instance, evading the US is higher precedence in some situations since previous research has proven that
OS is not as harmful as the US (Wang et al., 2019), (Johnson and Jozdani, 2018).

⁃ Combining geometric-type evaluation measures based on area and surface and those based on a position can significantly
improve segmentation quality evaluation (Möller et al., 2013). Generally, these methods depend on comparing object geometry,
and reference polygons are the most used (Costa et al., 2018). In this sense, many supervised methods frequently concentrate on
the geometry of the evaluated objects, ignoring that a supervised but non-geometric approach can be applied (Wang et al.,
2004).

⁃ Increase the segmentation evaluation results without assigning equal weights to all sub-segmented regions/classes. This means
that US error methods based on weighted classes can help assess the quality of the segmentation results. Metrics used to evaluate
the segmentation results may not provide a complete picture of the segmentation performance, especially when dealing with
complex scenes or multi-class segmentation. One issue with these metrics is that they treat all sub-segmented regions or classes
equally, which may not accurately reflect the importance or relevance of each class or region in the application context. For
instance, in a land cover classification task, some classes, such as urban areas or water bodies, maybe more critical than other
classes, like grassland or forest. Therefore, giving equal weights to all sub-segmented regions/classes may not accurately reflect the
overall segmentation performance. To address this issue, it is crucial to consider the relative importance of each class or region and
assign weights accordingly.

⁃ Most existing evaluation strategies concentrate exclusively on overall performance evaluation. Nevertheless, these methods
could be more efficient when two segmentation outcomes with a similar global performance show various local error
distributions. Recently, more studies have been turning to local evaluation or validation, focusing on evaluating each areal entity
individually (Costa et al., 2018). Furthermore, quantifying the segmentation error locally and globally is the most optimistic. The
method is relevant and robust, comparing many segmentation algorithms with similar overall performances (Su and Zhang,
2017).

⁃ Although many supervised and unsupervised methods measure segmentation quality, many still consider classification results the
best measure of segmentation quality (Liu and Xia, 2010). However, accurate classification accuracy does not automatically
mention excellent segmentation quality (Wang et al., 2019).

In RS applications, evaluating the accuracy of image segmentation is in a relatively early stage of maturation. Information on as-
sessments against the widespread use of visual interpretation-based qualitative assessments is generally unavailable (Kotaridis and
Lazaridou, 2021). In this sense, Ye et al. (2018) reviewed various works and found that about 16% of them incorporate a method for
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evaluating segmentation accuracy; supervised methods are the most used for segmentation quality assessment, with 38.2% of the
cases examined by Zhang et al. (2014) study. Aside from a few suggestions, no one approach dominates. The choice of an appropriate
method could be more explicit. It is a complex decision requiring consideration of the advantages and disadvantages of possible meth-
ods, like facility use and bias. However, it is essential to note that there is usually no right or incorrect method. The pertinence of
methods depends on their compatibility with the application in question. Moreover, there currently needs to be a standard approach
to relating reference polygons to OBIA polygons; no consensus exists on which segmentation accuracy measures to apply.

7. Discussion and prospects for future research
For determining optimal segmentation parameters, unsupervised methods are objective and repeatable processes (Böck et al.,

2017), efficient and fast (Wang et al., 2019) but still computationally intensive (Johnson and Jozdani, 2018). The most commonly
used methods are VL, weighted variance, ALV, OBLV, spectral angle, and ESP2 tool. Otherwise, all these methods rely on a posteriori
evaluation, while pre-estimating the parameters provides reliable results. Intra-segment homogeneity measures are the most used in
evaluation criteria, while a balance between them and inter-segment heterogeneity measures is vigorously sought. The current trends
for determining optimal segmentation parameters, especially scale, are towards adaptive scaling and scaling by a geographic object
or object-specific optimization using SISs and SIOs. However, a general approach is sought, ombining classification with segmenta-
tion.

Despite all the methods and techniques discussed, determining optimal values of segmentation parameters remains a challenge,
especially since segmentation is always a highly interactive process involving subjective trial and error. According to Kotaridis and
Lazaridou (2021), 50% of analysts use qualitative methods to obtain optimal values for segmentation parameters for their research,
which generates problems later on. In addition, there is no ideal spatial scale for feature analysis and identification. Moreover, all ex-
isting segmentation algorithms treat scale differently. We expect that advances in segmentation-scale processing to generate mean-
ingful image objects will progress rapidly.

It should be noted that it is difficult to portray the heterogeneity of many diverse image objects in complex scenes with a unique
local or global parameter value. Otherwise, future segmentation optimization methods based on individual image objects rather than
larger scales can improve segmentation techniques and results. Recommendations for parameter determination have been reworded
as follows:
⁃ Comparison of future trending methods (object-level optimization) to local and global scale approaches;
⁃ Multi-level hierarchical segmentation for capturing image objects of different sizes and classes is desirable;

Moreover, there is interest in transfer learning (Tuia et al., 2016) and active learning (Persello and Bruzzone, 2012), recognized as
potential methods. Kemker et al. (2018) and Ma et al. (2019) pointed out that further exploration should be made to improve seman-
tic segmentation networks in the future (Zhang et al., 2018), (Zhu et al., 2018). Finally, it is observed that despite the variety of meth-
ods existent, there needs to be more universality of methods or algorithms in various applications (Liu et al., 2017). Although differ-
ent robust segmentation algorithms are emerging, producing wanted segments that correspond to real-world objects is still challeng-
ing. This issue is mainly due to the variation in image features that limits the transferability of segmentation parameters (Johnson and
Jozdani, 2018).

Optimization is a step related to determining of segmentation parameters and segmentation methods. The optimization sugges-
tions are as follows:
⁃ The use of statistical or application-based approaches at the software level to optimize the segmentation parameters is

recommended;
⁃ Future work on improving the object-specific optimization metrics should focus on two key components: (1) designing

optimization metrics to remove the scale range constraints and; (2) developing class-specific optimization metrics to optimize
segmentations for each land cover class;

⁃ Researchers list the limitation of comparison between software-integrated segmentation optimization and new object-scale
approaches (Zhang et al., 2020a).

For the evaluation of segmentation quality, there are various methods. For making an appropriate, suitable, and optimal choice, it
is necessary to establish some criteria, namely: (1) the research study purpose; (2) the relative significance of the US and OS error; and
(3) the advantages and disadvantages of potentials methods (Costa et al., 2018). In addition, several works of literature and compar-
isons have focused on all evaluation methods, including simple and compound methods. From all reviewed studies, D-measure, F-
measure, and ED2 were found to describe over/under-segmentation errors and provide reliable results for assessing segmentation
quality. However, some studies have reported that various methods can show very different segmentation results as optimal (Jozdani
and Chen, 2020; Räsänen et al., 2013).

Moreover, the lessons learned are well articulated in the evaluation section (Section 6). Finally, it should be mentioned that the es-
timated bias in the assessment of image segmentation accuracy is not only due to an inappropriate choice of methods or their poten-
tial shortcomings but also due to the protocol used for implementation, including the baseline data to be acquired, the use of proba-
bilistic sample design, the type of sample (Olofsson et al., 2014), (Costa et al., 2018). These methods are at an early stage of maturity,
so research and comparisons are needed in this direction.

One of the main challenges is that the current segmentation quality assessment which is often based on geometrically definable
objects. While these features like buildings are important for certain applications, they represent only a small portion of the segmenta-



Remote Sensing Applications: Society and Environment 32 (2023) 101031

16

B. Ez-zahouani et al.

tion or classification problem. Therefore, relying solely on buildings as a metric for assessing segmentation quality may not capture
the full complexity and variability of land cover patterns. Therefore, the segmentation quality assessment in OBIA requires significant
improvement to enhance the accuracy and reliability of results. Shifting the focus from geometrically definable land use features to a
broader consideration of land cover features is necessary to capture the complexity of the Earth's surface, including vegetation, water
bodies, roads, agricultural fields, and natural landforms, the assessment can provide a more comprehensive evaluation of the segmen-
tation quality and its ability to capture the spatial patterns of different land cover types (Jozdani and Chen, 2020). Additionally, the
development of tools to analyze polygon similarities and the establishment of benchmark datasets contribute to advancing segmenta-
tion quality assessment; in fact, current metrics for analyzing polygon similarities often fail to capture the intricacies of polygon simi-
larities comprehensively. Therefore, the field urgently needs refined metrics and tools that can assess the smoothness of object bound-
aries, the cohesion of objects within the same class, and the separation between different classes. This can foster advancements in seg-
mentation techniques and promote the development of more accurate and reliable segmentation approaches. By addressing these
challenges, the field can achieve more effective and informed analysis of remotely sensed data, facilitating applications in land cover
mapping, change detection, and environmental monitoring (Ye et al., 2018).

Future research needs and perspectives on the overview are assigned in the following points:
⁃ Determination and optimal selection of segmentation parameters are the pillars leading to good segmentation (Wang et al.,

2019); current methods require to be compared with conventional methods, and improving the accuracies of these methods
requires fruitful research in this direction;

⁃ Segmentation methods must balance intra-segment homogeneity with inter-segment heterogeneity. However, studies comparing
these segmentation optimization processes still need to be included. Therefore, future research in this direction is warranted.

⁃ Future work should focus on finding better approaches without seeds or just methods for segmentation based on region growth,
even when seeds are present.

⁃ Edge-based approaches need to be improved in detecting textured objects; they should be based on local data and important
larger-scale contextual information already lacking.

⁃ Semantic segmentation represents a promising avenue, and other ML classifiers and fusion criteria need to be investigated to
determine if they can enhance the segmentation performance. Furthermore, different images, including SAR or hyper-spectral
data and images of diverse geocontents, should be tested with innovative and more advanced techniques (Su et al., 2020).

⁃ The main research trend in OBIA in all these phases is toward deep learning; in this case, GEOCNNs, “Geographic Object
convolutional neural networks,” are a new form of GEOBIA (Liu et al., 2018), (Timilsina et al., 2019). This research will
increasingly focus on stimulating innovation, proving and assessing multiple GEOCNN (multi-scale) approaches, and comparing
them with conventional or deep learning OBIA methods such as CNN, FCN, and Mask R–CNN, considering thematic accuracy
and segmentation accuracy. Also, transfer learning can handle massive training data required by DL methods (Pastorino et al.,
2022) or by creating synthetic images from small training sets, data augmentation techniques, and using semi-supervised
learning (Kemker et al., 2018).

⁃ Some of the most promising current developments, e.g., Meta AI's Segment Anything, uses deep learning algorithms on the largest
segmentation dataset (Giannakis et al., 2023).

⁃ Achieving good accuracy using DL requires 1) multi-scale combination by using a multi-scale strategy such as MCCN, 2) fusion of
data from different modalities by using multiple architectures or other data (MNE), 3) segmentation enhancement obtained by
post-processing techniques (morphological smoothing, conditional random fields), and 4) the loss function to detect semantic
boundaries (Yuan et al., 2021).

⁃ Quantitative comparative studies of segmentation quality assessment methods should be conducted to comprehensively test and
compare supervised methods employed in the RS community. Non-geometric methods should be inspected as they are ignored in
quantitative studies.

⁃ The relationship between segmentation and classification accuracy must be deeply investigated, as this relationship is often clear
(Verbeeck et al., 2012), (Costa et al., 2017).

⁃ Another fruitful research direction is to improve the description of contextual information from adjacent image objects.
Proposals have been made for a geographic object-based image texture (GEOTEX), which treats each image object and its
neighbors as a natural window/kernel to compute a new set of texture measures (Chen et al., 2018).

⁃ The concept of OS/US error needs to be reevaluated, especially since original objects have more spectral than thematic
meaning and impact the evaluation, and consider new approaches that can better account for contextual information, overcome
the limitations of segmentation algorithms, and provide more nuanced evaluation metrics; even the selection of supervised or
unsupervised evaluation approaches that frequently concentrate on thematic and primitive objects should receive more attention
(Blaschke et al., 2014), (Ma et al., 2017).

The future of OBIA is indeed closely tied to the advancements in DL. DL models offer several advantages in various levels: 1) for
segmentation, DL models can automatically learn and capture intricate patterns and relationships in the data (Neupane et al., 2021;
Yuan et al., 2021), (Zhang et al., 2018). This can lead to more accurate and detailed object boundaries, resulting in improved segmen-
tation results; 2) for dimensionality reduction, DL models can learn relevant features and perform automatic dimensionality reduction
by extracting the most informative representations from the data (Zhao and Du, 2016). This can help to reduce computational com-
plexity and to improve classification performance by focusing on the most discriminative features; 3) for classification: DL models can
also be used for object classification in OBIA, the ability of DL models to capture complex and hierarchical relationships in the data
can improve classification accuracy, especially when dealing with diverse and heterogeneous landscapes (Zhang et al., 2020a),
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(Wahbi et al., 2023). Furthermore, the integration of DL with OBIA can enable the incorporation of multi-scale and multi-sensor data,
including high-resolution imagery, LiDAR data, and hyperspectral data. This integration allows for more comprehensive and accurate
analysis by leveraging the complementary information from different sources. However, it's important to note that DL approaches for
OBIA require large amounts of labeled training data, which can be a challenge in RS due to the cost and time required for data acquisi-
tion and annotation (Wang et al., 2015). Additionally, the interpretability of deep learning models is often lower compared to tradi-
tional OBIA approaches, which can make it difficult to understand the reasons behind their predictions (Borba et al., 2021), (Ma and
Manjunath, 2000).

Finally, several recent studies combine the segmentation step simultaneously or iteratively under GE (CBS), which is important for
OBIA workflows (Gonçalves et al., 2019), (Zanotta et al., 2018), (Chini et al., 2014). CBS allows optimizing both processes and ex-
empts it from the choice of segmentation parameters with many other advantages. Some restrictions manifest as a specific combina-
tion of image segmentation and classification algorithms unsuitable for all tasks/targets (Gonçalves et al., 2019).

8. Conclusion
This paper was motivated by the popularity of OBIA in RS, and it reviews all segmentation steps, highlighting the advantages and

shortcomings of all the methods used for each step and highlighting prospects and needs for future research. Meanwhile, a new classi-
fication of segmentation methods is proposed by time scale, which reveal the evolution history and trend based on their internal rela-
tions. Scholars have made many contributions, but it is still difficult to generate the physically desired segments corresponding to se-
mantically real objects; furthermore, objects in high-resolution images consist of non-uniform regions, resulting in poor segmentation
needing to be optimized urgently. Several recent approaches that are able to improve segmentation performance to a certain extent,
such as collaborative classification segmentation, self-adaptive scaling segmentation methods, and hybrid approach, especially com-
bining DL with OBIA under interpretability guidance of Geographical Law, and using object surfaces to guide the segmentation
process, can be valuable.
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Appendix 1
Acronyms list

ABC : Artificial bee colony

ACO : Ant colony optimization
AISP : Adaptive increasing scale parameter
aSVM : Active Support Vector Machine
AVL : Average local variance
BN : Bayesian Network
BoW : Bag of Words
BPT : Binary partition tree
BSH : Between-segment heterogeneity
BSP : Binary space partitioning
CART : Classification and regression trees
CBS : Classification-based segmentation
CDAs : Crater detection algorithms
CFS : Correlation-based feature selection
CNNs : Convolutional neural networks
CRFs : Conditional random fields
CTA : Classification tree analysis
DHC : Dynamic hierarchical classifier
DL : Deep Learning
DT : Decision Tree
ED : Euclidean distance
ESP : Estimation Scale Parameters
F : Fitness Function

(continued on next page)
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ABC : Artificial bee colony

FCNs : Fully connected networks
FLSA : Full Lambda-Schedule algorithm
FNEA : Fractal Net Evolution Approach
FSAM : Fast scan algorithm merging
FSO : Feature space optimization
GA : Genetic algorithm
GBM : Global Best Merging
GEOCNNs : Geographic object-based convolutional neural networks
GEOTEX : Geographic object-based image texture
GIS : Geographic information system
GLCM : Grey Level Co-occurrence Matrix
GS : Global score
HFM : Heterogeneous feature machines
HOG : Histogram of Oriented Gradients
HS : Hybrid segmentation
HSMR : Hierarchical split and merge region
HSWO : Hierarchical stepwise optimization
HW : Hierarchical Watershed
K-NN : Nearest Neighbors
LBM : Local Best Merging
LDA : Linear Discriminant Analysis
LiDAR : Light detection and ranging
LMM : Local Mutual-best Merging
LV : Local variance
LVR : Local variance ratio
Mask R–CNN : Mask Region-CNN
MHR : Minimum heterogeneity rule
ML : Machine Learning
MNF : Minimum noise fraction
MRF : Markov Random Field
mRMR : Minimum relevance maximum redundancy
MS : Mean shift
NN : Neural Networks
NSR : Number of Segments Ratio
OBIA : Object-based image analysis
OBLV : Object boundary local variance
OG : Overall goodness
OH : Objective heterogeneity
OHRH : Objective heterogeneity and relative homogeneity
OS : Over-segmentation
PCA : Principal component analysis
PI : Purity Index
PIPs : Physical image parcels
PSE : Potential Segmentation Error
PSO : particle swarm optimization
RAG : Region Adjacency Graph
RF : Random Forest
RHseg : Recursive hierarchical segmentation
RISA : Region-based Image Segmentation Algorithm
ROC : Region ownership conflict
ROCLV : Rates of change of local variance
RS : Remote sensing
RT : Regression tree
R-TFR : Recursive-TFR
SA : Spectral Angle
SAM : Spectral Angle Mapper
SAM : Segment Anything Model
SAR : Synthetic aperture radar
SEI : Segmentation Evaluation Index
SIOs : Semantic image objects
SITS : Satellite image time series
SMML : Sparse multimodal learning
SOTA : State of the art
SP : Scale parameter
SR : Sparse Representation

