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Abstract
Non-rigid point set registration has been used in a wide range of computer vision applica-
tions such as human movement tracking, medical image analysis, three dimensional (3D) 
object reconstruction and is a very challenging task. It has two fundamental tasks. One is 
to find correspondences between two or more point sets and another is to transform a point 
set so that it aligns with other point sets. There has been significant progress in the past two 
decades in the non-rigid registration field but it still has major challenges and is an active 
research area in the computer vision and pattern recognition community. In this review, we 
present a survey of non-rigid point set registration. Unlike recent surveys, we focus on the 
mathematical foundations of non-rigid registration methods, categorize the methods from 
several perspectives, and discuss open challenges. We categorize the methods according 
to correspondence models, motivations, and challenges such as deformation, data degra-
dation, computational efficiency, and different constraints used in the methods to achieve 
accurate registration results. We present the publicly available data sets and different eval-
uation techniques employed in the methods. Further, we discuss open challenges, recent 
trends, and potential directions for future work in this area.

Keywords Registration ·  Point Set ·  Point Cloud ·  Optimization ·  Deformation

1 Introduction

Non-rigid point set registration finds correspondences between points to derive a trans-
formation function that aligns the point sets. Sources of such point sets could be directly 
acquired by imaging devices or post-processed from images and videos. For example, 
three-dimensional (3D) point sets representing the objects in indoor applications can be 
captured with Kinect and Intel realsense devices. In addition, Lidar devices, widely used 
in land surveys and autonomous vehicles, capture outdoor environments and generate large 
3D point clouds. The increasing capability and application of acquiring point sets foster the 
development of point set registration methods.

In point set registration, there could be two or more point sets involved. One point set is 
transformed so that it aligns with the other point set as close as possible. The transformed 
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point set is referred to as model or template point set whereas the fixed point set is often 
called scene or target point set. If the registration contains more than two point sets, usu-
ally called groupwise registration, it is often solved by pairwise registration with either 
one-versus-all or sequential strategy. Point set registration is a fundamental task in many 
computer vision and pattern recognition applications such as transfer of knowledge (Kong 
et al. 2018; Lu et al. 2019b; Yuan et al. 2018), pose estimation (Ye et al. 2016; Yuan et al. 
2017), medical image analysis  (Kolesov et  al. 2016), surface reconstruction  (Lu et  al. 
2019a), three-dimensional object reconstruction  (Wang et  al. 2016b), and human move-
ment tracking (Jian and Vemuri 2011; Maharjan and Yuan 2022; Qu et al. 2017).

Non-rigid point set registration is an ill-posed problem. For each point, there could be a 
number of transformations, which makes it a very challenging task. In practice, constraints 
are employed to achieve a unique solution. Examples of such constraints include moving 
local neighborhood points in a similar direction and ensuring the smoothness of the trans-
formation function. A different number of points between the point sets, significant defor-
mation between the point sets, degradation in the point sets such as noises, outliers, occlu-
sions, and large computational costs due to a huge number of points in the point sets make 
the registration tasks even more difficult.

There are review articles that cover some point set registration methods. Tam et  al. 
(2013) covered both rigid and non-rigid registration methods from the perspective of data 
fitting. The review focused on 3D point clouds and meshes. Maiseli et al. (2017) discussed 
point set registration developments and trends. The paper summarizes and reviews meth-
ods up to 2017. Zho et al. (2019a) focused on the registration methods from the viewpoint 
of pairwise registration and groupwise registration.

Despite the aforementioned efforts and in the light of the fast growth of the field, this 
paper summarizes recent research results of non-rigid point set registration methods and 
presents a perspective with a coherent evaluation of the trends. Different from the existing 
surveys on non-rigid registration methods, this study discusses the existing methods from 

Fig. 1  An overview of the organization of this survey
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two aspects: open problems and evaluation of non-rigid point set registration. Figure  1 
shows the organization of this survey. We aim at providing researchers with a perspective 
view on the challenges, techniques, and evaluation. Although point sets sometimes refer to 
manually or automatically extracted salient points from images, our focus is on the prob-
lems and techniques that deal with range data that provide 3D information of the object 
of interest and are large in volume, e.g., data from LiDAR, Time-of-Flight, and Struc-
tured Light sensors. The processing of unstructured 3D point collection often faces unique 
problems that are non-existent in the extracted salient points such as uneven deformation. 
In addition, problems that fall into the scope of rigid transformation, e.g., registering 3D 
scans of building structures and objects, are not included in our discussion.

The rest of this paper is organized as follows: Sect. 2.1 presents different types of cor-
respondence models and regularization terms used in the existing methods in detail. Sec-
tion 2.2 discusses the challenges of handling large deformation, and of different strategies 
used by the methods to deal with it. Section 2.3 discusses data degradation such as noises, 
outliers, occlusions in the point sets and categorizes the methods based on how they handle 
the data degradation to reduce its effects. Section 2.4 reviews different approaches to incor-
porate additional knowledge and constraints in the methods. Computational efficiency in 
the existing methods is discussed in Sect. 2.5. In Sect. 3, we present publicly available data 
sets and discuss evaluation techniques used in the methods. Finally, Sect. 4 concludes with 
a discussion of the existing challenges, trends, and future work.

2  Open problems and methods

2.1  Correspondence model

A key component of a registration method is the correspondence model. In general, non-
rigid point set registration minimizes the overall distance between point sets with an objec-
tive function including two components: a distance function and a regularization term:

where � = {�1, �2,… , �N} and � = {�1, �2,… , �M} denote point sets, � denotes model 
parameters, and � is a weight for the regularization term R(�) . The regularization term 
ensures that plausible correspondences are achieved instead of reaching an erroneous mini-
mum distance.

2.1.1  Point set distance

The distance function usually takes the form of

where wij is a weight for points �i and �j and 
∑

i,j wij = 1 , d(�i, �j) returns the distance 
between point �i and the transformed point �j using function f. An intuitive distance func-
tion is Euclidean distance that takes the form of ‖‖‖�i − �j

‖‖‖
2

2
  (Chui and Rangarajan 2000b, 

2003; Lian et al. 2017). To compute the distance, it is necessary to assign correspondence 
among points. In non-rigid point set registration, a point can be mapped to multiple points 

(1)E(�,�;�) = D(�,�;�) + �R(�)

(2)D(�,�;�) =
∑
i,j

wijd(�i, f (�j;�)),
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with a probability, i.e., soft assignment  (Hinton et al. 1992; Revow et al. 1996). In such 
methods, registration is usually formulated as density estimation based on Gaussian mix-
ture model (GMM) (Myronenko and Song 2010; Myronenko et al. 2007). Chui and Ranga-
rajan (2000a) proposed a mixture point matching (MPM) method that formulates the point 
set registration as a mixture density estimation problem. The mean of each Gaussian model 
is specified by a point and a fixed covariance is used. The models are transformed to maxi-
mize the posterior probability such that the GMM centroids are aligned with the points in 
the other set. Following this idea, Zeng et al. (2017b) used the mixture-feature Gaussian 
mixture model (MGMM) for correspondence and employed global-local spatial constraints 
during the transformation.

Besides GMM, Student’s T model was used (Zhou et al. 2017, 2018, 2014). The Stu-
dent’s T models have heavier tails compared to Gaussian models, which tend to produce 
values that fall far from the mean and, hence, help mitigate data degradation such as noise 
and outliers. Fu and Zhou (2016) used a mixture of asymmetric Gaussian mixture model 
(MoAG) for density estimation. Unlike GMM, each Gaussian model in the MoAG is asym-
metric, which provides a more suitable model for the spatially asymmetric distribution. 
The MoAG model demonstrated improved robustness to data degradation such as noises, 
outliers, and occlusions (Fu and Zhou 2016).

Chui and Rangarajan (2000b, 2003) proposed a general framework method based on the 
robust point matching (RPM) algorithm (Rangarajan et al. 1997), which uses weight in the 
range of [0, 1] to indicate the correspondence. The methods employ thin plate spline (TPS) 
to regulate the transformation function to achieve smoothness in transformation. Many reg-
istration methods extended the RPM method to deal with outliers (Yang 2011) or global 
optimal solution (Lian et al. 2017).