(continued on next page)
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ABC : Artificial bee colony

SRG : Seeded region growth
SRM : Statistical region fusion
ST-MRS : Spatio-temporal multiresolution segmentation
SVM : Support Vector Machine
SWSP : Step-Wise Scale Parameter
TFR : Texture Fragmentation and Reconstruction
TS-MRF : Tree-Structured Markov Random Field
UAV : Unmanned aerial vehicle
US : Under-segmentation
USPO : Unsupervised scale parameter optimization
VHR : Very high-resolution
VSURF : Variable selection using RF
WSH : Within-segment homogeneity
WT : Watershed transform
WV : Weighted variance

Appendix 2

Title Authors Paper
Type

Publication
Year

Journal

Optimal segmentation of high spatial resolution
images for the classification of buildings using
random forests

James Bialas, Thomas Oommen, Timothy C.
Havens

Research
paper

2019 Int J Appl Earth Obs
Geoinformation

Geographic Object-Based Image Analysis – Towards a
new paradigm

Thomas Blaschke, Geoffrey J. Hay, Maggi
Kelly, Stefan Lang, Peter Hofmann, Elisabeth
Addink, Raul Queiroz Feitosa, Freek van der
Meer, Harald van der Werff, Frieke van
Coillie, Dirk Tiede

Research
paper

2014 ISPRS Journal of
Photogrammetry and Remote
Sensing

Optimal segmentation of a high resolution remote-
sensing image guided by area and boundary

Jie Chen, Min Deng, Xiaoming Mei, Tieqiao
Chen, Quanbin Shao & Liang Hong

Research
paper

2014 International Journal of
Remote Sensing

Geographic Object-based Image Analysis (GEOBIA):
Emerging trends and future opportunities

Gang Chen, Qihao Weng, Geoffrey J. Hay &
Yinan He

Research
paper

2018 GIScience & Remote Sensing

A survey on object detection in optical remote sensing
images

Gong Cheng, Junwei Han Review
paper

2016 ISPRS Journal of
Photogrammetry and Remote
Sensing

Supervised methods of image segmentation accuracy
assessment in land cover mapping

Hugo Costa, Giles M. Foody, Doreen S. Boyd Review
paper

2018 Remote Sensing of
Environment

Semantic classification of urban buildings combining
VHR image and GIS data: An improved random
forest approach

Shihong Du, Fangli Zhang, Xiuyuan Zhang Research
paper

2015 ISPRS Journal of
Photogrammetry and Remote
Sensing

Determination of optimum segmentation parameter
values for extracting building from remote sensing
images

Aly M. El-naggar Review
paper

2018 Alexandria Engineering
Journal

Parameter selection for region-growing image
segmentation algorithms using spatial
autocorrelation

G. M. Espindola, G. Camara, I. A. Reis, L. S.
Bins & A. M. Monteiro

Research
paper

2006 International Journal of
Remote Sensing

Large-scale urban mapping using integrated
geographic object-based image analysis and artificial
bee colony optimization from worldview-3 data

Alireza Hamedianfar & Mohamed Barakat A.
Gibril

Research
paper

2019 International Journal of
Remote Sensing

Segmentation for Object-Based Image Analysis (OBIA):
A Review paper of algorithms and challenges from
remote sensing perspective

Mohammad D. Hossain, Dongmei Chen Review
paper

2019 ISPRS Journal of
Photogrammetry and Remote
Sensing

Unsupervised image segmentation evaluation and
refinement using a multi-scale approach

Brian Johnson, Zhixiao Xie Research
paper

2011 ISPRS Journal of
Photogrammetry and Remote
Sensing

Image Segmentation Parameter Optimization
Considering Within- and Between-Segment
Heterogeneity at Multiple Scale Levels: Test Case for
Mapping Residential Areas Using Landsat Imagery

Brian A. Johnson, Milben Bragais, Isao Endo,
Damasa B. Magcale-Macandog and Paula
Beatrice M. Macandog

Research
paper

2015 ISPRS International Journal of
Geo-Information

Identifying Generalizable Image Segmentation
Parameters for Urban Land Cover Mapping through
Meta-Analysis and Regression Tree Modeling

Brian A. Johnson, and Shahab E. Jozdani Research
paper

2018 remote sensing

(continued on next page)
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Title Authors Paper
Type

Publication
Year

Journal

On the versatility of popular and recently proposed
supervised evaluation metrics for segmentation
quality of remotely sensed images: An experimental
case study of building extraction

Shahab Jozdani, Dongmei Chen Research
paper

2020 ISPRS Journal of
Photogrammetry and Remote
Sensing

Remote sensing image segmentation advances: A
meta-analysis

Ioannis Kotaridis, Maria Lazaridou Review
paper

2021 ISPRS Journal of
Photogrammetry and Remote
Sensing

Geographic Object-Based Image Analysis: A Primer
and Future Directions

Maja Kucharczyk, Geo rey J. Hay, Salar Gha
arian and Chris H. Hugenholtz

Review
paper

2020 remote sensing

Scale computation on high spatial resolution remotely
sensed imagery multiscale segmentation

Jianhua Liu, Mingyi Du & Zhengyuan Mao Research
paper

2017 International Journal of
Remote Sensing

An adaptive scale estimating method of multiscale
image segmentation based on vector edge and
spectral statistics information

Jianhua Liu, Heng Pu, Shiran Song & Mingyi
Du

Research
paper

2018 International Journal of
Remote Sensing

Object-based land surface segmentation scale
optimization: An ill-structured problem

Gerrit Louw, Adriaan van Niekerk Research
paper

2019 Geomorphology

A Review paper of supervised object-based land-cover
image classification

Lei Ma, Manchun Li, Xiaoxue Mac, Liang
Cheng, Peijun Du, Yongxue Liu

Review
paper

2017 ISPRS Journal of
Photogrammetry and Remote
Sensing

Deep learning in remote sensing applications: A meta-
analysis and Review paper

Lei Ma, Yu Liu, Xueliang Zhang, Yuanxin Ye,
Gaofei Yin, Brian Alan Johnson

Review
paper

2019 ISPRS Journal of
Photogrammetry and Remote
Sensing

Benchmarking of Remote Sensing
Segmentation Methods

Stanislav Mikeš, Michal Haindl, Giuseppe
Scarpa, and Raffaele Gaetano

Research
paper

2015 IEEE JOURNAL OF SELECTED
TOPICS IN APPLIED EARTH
OBSERVATIONS AND
REMOTE SENSING

Scale parameter selection by spatial statistics for
GeOBIA: Using mean-shift based multi-scale
segmentation as an example

Dongping Ming, Jonathan Li, Junyi Wang,
Min Zhang

Research
paper

2015 ISPRS Journal of
Photogrammetry and Remote
Sensing

Deep Learning-Based Semantic Segmentation of Urban
Features in Satellite Images: A Review paper and
Meta-Analysis

Bipul Neupane, Teerayut Horanont and
Jagannath Aryal

Review
paper

2021 remote sensing

Optimizing multiscale segmentation with local spectral
heterogeneity measure for high resolution remote
sensing images

Yu Shen, Jianyu Chen, Liang Xiao, Delu Pan Research
paper

2019 ISPRS Journal of
Photogrammetry and Remote
Sensing

Review paper of Road Segmentation for SAR Images Zengguo Sun, Hui Geng, Zheng Lu, Rafał
Scherer and Marcin Wo'zniak

Review
paper

2021 remote sensing

Image segmentation algorithms for land categorization James C. Tilton, Selim Aksoy and Yuliya
Tarabalka

chapter 2015 Book: Remotely Sensed Data
Characterization,
Classification, and Accuracies

Unsupervised segmentation parameter selection using
the local spatial statistics for remote sensing image
segmentation

Yongji Wang, Qingwen Qi, Ying Liu, Lili
Jiang, Jun Wang

Research
paper

2019 Int J Appl Earth Obs
Geoinformation

Variational-Scale Segmentation for Multispectral
Remote-Sensing Images Using Spectral Indices

Ke Wang, Hainan Chen, Ligang Cheng and
Jian Xiao

Research
paper

2022 remote sensing

An Automated Method to Parameterize Segmentation
Scale by Enhancing Intrasegment Homogeneity and
Intersegment Heterogeneity

Jian Yang, Yuhong He, and Qihao Weng Research
paper

2015 IEEE Geoscience and Remote
Sensing Letters

A Review paper of deep learning methods for semantic
segmentation of remote sensing imagery

Xiaohui Yuan, Jianfang Shi, Lichuan Gu Review
paper

2021 Expert Systems With
Applications

Land-Use Mapping for High-Spatial Resolution Remote
Sensing Image Via Deep Learning: A Review paper

Ning Zang, Yun Cao, Yuebin Wang, Bo
Huang, Liqiang Zhang, and P. Takis
Mathiopoulos

Review
paper

2021 IEEE JOURNAL OF SELECTED
TOPICS IN APPLIED EARTH
OBSERVATIONS AND
REMOTE SENSING

An Unsupervised Evaluation Method for Remotely
Sensed Imagery Segmentation

Xueliang Zhang, Pengfeng Xiao, and Xuezhi
Feng

Research
paper

2012 IEEE Geoscience and Remote
Sensing Letters

A Review paper of Researches on Deep Learning in
Remote Sensing Application

Ming Zhu, Yongning He, Qingyu He Review
paper

2019 International Journal of
Geosciences

Object based image analysis for remote sensing T. Blaschke Review
paper

2010 ISPRS Journal of
Photogrammetry and Remote
Sensing

On the Objectivity of the Objective
Function—Problems with Unsupervised
Segmentation Evaluation Based on Global Score and
a Possible Remedy

Sebastian Böck, Markus Immitzer and
Clement Atzberger

Letter 2017 remote sensing
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Title Authors Paper
Type

Publication
Year

Journal

SegOptim—A new R package for optimizing object-
based image analyses of high-spatial resolution
remotely-sensed data

João Gonçalves, Isabel Pôças, Bruno Marcos,
C.A. Mücher, João P. Honrado

Research
paper

2019 Int J Appl Earth Obs
Geoinformation

Integrating User Needs on Misclassification Error
Sensitivity into Image Segmentation Quality
Assessment

Hugo Costa, Giles M. Foody, and Doreen S.
Boyd

Research
paper

2015 Photogrammetric Engineering
and Remote Sensing

Automated parameterization for multi-scale image
segmentation on multiple layers

L. Drăgut, O. Csillik, C. Eisank, D. Tiede Research
paper

2014 ISPRS Journal of
Photogrammetry and Remote
Sensing

Classifying a high resolution image of an urban area
using super-object information

Brian Johnson, Zhixiao Xie Research
paper

2013 ISPRS Journal of
Photogrammetry and Remote
Sensing

Algorithms for semantic segmentation of multispectral
remote sensing imagery using deep learning

Ronald Kemker, Carl Salvaggio, Christopher
Kanan

Research
paper

2018 ISPRS Journal of
Photogrammetry and Remote
Sensing

A systematic comparison of different object-based
classificationtechniques using high spatial resolution
imagery in agriculturalenvironments

Manchun Li, Lei Ma, Thomas Blaschke, Liang
Cheng, Dirk Tiede

Research
paper

2016 International Journal of
Applied Earth Observation and
Geoinformation

A new segmentation method for very high resolution
imagery using spectral and morphological
information

Jing Liu, Peijun Li, Xue Wang Research
paper

2015 ISPRS Journal of
Photogrammetry and Remote
Sensing

Quantitative land cover change analysis using fuzzy
segmentation

Ivan Lizarazo Research
paper

2012 International Journal of
Applied Earth Observation and
Geoinformation

Assessing the performance of different OBIA software
approaches for mapping invasive alien plants along
roads with remote sensing data

P. Lourenço, A.C. Teodoro, J.A. Gonçalves,
J.P. Honrado, M. Cunha, N. Sillero

Research
paper

2021 International Journal of
Applied Earth Observation and
Geoinformation

Object-oriented analysis of multi-temporal
panchromatic images for creation of historical
landslide inventories

Tapas R. Martha, Norman Kerle, Cees J. van
Westen, Victor Jetten, K. Vinod Kumar

Research
paper

2012 ISPRS Journal of
Photogrammetry and Remote
Sensing

Optimization of multiresolution segmentation by using
a genetic algorithm

Maryam Nikfar, Mohammad Javad Valadan
Zoej, Ali Mohammadzadeh, Mehdi
Mokhtarzade, Afshin Navabi

Research
paper

2012 Journal of Applied Remote
Sensing

Semantic Segmentation of Remote Sensing Images
through Fully Convolutional Neural Networks and
Hierarchical Probabilistic Graphical Models

Martina Pastorino, Gabriele Moser, Sebastiano
B. Serpico, and Josiane Zerubia

Research
paper

2022 IEEE Transactions on
Geoscience and Remote
Sensing

Direct, ECOC, ND and END Frameworks—Which One
Is the Best? An Empirical Study of Sentinel-2A
MSIL1C Image Classification for Arid-Land
Vegetation Mapping in the Ili River Delta,
Kazakhstan

Alim Samat, Naoto Yokoya, Peijun Du, Sicong
Liu, Long Ma, Yongxiao Ge, Gulnura Issanova,
Abdula Saparov, Jilili Abuduwaili and Cong
Lin

Research
paper

2019 remote sensing

Machine learning-assisted region merging for remote
sensing image segmentation

Tengfei Su, Tingxi Liu, Shengwei Zhang,
Zhongyi Qu, Ruiping Li

Research
paper

2020 ISPRS Journal of
Photogrammetry and Remote
Sensing

Local and global evaluation for remote sensing image
segmentation

Tengfei Su, Shengwei Zhang Research
paper

2017 ISPRS Journal of
Photogrammetry and Remote
Sensing

Geostatistical modelling of spatial dependence in area-
class occurrences for improved object-based
classifications of remote-sensing images

Yunwei Tang, Jingxiong Zhang, Linhai Jing,
Han Gao

Research
paper

2018 ISPRS Journal of
Photogrammetry and Remote
Sensing

Applying object-based segmentation in the temporal
domain to characterise snow seasonality

Jeffery A. Thompson, Brian G. Lees Research
paper

2014 ISPRS Journal of
Photogrammetry and Remote
Sensing

A Spectral Band Based Comparison of Unsupervised
Segmentation Evaluation
Methods for Image Segmentation Parameter
Optimization

Hasan TOMBUL, Taşkın KAVZOĞLU Research
paper

2020 International Journal of
Environment and
Geoinformatics (IJEGEO)

Gully mapping using geographic object-based image
analysis: A case study at catchment scale in the
Brazilian Cerrado

Alex Garcez Utsumi, Teresa Cristina Tarl'e
Pissarra, David Luciano Rosalen,
Marcílio Vieira Martins Filho, Luiz Henrique
Silva Rotta

Research
paper

2020 Remote Sensing Applications:
Society and Environment

External geo-information in the segmentation of VHR
imagery improves the detection of imperviousness in
urban neighborhoods

Klaartje Verbeeck, Martin Hermy, Jos Van
Orshoven

Research
paper

2012 International Journal of
Applied Earth Observation and
Geoinformation

(continued on next page)



Remote Sensing Applications: Society and Environment 32 (2023) 101031

22

B. Ez-zahouani et al.

Title Authors Paper
Type

Publication
Year

Journal

A scale self-adapting segmentation approach and
knowledge transfer for automatically updating land
use/cover change databases using high spatial
resolution images

Zhihua Wang, Xiaomei Yanga, Chen Lu,
Fengshuo Yang

Research
paper

2018 Int J Appl Earth Obs
Geoinformation

Region Merging ConsideringWithin- and Between-
Segment Heterogeneity: An Improved Hybrid
Remote-Sensing Image Segmentation Method

Yongji Wang, Qingyan Meng, Qingwen Qi,
Jian Yang and Ying Liu

Research
paper

2018 remote sensing

Improvement of Region-Merging Image Segmentation
Accuracy Using Multiple Merging Criteria