Another class of methods that align point sets without explicitly establishing corre-
spondences is presented in Bing and Vemuri (2005); Glaunes et al. (2004); Jian and Vemuri 
(2011); Tsin and Kanade (2004). In these methods, each point set is modeled by a probabil-
ity distribution, and the statistical discrepancy between the two distributions is minimized 
by finding the optimal transformation function. Wang et al. (2008) used Jensen–Shannon 
(JS) divergence to simultaneously register multiple point sets, which are represented by the 
Gaussian mixture models. The JS divergence is used to quantify the difference (or similar-
ity) between multiple probability distributions. Given the probability distributions {pi}ni=1 , 
the JS divergence of pi is given by,

where 𝜋i = {𝜋1, ...,𝜋n�𝜋i > 0,
∑

𝜋i = 1} are the weights of the distributions pi , and H(⋅) 
computes the entropy. Similarly, a registration framework is proposed where the point set 
registration is treated as minimizing the discrepancy between the Gaussian mixture mod-
els (Bing and Vemuri 2005; Jian and Vemuri 2011). In this framework, L2 distance meas-
ures the similarity between the Gaussian mixture densities, PX and PY:

This framework is generic and can interpret several point set registration methods mean-
ingfully such as TPS-RPM  (Chui and Rangarajan 2000b), MPM  (Chui and Rangarajan 
2000a), kernel correlation-based registration method (Tsin and Kanade 2004), GMM (Bing 
and Vemuri 2005), and CPD (Myronenko and Song 2010; Myronenko et al. 2007).

(3)JS(p1, ..., pn) = H
(∑

�ipi

)
−
∑

�iH(pi)

(4)D(PX(�),PY (�;�)) = ∫ (PX(�) − PY (�;�))
2 dx
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Instead of using overall global distance metrics between the point sets, some methods 
maintain primarily the local neighborhood structures in the cost functions (Ma et al. 2017, 
2019b; Zheng and Doermann 2006). Zheng and Doermann (2006) introduced the mutual 
distance function

where Nk is a set which contains neighborhood points of point k, d(i, j) = 0 if j ∈ Ni other-
wise 1, f (⋅) is match (correspondence) function and f −1(⋅) is inverse match function. The 
first summation computes the total distance of the mapped points in Y for each point to its 
neighbors in X. The second summation computes the total distance of the mapped points 
in X for each point to its neighbors in Y. The distance function d(i, j) = 0 if j ∈ Ni ; other-
wise d(i, j) = 1 . This cost function aims to achieve a stable local relationship among the 
neighboring points and preserve the neighborhood distances under deformation. To mini-
mize the cost function, neighboring points of a point matches the neighboring points of 
the matched point. That is, the optimal match is obtained when the local neighborhood 
structure is intact even if the point set is deformed. Similar to this idea, Ma et al. (2017, 
2019b) presented a locality preserving matching (LPM) method to remove mismatches 
from putative correspondences. The true correspondences should maintain consensuses 
on both neighboring points and neighborhood topology; whereas the false correspond-
ences typically fail to maintain the consensus and will be rejected. The consensus of the 
neighborhood topology is based on the ratio of length and the angle between vectors �� and 
�� , which are constructed from the corresponding points (��, ��) and (��, ��) , respectively. 
Table 1 summarizes the commonly used distance functions in registration methods.

(5)D(�,�, �) =

N∑
i=1

∑
�n∈Ni

d(f (�i), f (�n)) +

M∑
j=1

∑
�m∈Nj

d(f −1(�j), f
−1(�m))

Table 1  Commonly used distance functions in registration methods

Distance Method

∑
i,j wijd(�i, f (�j, �)) Chui and Rangarajan (TPS-RPM) (2000b, 2003), Chui and Ran-

garajan (MPM) (2000a),  Myronenko and Song (CPD) (2010); 
Myronenko et al. (2007), Ge and Fan (GLTP) (2019); Ge et al. 
(2014), Tsin and Kanade (KC) (2004), Yang (2011), Fu and Zhou 
(MoAG) (2016), Zhang et al. (MGMM) (2017b), Zhou et al. (2014, 
2017, 2018), Lian et al. (APM) (2017), Yang et al. (2018), Calvo 
et al. (CCPD)  (2018), Zhang et al. (SCCD) (2017a), Ge et al. Song 
and Fan (2015), Maharjan and Yuan (2020); Maharjan et al. (2021), 
Zhu et al. (2019b), Ge et al. (LSP)  Ge and Fan (2015), Wang et al. 
(SCGF) Wang et al. (2017), Panaganti et al. Panaganti and Aravind 
(2015) Zhou et al. (DSMM) (2017), Zhou et al. (2014)∑

i wid(�i, f (�i, �)) Ma et al. (VFC) (2014), Ma et al. (MS-RPM) (2019a), Yang et al. 
(2015), Wang et al. (MSCVF) (2016a, 2018)

∑N

i=1

∑
�n∈Ni

d(f (�i), f (�n))

+
∑M

j=1

∑
�m∈Nj

d(f −1(�j), f
−1(�m))

Zheng and Doermann (2006), Ma et al. (LPM) (2017, 2019b)

∫ (PX(�) − PY (�, �))
2 d� Tsin and Kanade (KC) (2004), Bing and Vemuri (GMMReg) (2005); 

Jian and Vemuri (2011)
H(

∑
�ipi) −

∑
�iH(pi) Wang et al. (2008)
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2.1.2  Regularization

Typical regularization strategies include smoothness of the transformation, motion coher-
ence, and preservation of local neighborhood structure. To maintain the topological struc-
ture of the point set during the transformation, Myronenko et al. (2007) proposed Coherent 
Point Drift (CPD) based on the motion coherence theory (Yuille and Grzywacz 1988). The 
basic idea is that points that are close to each other should move coherently in the same/
similar direction. The regularization term is the norm of the transformation function in the 
Reproducing Kernel Hilbert Space (RKHS) (Chen and Haykin 2002) as follows:

where G is a kernel function and Ĝ is its Fourier transformation. f̂  is the Fourier transfor-
mation of f, and � is the frequency variable. The regularization term measures the oscilla-
tory behavior of a function for smoothness. That is, one function is smoother than another 
if it oscillates less, which results in a coherent transformation within a spatially adjacent 
group of points. In the frequency domain, a function is smoother if it has less energy at 
high-frequency components. In CPD, G takes the form of a Gaussian function.

Hirose (2021) presented a Bayesian formulation of the CPD that uses a prior distribu-
tion of displacement vectors for motion coherence. Zho et al. (2019b) extended the CPD by 
integrating local geometry constraints including local neighborhood and Laplacian coordi-
nate. The local neighborhood constraint ensured the preservation of the local neighborhood 
after transformation (the key idea is taken from the local linear embedding (LLE), i.e., 
representing each point by the linear combination of its neighboring points). The Lapla-
cian coordinate was used to preserve the scale of neighborhood structure [see Eqs.  (10) 
and (11)].

A similar idea is used in manifold regularization-based methods (Ma et al. 2019a; Wang 
et al. 2016a). Manifold regularization is a technique to constrain the function by exploiting 
the geometry of the probability distribution (Belkin et al. 2006). Let {(�i, �i)}li=1 denote a 
set of labeled points (i.e., corresponding point pairs) and {(�j)}

j=l+u

j=l+1
 denote a set of unla-

beled points. If �1 and �2 are close, the conditional probabilities p(�|�1) and p(�|�2) are 
also similar. Manifold regularization is expressed as follows:

where ∇M is the gradient of f along the manifold M , measure the smoothness of func-
tion f. When points are dense, the transformation function should be smoother. That is, the 
gradient ∇M should be small on large marginal probability density p(�) . In practice, mani-
fold regularization is approximated with the weighted sum of the squared difference of the 
transformed points as follows (Belkin and Niyogi 2008; Hein et al. 2005):

where wij denotes edge weights in the data adjacency graph.
The manifold regularization has been used to deal with data degradation and outlier (Ma 

et al. 2019a; Panaganti and Aravind 2015; Wang et al. 2016a, 2017). Panaganti and Aravind 

(6)‖f‖2
ℍK

= ∫
ℝD

�f̂ (�)�2
Ĝ(�)

d�

(7)∫�∈M

‖‖∇Mf‖‖2p(�) d�,

(8)
1

(u + l)2

l+u∑
i,j=1

wij(f (�i) − f (�j))
2,
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(2015) used graph Laplacian regularization to perform registration in the presence of data 
degradations.Wang et  al. (2016a) proposed a manifold regularized coherent vector field 
(MRCVF) method. The initial correspondences (labeled points) were generated using SIFT 
keypoints and graph Laplacian regularization was used to learn coherent vector fields. Wang 
et al. (2017) presented a spatially constrained Gaussian fields (SCGF) method to estimate the 
transformation function using putative correspondences. The putative correspondences were 
obtained by matching Shape Context, which was used to estimate the transformation function 
using manifold regularization. Ma et  al. (2019a) proposed a robust point matching method 
using manifold regularization (MR-RPM), to learn the transformation function. The point set 
registration is cast as a semi-supervised learning problem where the initial correspondences 
are computed by matching local feature descriptors such as FPFH  (Rusu et  al. 2009). The 
objective function exploits the intrinsic geometrical structures of the point set to derive the 
transformation function.

The local neighborhood structure is often represented as the weighted sum of the neigh-
bors, which has been used as a constraint to the objective function (Ge and Fan 2015, 2019; 
Ge et al. 2014). The idea is to retain the weight after the transformation. That is, the distance 
of all points and their weighted neighborhood structure is minimized:

where Ỹj is a set that contains K-nearest neighbors of point yj and wjk is the weight for the 
neighboring point yk.

Local Structure Preservation (LSP) (Song and Fan 2015) extends the above constraint by 
including Laplacian Coordinate (LC) to preserve local neighborhood structure and scale. The 
point set is represented with a graph (V, E), where V and E denote the set of vertices (points) 
the edges, respectively. The LC constraint minimizes the scale difference during transforma-
tion as follows:

where aij ∈ A , which is the adjacency matrix to express if two vertices are direct neighbors 
using zeros and ones, and (vi, vj) is an edge between vertices vi and vj . The regularization 
term is as follows:

Minimizing LC constraint ensures the scale of the neighborhood of points remains the 
same after transformation.

Zeng et al. (2017b) employed both motion coherence and local structure descriptor as reg-
ularization to the objective function. The local structure constraint (LSC) aims to minimize 
the discrepancy between putative corresponding points, denoted with x̂ , and the transformed 
points f (Y , �):

(9)
M∑
j=1

‖‖‖‖‖‖‖
f (�j;𝜃) −

∑
�k∈�̃j

wjkf (�k;𝜃)

‖‖‖‖‖‖‖

2

2

,

(10)C(vi) =
∑

(vi ,vj)∈E

aij(vi − vj),

(11)
M∑

m=1

‖‖C(ym) − C(f (ym;�))
‖‖22.
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where F(⋅) computes the summation of local vectors among the nearest neighbors. Let �i , 
i = {1,… ,K} , be the nearest neighbors of point �0 . The local vectors originated at �0 are 
represented as �i = ������⃗�0�i . The local structure descriptor is computed as follows

where ci = exp (−‖�i‖2∕�2
i
) and �2

i
 is the covariance. Figure 2 illustrates the computation 

of the local structure descriptor of a point (depicted as a solid red circle).
Another technique is to employ constraints in the transformation model instead of using regu-

larization so that the point sets follow certain physical properties. Examples of such physical con-
straints include avoiding mapping two or more points to the same point and alignment of land-
marks (Kolesov et al. 2016, 2013a, 2013b; Maharjan and Yuan 2020; Maharjan et al. 2021).

To deal with large and uneven deformation, Maharjan and Yuan (2020); Maharjan et al. 
(2021) implemented stochastic neighbor embedding (SNE) and landmarks correspond-
ences. The SNE constraint penalizes incoherent transformation within a neighborhood. 
It keeps points within a neighborhood relatively close after transformation and points far 
apart remain distant. Let rij be the probability that two points yi and yj are neighbors before 
the transformation and sij be the probability that they remain neighbors after the transfor-
mation. A constraint on the local structure is represented as the minimization of the cost 
function which is the sum of Kullback-Leibler (KL) divergences between rij and sij distribu-
tions over neighbors of each point:

where

�2 is precision parameter, and �i = [ri1, ..., riM] and �i = [si1, ..., siM] are probability 
distributions.

The preservation of the global shape is achieved by enforcing landmark correspond-
ences, which minimizes the total distance between paired key points:

(12)
M∑

m−1

‖‖F(�̂m) − F(f (�m;𝜃))
‖‖22

F(�0;K) =

K∑
i=1

ci�i,

(13)
�
i

DKL

�
�i‖�i

�
=
�
ij

rij log
rij

sij
,

rij =
exp(−�2

����i − �j
���
2

2
)

∑
k≠i exp(−�2���i − �k

��22)
, sij =

exp(−
���f (�i) − f (�j)

���
2

2
)

∑
k≠i exp(−��f (�i) − f (�k)

��22)
,

Fig. 2  The local structure descriptor of a point (depicted as the solid red circle) is computed from its neigh-
bors (depicted as circles). Vectors originating from the point to their neighbors (shown in the middle) are 
summed to get the local structure descriptor
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where AM×N is landmark coefficient matrix, Am,n = 1 if (�n, �m) ∈ L ; otherwise 0, and L is 
a set containing all pairs of landmark correspondences.

One way of regularizing the transformation function is minimizing the integral of the 
square of second derivatives of the spline function, i.e., penalizing large curvature. This 
smoothing constraint can be generalized to higher dimension (Hastie et al. 2009; Wahba 
1990). For example, TPS-RPM (Chui and Rangarajan 2000b, 2003) employs the follow-
ing regularization in the objective function:

Table 2 lists the regularization terms used in point set registration methods.
The availability of large data sets  (Bednarik et al. 2018; Bogo et al. 2017; Li et al. 

2017) with ground truth and the development of deep networks enable the development 
of learning-based non-rigid point set registration methods (Li et al. 2019; Shimada et al. 
2019; Wang and Fang 2019). Shimada et  al. (2019) introduced the Displacements on 
Voxels Networks (DispVoxNets) that learns a deformation model and priors for different 
categories of point sets and regresses the displacement function on the sampled voxel 
grids. Wang and Fang (2019) presented an unsupervised coherent point drift network 
(CPD-Net) that learns the geometric transformation for an efficient non-rigid point set 
registration. Global feature descriptors are learned from the point sets and the drifts are 
predicted for each point. The network was trained in an unsupervised manner by mini-
mizing the alignment loss function between the transformed source point set and the 

(14)
M,N�
m,n

Am,n‖�n − f (�m)‖22,

(15)∫ ∫
[(

�2f

��2

)2

+ 2

(
�2f

����

)2

+

(
�2f

��2

)2
]
d� d�.

Table 2  Regularization terms used in registration methods

Regularization Method

∫ ∫
[(

�2 f

��2

)2

+ 2
(

�2 f

����

)2

+
(

�2 f

��2

)2
]
d� d�

Chui and Rangarajan (TPS-RPM) (2000b, 2003), Chui and 
Rangarajan (MPM) (2000a), Feng and Feng (2020), Yang 
et al. (2018), Wang et al. (2008), Yang et al. (GLMD) (2015)

∫ ∑∞

m=0
cm(D

mf (x)) dx Myronenko and Song (CPD) (2010); Myronenko et al. (2007), 
Ge and Fan (GLTP) (2019); Ge et al. (2014), Ge and Fan 
(LSP) (2015), Calvo et al. (CCPD)  (2018), Zho et al. 
(2019b), Zhang et al. (SCCD)(2017a), Song and Fan (2015), 
Zhou et al. (2014), Maharjan and Yuan (2020); Maharjan 
et al. (2021), Zhou et al. (DSMM) (2017)

∑M

j=1

���f (�j, 𝜃) −
∑

�k∈�̃j
wjkf (�k, 𝜃)

���
2

2

Ge and Fan (GLTP) (2019); Ge et al. (2014), Ge and Fan  
(LSP) (2015), Song and Fan (2015), Wang et al. (2018), Zho 
et al. (2019b)

∑M

m=1
��C(ym) − C(f (ym, �))

��22 Ge and Fan (LSP) (2015), Zho et al. (2019b)
1

(u+l)2

∑l+u

i,j=1
wij(f (�i) − f (�j))

2 Ma et al. (MR-RPM) (2019a), Wang et al. (SCGF) (2017), 
Wang et al. (MRCVF) (2016a), Panaganti and Aravind 
(2015)

∑M,N

m,n
Am,n‖�n − f (�m)‖22 Maharjan and Yuan (2020); Maharjan et al. (2021)

∑
ij rij log

rij

sij

Maharjan and Yuan (2020); Maharjan et al. (2021)
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target point set. Li et al. (2019) developed an unsupervised point correspondence net-
work (PC-NET). The method learns global shape descriptors with an encoder to capture 
the global and deformation-insensitive geometric properties. These descriptors are used 
to guide progressively deform the template shape toward the target shape in a motion-
driven process. Loss is computed from the reconstructed and the original point sets.

2.1.3  Graph matching

Given the irregularly spaced points in a point set, the graph is a natural structure for point 
organization and processing. A number of methods used graph matching (GM) for estab-
lishing correspondences between point sets  (Chang et  al. 2020; Cour et  al. 2007; Tor-
resani et  al. 2008, 2013). Given two graphs G and G′ , the point correspondence matrix 
� ∈ {0, 1}M×N maximizes the following criterion:

such that

where aik gives the similarity between ith vertex of G and kth vertex of G′ , bij,kl gives the 
similarity between edge (i, j) in G and edge (k, l) in G′ , and �M denotes a vector of M ones. 
This objective function can be expressed in the form of Lawler’s quadratic assignment 
problem (QAP) (Loiola et al. 2007):

where vec(�) ∈ {0, 1}MN×1 denotes the vectorization of � , and � ∈ ℝ
MN×MN is an affinity 

matrix computed by:

Leordeanu and Hebert (2005) used GM to find point correspondences that employed a 
relaxed one-to-one mapping constraint [Eq. (17)] and integral constraint (i.e., element of 
the correspondence matrix can use real values in the range [0, 1] instead of binary values 
{0, 1} , so cij ∈ [0, 1] ). The method builds a weighted adjacency matrix of a graph whose 
vertices are the potential correspondences and the weights between the vertices meas-
ure the pairwise agreement between the pair of correspondences. The key idea is that a 
strongly connected cluster is formed by the agreement links among the correct correspond-
ences. By using the principal eigenvector of the adjacency matrix, the corrected corre-
spondences are recovered, which are strongly associated with the main cluster.Torresani 
et al. (2008, 2013) extracted feature points from images and limited the matching to one 
correspondence at most per feature point. The objective function includes feature differ-
ence, unmatched features, geometric compatibility between correspondences, and spatial 
proximity of the matched features. GM was used to minimize the total similarity between 
vertices and edges.