Haoyu Wan, Zhanfeng Shen, Zihan Zhang,
Zeyu Xu, Shuo Li, Shuhui Jiao and Yating Lei

Research
paper

2021 remote sensing

Evaluation of data fusion and image segmentation in
earth observation based rapid mapping workflows

Chandi Witharana, Daniel L. Civco, Thomas
H. Meyer

Research
paper

2014 ISPRS Journal of
Photogrammetry and Remote
Sensing

Optimizing multi-resolution segmentation scale using
empirical methods: Exploring the sensitivity of the
supervised discrepancy measure Euclidean distance
2 (ED2)

Chandi Witharana, Daniel L. Civco Research
paper

2014 ISPRS Journal of
Photogrammetry and Remote
Sensing

A spatiotemporal cube model for analyzing satellite
image time series: Application to land-cover
mapping and change detection

Wenqiang Xi, Shihong Dua, Yi-Chen Wang,
Xiuyuan Zhang

Research
paper

2019 Remote Sensing of
Environment

Multiscale Optimized Segmentation of Urban Green
Cover in High Resolution Remote Sensing Image

Pengfeng Xiao, Xueliang Zhang, Hongmin
Zhang, Rui Hu and Xuezhi Feng

Research
paper

2018 remote sensing

A discrepancy measure for segmentation evaluation
from the perspective of object recognition

Jian Yang, Yuhong He, John Caspersen,
Trevor Jones

Research
paper

2015 ISPRS Journal of
Photogrammetry and Remote
Sensing

Region merging using local spectral angle thresholds:
A more accurate method for hybrid segmentation of
remote sensing images

Jian Yang, Yuhong He, John Caspersen Research
paper

2017 Remote Sensing of
Environment

A Scale - Synthesis Method for High Spatial Resolution
Remote Sensing Image Segmentation

Lina Yi, Guifeng Zhang, and Zhaocong Wu Research
paper

2012 IEEE TRANSACTIONS ON
GEOSCIENCE AND REMOTE
SENSING

A supervised approach for simultaneous segmentation
and classification of remote sensing images

Daniel Capella Zanottaa, Maciel Zortea,
Matheus Pinheiro Ferreira

Research
paper

2018 ISPRS Journal of
Photogrammetry and Remote
Sensing

Multi-scale Segmentation of High-Spatial Resolution
Remote Sensing Images Using Adaptively Increased
Scale Parameter

Xueliang Zhang, Xuezhi Feng, and Pengfeng
Xiao

Research
paper

2015 Photogrammetric Engineering
and Remote Sensing

Segmentation quality evaluation using region-based
precision and recall measures for remote sensing
images

Xueliang Zhang, Xuezhi Feng, Pengfeng Xiao,
Guangjun He, Liujun Zhu

Research
paper

2015 ISPRS Journal of
Photogrammetry and Remote
Sensing

Toward combining thematic information with
hierarchical multiscale segmentations using tree
Markov random field model

Xueliang Zhang, Pengfeng Xiao, Xuezhi Feng Research
paper

2017 ISPRS Journal of
Photogrammetry and Remote
Sensing

Another look on region merging procedure from seed
region shift for high-resolution remote sensing
image segmentation

Xueliang Zhanga, Pengfeng Xiao, Xuezhi
Feng, Guangjun He

Research
paper

2019 ISPRS Journal of
Photogrammetry and Remote
Sensing

Identifying and mapping individual plants in a highly
diverse high-elevation ecosystem using UAV imagery
and deep learning

Ce Zhang, Peter M. Atkinson, Charles George,
Zhaofei Wen, Mauricio Diazgranados,
France Gerard

Research
paper

2020 ISPRS Journal of
Photogrammetry and Remote
Sensing

Object-specifi optimization of hierarchical multiscale
segmentations for high-spatial resolution remote
sensing images

Xueliang Zhang, Pengfeng Xiao, Xuezhi Feng Research
paper

2020 ISPRS Journal of
Photogrammetry and Remote
Sensing

Contextually guided very-high-resolution imagery
classification with semantic segments

Wenzhi Zhao, Shihong Du, Qiao Wang,
William J. Emery

Research
paper

2017 ISPRS Journal of
Photogrammetry and Remote
Sensing

A multiscale approach to delineate dune-field
landscape patches

Zhijia Zheng, Shihong Du, Shouji Du, Xiuyuan
Zhang

Research
paper

2020 Remote Sensing of
Environment

Image Processing Techniques for Analysis of Satellite
Images for Historical Maps
Classification—An Overview

Anju Asokan, J. Anitha, Monica Ciobanu,
Andrei Gabor, Antoanela Naaji and D. Jude
Hemanth

Review
paper

2020 applied sciences

MRF-based segmentation and unsupervised
classification for building and road detection in peri-
urban areas of high-resolution satellite images

Ilias Grinias, Costas Panagiotakis, Georgios
Tziritas

Research
paper

2016 ISPRS Journal of
Photogrammetry and Remote
Sensing

An object-based image analysis approach for detecting
penguin guano in very high spatial resolution
satellite images

Chandi Witharana, andHeather J. Lynch Research
paper

2016 remote sensing
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Journal

ESP: a tool to estimate scale parameter for
multiresolution image segmentation of remotely
sensed data

Lucian Dragut, Dirk Tiedec and Shaun R.
Levick

Research
paper

2010 International Journal of
Geographical Information
Science

Semivariogram-based spatial bandwidth selection for
remote sensing image segmentation with mean-shift
algorithm

Dongping Ming, Tianyu Ci, Hongyue Cai,
Longxiang Li, Cheng Qiao, Jinyang Du

Research
paper

2012 IEEE Geoscience and Remote
Sensing Letters

A local approach to optimize the scale parameter in
multiresolution segmentation for multispectral
imagery

F. Cánovas-García & F. Alonso-Sarría Research
paper

2015 Geocarto International

Scale-variable region-merging for high resolution
remote sensing image segmentation

Tengfei Su Research
paper

2019 ISPRS Journal of
Photogrammetry and Remote
Sensing

Efficient graph-based image segmentation Pedro F. Felzenszwalb Research
paper

2004 International Journal of
Computer Vision

A Multi-Band Approach to Unsupervised Scale
Parameter Selection for Multi-Scale Image
Segmentation

Jian Yang, Peijun Li, Yuhong He Research
paper

2014 ISPRS Journal of
Photogrammetry and Remote
Sensing

Scale Object Selection (SOS) through a Hierarchical
Segmentation by a Multi-Spectral Per-Pixel
Classification

Marco Chini, Alessandro Chiancone, Salvatore
Stramondo

Research
paper

2014 Pattern Recognition Letters

A regression modelling approach for optimizing
segmentation scale parameters to extract buildings
of different sizes

Shahab E. Jozdani, Mehdi Momeni, Brian A.
Johnson & Mehran Sattari

Research
paper

2018 International Journal of
Remote Sensing

Region based segmentation of QuickBird multispectral
imagery through band Ratios and fuzzy comparison

Ben Wuest, Yun Zhang Research
paper

2009 ISPRS Journal of
Photogrammetry and Remote
Sensing

A MRF model-based segmentation approach to
classification for multispectral imagery

A. Sarkar, M.K. Biswas, B. Kartikeyan, V.
Kumar, K.L. Majumder, D.K. Pal

Research
paper

2002 IEEE Transactions on
Geoscience and Remote
Sensing

Size-constrained region merging (SCRM): an
automated delineation tool for assisted
photointerpretation

Guillermo Castilla, Geoffrey J Hay, José Reyes
Ruiz-Gallardo

Research
paper

2008 Photogrammetric Engineering
and Remote Sensing

Multispectral image segmentation by a multichannel
watershed-based approach

P. Li, X. Xiao Research
paper

2007 International Journal of
Remote Sensing

An efficient parallel multi-scale segmentation method
for remote sensing imagery

Haiyan Gu, Yanshun Han, Yi Yang, Haitao Li,
Zhengjun Liu, Uwe Soergel, Thomas Blaschke
and Shiyong Cu

Research
paper

2018 remote sensing

A Novel Technique for Optimal Feature Selection in
Attribute Profiles Based on Genetic Algorithms

Mattia Pedergnana, Prashanth Reddy Marpu,
Mauro Dalla Mura, Jón Atli Benediktsson,
Lorenzo Bruzzone

Research
paper

2013 IEEE Transactions on
Geoscience and Remote
Sensing

Image segmentation based on constrained spectral
variance difference and edge penalty

Bo Chen, Fang Qiu, Bingfang Wu and
Hongyue Du

Research
paper

2015 remote sensing

Fusion of images and point clouds for the semantic
segmentation of large-scale 3D scenes based on deep
learning

Rui Zhang, Guangyun Li, Minglei Li, Li Wang Research
paper

2018 ISPRS Journal of
Photogrammetry and Remote
Sensing

Image segmentation evaluation: a survey of
unsupervised methods

Hui Zhang, Jason E. Fritts, Sally A. Goldman Research
paper

2008 Computer Vision and Image
Understanding

River channel segmentation in polarimetric SAR
images: Watershed transform combined with
average contrast maximization

Marcin Ciecholewski Research
paper

2017 Expert Systems with
Applications

Morphological Profiles Based on Differently Shaped
Structuring Elements for Classification of Images
with Very High Spatial Resolution

Zhi Yong Lv, Penglin Zhang, Jon Atli
Benediktsson, Wen Zhong Shi

Research
paper

2014 IEEE Journal of Selected
Topics in Applied Earth
Observations and Remote
Sensing

Marker-Controlled Watershed-Based Segmentation of
Multiresolution Remote Sensing Images

Raffaele Gaetano, Giuseppe Masi, Giovanni
Poggi, Luisa Verdoliva, Giuseppe Scarpa

Research
paper

2015 IEEE Transactions on
Geoscience and Remote
Sensing

An Edge Embedded Marker-Based Watershed
Algorithm for High Spatial Resolution Remote
Sensing Image Segmentation

Deren Li, Guifeng Zhang, Zhaocong Wu, Lina
Yi

Research
paper

2010 IEEE Transactions on Image
Processing

Object-based large-scale terrain classification
combined with segmentation optimization and
terrain features: A case study in China

Jiaming Na, Hu Ding, Wufan Zhao, Kai Liu,
Guoan Tang, Norbert Pfeifer

Research
paper

2021 Transactions in GIS

EdgeFlow: a technique for boundary detection and
image segmentation

Wei-Ying Ma and B. S. Manjunath Research
paper

2000 IEEE Transactions on Image
Processing
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Journal

Multiobjective multiple features fusion: A case study
in image segmentation

Cong Liu, Tingting Bian, Aimin Zhou Research
paper

2021 Swarm and Evolutionary
Computation

Region-line association constraints for high-resolution
image segmentation

Min Wang, Jiru Huang, Dongping Ming Research
paper

2017 IEEE Journal of Selected
Topics in Applied Earth
Observations and Remote
Sensing

Object-based image analysis through nonlinear scale-
space filtering

Angelos Tzotsos, Konstantinos Karantzalos,
Demetre Argialas

Research
paper

2011 ISPRS Journal of
Photogrammetry and Remote
Sensing

Hierarchical Multiple Markov Chain Model for
Unsupervised Texture Segmentation

Giuseppe Scarpa, Raffaele Gaetano, Michal
Haindl, Josiane Zerubia

Research
paper

2009 IEEE Transactions on Image
Processing

Region Merging Method for Remote Sensing Spectral
Image Aided by Inter-Segment and Boundary
Homogeneities

Yuhan Zhang, Xi Wang, Haishu Tan, Chang
Xu, Xu Ma andTingfa Xu

Research
paper

2019 remote sensing

Multi-scale segmentation of very high resolution
remote sensing image based on gravitational field
and optimized region merging

Ai Zhu Zhang, Gen Yun Sun, Si Han Liu, Zhen
Jie Wang, Peng Wang & Jing Sheng Ma

Research
paper

2017 Multimedia Tools and
Applications

Road extraction in remote sensing data: A survey Ziyi Chen, Liai Deng, Yuhua Luo, Dilong Li,
José Marcato Junior, Wesley Nunes
Gonçalves, Abdul Awal Md Nurunnabi,
Jonathan Li, Cheng Wang, Deren Li

Research
paper

2022 International Journal of
Applied Earth Observation and
Geoinformation

Edge-Guided Image Object Detection in Multiscale
Segmentation for High-Resolution Remotely Sensed
Imagery

Yongyue Hu, Jianyu Chen, Delu Pan,
Zengzhou Hao

Research
paper

2016 IEEE Transactions on
Geoscience and Remote
Sensing

Segmentation for High-Resolution Optical Remote
Sensing Imagery Using Improved Quadtree and
Region Adjacency Graph Technique

Gang Fu, Hongrui Zhao, Cong Li and Limei
Shi

Research
paper

2013 remote sensing

Landscape analysis of wetland plant functional types:
The effects of image segmentation scale, vegetation
classes and classification methods

Iryna Dronova, Peng Gong, Nicholas E.
Clinton, Lin Wang, Wei Fu, Shuhua Qi, Ying
Liu

Research
paper

2012 remote sensing

Metaheuristics for supervised parameter tuning of
multiresolution segmentation

Victor Andres Ayma Quirita, Pedro
Achanccaray Diaz, Raul Q. Feitosa, Patrick N.
Happ, Gilson A. O. P. Costa, Tobias Klinger,
Christian Heipke

Research
paper

2016 IEEE Geoscience and Remote
Sensing Letters

Accuracy assessment measures for object-based image
segmentation goodness

Nicholas Clinton, Ashley Holt, Li Yan, Peng
Gong

Review
paper

2010 Photogrammetric Engineering
and Remote Sensing

Discrepancy measures for selecting optimal
combination of parameter values in object-based
image analysis

Yong Liu, Ling Bian, Yuhong Meng, Huanping
Wang, Shifu Zhang, Yining Yang, Xiaomin
Shao, Bo Wang

Research
paper

2012 ISPRS Journal of
Photogrammetry and Remote
Sensing

Optimization in multi-scale segmentation of high-
resolution satellite images for artificial feature
recognition

J. Tian & D.-M. Chen Research
paper

2007 International Journal of
Remote Sensing

Hybrid region merging method for segmentation of
high-resolution remote sensing images

Xueliang Zhang, Pengfeng Xiao, Xuezhi Feng,
Jiangeng Wang, Zuo Wang

Research
paper

2014 ISPRS Journal of
Photogrammetry and Remote
Sensing

Image Segmentation Parameter Selection and Ant
Colony Optimization for Date Palm Tree Detection
and Mapping from Very-High-Spatial-Resolution
Aerial Imagery

Rami Al-Ruzouq, Abdallah Shanableh,
Mohamed Barakat A. Gibril and Saeed AL-
Mansoori

Research
paper

2018 remote sensing

Remote sensing image analysis by aggregation of
segmentation-classification collaborative agents

Andrés Troya-Galvis, Pierre Gançarski, Laure
Berti-Équille

Research
paper

2017 Pattern Recognition

A Comparison of Unsupervised Segmentation
Parameter Optimization Approaches Using
Moderate- and High-Resolution Imagery

Heather Grybas, Lindsay Melendy & Russell
G. Congalton

Research
paper

2017 GIScience and Remote Sensing

Segmentation performance evaluation for object-based
remotely sensed image analysis

Padraig Corcoran, Adam Winstanley
& Peter Mooney

Review
paper

2010 International Journal of
Remote Sensing

Adaptive scale selection for multiscale segmentation of
satellite images

Ya'nan Zhou, Jun Li, Li Feng, Xin Zhang,
Xiaodong Hu

Research
paper

2017 IEEE Journal ofSelected Topics
inApplied Earth Observations
and Remote Sensing

Object-based classification of vegetation species in a
subtropical wetland using Sentinel-1 and Sentinel-
2A images

Luis Fernando Chimelo Ruiz, Laurindo
Antonio Guasselli, João Paulo Delapasse
Simioni, Tássia Fraga Belloli, Pâmela Caroline
Barros Fernandes

Research
paper

2021 Science of Remote Sensing

Accuracy assessment measures for image segmentation
goodness of the Land Parcel Identification System
(LPIS) in Denmark

Alessandro Montaghi, René Larsen, Mogens
H. Greve

Research
paper

2013 Remote Sensing Letters
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Journal

A region merging segmentation with local scale
parameters: applications to spectral and elevation
data

Maria Dekavalla and Demetre Argialas Research
paper

2018 remote sensing

Modified ALV for selecting the optimal spatial
resolution and its scale effect on image classification
accuracy

Dongping Ming, Jianyu Yang, Longxiang Li,
Zhuoqin Song

Research
paper

2011 Mathematical and Computer
Modelling

References
Akçay, H.G., Aksoy, S., 2008. Automatic detection of geospatial objects using multiple hierarchical segmentations. IEEE Trans. Geosci. Rem. Sens. 46 (7), 2097–2111.
Al-Ruzouq, R., Shanableh, A., Gibril, B.A., AL-Mansoori, S., 2018. Image segmentation parameter selection and ant colony optimization for date palm tree detection and

mapping from very-high-spatial-resolution aerial imagery. Rem. Sens. 10 (9), 1413.
Alizadeh Naeini, A., Babadi, M., Mirzadeh, S.M.J., Amini, S., 2018. Particle swarm optimization for object-based feature selection of VHSR satellite images. Geosci.