(16)
∑
i,k

aikcik +
∑
i,j,k,l

bij,kl cikcjl,

(17)��N ≤ �M , �⊤�M ≤ �N

(18)E(�) = vec(�)⊤�vec(�),

(19)�(cik ,cjl)
=

⎧⎪⎨⎪⎩

aij if i = j and k = l,

bij,kl if (i, j) ∈ E, (k, l) ∈ E�,

0 otherwise.
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Chang et al. (2020) grouped points into clusters and applied GM to get the correspond-
ence between point groups, which achieved an initial coarse alignment for further refine-
ment. Duchenne et  al. (2009, 2011) applied higher-order GM techniques to find corre-
spondences between feature sets, and the tensor power iteration technique was used to solve 
the higher-order matching problem. Zeng et al. (2016, 2010) applied the higher-order GM 
to get a sparse correspondence. Feature points were identified such as the local maxima 
of Gaussian curvature (Lipman and Funkhouser 2009) and the average geodesic distance 
function (Kim et al. 2011) on the input surfaces. These sparse but reliable feature points are 
matched via higher-order GM. In the refinement stage, the method employed a deformation 
model and used the sparse correspondence as a constraint to register the rest of the points.

The data structure, as well as the well-developed graph theory, make the GM-based 
method a proper choice for registering point sets. However, the computational complexity 
limits its usage to processing a relatively small set of points, e.g., feature points extracted 
from images or abstracted groups of points. Hence, it is often employed to generate a 
coarse matching for further refinement.

2.2  Deformation

Although the aforementioned non-rigid point set registration puts points into alignment, 
it is unquestionable that large deformation is still a great challenge that requires further 
investigation. In many real-world applications, we face the need to register point sets that 
deform greatly and unevenly (Ye et al. 2016). Figure 3 illustrates six point sets of human 
pose with large and uneven deformation. As shown in Fig. 3a–c, large deformation is in the 
upper body and the legs remain mostly unchanged. Deformation in such applications often 
varies substantially among parts of the body.

The study of dealing with large and uneven deformation in non-rigid point-set regis-
tration is very challenging due to several factors. For example, some regions of the point 
set might need large deformation while the other regions of the point set might need very 
little deformation. During the deformation, especially in a large case, the methods should 
maintain the local neighborhood geometry so that the structure of the local regions and 
the overall shape of the point set is maintained even in the case of large deformation. Also 
(and most importantly), methods need to avoid getting trapped into local minimum solu-
tions while dealing with large and uneven deformation. This can usually happen when the 

Fig. 3  Point sets with large and uneven deformations (Maharjan et al. 2021)



 X. Yuan, A. Maharjan 

1 3

method does not provide any prior clue or knowledge about the different corresponding 
regions and incorrect regions of the two point sets may be aligned. Figure 3 present one 
such case where large and uneven deformation is required to correctly register the point 
sets representing complex human poses (Maharjan et al. 2021). If a method needs to regis-
ter, for example, both hands down pose (Fig. 3a) with both hands up pose (Fig. 3e), regions 
from the head, torso, and legs regions require relatively small deformation while hands 
regions need significant deformation to correctly register both point sets. In practice, large 
and uneven deformation during the registration is required in many real-world applications 
such as human pose estimation and tracking for physical training applications, gaming, etc. 
Thus far, existing registration methods have conducted studies on non-rigid point set regis-
tration to cope with large and uneven deformation. Here, we present different strategies in 
the existing methods to deal with it.

One strategy to deal with large deformation is to maintain local neighborhood structures 
during the transformation. For example, to handle highly articulated deformation such as 
3D human data, (Ge and Fan 2019; Ge et al. 2014) extended the CPD by adding an LLE 
regularization term to maintain local neighborhood structure during transformation. The 
aim was to balance the CPD and LLE terms to handle complex deformations. The method 
needed careful selection of template point set (such as human T-pose, similar to Fig. 3b) 
to avoid local minima solutions. Later, the LSP method (Ge and Fan 2015) extended the 
GLTP and included an additional constraint to encode the local neighborhood scale based 
on Laplacian coordinate to deal with complex non-rigid and articulated deformations. 
However, the LSP, similar to the GLTP, is prone to get trapped into the local minimum 
solution in case of significant deformation, even though the local neighborhood structure is 
maintained (Maharjan et al. 2021). Tajdari et al. (2022) proposed semi-curvature as part of 
the cost function that also includes distance and stiffness for establishing the correspond-
ences. The semi-curvature helps eliminate the conflations and represents the intrinsic prop-
erties across surfaces.

Another strategy typically includes two steps where highly reliable correspondences 
(usually a sparse set) are established first and then the final registration is completed with 
the help of the initial correspondences (Chang et al. 2020; Zeng et al. 2016). Zeng et al. 
(2016) used higher-order graph matching under the assumption of isometric deformations 
for sparse correspondences of the feature points of the source point set. These sparse cor-
respondences were used to limit the search space of matching candidates for each point 
of the source point set to find accurate dense correspondences. Chang et al. (2020) relied 
on coarse-to-fine steps to deal with large deformation. The point clouds were divided into 
local groups and the correspondences between such groups were established by the graph 
matching technique. The initial alignment is followed by a fine non-rigid registration for 
accurate alignment.

Using prior knowledge of correspondences between salient regions has been used to 
deal with significantly large and uneven deformation in Maharjan and Yuan (2020); Maha-
rjan et al. (2021). The salient regions typically represent unique entities such as the head, 
hands, and feet in a 3D human point set. Landmarks (or key points) which represent the 
salient regions are matched so that the point sets are aligned. Together with the landmark 
constraint and preserving local neighborhood structure preservation, the method handled 
the large and uneven deformation and avoided local minimum solution.

Recent learning-based non-rigid registration methods have made substantial progress to 
deal with the deformation issue. The learning-based methods usually consist of a feature 
extraction component followed by a correspondence search. Trappolini et al. (2021) adopt 
the transformer architecture as a geometrical translator between point clouds. Attention to 
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the underlying density of the geometry is used that takes a template point cloud and its 
properties (e.g., skinning weights or animation cues) as input and modifies its geometry to 
fit the target point cloud. Zeng et al. (2021) proposed an end-to-end deep learning method 
using deformation-like reconstruction. The network consists of a feature embedding mod-
ule, a correspondence indicator, and a symmetric deformer, which learns the pointwise 
features to generate a learnable correspondence matrix to permute the input pair. Li and 
Harada (2022) integrate geometry features with the 3D positional information via position 
encoding. Non-rigid iterative closest point method is employed for the matching process. 
Feng et al. (2021) represent the non-rigid transformation with a combination of rigid trans-
formations and perform registration iteratively with a recurrent network. The loss function 
measures the 3D shape similarity on the projected 2D views. Luo et al. (2022) integrate 
local geometry and global structure into a deep graph matching network. Graphs are con-
structed by taking high-dimensional features as nodes and point-wise Euclidean distance as 
a weight to edges. The topological structure is embedded into nodes using a graph embed-
ding layer. To estimate the correspondence, an affinity layer and a sinkhorn layer are used.

Incorporating multiple information while computing the correspondences limits the 
search space of matching candidates for the points and hence helps to deal with large defor-
mation in registration. For example, Feng and Feng (2020) fused both the spatial location 
of a point and the local neighborhood structure similarity around the point to compute reli-
able correspondences. Typically, feature descriptors such as shape context (Belongie et al. 
2002) are employed for matching local neighborhood structures. However, it should be 
noted that the matching via feature descriptors are not always reliable, and is sensitive to 
noises and repeatable patterns/regions in the point sets.

In summary, identifying and incorporating landmark correspondence is an effective 
means to deal with the registration of point sets with large and uneven deformation. Given 
the extensive research on feature points, extraction, and methods for finding landmarks, 
efficiently establishing correct correspondences between landmark points is still a techni-
cal obstacle and requires further studies. The huge search space of correspondence and the 
inconsistent number of landmarks make it a non-trivial task. In addition, studies to explore 
computationally efficient and reliable landmark correspondences for various point sets are 
needed.

2.3  Data degradation

Data degradation such as noises, outliers, and occlusions is a major challenge in non-rigid 
point set registration. Many registration methods deal with the data degradation by pre-
processing the data such as removing outliers. In reality, data degradation is unavoidable 
and it is imperative for registration methods to handle it carefully for accurate registration 
results. Figure 4 shows an example of data degradation in 3D face point sets (Myronenko 
and Song 2010). The template (source) point set (left) and target point set (right) both con-
tain outliers but the target point set is noisy as well. Outliers (red dots in Fig. 4) are the 
extra points that do not represent any region or object and do not belong in the point set. 
Noisy points are the points that are distorted or perturbed. Due to occlusions or incomplete 
point sets, every point in a point set may not have its true correspondence in another point 
set (i.e., missing correspondence). In this case, points from a point set should not align 
with points in another point set. To minimize the effects of data degradation, existing meth-
ods use techniques such as regularizing the transformation functions, incorporating prior 
probabilities for points, and preserving local neighborhood geometry.
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One popular approach to deal with data degradation is to reject incorrect correspond-
ences (Ma et al. 2015, 2019b, 2014; Wang et al. 2018, 2016a, 2017). In this approach, the 
putative correspondence set is computed and the true correspondences (inliers) are iden-
tified by rejecting the incorrect ones. The rejection criteria include the distance between 
the correspondence pair must be less than a threshold and the correspondence weight 
(probability of correspondence pair) is greater than a threshold. In general, putative cor-
respondence set is computed using feature descriptors such as SIFT (Lowe 1999), Shape 
Context (SC)  (Belongie et  al. 2002), SURF (Bay et  al. 2006), FPFH (Rusu et  al. 2009), 
Spin Image  (Johnson and Hebert 1999), IDSC  (Ling and Jacobs 2007), 3DSC  (Frome 
et  al. 2004), etc. To compute this set, the feature descriptor for each point is computed 
and then the initial correspondence set is obtained using techniques such as computing the 
cost matrix using the chi-squared test and using the Hungarian method (Papadimitriou and 
Steiglitz 1982), sample consensus alignment (Rusu and Cousins 2011), and computing cor-
relation coefficient for initial correspondence list.

Ma et  al. (2015, 2013) used L2E estimator to improve robustness to noise and out-
liers. The initial putative correspondence set is computed using feature descriptors 
(SC  (Belongie et  al. 2002) in 2D and Spin Image  (Johnson and Hebert 1999) in 3D). 
In their method, a correspondence pair (�i, �i) is identified as true correspondence if 
the exponential distance is greater than a threshold. Wang et  al. (2017) regularized 
the transformation function by employing smoothness and manifold regularization to 
reduce noises and outliers. The proposed spatially constrained Gaussian fields (SCGF) 
method extracts the first feature descriptor using shape context information (IDSC (Ling 
and Jacobs 2007) for 2D and 3DSC (Frome et al. 2004) for 3D) and the chi-squared test 
is used to compute the cost matrix, which is used in the Hungarian method to obtain 
one-to-one correspondence. The true correspondence set includes only the pairs with 
a large exponential distance. Ma et al. (2014) relied on local feature descriptors (such 
as shape context (Belongie et al. 2002) for 2D and MeshHOG (Zaharescu et al. 2009) 
for 3D) to create putative correspondences and derive correspondence by interpolating 
a smooth vector field between the point sets. The inlier set is obtained by collecting 
pairs that have a large corresponding probability. Later, the VFC method is extended 

Fig. 4  An example of data degradation in 3D face (Myronenko and Song 2010): template (source) point set 
(left) and noisy target point set (right). Outliers are shown in red circle dots in both point sets. A missing 
correspondence for a point in the template point set showing by an arrow at the top
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with manifold regularization (Belkin et al. 2006) in the transformation function to deal 
with incorrect correspondences in  Ma et  al. (2019a); Wang et  al. (2016a). Ma et  al. 
(2017, 2019b) assumed that local neighborhood structures are maintained between 
true correspondences. The initial correspondence list was computed between sets using 
feature descriptors (e.g., SIFT Lowe 1999). Correct correspondences are identified as 
those with small local neighborhood structure differences. Gaussian Field Consensus 
(GFC) was proposed to reject outliers given a putative correspondence set in Wang et al. 
(2018), in which the topological structure of the feature points is maintained and Gauss-
ian distances between the points are used. The correspondence is identified as those 
with large correspondence weight. Wang et al. (2022) formulated the registration prob-
lem as a partial distribution matching process, which avoids exact point-wise match-
ing and achieves robustness against outliers. The method leverages a partial Wasserstein 
adversarial network to approximate the discrepancy using a neural network and incorpo-
rates a coherence regularizer for smooth transformation.

In GMM models, prior probabilities are the same for all centroids of the mixture 
model (Ge and Fan 2015; Myronenko and Song 2010), whereas the posterior probabili-
ties of the input points to the centroids are different. Instead of using equal prior prob-
abilities, recent methods assigned or dynamically computed prior probabilities to deal 
with data degradations (Ma et al. 2016; Panaganti and Aravind 2015; Tao and Sun 2014; 
Zhang et al. 2017a). The idea is to compute the similarities between the points and the 
centroids. However, the prior probabilities computed with the help of feature descrip-
tors are not reliable and the methods also need to rely on regularization terms such as 
motion coherence  (Yuille and Grzywacz 1988) and manifold regularization  (Belkin 
et al. 2006) to identify correct correspondences. Wang and Chen (2021) employ locally 
linear embedding to represent the topological structure of location neighborhoods and 
apply context-aware Gaussian fields for spatial coherent point matching. The results on 
point sets with affine transformation demonstrate improved robustness to outliers. Chen 
et  al. (2022) used Hausdorff distance to measure the similarity of the local structure 
of the point set. The transformation between the two-point sets is determined by the 
reproducing kernel Hilbert space based on motion coherence. Cao et  al. (2022) pro-
posed a probabilistic model that includes an outlier component based on the asymmetric 
generalized Gaussian mixture model that aggregates unevenly distributed outliers for 
elimination.

The registration methods based on density estimation using mixture model add a 
uniform distribution, pu =

1

N
 , to account for outliers and noises  (Chui and Rangarajan 

2000a; Ge et al. 2014; Maharjan et al. 2021; Myronenko and Song 2010). The weight of 
this uniform distribution, namely the outlier ratio ( � ), is manually specified

Zhang et  al. (2017a) dynamically computed the outlier ratio based on rotation invariant 
shape context (RISC). The RISC feature descriptor is based on shape context  (Belongie 
et al. 2002) but the main reference x-axis is computed using the principal component anal-
ysis (PCA) (i.e., the eigenvector corresponding to the largest eigenvalue of the covariance 
matrix of the point set), which makes it rotation invariant. To compute the outlier ratio, 
RISC is constructed for every point. The point from �i ∈ � is derived from the centroid 
�j∈ � if the RISC matching has the highest value between them. The ratio between the 

(20)p(�i) = (1 − �)

M∑
j=1

p(�i|�j)p(�j) + �pu.
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number of points not derived from GMM and the total number of points in � is used as the 
outlier ratio.

Using only one additional uniform distribution represented by a single Gaussian 
component (see Eq. (20)) in the density estimation models likely degrades the registra-
tion results in the case of heteroscedastic distributed outliers. Qu et al. (2017) applied 
two Gaussian mixture models to estimate heteroscedastic noise and outliers during 
transformation and correspondence estimations.

2.4  Data integration

A widely used technique in the existing methods is to integrate prior correspondence knowl-
edge or information between point sets (Tao and Sun 2014; Wang and Chen 2017; Yang et al. 
2018; Zhang et al. 2017a; Zhou et al. 2018). The prior knowledge is encoded as a correspond-
ence weight or probability and is integrated as either soft-assignment or binary assignment 
by taking the advantages of feature descriptors (Belongie et al. 2002; Ling and Jacobs 2007; 
Lowe 1999; Rusu et al. 2009). The feature descriptors encode the neighborhood topological 
structure and assume a similar neighborhood structure of two corresponding points. In real-
ity, these prior correspondences are not always accurate, which motivates the development of 
correspondence rejection techniques (Ma et al. 2014; Wang et al. 2016a, 2018). Nonetheless, 
the prior correspondences help the registration methods to deal with outliers, and noises and 
preserve the local neighborhood structure. To compute the prior probability, methods typically 
relied on histogram-based feature descriptors such as shape context (Belongie et al. 2002) in 
2D and Fast Point Feature Histogram (Rusu et al. 2009) in 3D. The feature descriptors are 
obtained for each point from both point sets and the chi-squared test is used to compute the 
cost matrix

where Fk is a histogram-based feature descriptor and h is a bin number. The Hungarian 
algorithm is used for binary assignment (Ma et al. 2016; Zho et al. 2019b) or the following 
exponential function is used to compute soft-assignment for prior probability  (Panaganti 
and Aravind 2015; Wang et al. 2016a)

Golyanik et al. (2016) incorporated a correspondence prior based on CPD. The initial cor-
respondences are obtained by comparing feature descriptors such as Persistent Feature 
Histograms (PFH) (Rusu et al. 2008) at Intrinsic Shape Signature descriptor (ISS) (Zhong 
2009) 3D keypoints.Zhou et al. (2018) used Dirichlet distribution to model the prior prob-
ability between a point and a Student’s T mixture model component to overcome under-
fitting and improve robustness to data degradation. Typically, prior correspondence is 
computed in every iteration during the optimization process, so these methods could be 
computationally expensive if the size of the point sets is large.