Rem. Sens. Lett. IEEE 15 (3), 379–383.
Baatz, M., 2000. Multiresolution segmentation-an optimization approach for high quality multi-scale image segmentation. Beiträge zum AGIT-Symposium 12–23.
Baatz, M., Schäpe, A., 2000a. Multiresolution segmentation—an optimization approach for high quality multi-scale image segmentation. In: Blaschke, T., Strobl, J.,

Greisebener, G. (Eds.), Angewandte Geographische Informationsverarbeitung XII, Beiträge Zum AGIT-Symposium Salzburg. Wichmann, Heidelberg, Germany.
Baatz, M., Benz, U.C., Dehghani, S., Heynen, M., Höltje, A., Hofmann, P., Lingenfelder, I., Mimler, M., Sohlbach, M., Weber, M., Willhauck, G., 2000b. ECognition User

Guide. Definiens-Imaging, Munich, Germany.
Belgiu, M., Drăguţ, L., 2016. Random forest in remote sensing: a review of applications and future directions. ISPRS J. Photogrammetry Remote Sens. 114 (C), 24–31.
Benz, U.C., Hofmann, P., Willhauck, G., Lingenfelder, I., Heynen, M., 2004. Multiresolution, object-oriented fuzzy analysis of remote sensing data for GIS ready

information. ISPRS J. Photogrammetry Remote Sens. 58, 239–258.
Bialas, J., Oommenb, T., Havensa, T.C., 2019. Optimal segmentation of high spatial resolution images for the classification of buildings using random forests. Int J Appl

Earth Obs Geoinformation 82, 101895.
Blaschke, T., 2010. Object based image analysis for remote sensing. ISPRS J. Photogrammetry Remote Sens. 65 (1), 2–16.
Blaschke, T., Hay, G.J., Kelly, M., Lang, S., Hofmann, P., Addink, E., Feitosa, R.Q., van der Meer, F., van der Werff, H., van Coillie, F., Tiede, D., 2014. Geographic object-

based image analysis – towards a new paradigm. ISPRS J. Photogrammetry Remote Sens. 87, 180–191.
Böck, S., Immitzer, M., Atzberger, C., 2017. On the objectivity of the objective function-problems with unsupervised segmentation evaluation based on global score and

a possible remedy. Rem. Sens. 9, 769.
Böhner, J., Selige, T., Ringeler, A., 2006. Image segmentation using representativeness analysis and region growing. In: Boehner, J., McCloy, K.R., Strobl, J. (Eds.),

SAGA Analyses and Modelling Applications. Göttinger Geographische Abhandlungen, Göttingen, Germany, pp. 29–38.
Borba, P., Bias, E.S., da Silva, N.C., Roig, H.L., 2021. A review of remote sensing applications on very high-resolution imagery using deep learning-based semantic

segmentation techniques. International Journal of Advanced Engineering Research and Science (IJAERS) 8 (8).
Cánovas-García, F., Alonso-Sarría, F., 2015. A local approach to optimize the scale parameter in multiresolution segmentation for multispectral imagery. Geocarto Int.

30, 937–961.
Carleer, A.P., Debeir, O., Wolff, E., 2005. Assessment of very high spatial resolution satellite image segmentations. Photogramm. Eng. Rem. Sens. 71 (11), 1285–1294.
Castilla, G., Hay, G.J., Ruiz, J.R., 2008. Size-constrained region merging (SCRM): an automated delineation tool for assisted photointerpretation. PE&RS 74 (4),

409–419.
Chen, J., Deng, M., Mei, X., Chen, T., Shao, Q., Hong, L., 2014. Optimal segmentation of a high-resolution remote-sensing image guided by area and boundary. Int. J.

Rem. Sens. 35, 6914–6939.
Chen, B., Qiu, F., Wu, B., Du, H., 2015. Image segmentation based on constrained spectral variance difference and edge penalty. Rem. Sens. 7, 5980–6004.
Chen, G., Weng, Q., Hay, G.J., He, Y., 2018. Geographic object-based image analysis (GEOBIA): emerging trends and future opportunities. GIScience Remote Sens. 55,

159–182.
Chen, Z., Deng, L., Luo, Y., Li, D., Junior, J.M., Gonçalves, W.N., Nurunnabi, A.W.M., Li, J., Wang, C., Li, D., 2022. Road extraction in remote sensing data: a survey. Int.

J. Appl. Earth Obs. Geoinf. 112, 102833.
Cheng, G., Han, J., 2016. A survey on object detection in optical remote sensing images”. ISPRS J. Photogrammetry Remote Sens. 117, 11–28.
Chini, M., Chiancone, A., Stramondo, S., 2014. Scale object selection (SOS) through a hierarchical segmentation by a multi-spectral per-pixel classification. Pattern

Recogn. Lett. 49, 214–223.
Ciecholewski, M., 2017. River channel segmentation in polarimetric SAR images: watershed transform combined with average contrast maximization. Expert Syst.

Appl. 82, 196–215.
Clinton, N., Holt, A., Scarborough, J., Yan, L., Gong, P., 2010. Accuracy assessment measures for object-based image segmentation goodness. Photogramm. Eng. Rem.

Sens. 76 (3), 289–299.
Corcoran, P., Winstanley, A., Mooney, P., 2010. Segmentation performance evaluation for object-based remotely sensed image analysis. Int. J. Rem. Sens. 31 (3),

617–645.
Costa, G.A.O.P., Feitosa, R.Q., Cazes, T.B., Feijo, B., 2008. Genetic adaptation of segmentation parameters. In: Blaschke, T., Lang, S., Hay, G.J. (Eds.), Object-Based

Image Analysis: Spatial Concepts for Knowledge Driven Remote Sensing Applications, vol. 1. Springer, Berlin Heidelberg, pp. 679–695. 1.
Costa, G.A.O.P., Feitosa, R.Q., Fonseca, L.M.G., Oliveira, D.A.B., Ferreira, R.S., Castejon, E.F., 2010. KNOWLEDGE-BASED interpretation of remote sensing data with

the interimage system: MAJOR characteristics and recent developments. The international archives of the photogrammetry, remote sensing and spatial information
sciences. In: International Conference on Geographic Object-Based Image Analysis (GEOBIA 2010). Belgium, vols. XXXVIII-4. /C7.

Costa, H., Foody, G.M., Boyd, D.S., 2015. Integrating user needs on misclassification error sensitivity into image segmentation quality assessment. Photogramm. Eng.
Rem. Sens. 81 (6), 451–459.

Costa, H., Foody, G.M., Boyd, D.S., 2017. Using mixed objects in the training of objectbased image classifications. Remote Sens. Environ. 190, 188–197.
Costa, H., Foody, G.M., Boyd, D.S., 2018. Supervised methods of image segmentation accuracy assessment in land cover mapping. Remote Sens. Environ. 205, 338–351.
Csillik, O., 2017. Fast segmentation and classification of very high resolution remote sensing data using SLIC superpixels. Rem. Sens. 9 (3), 1–19. 243.
D’Elia, C., Poggi, G., Scarpa, G., 2003. A tree-structured Markov random field model for Bayesian image segmentation. IEEE Trans. Image Process. 12 (10), 0–1273.
Dekavalla, M., Argialas, D., 2018. A region merging segmentation with local scale parameters: applications to spectral and elevation data. Rem. Sens. 10 (12), 2024.
Deng, Y., 2019. Deep learning on mobile devices: a review. In: Proc. SPIE 10993, Mobile Multimedia/Image Processing, Security, and Applications. p. 109930A.
Dey, V., Zhang, Y., Zhong, M., 2010. A review on image segmentation techniques with remote sensing perspective. July 5–7. In: Wagner, W., Székely, B. (Eds.), ISPRS

TC VII Symposium – 100 Years ISPRS, vol. XXXVIII. IAPRS, Vienna, Austria. Part 7A.
Dezsős, B., Giachetta, R., László, I., Fekete, I., 2012. Experimental study on graph-based image segmentation methods in the classification of satellite images. EARSeL

eProceedings 11.
Drăguţ, L., Schauppenlehner, T., Muhar, A., Strobl, J., Blaschke, T., 2009. Optimization of scale and parametrization for terrain segmentation: an application to soil-

landscape modeling. Comput. Geosci. 35, 1875–1883.

http://refhub.elsevier.com/S2352-9385(23)00113-1/sref1
http://refhub.elsevier.com/S2352-9385(23)00113-1/sref2
http://refhub.elsevier.com/S2352-9385(23)00113-1/sref2
http://refhub.elsevier.com/S2352-9385(23)00113-1/sref3
http://refhub.elsevier.com/S2352-9385(23)00113-1/sref3
http://refhub.elsevier.com/S2352-9385(23)00113-1/sref4
http://refhub.elsevier.com/S2352-9385(23)00113-1/sref5
http://refhub.elsevier.com/S2352-9385(23)00113-1/sref5
http://refhub.elsevier.com/S2352-9385(23)00113-1/sref6
http://refhub.elsevier.com/S2352-9385(23)00113-1/sref6
http://refhub.elsevier.com/S2352-9385(23)00113-1/sref7
http://refhub.elsevier.com/S2352-9385(23)00113-1/sref8
http://refhub.elsevier.com/S2352-9385(23)00113-1/sref8
http://refhub.elsevier.com/S2352-9385(23)00113-1/sref9
http://refhub.elsevier.com/S2352-9385(23)00113-1/sref9
http://refhub.elsevier.com/S2352-9385(23)00113-1/sref10
http://refhub.elsevier.com/S2352-9385(23)00113-1/sref11
http://refhub.elsevier.com/S2352-9385(23)00113-1/sref11
http://refhub.elsevier.com/S2352-9385(23)00113-1/sref12
http://refhub.elsevier.com/S2352-9385(23)00113-1/sref12
http://refhub.elsevier.com/S2352-9385(23)00113-1/sref13
http://refhub.elsevier.com/S2352-9385(23)00113-1/sref13
http://refhub.elsevier.com/S2352-9385(23)00113-1/sref14
http://refhub.elsevier.com/S2352-9385(23)00113-1/sref14
http://refhub.elsevier.com/S2352-9385(23)00113-1/sref16
http://refhub.elsevier.com/S2352-9385(23)00113-1/sref16
http://refhub.elsevier.com/S2352-9385(23)00113-1/sref17
http://refhub.elsevier.com/S2352-9385(23)00113-1/sref18
http://refhub.elsevier.com/S2352-9385(23)00113-1/sref18
http://refhub.elsevier.com/S2352-9385(23)00113-1/sref19
http://refhub.elsevier.com/S2352-9385(23)00113-1/sref19
http://refhub.elsevier.com/S2352-9385(23)00113-1/sref20
http://refhub.elsevier.com/S2352-9385(23)00113-1/sref21
http://refhub.elsevier.com/S2352-9385(23)00113-1/sref21
http://refhub.elsevier.com/S2352-9385(23)00113-1/sref22
http://refhub.elsevier.com/S2352-9385(23)00113-1/sref22
http://refhub.elsevier.com/S2352-9385(23)00113-1/sref23
http://refhub.elsevier.com/S2352-9385(23)00113-1/sref24
http://refhub.elsevier.com/S2352-9385(23)00113-1/sref24
http://refhub.elsevier.com/S2352-9385(23)00113-1/sref25
http://refhub.elsevier.com/S2352-9385(23)00113-1/sref25
http://refhub.elsevier.com/S2352-9385(23)00113-1/sref26
http://refhub.elsevier.com/S2352-9385(23)00113-1/sref26
http://refhub.elsevier.com/S2352-9385(23)00113-1/sref27
http://refhub.elsevier.com/S2352-9385(23)00113-1/sref27
http://refhub.elsevier.com/S2352-9385(23)00113-1/sref28
http://refhub.elsevier.com/S2352-9385(23)00113-1/sref28
http://refhub.elsevier.com/S2352-9385(23)00113-1/sref29
http://refhub.elsevier.com/S2352-9385(23)00113-1/sref29
http://refhub.elsevier.com/S2352-9385(23)00113-1/sref29
http://refhub.elsevier.com/S2352-9385(23)00113-1/sref30
http://refhub.elsevier.com/S2352-9385(23)00113-1/sref30
http://refhub.elsevier.com/S2352-9385(23)00113-1/sref31
http://refhub.elsevier.com/S2352-9385(23)00113-1/sref32
http://refhub.elsevier.com/S2352-9385(23)00113-1/sref33
http://refhub.elsevier.com/S2352-9385(23)00113-1/sref34
http://refhub.elsevier.com/S2352-9385(23)00113-1/sref35
http://refhub.elsevier.com/S2352-9385(23)00113-1/sref36
http://refhub.elsevier.com/S2352-9385(23)00113-1/sref37
http://refhub.elsevier.com/S2352-9385(23)00113-1/sref37
http://refhub.elsevier.com/S2352-9385(23)00113-1/sref38
http://refhub.elsevier.com/S2352-9385(23)00113-1/sref38
http://refhub.elsevier.com/S2352-9385(23)00113-1/sref39
http://refhub.elsevier.com/S2352-9385(23)00113-1/sref39


Remote Sensing Applications: Society and Environment 32 (2023) 101031

26

B. Ez-zahouani et al.

Drăguţ, L., Tiede, D., Levick, S.R., 2010. ESP: a tool to estimate scale parameter for multiresolution image segmentation of remotely sensed data. Int. J. Geogr. Inf. Sci.
24 (6), 859–871.

Drăguţ, L., Csillik, O., Eisank, C., Tiede, D., 2014. Automated parameterisation for multi-scale image segmentation on multiple layers. ISPRS J. Photogrammetry Remote
Sens. 88, 119–127.

Dronova, I., Gong, P., Clinton, N.E., Wang, L., Fu, W., Qi, S., Liu, Y., 2012. Landscape analysis of wetland plant functional types: the effects of image segmentation scale,
vegetation classes and classification methods. Remote Sens. Environ. 127, 357–369.

Du, S., Zhang, F., Zhang, X., 2015. Semantic classification of urban buildings combining VHR image and GIS data: an improved random forest approach. ISPRS J.
Photogrammetry Remote Sens. 105, 107–119.

Duarte, L., Silva, P., Teodoro, A.C., 2018. Development of a QGIS plugin to obtain parameters and elements of plantation trees and vineyards with aerial photographs.
ISPRS Int. J. Geo-Inf. 109.

Duro, D.C., Franklin, S.E., Dubé, M.G., 2012. Multi-scale object-based image analysis and feature selection of multi-sensor Earth observation imagery using random
forests. Int. J. Rem. Sens. 33 (14).

eCognition, 2013. Ecognition Developer Reference Book (Ver. 8.9. 1), vol. 126. Trimble Germany GmbH, Arnulfstrasse, D-80636 Munich, Germany.
El-naggar, A.M., 2018. Determination of optimum segmentation parameter values for extracting building from remote sensing images. Alex. Eng. J. 57 (4), 3089–3097.
ENVI, 2022. The leading geospatial image analysis software. Available online. https://www.harrisgeospatial.com/Software-Technology/ENVI. (Accessed 25 August

2022).
Espindola, G.M., Camara, G., Reis, I.A., Bins, L.S., Monteiro, A.M., 2006. Parameter selection for region -growing image segmentation algorithms using spatial

autocorrelation. Int. J. Rem. Sens. 27 (14), 3035–3040.
Ez-zahouani, B., EL Kharki, O., Kanga Idé, S., Zouiten, M., 2023. Determination of segmentation parameters for object-based remote sensing image analysis from

conventional to recent approaches: a review. International Journal of Geoinformatics 19 (1), 23–42.
Felzenszwalb, P.F., Huttenlocher, D.P., 2004. Efficient graph-based image segmentation. Int. J. Comput. Vis. 59 (2), 167–181.
Fu, G., Zhao, H., Li, C., Shi, L., 2013. Segmentation for high-resolution optical remote sensing imagery using improved quadtree and region adjacency graph technique.

Rem. Sens. 5 (7), 3259–3279. 2013.
Gaetano, R., Scarpa, G., Poggi, G., 2009. Recursive Texture Fragmentation and Reconstruction segmentation algorithm applied to VHR images. In: IEEE International

Geoscience and Remote Sensing Symposium - Cape Town, South Africa. IV-101–IV-104.
Gaetano, R., Masi, G., Poggi, G., Verdoliva, L., Scarpa, G., 2015. Marker-controlled watershed-based segmentation of multiresolution remote sensing images. IEEE

Trans. Geosci. Rem. Sens. 53 (6), 2987–3004.
Georganos, S., Grippa, T., Lennert, M., Vanhuysse, S., Johnson, B.A., Wolff, E., 2018. Scale matters: spatially partitioned unsupervised segmentation parameter

optimization for large and heterogeneous satellite images. Rem. Sens. 10 (9), 1440.
Giannakis, I., Bhardwaj, A., Sam, L., Leontidis, G., 2023. Deep learning universal crater detection using Segment Anything Model (SAM). Comput. Vis. Pattern Recogn.