A new deformable point set registration framework is proposed to incorporate con-
straints in the deformation model in Kolesov et al. (2013a, 2013b, 2016). In the framework, 
the deformation model is defined by an additive combination of a rigid transformation and 

(21)�ij =

H∑
h=1

(Fi(h) − Fj(h))
2

Fi(h) − Fj(h)
,

(22)wij =
exp (−��ij)∑M

m=1
exp (−��im)

.
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a set of radial basis functions. The transformation function contains linear ( flin ) and non-
linear ( fnl ) terms as follows:

where

R is the linear component, t is translation vector, �g(, ) is Gaussian radial basis function. 
To ensure orientation preservation and injectivity constraints, the following constraint is 
employed:

where J(.) returns a Jacobian matrix, det(.) computes the determinant, S ⊂ ℝ
d is an open 

subset containing the region of interest. Hirose (2017) applied a PCA-based statistical shape 
model to encode prior shapes for registering the mean shape and point set. In this method, 
the statistical shape model is combined with the similarity transformation and motion 
coherence for the transformation model. Given the mean shape � = (uT

1
, ..., uT

M
)T ∈ ℝ

MD , 
we have K shape variations � = (�1, ...,�k) ∈ ℝ

MD×K and Hm ∈ ℝ
D×K is a submatrix of 

� that corresponds to the mth landmark um ∈ ℝ
D in the mean shape u. The transformation 

model is defined as,

where s ∈ ℝ is a scale factor, R ∈ ℝ
D×D is a rotation matrix, t ∈ ℝ

D is a translation vector, 
and z = (z1, ..., zK)

T ∈ ℝ
K is a weight vector. This technique deals with different categories 

of point sets but requires training data to compute K shape variations matrix � for each 
type of point set. Another approach is to include information such as color or point nor-
mals in the registration methods (Saval-Calvo et al. 2018) or human motion tracking (Hor-
aud et al. 2009). Color Coherent Point Drift (CCPD) extended CPD and incorporated both 
color and spatial location of points for establishing correspondences between the point 
sets (Saval-Calvo et al. 2018).

As many low-cost imaging instruments including autonomous vehicles and mobile 
devices capture depth images, the variety of the modality and data density make regis-
tration much more difficult when data captured with different devices need to be aligned. 
Huang et al. (2017) explored cross-source point cloud registration in a rigid case. While 
others studied group-wise registration of the point sets, which are obtained from similar 
devices (Wang et al. 2008). Investigations on registering multiple point sets acquired with 
different devices are highly desired.

2.5  Computational efficiency

Computational efficiency is one of the main challenges in many existing non-rigid point 
set registration methods. Several important factors that make the registration methods inef-
ficient include computation of affinity matrices which involve all pairs of points between 
the point sets, computational costly matrix multiplications in the point sets containing a 

(23)f (�m, �) = flin(�m, �) + fnl(�m, �),

flin(�m, �) = ��m + � , fnl(�m, �) =

G∑
i=1

wi�g(�m, �),

(24)det(J(f (�, 𝜃))) > 0,∀� ∈ S,

(25)f (um, �) = sR(um + Hmz) + t,
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large number of points, and iterative process to find the optimal set of the parameter dur-
ing optimization which is necessary and employed in most of the existing methods. Many 
studies (Combes and Prima 2020; Hirose 2021; Lian et al. 2017) have been conducted to 
tackle this computational efficiency issue using techniques such as Fast Gaussian Trans-
form (FGT) (Greengard and Strain 1991), downsampling, and interpolation (Hirose 2020), 
and learning-based methods.

Myronenko and Song (2010) applied fast Gauss transform (FGT) (Greengard and Strain 
1991) and Low-Rank matrix approximation techniques to handle point sets with a large 
number of points. In correspondence models based on soft-assigned, especially in density 
estimation methods  (Maharjan et  al. 2021; Myronenko and Song 2010), a computation-
ally expensive sum of exponentials is required. FGT computes the sum of exponentials as 
follows

where � = [v1,… , vn]
T is a vector. It takes O(MN) for direct evaluation of Eq.  (26) but 

takes O(M + N) using the FGT. Another bottleneck in many registration methods is the 
computation of Gaussian affinity matrix � . To reduce the computational cost, this matrix 
� is approximated using a low-rank approximation, �̃ = ���T , where �K×K denotes a 
diagonal matrix with K largest eigenvalues and �M×K is formed from the corresponding 
eigenvectors. Using matrices � and � in the EM iterations, instead of � , greatly reduced 
the computational costs  (Myronenko and Song 2010). Golyanik et  al. (2016) also used 
the FGT technique to reduce computational costs but switched to the truncated Gaussian 
approximation (set zeros outside a predefined box) when the covariance of the Gaussians 
becomes small in the final iterations. Dupej et  al. (2015) pointed out that the low-rank 
approximation of large Gaussian affinity matrix � before the EM iterations are still compu-
tationally expensive and they improved the low-rank approximation of � based on Nyström 
method  (Williams and Seeger 2001) and improved fast Gauss transform (IFGT)  (Yang 
et al. 2003). The downside of using these techniques is that the registration accuracy may 
degrade.

Recently, Hirose (2021) presented Bayesian CPD (BCPD), which formulates CPD in 
the Bayesian framework. Nyström method  (Williams and Seeger 2001) is used to accel-
erate the computation of the Gaussian affinity matrix. An accelerated method BCPD++ 
down-samples the point sets and uses the interpolation for an efficient registration (Hirose 
2020). The downsampled point sets are registered using BCPD and the displacement vec-
tors for the removed points during the downsampling process are interpolated. This allows 
BCPD++ to handle a large number of points.

One of the main benefits of using learning-based methods, especially DNN-based meth-
ods, is to avoid iterative processes for non-rigid point set registration. The end-to-end learn-
ing-based methods formulate image (or point set) registration as a regression or a classifica-
tion problem (Pais et al. 2020). The model derives a transformation matrix that aligns two 
inputs, and these methods mostly deal with rigid registration problems (Huang et al. 2020; 
Lu et al. 2019c). The existing DNN-based methods, whether they are supervised (Shimada 
et al. 2019) or unsupervised (Li et al. 2019; Wang and Fang 2019), however, need a very 
large amount of training data and take high computational power to generate a model. Once 
the parameters are learned from training the networks, which is usually a computationally 
expensive process, the DNN-based methods are typically many magnitudes faster than the 
existing iterative methods. Yet, a side effect is poor generalization performance to different 

(26)FG(�m) =

N�
n=1

vn exp
�
−

1

2�2
‖�n − �m‖2

�
, ∀�m,m = 1,… ,M,
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objects (or sometimes referred to as different categories). For example, a DNN-based non-
rigid registration method trained with point sets of chairs performs poorly when tested with 
point sets of airplanes.

Table 3 presents the average time in seconds for completing registration using various 
data sets and the number of points used in the experiments. For point sets of small size 
(less than 100 points), the method by Feng and Feng (2020) took less than two seconds. 
It took about 3 to 5 s for slightly bigger point sets (130–190 points) from the Compli-
cated Chinese Character data set  (CCC: complicated chinese characters, https:// github. 
com/ xdreg is/ compl icated_ chine se_ chara cters). Similarly, the method by Zho et al. (2019b) 
took under three seconds to complete registrations for smaller point sets such as Fish and 
Chinese Character (Chui and Rangarajan 2003), IMM Hand (Stegmann and Gomez 2002). 
The method by Qu et al. (2017) took four to six seconds to register points from 100-300 
points. It is difficult and unfair to directly compare the results of these methods but all these 
methods did compare with the CPD in their experiments, which we use as the baseline for 
our discussion here. Typically, CPD takes less than one second to register smaller point 
sets mentioned above (Qu et al. 2017; Zho et al. 2019b) and the additional time these meth-
ods took to register is due to computational complexity introduced by incorporating addi-
tional constraints such as preserving local geometry, computing feature descriptors, etc.