1–11.
Gibril, M.B., Idrees, M.O., Yao, K., Shafri, H.Z.M., 2018. Integrative image segmentation optimization and machine learning approach for high quality land-use and

land-cover mapping using multisource remote sensing data. J. Appl. Remote Sens. 12 (1), 016036.
Gofman, E., 2006. Developing an Efficient Region Growing Engine for Image Segmentation, Proc. ofICPR, Hong Kong, China, p. 2413. 1416.
Gonçalves, H., Gonçalves, J.A., Corte-Real, L., Teodoro, A.C., 2012. CHAIR: automatic image registration based on correlation and Hough transform. Int. J. Rem. Sens.

33 (24), 7936–7968.
Gonçalves, J., Pôças, I., Marcos, B., Mücher, C.A., Honrado, J.P., 2019. SegOptim—a new R package for optimizing object-based image analyses of high-spatial

resolution remotely-sensed data. Int. J. Appl. Earth Obs. Geoinf. 76, 218–230.
GRASS GIS, 2014. The world’s leading free GIS software. URL. http://Grass.Osgeo.Org. 2014.
Grinias, I., Panagiotakis, C., Tziritas, G., 2016. MRF-based segmentation and unsupervised classification for building and road detection in peri-urban areas of high-

resolution satellite images. ISPRS J. Photogrammetry Remote Sens. 122, 145–166.
Grybas, H., Melendy, L., Congalton, R.G., 2017. A comparison of unsupervised segmentation parameter optimization approaches using moderate- and high-resolution

imagery. GIScience Remote Sens. 54 (4), 515–533.
Gu, H., Han, Y., Yang, Y., Li, H., Liu, Z., Soergel, U., Blaschke, T., Cui, S., 2018. An efficient parallel multi-scale segmentation method for remote sensing imagery. Rem.

Sens. 10, 590.
Guimarães, S.J.F., Cousty, J., Kenmochi, Y., Najman, L., 2012. A hierarchical image segmentation algorithm based on an observation scale. In: Structural, Syntactic, and

Statistical Pattern Recognition. SSPR/SPR 2012. Lecture Notes in Computer Science. Springer, Berlin, Heidelberg, p. 7626.
Guo, D., Atluri, V., Adam, N., 2005. Texture-based remote sensing image segmentation. In: Proceedings of IEEE International Conference on Multimedia and Expo. pp.

1472–1475.
Hamedianfar, A., Gibril, M.B.A., 2019. Large-scale urban mapping using integrated geographic object-based image analysis and artificial bee colony optimization from

worldview-3 data. Int. J. Rem. Sens. 40 (17), 6796–6821.
Hanbury, A., 2008. Image Segmentation by Region Based and Watershed Algorithms. Wiley Encycl. Comput. Sci. Eng., pp. 1543–1552.
Happ, P.N., Ferreira, R.S., Costa, G.A.O.P., Feitosa, R.Q., Bentes, C., Farias, R., Achanccaray, P.M., 2016. Interseg: a distributed image segmentation tool. In: GEOBIA

2016: Solutions and Synergies. University of Twente Faculty of GeoInformation and Earth Observation. (ITC).
Hariharan, B., Malik, J., Ramanan, D., 2012. Discriminative decorrelation for clustering and classification. Proc. Eur. Conf. Comput. Vis. 459–472.
Hay, G., Castilla, G., 2008. Geographic Object-Based Image Analysis (GEOBIA): A New Name for a New Discipline, pp. 75–89. (Chapter 1).4.
Hay, G.J., Marceau, D.J., Dubé, P., Bouchard, A., 2001. A multiscale framework for landscape analysis: object-specific analysis and upscaling. Landsc. Ecol. 16,

471–490.
He, M., Zhang, W., Wang, W., 2009. Optimal segmentation scale model based on object-oriented analysis method. J. Geodesy Geodyn. 29 (1), 106–109.
He, K., Gkioxari, G., Dollár, P., Girshick, R., 2017. Mask R-CNN. In: Proceedings of the IEEE International Conference on Computer Vision, Venice, Italy. pp. 2980–2988.
Hossain, M.D., Chen, D., 2019. Segmentation for Object-Based Image Analysis (OBIA): a review of algorithms and challenges from remote sensing perspective. ISPRS J.

Photogrammetry Remote Sens. 19, 115–134.
Hu, Y., Chen, J., Pan, D., Hao, Z., 2016. Edge-Guided image object detection in multiscale segmentation for high-resolution remotely sensed imagery. IEEE Trans.

Geosci. Rem. Sens. 54 (8), 4702–4711.
Hu, Z., Li, Q., Zhang, Q., Zou, Q., Wu, Z., 2017. Unsupervised simplification of image hierarchies via evolution analysis in scale-sets framework. IEEE Trans. Image

Process. 26 (5), 2394–2407.
Huang, X., Zhang, L., 2013. An SVM ensemble approach combining spectral, structural, and semantic features for the classification of high-resolution remotely sensed

imagery. IEEE Trans. Geosci. Rem. Sens. 51 (1), 257–272.
Imageseg, 2022. https://www.imageseg.com/.
Jain, R., Kasturi, R., Schunck, B.G., 1995. Machine Vision, McGraw-Hill series in computer science, pp. 140–185. (Chapter 5). Edge Detection.
Jain Preetha, M.M.S., Padma Suresh, L., John Bosco, M., 2012. Image segmentation using seeded region growing. In: IEEE 2012 International Conference on Computing,

Electronics and Electrical Technologies. ICCEET)- Nagercoil, Tamil Nadu, India, pp. 576–583.
Jain Preetha, M.M.S., Padmasuresh, L., Bosco, M.J., 2016. Firefly based region growing and region merging for image segmentation. In: IEEE 2016 International

Conference on Emerging Technological Trends. ICETT) - Kollam, India, pp. 1–9.
Johnson, B.A., Jozdani, S.E., 2018. Identifying generalizable image segmentation parameters for urban land cover mapping through meta-analysis and regression tree

modeling. Rem. Sens. 10 (1), 73.
Johnson, B., Xie, Z., 2011. Unsupervised image segmentation evaluation and refinement using a multi-scale Approach. ISPRS J. Photogrammetry Remote Sens. 66 (4),

473–483.
Johnson, B., Bragais, M., Endo, I., Magcale-Macandog, D., Macandog, P., 2015. Image segmentation parameter optimization considering within- and between-segment

heterogeneity at multiple scale levels: test case for mapping residential areas using landsat imagery. ISPRS Int. J. Geo-Inf. 4, 2292–2305.

http://refhub.elsevier.com/S2352-9385(23)00113-1/sref40
http://refhub.elsevier.com/S2352-9385(23)00113-1/sref40
http://refhub.elsevier.com/S2352-9385(23)00113-1/sref41
http://refhub.elsevier.com/S2352-9385(23)00113-1/sref41
http://refhub.elsevier.com/S2352-9385(23)00113-1/sref42
http://refhub.elsevier.com/S2352-9385(23)00113-1/sref42
http://refhub.elsevier.com/S2352-9385(23)00113-1/sref43
http://refhub.elsevier.com/S2352-9385(23)00113-1/sref43
http://refhub.elsevier.com/S2352-9385(23)00113-1/sref44
http://refhub.elsevier.com/S2352-9385(23)00113-1/sref44
http://refhub.elsevier.com/S2352-9385(23)00113-1/sref45
http://refhub.elsevier.com/S2352-9385(23)00113-1/sref45
http://refhub.elsevier.com/S2352-9385(23)00113-1/sref46
http://refhub.elsevier.com/S2352-9385(23)00113-1/sref47
https://www.harrisgeospatial.com/Software-Technology/ENVI
http://refhub.elsevier.com/S2352-9385(23)00113-1/sref49
http://refhub.elsevier.com/S2352-9385(23)00113-1/sref49
http://refhub.elsevier.com/S2352-9385(23)00113-1/sref50
http://refhub.elsevier.com/S2352-9385(23)00113-1/sref50
http://refhub.elsevier.com/S2352-9385(23)00113-1/sref51
http://refhub.elsevier.com/S2352-9385(23)00113-1/sref52
http://refhub.elsevier.com/S2352-9385(23)00113-1/sref52
http://refhub.elsevier.com/S2352-9385(23)00113-1/sref53
http://refhub.elsevier.com/S2352-9385(23)00113-1/sref53
http://refhub.elsevier.com/S2352-9385(23)00113-1/sref54
http://refhub.elsevier.com/S2352-9385(23)00113-1/sref54
http://refhub.elsevier.com/S2352-9385(23)00113-1/sref55
http://refhub.elsevier.com/S2352-9385(23)00113-1/sref55
http://refhub.elsevier.com/S2352-9385(23)00113-1/sref56
http://refhub.elsevier.com/S2352-9385(23)00113-1/sref56
http://refhub.elsevier.com/S2352-9385(23)00113-1/sref57
http://refhub.elsevier.com/S2352-9385(23)00113-1/sref57
http://refhub.elsevier.com/S2352-9385(23)00113-1/sref58
http://refhub.elsevier.com/S2352-9385(23)00113-1/sref59
http://refhub.elsevier.com/S2352-9385(23)00113-1/sref59
http://refhub.elsevier.com/S2352-9385(23)00113-1/sref60
http://refhub.elsevier.com/S2352-9385(23)00113-1/sref60
http://refhub.elsevier.com/S2352-9385(23)00113-1/sref62
http://refhub.elsevier.com/S2352-9385(23)00113-1/sref62
http://refhub.elsevier.com/S2352-9385(23)00113-1/sref63
http://refhub.elsevier.com/S2352-9385(23)00113-1/sref63
http://refhub.elsevier.com/S2352-9385(23)00113-1/sref64
http://refhub.elsevier.com/S2352-9385(23)00113-1/sref64
http://refhub.elsevier.com/S2352-9385(23)00113-1/sref65
http://refhub.elsevier.com/S2352-9385(23)00113-1/sref65
http://refhub.elsevier.com/S2352-9385(23)00113-1/sref66
http://refhub.elsevier.com/S2352-9385(23)00113-1/sref66
http://refhub.elsevier.com/S2352-9385(23)00113-1/sref67
http://refhub.elsevier.com/S2352-9385(23)00113-1/sref67
http://refhub.elsevier.com/S2352-9385(23)00113-1/sref68
http://refhub.elsevier.com/S2352-9385(23)00113-1/sref69
http://refhub.elsevier.com/S2352-9385(23)00113-1/sref69
http://refhub.elsevier.com/S2352-9385(23)00113-1/sref70
http://refhub.elsevier.com/S2352-9385(23)00113-1/sref71
http://refhub.elsevier.com/S2352-9385(23)00113-1/sref72
http://refhub.elsevier.com/S2352-9385(23)00113-1/sref72
http://refhub.elsevier.com/S2352-9385(23)00113-1/sref73
http://refhub.elsevier.com/S2352-9385(23)00113-1/sref74
http://refhub.elsevier.com/S2352-9385(23)00113-1/sref75
http://refhub.elsevier.com/S2352-9385(23)00113-1/sref75
http://refhub.elsevier.com/S2352-9385(23)00113-1/sref76
http://refhub.elsevier.com/S2352-9385(23)00113-1/sref76
http://refhub.elsevier.com/S2352-9385(23)00113-1/sref77
http://refhub.elsevier.com/S2352-9385(23)00113-1/sref77
http://refhub.elsevier.com/S2352-9385(23)00113-1/sref78
http://refhub.elsevier.com/S2352-9385(23)00113-1/sref78
https://www.imageseg.com/
http://refhub.elsevier.com/S2352-9385(23)00113-1/sref80
http://refhub.elsevier.com/S2352-9385(23)00113-1/sref81
http://refhub.elsevier.com/S2352-9385(23)00113-1/sref81
http://refhub.elsevier.com/S2352-9385(23)00113-1/sref82
http://refhub.elsevier.com/S2352-9385(23)00113-1/sref82
http://refhub.elsevier.com/S2352-9385(23)00113-1/sref83
http://refhub.elsevier.com/S2352-9385(23)00113-1/sref83
http://refhub.elsevier.com/S2352-9385(23)00113-1/sref84
http://refhub.elsevier.com/S2352-9385(23)00113-1/sref84
http://refhub.elsevier.com/S2352-9385(23)00113-1/sref85
http://refhub.elsevier.com/S2352-9385(23)00113-1/sref85


Remote Sensing Applications: Society and Environment 32 (2023) 101031

27

B. Ez-zahouani et al.

Jozdani, S., Chen, D., 2020. On the versatility of popular and recently proposed supervised evaluation metrics for segmentation quality of remotely sensed images: an
experimental case study of building extraction. ISPRS J. Photogrammetry Remote Sens. 160, 275–290.

Jozdani, S.E., Momeni, M., Johnson, B.A., Sattari, M., 2018. A regression modelling approach for optimizing segmentation scale parameters to extract buildings of
different sizes. Int. J. Rem. Sens. 39, 684–703.

Jung, M., Yun, E., Kim, C., 2005. Multiresolution approach for texture segmentation using MRF models. Proceedings of the IEEE International Geoscience and Remote
Sensing Symposium 6, 3971–3974.

Karl, J.W., Maurer, B.A., 2010. Spatial dependency of predictions from image segmentation: a variogram-based method to determine appropriate scales for producing
land-management information. Ecol. Inf. 5, 194–202.

Kavzoglu, T., Tonbul, H., 2017. A comparative study of segmentation quality for multi-resolution segmentation and watershed transform. IEEE 2017 8th International
Conference on Recent Advances in Space Technologies (RAST) - Istanbul, Turkey 113–117. https://doi.org/10.1109/RAST.2017.8002984.

Kavzoglu, T., Tonbul, H., 2018. An experimental comparison of multi-resolution segmentation, SLIC and K-means clustering for object-based classification of VHR
imagery. Int. J. Rem. Sens. 1–17. https://doi.org/10.1080/01431161.2018.1506592.

Kavzoglu, T., Erdemir, M.Y., Tonbul, H., 2017. Classification of semiurban landscapes from very high-resolution satellite images using a regionalized multiscale
segmentation approach. J. Appl. Remote Sens. 11 (3), 035016.

Kembhavi, A., Harwood, D., Davis, L.S., 2011. Vehicle detection using partial least squares. IEEE Trans. Pattern Anal. Mach. Intell. 33, 1250–1265.
Kemker, R., Salvaggio, C., Kanan, C., 2018. Algorithms for semantic segmentation of multispectral remote sensing imagery using deep learning. ISPRS J. Photogramm.

Remote Sens., S0924271618301229.
Kim, M., Madden, M., Warner, T., 2008. Estimation of optimal image object size for the segmentation of forest stands with multispectral IKONOS imagery. In: Blaschke,

T., Lang, S., Hay, G.J. (Eds.), Object-Based Image Analysis. Lecture Notes in Geoinformation and Cartography. Springer, Berlin, Heidelberg.
Kotaridis, I., Lazaridou, M., 2021. Remote sensing image segmentation advances: a meta-analysis. ISPRS J. Photogrammetry Remote Sens. 173, 309–322.
Kucharczyk, M., Hay, G.J., Ghaffarian, S., Hugenholtz, C.H., 2020. Geographic object-based image analysis: a primer and future directions. Rem. Sens. 12 (2012).
Li, S.Z., 2009. Markov Random Field Modelling in Image Analysis. Springer-Verlag, Heidelberg, New York, pp. 21–47.
Li, P., Xiao, X., 2007. Multispectral image segmentation by a multichannel watershed-based approach. Int. J. Rem. Sens. 28, 4429–4452.
Li, H.T., Gu, H.Y., Han, Y.S., Yang, J.S., 2008. An efficient multi-scale segmentation for high-resolution remote sensing imagery based on Statistical region merging and

minimum heterogeneity rule. International Workshop on Earth Observation and Remote Sensing Applications (EORSA) 1257–1262.
Li, D., Zhang, G., Wu, Z., Yi, L., 2010. An edge embedded marker-based watershed algorithm for high spatial resolution remote sensing image segmentation. IEEE Trans.

Image Process. 19 (10), 2781–2787.
Li, X., Chen, W., Cheng, X., Liao, Y., Chen, G., 2017. Comparison and integration of feature reduction methods for land cover classification with RapidEye imagery.