The last two rows of Table  3 show the results of the methods handling much larger 
point sets. CPD (Myronenko and Song 2010) performed significantly faster when FGT and 
Low-Rank approximations were used. Without leveraging the approximation technique, 

Table 3  Registration time in seconds

The ones with an asterisk * are the average time of multiple cases reported in the literature. The numbers 
are rounded to the tenth place

Method Data set # of points Time

Feng and Feng 
(2020)

Fish (Chui and Rangarajan 2003) 98 1.7

IMM Face (Nordstrøm et al. 2004) 58 0.7
IMM Hand (Stegmann and Gomez 2002) 56 0.7
Complicated Chinese Char (CCC: complicated chinese charac-

ters, https:// github. com/ xdreg is/ compl icated_ chine se_ chara 
cters)

161 4.4*

Zho et al. (2019b) Fish (Chui and Rangarajan 2003) 98 2.5
Chinese character (Chui and Rangarajan 2003) 100 1.8
IMM Hand (Stegmann and Gomez 2002) 56 0.5

Qu et al. (2017) Chinese character (Chui and Rangarajan 2003) 105 4.2
Road 277 6.2

Wang et al. (2018) Oxford Buildings (Philbin et al. 2007) – 0.2*
Myronenko and 

Song (2010)
3D Bunny (3DScan: 3D Scanning Library, http:// graph ics. stanf 

ord. edu/ data/ 3Dsca nrep)
3504 3628.0*

(CPD, 
FGT+Low-
Rank)

3D Bunny (3DScan: 3D Scanning Library, http:// graph ics. stanf 
ord. edu/ data/ 3Dsca nrep)

11,615 177.5*

Hirose (2020) 
(BCPD++)

Stanford 3D Scanning Repository (3DScan: 3D Scanning 
Library, http:// graph ics. stanf ord. edu/ data/ 3Dsca nrep)

3.9M 55.5*

Hirose (2021) 
(BCPD)

Stanford 3D Scanning Repository (3DScan: 3D Scanning 
Library, http:// graph ics. stanf ord. edu/ data/ 3Dsca nrep)

514K 1425.0*

https://github.com/xdregis/complicated_chinese_characters
https://github.com/xdregis/complicated_chinese_characters
https://github.com/xdregis/complicated_chinese_characters
https://github.com/xdregis/complicated_chinese_characters
http://graphics.stanford.edu/data/3Dscanrep
http://graphics.stanford.edu/data/3Dscanrep
http://graphics.stanford.edu/data/3Dscanrep
http://graphics.stanford.edu/data/3Dscanrep
http://graphics.stanford.edu/data/3Dscanrep
http://graphics.stanford.edu/data/3Dscanrep


 X. Yuan, A. Maharjan 

1 3

CPD was unable to register the Bunny point set with more than 35K points. Hence, the 
average time of the successful experiments is reported. The results suggest the benefits of 
using FGT and Low-Rank approximation techniques to deal with large point sets. Methods 
such as BCDP (Hirose 2021) and BCPD++ (Hirose 2020) handle a very large number of 
points, i.e., more than 100,000 points. As shown in this table, BCPD++ is much faster 
than BCPD. The registration of BCPD for the Lucy data set did not converge within 24 
h (Hirose 2020), which was not reported and hence excluded from the average time. The 
results show a clear advantage of using down-sampling and interpolation techniques for 
dealing with very large point sets.

Registration efficiency is a bottleneck for applying the existing methods to real-world 
applications, especially when the size of the point sets is large. Downsampling is often 
used for improved efficiency, which, however, is far from effective to achieve real-time per-
formance. BCPD++ (Hirose 2020) shows promising results based on downsampling and 
interpolation techniques in very large point sets but needs further explorations on signifi-
cantly large and uneven deformation. Deep Neural Networks (DNNs) based methods also 
show encouraging results on the registration speed. Yet, difficulties faced by such methods 
include poor generalization to different categories, high training costs, and handling large 
point sets.

3  Data sets and evaluation

In this section, we present data sets used in the experiments and discuss commonly used 
evaluation techniques used in the existing methods. Preparation of data sets and evaluation 
is a difficult task, especially when the ground truth correspondences between the point sets 
are difficult to obtain. Therefore, many existing methods come up with a creative way of 
evaluating the registration methods.

3.1  Data sets

Table 4 presents publicly available data sets that have been used for the evaluations of point 
set registration methods. The data sets are categorized into two groups: with and with-
out ground truth (i.e., correspondence among points). The data sets with ground truths are 
those that have either one-to-one correspondences between all the points or the landmarks 
of the point sets.

Typically, synthetic data sets such as Fish and Chinese character (Chui and Rangarajan 
2000b, 2003) contain the ground truths. In some image data sets where one-to-one cor-
respondences are impossible or expensive to prepare, a number of landmarks are identi-
fied and correspondences are established manually between the images such as in IMM 
Face (Nordstrøm et al. 2004), IMM Hand (Stegmann and Gomez 2002), WILLOW-Object-
Class  (Cho et  al. 2013). There are other cases where the one-to-one dense correspond-
ences are established by other registration methods. For example, the SCAPE human 
data set  (Anguelov et  al. 2005) contains articulated human poses and the correspond-
ences between the points of the human poses are established by correlation correspond-
ence (Anguelov et al. 2005). The data sets are designed to evaluate specific aspects.

The last column of Table 4 presents the typical cases (but not limited to only those cases) 
where the data sets are used for. In contour registration, the point sets contain the contour 
(shape) of the objects (e.g., Fish or Chinese characters) and usually have fewer points. This 
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Table 4  Publicly available data sets

The ones with an asterisk * are the data sets with landmarks. The symbols used in this table include: L 
(number of landmarks), F (number of frames), CR (Contour Registration), DD (Data Degradation), LR 
(Landmark Registration), TC (True Correspondence in Outlier Rejection), and D (Deformation)

Data set Dim. # of cases Avg. # points Usage

With G1 Fish & Chinese character (Chui and Ran-
garajan 2003)

2 4 100 DD, CR

Ground G2 CMU sequence data (Datasets C Cmu 
house and hotel sequence images, http:// 
vasc. ri. cmu. edu/ idb/ html/ motion/ house/ 
index. html)

2 212 30 (L) * LR, TC

Truth G3 2D Fish & 3D Face (Myronenko and Song 
2010)

2,3 52 392 LR

G4 IMM Face (Nordstrøm et al. 2004) 2 240 58 (L) * LR
G5 DIR-LAB (4DCT and COPD) (Castillo, 

Dir-lab, https:// www. dir- lab. com/ index. 
html)

3,4 – 300 LR

G6 Open curve & closed contours (Chui and 
Rangarajan 2003)

2 6 55 DD, LR

G7 IMM Hand (Stegmann and Gomez 2002) 2 40 56 (L) * LR
G8 WILLOW-ObjectClass (Cho et al. 2013) 2 305 10 (L) * LR
G9 SHREC’19 (Marin et al. 2020) 3 44 38,082 D, SP
G10 The Oxford Buildings Dataset (Philbin 

et al. 2007)
2 5062 11 * TC

G11 The Paris Dataset (Philbin et al. 2008) 2 6412 – * TC
G12 Complicated Chinese Character (CCC: 

complicated chinese characters, https:// 
github. com/ xdreg is/ compl icated_ chine 
se_ chara cters)

2 7500 161 DD

G13 Space-time faces (Zeng et al. 2004) 3 384 23,728 D
G14 TOSCA (Bronstein et al. 2008a) 3 80 50,000 D
G15 SCAPE human (Anguelov et al. 2005) 3 71 12,500 D, SP
G16 FLAME (Li et al. 2017) 3 46,905 5,023 LR
G17 Texture-less Deformable Surfaces (Bed-

narik et al. 2018)
3 26,445 – D, TC

G18 Horse, Camel and Elephant Sumner and 
Popović (2004)

3 337 20,000 D, TC

G19 ACCAD Mocap Dataset (Swagger) (OSU 
A Accad motion capture data, https:// 
accad. osu. edu/ resea rch/ motion- lab/ 
mocap- system- and- data)

3 581 126 (L) D, LR

G20 Thin plate (Golyanik et al. 2018) 3 4648 – D
G21 Dynamic FAUST (Bogo et al. 2017) 4 7948 6,890 D

Without W1 Stanford 3D Scanning Reposi-
tory (3DScan: 3D Scanning Library, 
http:// graph ics. stanf ord. edu/ data/ 3Dsca 
nrep)

3 379 77,734 DD

Ground W2 Tools Dataset (Bronstein et al. 2008b) 2 35 16,622 CR, DD
Truth W3 Free-Viewpoint Video (FVV) (Lin-

coln) (Collet et al. 2015)
3 508(F) 1.60M D

W4 Archive3D (Archive3D: Archive3d, http:// 
archi ve3d. net/)