Multimed. Tool. Appl. 76 (21), 23041–23057.
Liu, L., 2018. A modified approach combining FNEA and watershed algorithms for segmenting remotely-sensed optical images, in: spie10620. In: 2017 International

Conference on Optical Instruments and Technology: Optoelectronic Imaging/Spectroscopy and Signal P.
Liu, D., Xia, F., 2010. Assessing object-based classification: advantages and limitations. Remote Sens. Lett. 1 (4), 187–194.
Liu, Y., Bian, L., Meng, Y., Wang, H., Zhang, S., Yang, Y., Shao, X., Wang, B., 2012. Discrepancy measures for selecting optimal combination of parameter values in

object-based image analysis. ISPRS J. Photogrammetry Remote Sens. 68, 144–156.
Liu, J., Li, P., Wang, X., 2015. A new segmentation method for very high resolution imagery using spectral and morphological information. ISPRS J. Photogrammetry

Remote Sens. 101, 145–162.
Liu, J., Du, M., Mao, Z., 2017. Scale computation on high spatial resolution remotely sensed imagery multi-scale segmentation,”. Int. J. Rem. Sens. 38 (18), 5186–5214.
Liu, J., Pu, H., Song, S., Du, M., 2018. An adaptive scale estimating method of multiscale image segmentation based on vector edge and spectral statistics information.

Int. J. Rem. Sens. 39 (20), 6826–6845.
Liu, C., Bian, T., Zhou, A., 2021. Multiobjective multiple features fusion: a case study in image segmentation. Swarm Evol. Comput. 60, 100792.
Lizarazo, I., 2012. Quantitative land cover change analysis using fuzzy segmentation. Int. J. Appl. Earth Obs. Geoinf. 15, 16–27.
Lourenço, P., Teodoro, A.C., Gonçalves, J.A., Honrado, J.P., Cunha, M., Sillero, N., 2021. Assessing the performance of different OBIA software approaches for mapping

invasive alien plants along roads with remote sensing data. Int. J. Appl. Earth Obs. Geoinf. 95, 102263.
Louw, G., Van Niekerk, A., 2018. Object-based land surface segmentation scale optimisation: an ill-structured problem. Geomorphology, S0169555X18304707.
Lu, D., Weng, Q., 2007. A survey of image classification methods and techniques for improving classification performance. Int. J. Rem. Sens. 28 (5), 823–870.
Lv, Z.Y., Zhang, P., Benediktsson, J.A., Shi, W. Zh, 2014. Morphological profiles based on differently shaped structuring elements for classification of images with very

high spatial resolution. IEEE J. Sel. Top. Appl. Earth Obs. Rem. Sens. 7 (12), 4644–4652.
Ma, W.Y., Manjunath, B.S., 2000. EdgeFlow: a technique for boundary detection and image segmentation. IEEE Trans. Image Process. 9 (8).
Ma, L., Cheng, L., Li, M., Liu, Y., Ma, X., 2015. Training set size, scale, and features in Geographic Object-Based Image Analysis of very high resolution unmanned aerial

vehicle imagery. ISPRS J. Photogrammetry Remote Sens. 102, 14–27.
Ma, L., Li, M., Ma, X., Cheng, L., Du, P., Liu, Y., 2017. A review of supervised object-based land-cover image classification. ISPRS J. Photogrammetry Remote Sens. 130,

277–293.
Ma, L., Liu, Y., Zhang, X., Ye, Y., Yin, G., Johnson, B.A., 2019. Deep learning in remote sensing applications: a meta-analysis and review. ISPRS J. Photogrammetry

Remote Sens. 152, 166–177.
Martha, T.R., Kerle, N., Jetten, V., van Westen, C.J., Kumar, K.V., 2010. Characterising spectral, spatial and morphometric properties of landslides for semi-automatic

detection using object-oriented methods. Geomorphology 116, 24–36.
Martha, T.R., Kerle, N., Westen, C.J.V., Jetten, V., Kumar, V.K., 2012. Object-oriented analysis of multi-temporal panchromatic images for creation of historical

landslide inventories. ISPRS J. Photogrammetry Remote Sens. 67, 105–119.
Mikes, S., Haindl, M., Scarpa, G., Gaetano, R., 2015. Benchmarking of remote sensing segmentation methods. IEEE J. Sel. Top. Appl. Earth Obs. Rem. Sens. 8 (5),

2240–2248.
Ming, D., Yang, J., Li, L., Song, Z., 2011. Modified ALV for selecting the optimal spatial resolution and its scale effect on image classification accuracy. Math. Comput.

Model. 54 (3–4), 1061–1068.
Ming, D., Ci, T., Cai, H., Li, L., Qiao, C., 2012. Semivariogram-based spatial bandwidth selection for remote sensing image segmentation with mean-shift algorithm.

Geosci. Rem. Sens. Lett. IEEE 9 (5), 813–817.
Ming, D., Li, J., Wang, J., Zhang, M., 2015. Scale parameter selection by spatial statistics for GeOBIA: using mean-shift based multi-scale segmentation as an example.

ISPRS J. Photogrammetry Remote Sens. 106, 28–41.
Ming, D., Qiu, Y., Zhou, W., 2016. Applying spatial statistics into remote sensing pattern recognition: with case study of cropland extraction based on GeOBIA. Acta

Geod. Cartogr. Sinica 45 (7), 825–833.
Mohammad, N., Muad, A.M., Ahmad, R., Yusof, M.Y.P.M., 2022. Accuracy of advanced deep learning with tensorflow and keras for classifying teeth developmental

stages in digital panoramic imaging. BMC Med. Imag. 22, 66.
Mohan Vamsee, A., Kamala, P., Martha, Tapas R., Vinod Kumar, K., Jai sankar, G., Amminedu, E., 2017. A tool assessing optimal multi-scale image segmentation.

Journal of the Indian Society of Remote Sensing. https://doi.org/10.1007/s12524-017-0685-7.
Möller, M., Birger, J., Gidudu, A., Gläßer, C., 2013. A framework for the geometric accuracy assessment of classified objects. Int. J. Rem. Sens. 34, 8685–8698.
Montaghi, A., Larsen, R., Greve, M.H., 2013. Accuracy assessment measures for image segmentation goodness of the Land Parcel Identification System (LPIS) in

Denmark. Remote. Sens. Lett. 4, 946–955.
Na, J., Ding, H., Zhao, Z., Liu, K., Tang, G., Pfeifer, N., 2021a. Object-based large-scale terrain classification combined with segmentation optimization and terrain

features: a case study in China. Trans. GIS 25 (6), 2939–2962.
Na, J., Ding, H., Zhao, W., Liu, K., Tanf, G., Pfeifer, N., 2021b. Object-based large-scale terrain classification combined with segmentation optimization and terrain

features: a case study in China. Trans. GIS 25 (6), 2939–2962.
Neupane, B., Horanont, T., Aryal, J., 2021. Deep learning-based semantic segmentation of urban features in satellite images: a review and meta-analysis. Rem. Sens. 13

http://refhub.elsevier.com/S2352-9385(23)00113-1/sref86
http://refhub.elsevier.com/S2352-9385(23)00113-1/sref86
http://refhub.elsevier.com/S2352-9385(23)00113-1/sref87
http://refhub.elsevier.com/S2352-9385(23)00113-1/sref87
http://refhub.elsevier.com/S2352-9385(23)00113-1/sref88
http://refhub.elsevier.com/S2352-9385(23)00113-1/sref88
http://refhub.elsevier.com/S2352-9385(23)00113-1/sref89
http://refhub.elsevier.com/S2352-9385(23)00113-1/sref89
https://doi.org/10.1109/RAST.2017.8002984
https://doi.org/10.1080/01431161.2018.1506592
http://refhub.elsevier.com/S2352-9385(23)00113-1/sref92
http://refhub.elsevier.com/S2352-9385(23)00113-1/sref92
http://refhub.elsevier.com/S2352-9385(23)00113-1/sref93
http://refhub.elsevier.com/S2352-9385(23)00113-1/sref94
http://refhub.elsevier.com/S2352-9385(23)00113-1/sref94
http://refhub.elsevier.com/S2352-9385(23)00113-1/sref95
http://refhub.elsevier.com/S2352-9385(23)00113-1/sref95
http://refhub.elsevier.com/S2352-9385(23)00113-1/sref96
http://refhub.elsevier.com/S2352-9385(23)00113-1/sref97
http://refhub.elsevier.com/S2352-9385(23)00113-1/sref98
http://refhub.elsevier.com/S2352-9385(23)00113-1/sref99
http://refhub.elsevier.com/S2352-9385(23)00113-1/sref100
http://refhub.elsevier.com/S2352-9385(23)00113-1/sref100
http://refhub.elsevier.com/S2352-9385(23)00113-1/sref101
http://refhub.elsevier.com/S2352-9385(23)00113-1/sref101
http://refhub.elsevier.com/S2352-9385(23)00113-1/sref102
http://refhub.elsevier.com/S2352-9385(23)00113-1/sref102
http://refhub.elsevier.com/S2352-9385(23)00113-1/sref103
http://refhub.elsevier.com/S2352-9385(23)00113-1/sref103
http://refhub.elsevier.com/S2352-9385(23)00113-1/sref104
http://refhub.elsevier.com/S2352-9385(23)00113-1/sref105
http://refhub.elsevier.com/S2352-9385(23)00113-1/sref105
http://refhub.elsevier.com/S2352-9385(23)00113-1/sref106
http://refhub.elsevier.com/S2352-9385(23)00113-1/sref106
http://refhub.elsevier.com/S2352-9385(23)00113-1/sref107
http://refhub.elsevier.com/S2352-9385(23)00113-1/sref108
http://refhub.elsevier.com/S2352-9385(23)00113-1/sref108
http://refhub.elsevier.com/S2352-9385(23)00113-1/sref109
http://refhub.elsevier.com/S2352-9385(23)00113-1/sref110
http://refhub.elsevier.com/S2352-9385(23)00113-1/sref111
http://refhub.elsevier.com/S2352-9385(23)00113-1/sref111
http://refhub.elsevier.com/S2352-9385(23)00113-1/sref112
http://refhub.elsevier.com/S2352-9385(23)00113-1/sref113
http://refhub.elsevier.com/S2352-9385(23)00113-1/sref114
http://refhub.elsevier.com/S2352-9385(23)00113-1/sref114
http://refhub.elsevier.com/S2352-9385(23)00113-1/sref115
http://refhub.elsevier.com/S2352-9385(23)00113-1/sref116
http://refhub.elsevier.com/S2352-9385(23)00113-1/sref116
http://refhub.elsevier.com/S2352-9385(23)00113-1/sref117
http://refhub.elsevier.com/S2352-9385(23)00113-1/sref117
http://refhub.elsevier.com/S2352-9385(23)00113-1/sref118
http://refhub.elsevier.com/S2352-9385(23)00113-1/sref118
http://refhub.elsevier.com/S2352-9385(23)00113-1/sref119
http://refhub.elsevier.com/S2352-9385(23)00113-1/sref119
http://refhub.elsevier.com/S2352-9385(23)00113-1/sref120
http://refhub.elsevier.com/S2352-9385(23)00113-1/sref120
http://refhub.elsevier.com/S2352-9385(23)00113-1/sref121
http://refhub.elsevier.com/S2352-9385(23)00113-1/sref121
http://refhub.elsevier.com/S2352-9385(23)00113-1/sref122
http://refhub.elsevier.com/S2352-9385(23)00113-1/sref122
http://refhub.elsevier.com/S2352-9385(23)00113-1/sref123
http://refhub.elsevier.com/S2352-9385(23)00113-1/sref123
http://refhub.elsevier.com/S2352-9385(23)00113-1/sref124
http://refhub.elsevier.com/S2352-9385(23)00113-1/sref124
http://refhub.elsevier.com/S2352-9385(23)00113-1/sref125
http://refhub.elsevier.com/S2352-9385(23)00113-1/sref125
http://refhub.elsevier.com/S2352-9385(23)00113-1/sref126
http://refhub.elsevier.com/S2352-9385(23)00113-1/sref126
https://doi.org/10.1007/s12524-017-0685-7
http://refhub.elsevier.com/S2352-9385(23)00113-1/sref128
http://refhub.elsevier.com/S2352-9385(23)00113-1/sref129
http://refhub.elsevier.com/S2352-9385(23)00113-1/sref129
http://refhub.elsevier.com/S2352-9385(23)00113-1/sref130
http://refhub.elsevier.com/S2352-9385(23)00113-1/sref130
http://refhub.elsevier.com/S2352-9385(23)00113-1/sref131
http://refhub.elsevier.com/S2352-9385(23)00113-1/sref131
http://refhub.elsevier.com/S2352-9385(23)00113-1/sref132


Remote Sensing Applications: Society and Environment 32 (2023) 101031

28

B. Ez-zahouani et al.

(4), 808.
Nikfar, M., Zoej, M.J.V., Mohammadzadeh, A., Mokhtarzade, M., Navabi, A., 2012. Optimization of multiresolution segmentation by using a genetic algorithm. J. Appl.

Remote Sens. 6 (1), 063592.
Olofsson, P., Foody, G.M., Herold, M., Stehman, S.V., Woodcock, C.E., Wulder, M.A., 2014. Good practices for estimating area and assessing accuracy of land change.

Remote Sens. Environ. 148, 42–57.
Paisitkriangkrai, S., Sherrah, J., Janney, P., Hengel, A.V.D., 2015. Effective semantic pixel labelling with convolutional networks and conditional random fields. In:

EARTHVISION 2015 Workshop, Computer Vision and Pattern Recognition Conference.
Pastorino, M., Moser, G., Serpico, S., Zerubia, J., 2022. Semantic segmentation of remote sensing images through fully convolutional neural networks and hierarchical

probabilistic graphical models. In: IEEE Transactions on Geoscience and Remote Sensing, vol. 60. Institute of Electrical and Electronics Engineers, 5407116.
PCI geomatica. Available online. https://www.geocloud.work/software/pci-geomatics. (Accessed 25 August 2022).
Pedergnana, M., Marpu, P.R., Mura, M.D., Benediktsson, J.A., Bruzzone, L., 2013. A novel technique for optimal feature selection in attribute profiles based on genetic

algorithms. IEEE Trans. Geosci. Rem. Sens. 51 (6), 3514–3528. 4502-4526.
Persello, C., Bruzzone, L., 2012. Active learning for domain adaptation in the supervised classification of remote sensing images. IEEE Trans. Geosci. Rem. Sens. 50 (11),

4468–4483.
Pro, Arcgis. 2D and 3D GIS mapping software—esri. Available online. https://www.esri.com/en-us/arcgis/products/arcgis-pro/overview. (Accessed 17 March 2021).
Punitha, M.P.A., Sutha, J., 2019. Object based classification of high resolution remote sensing image using HRSVM-CNN classifier. Eur. J. Remote Sens. 16–30.
Qiu, Y., Ming, D., Zhang, X., 2016. Object oriented land cover classification combining scale parameter preestimation and mean-shift segmentation. In: IEEE

International Geoscience and Remote Sensing Symposium. IGARSS) - Beijing, China, pp. 6332–6335.
Quirita, V.A.A., Diaz, P.A., Feitosa, R.Q., Happ, P.N., Costa, G.A.O.P., Klinger, T., Heipke, C., 2016. Metaheuristics for supervised parameter tuning of multiresolution

segmentation. Geosci. Rem. Sens. Lett. IEEE 13, 1364–1368.
Räsänen, A., Rusanen, A., Kuitunen, M., Lensu, A., 2013. What makes segmentation good? A case study in boreal forest habitat mapping. Int. J. Rem. Sens. 34,

8603–8627.
RSGISLIB. The remote sensing and GIS software library. Available online. https://www.rsgislib.org/. (Accessed 17 March 2021).
Ruiz, L.F.C., Guasselli, L.A., Simioni, J.P.D., Belloli, T.F., Fernandes, P.C.B., 2021. Object-based classification of vegetation species in a subtropical wetland using

Sentinel-1 and Sentinel-2A images. Science of Remote Sensing 3.
Sarkar, A., Biswas, M.K., Kartikeyan, B., Kumar, V., Majumder, K.L., Pal, D.K., 2002. A MRF model-based segmentation approach to classification for multispectral

imagery. IEEE Trans. Geosci. Rem. Sens. 40 (5), 1102–1113.
Scarpa, G., Gaetano, R., Haindl, M., Zerubia, J., 2009. Hierarchical multiple Markov chain model for unsupervised texture segmentation. IEEE Trans. Image Process. 18

(8), 1830–1843.
Scarpa, G., Masi, G., Verdoliva, L., Poggi, G., Gaetano, R., 2012. Recursive-TFR algorithm for segmentation of remotely sensed images. In: IEEE 2012 Eighth

International Conference on Signal-Image Technology & Internet-Based Systems (SITIS 2012) - Naples. pp. 174–181.
Schiezaro, M., Pedrini, H., 2013. Data feature selection based on artificial bee colony algorithm. EURASIP Journal on Image and Video Processing 2013 (1), 47.
Shahi, K., Shafri, H.Z.M., Hamedianfar, A., 2017. Road condition assessment by OBIA and feature selection techniques using very high-resolution WorldView-2

imagery. Geocarto Int. 32 (12), 1389–1406.
Shen, Y., Chen, J., Xiao, L., Pan, D., 2019. Optimizing multiscale segmentation with local spectral heterogeneity measure for high resolution remote sensing images.

ISPRS J. Photogrammetry Remote Sens. 157, 13–25.
Shi, L., Wan, Y., Gao, X., Wang, M.J., 2018. Feature Selection for Object-Based Classification of High-Resolution Remote Sensing Images Based on the Combination of a

Genetic Algorithm and Tabu Search, vol. 18. Computational Intelligence and Neuroscience.
Sirmaçek, B., Ünsalan, C., 2010. Urban area detection using local feature points and spatial voting. Geosci. Rem. Sens. Lett. IEEE 7 (1), 146–150.
Son, N., Chen, C., Chang, N., Chen, C., Chang, L., Thanh, B., 2014. Mangrove mapping and change detection in Ca mau peninsula, vietnam, using landsat data and

object-based image analysis. IEEE J. Sel. Top. Appl. Earth Obs. Rem. Sens. 8 (2), 503–510.
Sosa-Rey, F., Abderrafai, Y., Lewis, A.D., Therriault, D., Piccirelli, N., Lévesque, M., 2022. OpenFiberSeg: open-source segmentation of individual fibers and porosity in

tomographic scans of additively manufactured short fiber reinforced composites. Compos. Sci. Technol. 226, 109497.
SPRING-DPI, 2019. Spring. Retrieved December 6.
Su, T., 2019. Scale-variable region-merging for high resolution remote sensing image segmentation. ISPRS J. Photogrammetry Remote Sens. 147, 319–334.
Su, T., Zhang, S., 2017. Local and global evaluation for remote sensing image segmentation. ISPRS J. Photogrammetry Remote Sens. 130, 256–276.
Su, T., Liu, T., Zhang, S., Qu, Z., Li, R., 2020. Machine learning-assisted region merging for remote sensing image segmentation. ISPRS J. Photogrammetry Remote Sens.

168, 89–123.
Sugiyama, M., 2007. Dimensionality reduction of multimodal labeled data by local Fisher discriminant analysis. J. Mach. Learn. Res. 8, 1027–1061.
Sun, Z., Geng, H., Lu, Z., Scherer, R., Woźniak, M., 2021. Review of road segmentation for SAR images. Rem. Sens. 13, 1011.
Susan, S., Verma, O.P., Swarup, J., 2012. Object segmentation by an automatic edge constrained region growing technique. In: IEEE 2012 4th International Conference

on Computational Intelligence and Communication Networks (CICN)- Mathura. Uttar Pradesh, India, pp. 378–381.
Teodoro, A.C., Araújo, R., 2016. A comparison of performance of OBIA techniques available in Open Source software (Spring and OTB/Monteverdi) considering very

high spatial resolution data. J. Appl. Remote Sens. 10 (1), 016011.
Teodoro, A.C., Pais-Barbosa, J., Gonçalves, H., Veloso-Gomes, F., Taveira-Pinto, F., 2011. Identification of beach features/patterns through image classification

techniques applied to remotely sensed data. Int. J. Rem. Sens. 32 (22), 7399–7422.
Thompson, J.A., Lees, B.G., 2014. Applying object-based segmentation in the temporal domain to characterise snow seasonality. ISPRS J. Photogrammetry Remote

Sens. 97, 98–110.
Tian, J., Chen, M.D., 2007. Optimization in multi-scale segmentation of high-resolution satellite images for artificial feature recognition. Int. J. Rem. Sens. 28 (20),

4625–4644.
Tilton, J.C., Aksoy, S., Tarabalka, Y., 2015. Image segmentation algorithms for land categorization. In: Remotely Sensed Data Characterization, Classification, and

Accuracies. first ed., pp. 317–342.
Timilsina, S., Sharma, S.K., Aryal, J., 2019. Mapping urban trees within cadastral parcels using an object-based convolutional neural network. In: McDougall, K., Bhatta,

G.P., Paudyal, D.R., Shrestha, R., Upadhyaya, P.S., Dahal, T.P., Ranjit, B. (Eds.), ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information
Sciences. Copernicus GmbH, Germany, pp. 111–117.

Tonbul, H., kavzoglu, H., 2020. Semi-automatic building extraction from WorldView-2 imagery using taguchi optimization. Photogramm. Eng. Rem. Sens. 86 (9),
547–555.

Tong, X.Y., Xia, G.S., Lu, Q.K., Shen, H.F., Li, S.Y., You, S.C., Zhang, L.P., 2018. Learning transferable deep models for land-use classification with high-resolution
remote sensing images. Computer Vision and Pattern Recognition 1–35.

Toolbox, O.R.F.E.O., 2014. The Orfeo ToolBox Cookbook, a Guide for Non-developers, vol. 336.
Troya-Galvis, A., Gançarski, P., Berti-Équille, L., 2017. Remote sensing image analysis by aggregation of segmentation-classification collaborative agents. Pattern

Recogn. 73, 259–274.
Tuia, D., Persello, C., Bruzzone, L., 2016. Domain adaptation for the classification of remote sensing data: an overview of recent advances. IEEE Geoscience and Remote

Sensing Magazine 4 (2), 41–57.
Tzotsos, A., Karantzalos, K., Argialas, D., 2011. Object-based image analysis through nonlinear scale-space filtering. ISPRS J. Photogrammetry Remote Sens. 66 (1),

2–16.
Tzotsos, Y., Meng, Q., Qi, Q., Yang, J., Liu, Y., 2018. Region merging considering within- and between-segment heterogeneity: an improved hybrid remote-sensing

image segmentation method. Rem. Sens. 10, 781.
Van Coillie, F.M.B., Gardin, S., Anseel, F., 2014. Variability of operator performance in remote-sensing image interpretation: the importance of human and external

factors. Int. J. Rem. Sens. 35, 754–778.

http://refhub.elsevier.com/S2352-9385(23)00113-1/sref132
http://refhub.elsevier.com/S2352-9385(23)00113-1/sref133
http://refhub.elsevier.com/S2352-9385(23)00113-1/sref133
http://refhub.elsevier.com/S2352-9385(23)00113-1/sref134
http://refhub.elsevier.com/S2352-9385(23)00113-1/sref134
http://refhub.elsevier.com/S2352-9385(23)00113-1/sref135
http://refhub.elsevier.com/S2352-9385(23)00113-1/sref135
http://refhub.elsevier.com/S2352-9385(23)00113-1/sref136
http://refhub.elsevier.com/S2352-9385(23)00113-1/sref136
https://www.geocloud.work/software/pci-geomatics
http://refhub.elsevier.com/S2352-9385(23)00113-1/sref138
http://refhub.elsevier.com/S2352-9385(23)00113-1/sref138
http://refhub.elsevier.com/S2352-9385(23)00113-1/sref139
http://refhub.elsevier.com/S2352-9385(23)00113-1/sref139
https://www.esri.com/en-us/arcgis/products/arcgis-pro/overview
http://refhub.elsevier.com/S2352-9385(23)00113-1/sref141
http://refhub.elsevier.com/S2352-9385(23)00113-1/sref142
http://refhub.elsevier.com/S2352-9385(23)00113-1/sref142
http://refhub.elsevier.com/S2352-9385(23)00113-1/sref143
http://refhub.elsevier.com/S2352-9385(23)00113-1/sref143
http://refhub.elsevier.com/S2352-9385(23)00113-1/sref144
http://refhub.elsevier.com/S2352-9385(23)00113-1/sref144
https://www.rsgislib.org/
http://refhub.elsevier.com/S2352-9385(23)00113-1/sref146
http://refhub.elsevier.com/S2352-9385(23)00113-1/sref146
http://refhub.elsevier.com/S2352-9385(23)00113-1/sref147
http://refhub.elsevier.com/S2352-9385(23)00113-1/sref147
http://refhub.elsevier.com/S2352-9385(23)00113-1/sref148
http://refhub.elsevier.com/S2352-9385(23)00113-1/sref148
http://refhub.elsevier.com/S2352-9385(23)00113-1/sref149
http://refhub.elsevier.com/S2352-9385(23)00113-1/sref149
http://refhub.elsevier.com/S2352-9385(23)00113-1/sref150
http://refhub.elsevier.com/S2352-9385(23)00113-1/sref151
http://refhub.elsevier.com/S2352-9385(23)00113-1/sref151
http://refhub.elsevier.com/S2352-9385(23)00113-1/sref152
http://refhub.elsevier.com/S2352-9385(23)00113-1/sref152
http://refhub.elsevier.com/S2352-9385(23)00113-1/sref153
http://refhub.elsevier.com/S2352-9385(23)00113-1/sref153
http://refhub.elsevier.com/S2352-9385(23)00113-1/sref154
http://refhub.elsevier.com/S2352-9385(23)00113-1/sref155
http://refhub.elsevier.com/S2352-9385(23)00113-1/sref155
http://refhub.elsevier.com/S2352-9385(23)00113-1/sref156
http://refhub.elsevier.com/S2352-9385(23)00113-1/sref156
http://refhub.elsevier.com/S2352-9385(23)00113-1/sref157
http://refhub.elsevier.com/S2352-9385(23)00113-1/sref158
http://refhub.elsevier.com/S2352-9385(23)00113-1/sref159
http://refhub.elsevier.com/S2352-9385(23)00113-1/sref160
http://refhub.elsevier.com/S2352-9385(23)00113-1/sref160
http://refhub.elsevier.com/S2352-9385(23)00113-1/sref161
http://refhub.elsevier.com/S2352-9385(23)00113-1/sref162
http://refhub.elsevier.com/S2352-9385(23)00113-1/sref163
http://refhub.elsevier.com/S2352-9385(23)00113-1/sref163
http://refhub.elsevier.com/S2352-9385(23)00113-1/sref164
http://refhub.elsevier.com/S2352-9385(23)00113-1/sref164
http://refhub.elsevier.com/S2352-9385(23)00113-1/sref165
http://refhub.elsevier.com/S2352-9385(23)00113-1/sref165
http://refhub.elsevier.com/S2352-9385(23)00113-1/sref166
http://refhub.elsevier.com/S2352-9385(23)00113-1/sref166
http://refhub.elsevier.com/S2352-9385(23)00113-1/sref167
http://refhub.elsevier.com/S2352-9385(23)00113-1/sref167
http://refhub.elsevier.com/S2352-9385(23)00113-1/sref168
http://refhub.elsevier.com/S2352-9385(23)00113-1/sref168
http://refhub.elsevier.com/S2352-9385(23)00113-1/sref169
http://refhub.elsevier.com/S2352-9385(23)00113-1/sref169
http://refhub.elsevier.com/S2352-9385(23)00113-1/sref169
http://refhub.elsevier.com/S2352-9385(23)00113-1/sref170
http://refhub.elsevier.com/S2352-9385(23)00113-1/sref170
http://refhub.elsevier.com/S2352-9385(23)00113-1/sref171
http://refhub.elsevier.com/S2352-9385(23)00113-1/sref171
http://refhub.elsevier.com/S2352-9385(23)00113-1/sref172
http://refhub.elsevier.com/S2352-9385(23)00113-1/sref173
http://refhub.elsevier.com/S2352-9385(23)00113-1/sref173
http://refhub.elsevier.com/S2352-9385(23)00113-1/sref174
http://refhub.elsevier.com/S2352-9385(23)00113-1/sref174
http://refhub.elsevier.com/S2352-9385(23)00113-1/sref175
http://refhub.elsevier.com/S2352-9385(23)00113-1/sref175
http://refhub.elsevier.com/S2352-9385(23)00113-1/sref176
http://refhub.elsevier.com/S2352-9385(23)00113-1/sref176
http://refhub.elsevier.com/S2352-9385(23)00113-1/sref177
http://refhub.elsevier.com/S2352-9385(23)00113-1/sref177


Remote Sensing Applications: Society and Environment 32 (2023) 101031

29

B. Ez-zahouani et al.

Ventura, D., Napoleone, F., Cannucci, S., Alleaume, S., Valentini, E., Casoli, E., Burrascano, S., 2022. Integrating low-altitude drone based-imagery and OBIA for
mapping and manage semi natural grassland habitats. Estuar. Coast Shelf Sci. 171, 85–98.

Verbeeck, K., Hermy, M., Orshoven, J.V., 2012. External geo-information in the segmentation of VHR imagery improves the detection of imperviousness in urban
neighborhoods. Int. J. Appl. Earth Obs. Geoinf. 18, 0–435.

Wahbi, M., El Bakali, I., Ez-zahouani, B., Azmi, R., Moujahid, A., Zouiten, M., Yazidi Alaoui, O., Boulaassal, H., Maatouk, M., El Kharki, O., 2023. A deep learning
classification approach using high spatial satellite images for detection of built-up areas in rural zones: case study of Souss-Massa region – Morocco. Remote Sens.
Appl.: Society and Environment 29, 100898.

Wang, L., Sousa, W.P., Gong, P., 2004. Integration of object-based and pixel-based classification for mapping mangroves with IKONOS imagery. Int. J. Rem. Sens. 25,
5655–5668.

Wang, J., Song, J., Chen, M., Yang, Z., 2015. Road network extraction: a neural dynamic framework based on deep learning and a finite state machine. Int. J. Rem. Sens.
36, 3144–3169.

Wang, M., Huang, J., Ming, D., 2017. Region-line association constraints for high-resolution image segmentation. IEEE J. Sel. Top. Appl. Earth Obs. Rem. Sens. 10,
628–637.

Wang, Z., Yang, X., Lu, C., Yang, F., 2018a. A scale self-adapting segmentation approach and knowledge transfer for automatically updating land use/cover change
databases using high spatial resolution images. Int. J. Appl. Earth Obs. Geoinf. 69, 88–98.

Wang, M., Dong, Z., Cheng, Y., Li, D., 2018b. Optimal segmentation of high-resolution remote sensing image by combining superpixels with the minimum spanning
tree. IEEE Trans. Geosci. Rem. Sens. 56 (1), 228–238.

Wang, Y., Qi, Q., Liu, Y., Jiang, L., Wang, J., 2019. Unsupervised segmentation parameter selection using the local spatial statistics for remote sensing image
segmentation,”. Int. J. Appl. Earth Observat. Geoinform. 81, 98–109.

Wang, H., Shen, Z., Zhang, Z., Xu, Z., Li, S., Jiao, S., Lei, Y., 2021. Improvement of region-merging image segmentation accuracy using multiple merging criteria. Rem.
Sens. 13, 2782.

Wang, K., Chen, H., Cheng, L., Xiao, J., 2022. Variational-scale segmentation for multispectral remote-sensing images using spectral indices. Rem. Sens. 14, 326.
Whiteside, T.G., Maier, S.W., Boggs, G.S., 2014. Area-based and location-based validation of classified image objects. Int. J. Appl. Earth Obs. Geoinf. 28, 117–130.
Witharana, C., Civco, D.L., 2014. Optimizing multi-resolution segmentation scale using empirical methods: exploring the sensitivity of the supervised discrepancy

measure euclidean distance 2 (ED2). ISPRS J. Photogrammetry Remote Sens. 87, 108–121.
Witharana, C., Lynch, H., 2016. An object-based image analysis approach for detecting penguin guano in very high spatial resolution satellite images. Rem. Sens. 8, 375.
Wuest, B., Zhang, Y., 2009. Region based segmentation of QuickBird multispectral imagery through band Ratios and fuzzy comparison. ISPRS J. Photogrammetry

Remote Sens. 64 (1), 55–64.
Xi, W., Du, S., Wang, Y.-C., Zhang, X., 2019. A spatiotemporal cube model for analyzing satellite image time series: application to land-cover mapping and change

detection. Remote Sens. Environ. 231, 111212.
Xiao, P., Zhang, X., Zhang, H., Hu, R., Feng, X., 2018. Multiscale optimized segmentation of urban green cover in high resolution remote sensing image. Rem. Sens. 10

(11), 1813.
Xu, L., Ming, D., Zhou, W., Bao, H., Chen, Y., Ling, X., 2019. Farmland extraction from high spatial resolution remote sensing images based on stratified scale pre-

estimation. Rem. Sens. 11, 108.
Yan, Z., Sheng, C.D., Zhong, R.H., 2019. The research of building earthquake damage object-oriented segmentation based on multi-feature combination with remote

sensing image. 8th international congress of information and communication technology, ICICT 2019. Procedia Comput. Sci. 154, 817–823.
Yang, J., Li, P.J., He, Y.H., 2014. A multi-band Approach to unsupervised scale parameter selection for multi-scale image segmentation. ISPRS J. Photogrammetry

Remote Sens. 94, 13–24.
Yang, J., He, Y., Weng, Q., 2015a. An automated method to parameterize segmentation scale by enhancing intrasegment homogeneity and intersegment heterogeneity.

Geosci. Rem. Sens. Lett. IEEE 12 (6), 1282–1286.
Yang, J., He, Y., Caspersen, J., Jones, T., 2015b. A discrepancy measure for segmentation evaluation from the perspective of object recognition. ISPRS J.

Photogrammetry Remote Sens. 101, 186–192.
Yang, J., He, Y., Caspersen, J.P., Jones, T., 2017a. Delineating individual tree crowns in an uneven-aged, mixed broadleaf forest using multispectral watershed

segmentation and multiscale fitting. IEEE J. Sel. Top. Appl. Earth Obs. Rem. Sens. 10, 1390–1401.
Yang, J., He, Y.H., Caspersen, J., 2017b. Region merging using local spectral angle thresholds: a more accurate method for hybrid segmentation of remote sensing

images. Remote Sens. Environ. 190, 137–148.
Ye, S., Pontius, R.G., Rakshit, J.R., 2018. A review of accuracy assessment for object-based image analysis: from per-pixel to per-polygon approaches. ISPRS J.

Photogrammetry Remote Sens. 141, 137–147.
Yi, L., Zhang, G., Wu, Z., 2012. A scale-synthesis method for high spatial resolution remote sensing image segmentation. IEEE Trans. Geosci. Rem. Sens. 50 (10),

4062–4070.
Yuan, X., Shi, J., Gu, L., 2021. A review of deep learning methods for semantic segmentation of remote sensing imagery. Expert Syst. Appl. 16, 114417.
Zang, N., Cao, Y., Wang, Y., Huang, B., Zhang, L., Mathiopoulos, P.T., 2021. Land-use mapping for high-spatial resolution remote sensing image via deep learning: a

review. IEEE J. Sel. Top. Appl. Earth Obs. Rem. Sens. 14, 5372–5391.
Zanotta, D.C., Zortea, M., Ferreira, M.P., 2018. A supervised approach for simultaneous segmentation and classification of remote sensing images. ISPRS J.

Photogrammetry Remote Sens. 142, 162–173.
Zhang, X., Du, S., 2016. Learning selfhood scales for urban land cover mapping with very-high-resolution satellite images. Remote Sens. Environ. 178 (C), 172–190.
Zhang, H., Fritts, J.E., Goldman, S.A., 2008a. Image segmentation evaluation: a survey of unsupervised methods. Comput. Vis. Image Underst. 110, 260–280.
Zhang, Y., Matuszewski, B.J., Shark, L.-K., Moore, C.J., 2008b. Medical image segmentation using new hybrid level-set method. In: 2008 Fifth International Conference

Bio Medical Visualization: Information Visualization in Medical and Biomedical Informatics. IEEE, London, UK, pp. 71–76.
Zhang, J., Wang, Y.J., Li, Y., Wang, X.F., 2009. An object-oriented optimal scale choice method for high spatial resolution remote sensing image. Sci. Technol. Rev. 27

(21), 91–94. . In: Liu, J., Du, M., Mao, Z., 2017. Scale computation on high spatial resolution remotely sensed imagery multi-scale segmentation, International
Journal of Remote Sensing., 38(18), 5186-5214.

Zhang, X., Xiao, P., Feng, X., 2012. An unsupervised evaluation method for remotely sensed imagery segmentation,”. Geosci. Rem. Sens. Lett. IEEE 9 (2), 156–160.
Zhang, X., Xiao, P., Feng, X., Wang, J., Wang, Z., 2014. Hybrid region merging method for segmentation of high-resolution remote sensing images. ISPRS J.

Photogrammetry Remote Sens. 98, 19–28.
Zhang, X., Feng, X., Xiao, P., 2015a. Multi-scale segmentation of high-spatial resolution remote sensing images using adaptively increased scale parameter.

Photogramm. Eng. Rem. Sens. 81 (6), 461–470.
Zhang, X., Feng, X., Xiao, P., He, G., Zhu, L., 2015b. Segmentation quality evaluation using region-based precision and recall measures for remote sensing images. ISPRS

J. Photogrammetry Remote Sens. 102, 73–84.
Zhang, X., Chen, G., Wang, W., Wang, Q., Dai, F., 2017a. Object-based land-cover supervised classification for very-high-resolution UAV images using stacked denoising

autoencoders. IEEE J. Sel. Top. Appl. Earth Obs. Rem. Sens. 10, 3373–3385.
Zhang, X., Xiao, P., Feng, X., 2017b. Toward combining thematic information with hierarchical multiscale segmentations using tree Markov random field model. ISPRS

J. Photogrammetry Remote Sens. 131, 134–146.
Zhang, A.Z., Sun, G.Y., Liu, S.H., Wang, Z.J., Wang, P., Ma, J.S., 2017c. Multi-scale segmentation of very high resolution remote sensing image based on gravitational

field and optimized region merging. Multimed. Tool. Appl. 76, 15105–15122.
Zhang, R., Li, G., Li, M., Wang, L., 2018. Fusion of images and point clouds for the semantic segmentation of large-scale 3D scenes based on deep learning. ISPRS J.

Photogrammetry Remote Sens. 143, 85–96.
Zhang, X., Xiao, P., Feng, X., He, G., 2019a. Another look on region merging procedure from seed region shift for high-resolution remote sensing image segmentation.

ISPRS J. Photogrammetry Remote Sens. 148, 197–207.
Zhang, Y., Wang, X., Tan, H., Xu, C., Ma, X., Xu, T., 2019b. Region merging method for remote sensing spectral image aided by inter-segment and boundary

http://refhub.elsevier.com/S2352-9385(23)00113-1/sref178
http://refhub.elsevier.com/S2352-9385(23)00113-1/sref178
http://refhub.elsevier.com/S2352-9385(23)00113-1/sref179
http://refhub.elsevier.com/S2352-9385(23)00113-1/sref179
http://refhub.elsevier.com/S2352-9385(23)00113-1/sref180
http://refhub.elsevier.com/S2352-9385(23)00113-1/sref180
http://refhub.elsevier.com/S2352-9385(23)00113-1/sref180
http://refhub.elsevier.com/S2352-9385(23)00113-1/sref181
http://refhub.elsevier.com/S2352-9385(23)00113-1/sref181
http://refhub.elsevier.com/S2352-9385(23)00113-1/sref182
http://refhub.elsevier.com/S2352-9385(23)00113-1/sref182
http://refhub.elsevier.com/S2352-9385(23)00113-1/sref183
http://refhub.elsevier.com/S2352-9385(23)00113-1/sref183
http://refhub.elsevier.com/S2352-9385(23)00113-1/sref184
http://refhub.elsevier.com/S2352-9385(23)00113-1/sref184
http://refhub.elsevier.com/S2352-9385(23)00113-1/sref185
http://refhub.elsevier.com/S2352-9385(23)00113-1/sref185
http://refhub.elsevier.com/S2352-9385(23)00113-1/sref186
http://refhub.elsevier.com/S2352-9385(23)00113-1/sref186
http://refhub.elsevier.com/S2352-9385(23)00113-1/sref187
http://refhub.elsevier.com/S2352-9385(23)00113-1/sref187
http://refhub.elsevier.com/S2352-9385(23)00113-1/sref188
http://refhub.elsevier.com/S2352-9385(23)00113-1/sref189
http://refhub.elsevier.com/S2352-9385(23)00113-1/sref190
http://refhub.elsevier.com/S2352-9385(23)00113-1/sref190
http://refhub.elsevier.com/S2352-9385(23)00113-1/sref191
http://refhub.elsevier.com/S2352-9385(23)00113-1/sref192
http://refhub.elsevier.com/S2352-9385(23)00113-1/sref192
http://refhub.elsevier.com/S2352-9385(23)00113-1/sref193
http://refhub.elsevier.com/S2352-9385(23)00113-1/sref193
http://refhub.elsevier.com/S2352-9385(23)00113-1/sref194
http://refhub.elsevier.com/S2352-9385(23)00113-1/sref194
http://refhub.elsevier.com/S2352-9385(23)00113-1/sref195
http://refhub.elsevier.com/S2352-9385(23)00113-1/sref195
http://refhub.elsevier.com/S2352-9385(23)00113-1/sref196
http://refhub.elsevier.com/S2352-9385(23)00113-1/sref196
http://refhub.elsevier.com/S2352-9385(23)00113-1/sref197
http://refhub.elsevier.com/S2352-9385(23)00113-1/sref197
http://refhub.elsevier.com/S2352-9385(23)00113-1/sref198
http://refhub.elsevier.com/S2352-9385(23)00113-1/sref198
http://refhub.elsevier.com/S2352-9385(23)00113-1/sref199
http://refhub.elsevier.com/S2352-9385(23)00113-1/sref199
http://refhub.elsevier.com/S2352-9385(23)00113-1/sref200
http://refhub.elsevier.com/S2352-9385(23)00113-1/sref200
http://refhub.elsevier.com/S2352-9385(23)00113-1/sref201
http://refhub.elsevier.com/S2352-9385(23)00113-1/sref201
http://refhub.elsevier.com/S2352-9385(23)00113-1/sref202
http://refhub.elsevier.com/S2352-9385(23)00113-1/sref202
http://refhub.elsevier.com/S2352-9385(23)00113-1/sref203
http://refhub.elsevier.com/S2352-9385(23)00113-1/sref203
http://refhub.elsevier.com/S2352-9385(23)00113-1/sref204
http://refhub.elsevier.com/S2352-9385(23)00113-1/sref205
http://refhub.elsevier.com/S2352-9385(23)00113-1/sref205
http://refhub.elsevier.com/S2352-9385(23)00113-1/sref206
http://refhub.elsevier.com/S2352-9385(23)00113-1/sref206
http://refhub.elsevier.com/S2352-9385(23)00113-1/sref207
http://refhub.elsevier.com/S2352-9385(23)00113-1/sref208
http://refhub.elsevier.com/S2352-9385(23)00113-1/sref209
http://refhub.elsevier.com/S2352-9385(23)00113-1/sref209
http://refhub.elsevier.com/S2352-9385(23)00113-1/sref210
http://refhub.elsevier.com/S2352-9385(23)00113-1/sref210
http://refhub.elsevier.com/S2352-9385(23)00113-1/sref210
http://refhub.elsevier.com/S2352-9385(23)00113-1/sref211
http://refhub.elsevier.com/S2352-9385(23)00113-1/sref212
http://refhub.elsevier.com/S2352-9385(23)00113-1/sref212
http://refhub.elsevier.com/S2352-9385(23)00113-1/sref213
http://refhub.elsevier.com/S2352-9385(23)00113-1/sref213
http://refhub.elsevier.com/S2352-9385(23)00113-1/sref214
http://refhub.elsevier.com/S2352-9385(23)00113-1/sref214
http://refhub.elsevier.com/S2352-9385(23)00113-1/sref215
http://refhub.elsevier.com/S2352-9385(23)00113-1/sref215
http://refhub.elsevier.com/S2352-9385(23)00113-1/sref216
http://refhub.elsevier.com/S2352-9385(23)00113-1/sref216
http://refhub.elsevier.com/S2352-9385(23)00113-1/sref217
http://refhub.elsevier.com/S2352-9385(23)00113-1/sref217
http://refhub.elsevier.com/S2352-9385(23)00113-1/sref218
http://refhub.elsevier.com/S2352-9385(23)00113-1/sref218
http://refhub.elsevier.com/S2352-9385(23)00113-1/sref219
http://refhub.elsevier.com/S2352-9385(23)00113-1/sref219
http://refhub.elsevier.com/S2352-9385(23)00113-1/sref220


Remote Sensing Applications: Society and Environment 32 (2023) 101031

30

B. Ez-zahouani et al.

homogeneities. Rem. Sens. 11 (12), 1414. 2019.
Zhang, Y., Liu, K., Dong, Y., Wu, K., Hu, X., 2019c. Semisupervised classification based on SLIC segmentation for hyperspectral image. Geosci. Rem. Sens. Lett. IEEE 17

(8), 1440–1444.
Zhang, C., Atkinson, P.M., George, C., Wen, Z., Diazgranados, M., Gerard, F., 2020a. Identifying and mapping individual plants in a highly diverse high-elevation

ecosystem using UAV imagery and deep learning. ISPRS J. Photogrammetry Remote Sens. 169, 280–291.
Zhang, X., Xiao, P., Feng, X., 2020b. Object-specific optimization of hierarchical multiscale segmentations for high-spatial resolution remote sensing images. ISPRS J.

Photogrammetry Remote Sens. 159, 308–321.
Zhao, W., Du, S., 2016. Spectral–spatial feature extraction for hyperspectral image classification: a dimension reduction and deep learning approach. IEEE Trans.

Geosci. Rem. Sens. 54 (8), 4544–4554.
Zhao, K., Popescu, S., 2007. Hierarchical watershed segmentation of canopy height model for multi-scale forest inventory. In: ISPRS Workshop on Laser Scanning and

SilviLaser, Espoo, September 12-14, 2007. Finland.
Zhao, M., Li, F., Tang, G., 2012. Optimal scale selection for DEM based slope segmentation in the loess plateau. Int. J. Geosci. 3, 37–43.
Zhao, W., Du, S., Wang, Q., Emery, W.J., 2017. Contextually guided very-high-resolution imagery classification with semantic segments. ISPRS J. Photogrammetry

Remote Sens. 132, 48–60.
Zheng, Z., Shihong, D., Shouji, D., Zhang, X., 2020. A multiscale Approach to delineate dune-field landscape patches. Remote Sens. Environ. 237, 111591.
Zhou, Y., Li, J., Feng, L., Zhang, X., Hu, X., 2017. Adaptive scale selection for multiscale segmentation of satellite images. IEEE J. Sel. Top. Appl. Earth Obs. Rem. Sens.

10 (8), 3641–3651.
Zhu, L., Chen, Y., Ghamisi, P., Benediktsson, J.A., 2018. Generative adversarial networks for hyperspectral image classification. IEEE Trans. Geosci. Rem. Sens. 56 (9),

5046–5063.
Zhu, M., He, Y.N., He, Q.Y., 2019. A review of researches on deep learning in remote sensing application. Int. J. Geosci. 10, 1–11.

http://refhub.elsevier.com/S2352-9385(23)00113-1/sref220
http://refhub.elsevier.com/S2352-9385(23)00113-1/sref221
http://refhub.elsevier.com/S2352-9385(23)00113-1/sref221
http://refhub.elsevier.com/S2352-9385(23)00113-1/sref222
http://refhub.elsevier.com/S2352-9385(23)00113-1/sref222
http://refhub.elsevier.com/S2352-9385(23)00113-1/sref223
http://refhub.elsevier.com/S2352-9385(23)00113-1/sref223
http://refhub.elsevier.com/S2352-9385(23)00113-1/sref224
http://refhub.elsevier.com/S2352-9385(23)00113-1/sref224
http://refhub.elsevier.com/S2352-9385(23)00113-1/sref225
http://refhub.elsevier.com/S2352-9385(23)00113-1/sref225
http://refhub.elsevier.com/S2352-9385(23)00113-1/sref226
http://refhub.elsevier.com/S2352-9385(23)00113-1/sref227
http://refhub.elsevier.com/S2352-9385(23)00113-1/sref227
http://refhub.elsevier.com/S2352-9385(23)00113-1/sref228
http://refhub.elsevier.com/S2352-9385(23)00113-1/sref229
http://refhub.elsevier.com/S2352-9385(23)00113-1/sref229
http://refhub.elsevier.com/S2352-9385(23)00113-1/sref230
http://refhub.elsevier.com/S2352-9385(23)00113-1/sref230
http://refhub.elsevier.com/S2352-9385(23)00113-1/sref231

	Remote sensing imagery segmentation in object-based analysis: A review of methods, optimization, and quality evaluation over the past 20 years
	1. Introduction
	2. Methodology
	3. Determination and selection of optimal segmentation parameters
	3.1. Methods for determining optimal segmentation parameters
	3.2. Advances/Novel methods for optimal segmentation parameters selection

	4. Segmentation methods and tools
	4.1. Spectrum-based methods
	4.2. Space based methods
	4.2.1. Edge-based approach
	4.2.2. Region-based approaches
	4.2.2.1. Merge-division based segmentation.
	4.2.2.2. Segmentation based on region growth.
	4.2.2.3. Graph-based algorithms.

	4.2.3. Other space-based models/algorithms

	4.3. Hybrid methods
	4.4. Semantic segmentation
	4.5. Tools

	5. Optimization, extraction and reduction feature of segmentation parameters
	5.1. Optimization of segmentation parameters
	5.2. Feature extraction
	5.3. Feature reduction

	6. Evaluation of the segmentation quality
	7. Discussion and prospects for future research
	8. Conclusion
	Acknowledgment
	References


	fld81: 
	fld82: 
	fld187: 
	fld323: 
	fld324: 
	fld347: 
	fld348: 
	fld369: 
	fld624: 