3 55,632 – D

http://vasc.ri.cmu.edu/idb/html/motion/house/index.html
http://vasc.ri.cmu.edu/idb/html/motion/house/index.html
http://vasc.ri.cmu.edu/idb/html/motion/house/index.html
https://www.dir-lab.com/index.html
https://www.dir-lab.com/index.html
https://github.com/xdregis/complicated_chinese_characters
https://github.com/xdregis/complicated_chinese_characters
https://github.com/xdregis/complicated_chinese_characters
https://accad.osu.edu/research/motion-lab/mocap-system-and-data
https://accad.osu.edu/research/motion-lab/mocap-system-and-data
https://accad.osu.edu/research/motion-lab/mocap-system-and-data
http://graphics.stanford.edu/data/3Dscanrep
http://graphics.stanford.edu/data/3Dscanrep
http://archive3d.net/
http://archive3d.net/
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case is very common and popular among many methods to evaluate the shape or outline of 
the point sets. Robustness to data degradation such as deformation, noise, outliers, rotation, 
and occlusion is one of the major challenges of the existing methods. Data sets such as Fish 
and Chinese character (Chui and Rangarajan 2000, 2003b) and Bunny from the Stanford 
3D Scanning Repository (3DScan: 3D Scanning Library, http:// graph ics. stanf ord. edu/ data/ 
3Dsca nrep) are frequently used data sets to evaluate the robustness with respect to data 
degradation. Landmark registration involves point sets that represent landmark points of 
the object and is used to evaluate the performance of methods for landmark-to-landmark 
correspondences. The landmarks are typically points such as corners of a house in Willow-
ObjectClass (Cho et al. 2013) or points on a 3D face in IMM Face (Nordstrøm et al. 2004). 
Many existing methods identify the true correspondences from initial putative correspond-
ences between the point sets. To evaluate the performance, existing methods use data sets 
with or without ground-truth correspondences. In the absence of ground truth correspond-
ences, true correspondences are typically identified as those where the exponential distance 
(or correspondence weight) between the corresponding points is greater than a threshold. 
To evaluate large and uneven deformation, data sets including articulated human poses and 
shapes such as SHREC’19 (Marin et al. 2020), TOSCA (Bronstein et al. 2008a), SCAPE 
human (Anguelov et al. 2005) are used.

The data sets presented in Table 4 support the evaluation of new methods for research 
challenges discussed in Sect. 2. For evaluating the deformation, eleven data sets are suit-
able, including SHREC’19  (Marin et  al. 2020), Space-time faces  (Zeng et  al. 2004), 
TOSCA  (Bronstein et  al. 2008a), SCAPE human  (Anguelov et  al. 2005), Texture-less 
Deformable Surfaces  (Bednarik et  al. 2018), Horse, Camel and Elephant  (Sumner and 
Popović 2004), ACCAD Mocap Dataset (Swagger)  (OSU A Accad motion capture data, 
https:// accad. osu. edu/ resea rch/ motion- lab/ mocap- system- and- data), Thin plate  (Golyanik 
et  al. 2018), Dynamic FAUST  (Bogo et  al. 2017), Free-Viewpoint Video (FVV) (Lin-
coln)  (Collet et  al. 2015), and Archive3D  (Archive3D: Archive3d, http:// archi ve3d. net/). 
Most of these data sets are large and consist of ground truth correspondence, which ena-
bles comprehensive quantitative evaluation. For evaluating data degradation, Fish and Chi-
nese character (Chui and Rangarajan 2003) are widely used. In addition, Open curve and 
closed contours (Chui and Rangarajan 2003), Complicated Chinese Character (CCC: com-
plicated chinese characters, https:// github. com/ xdreg is/ compl icated_ chine se_ chara cters), 
Stanford 3D Scanning Repository (3DScan: 3D Scanning Library, http:// graph ics. stanf ord. 
edu/ data/ 3Dsca nrep), and Tools Dataset (Bronstein et al. 2008b) provide more options for 
the evaluation. Besides these available data sets, techniques such as adding additive noise 
and outliers are often used in the evaluation. To understand the impact of outliers on the 
registration process, several data sets provide correspondence in outlier rejection such as 
CMU sequence data (House and Hotel) (Sumner and Popović 2004), The Oxford Buildings 
Dataset  (Philbin et  al. 2007), The Paris Dataset  (Philbin et  al. 2008), Horse, Camel and 
Elephant  (Sumner and Popović 2004), and Texture-less Deformable Surfaces  (Bednarik 
et al. 2018).

Point set registration is a key step in applications such as motion tracking, pose esti-
mation, object classification/detection, and deformation analysis. The data sets included 
in Table  4 enable quantitative evaluation of general-purpose registration methods as 
well as methods for specific applications. TOSCA  (Bronstein et  al. 2008a), SCAPE 
human (Anguelov et al. 2005), ACCAD Mocap Dataset (Swagger) (OSU A Accad motion 
capture data, https:// accad. osu. edu/ resea rch/ motion- lab/ mocap- system- and- data) contain 
point sets of complex human body poses, which support the evaluation of pose estima-
tion. In addition, data sets with 4D data such as Dynamic FAUST (Bogo et al. 2017) that 

http://graphics.stanford.edu/data/3Dscanrep
http://graphics.stanford.edu/data/3Dscanrep
https://accad.osu.edu/research/motion-lab/mocap-system-and-data
http://archive3d.net/
https://github.com/xdregis/complicated_chinese_characters
http://graphics.stanford.edu/data/3Dscanrep
http://graphics.stanford.edu/data/3Dscanrep
https://accad.osu.edu/research/motion-lab/mocap-system-and-data
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contains a 3D body in motion with ground-truth correspondences are suitable for human 
motion analysis and tracking applications. Tracking applications can take advantage of data 
sets containing sequential data such as CMU sequence data  (Datasets C Cmu house and 
hotel sequence images, http:// vasc. ri. cmu. edu/ idb/ html/ motion/ house/ index. html). There 
are data sets related to 2D or 3D facial expressions, including Space-time faces (Zeng et al. 
2004), FLAME  (Li et al. 2017), and IMM Face (Nordstrøm et al. 2004), which are useful 
for facial expression recognition and animation. Archive3D (Archive3D: Archive3d, http:// 
archi ve3d. net/) contains a large number of 3D models of different objects such as sofas, 
doors, armchairs, tables, etc., which can be used for object classification and shape analy-
sis. Another important collection of data set is related to medical applications, including 
DIR-LAB (4DCT and COPD) (Castillo, Dir-lab, https:// www. dir- lab. com/ index. html). The 
data set contains Thoracic 4DCT images and CT image pairs of inspiratory and expiratory 
breath-hold of lungs which are useful for deformation and functional analysis. The Oxford 
Buildings Dataset (Philbin et al. 2007) and the Paris Dataset (Philbin et al. 2008) have been 
used for evaluating the performance of object and landmark detections.

3.2  Evaluation techniques

Non-rigid registration methods are evaluated in different aspects. The most common evalu-
ation aspects include robustness to data degradation, speed of the methods, and handling 
of large deformations. Existing methods use both qualitative and quantitative techniques to 
evaluate the performances in these aspects. Figure 5 summarizes the data sets and evalu-
ation metrics used in the existing methods. The notation of data sets follows the indexes 
used in Table 4 that are grouped into with (G1–G21) and without ground truths (W1–W4). 
In the ones with ground truths, data set G1 [Fish and Chinese Character (Chui and Ranga-
rajan 2003)] is used most often. The majority of the methods use more than one data set 
in the evaluation. Each evaluation metric is represented with a unique symbol as shown in 
the legend. Besides quantitative metrics, qualitative evaluation is also included, which is 
reported in all studies and hence is not marked throughout the table. However, for the data 
sets without ground truth, qualitative evaluation was only performed for some, e.g., data set 
W4. Both the root mean squared error (RMSE) and Euclidean distance have been widely 
employed in many studies. Among the 40 studies in this table, 18 studies employed Euclid-
ean distance, and 17 used RMSE. RMSE and Euclidean distance are highly similar because 
most RMSE is computed based on the Euclidean distance. However, Euclidean distance is 
more plausible when ground truth is absent. Another popular metric is the matching rate, 
which is used to assess the correct identification of the corresponding points. Similar to 
accuracy, precision, and recall, the matching rate is an indirect evaluation measure for reg-
istration performance. The most often used metrics are highlighted with colored symbols 
in this figure.

Robustness to data degradation is an important aspect of a registration method and 
many methods include an evaluation of one or many scenarios of data degradation (Dan 
et al. 2018; Lian et al. 2017; Ma et al. 2016; Wang and Chen 2017; Wang et al. 2017). Data 
degradation typically includes deformations, noises, outliers, rotation, and occlusions. For 
each degradation type, experiments are conducted on multiple levels of degradation. For 
example, deformation levels from 1-5 are typically used and both qualitative and quantita-
tive measures are presented. Here, level 1 means the minimum deformation and level 5 
means the greatest deformation. In general, if different levels of deformed point sets are not 
present in the data sets, the points are perturbed to conduct the deformation experiments. 

http://vasc.ri.cmu.edu/idb/html/motion/house/index.html
http://archive3d.net/
http://archive3d.net/
https://www.dir-lab.com/index.html
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In the evaluation of the impact of noise, zero-mean white noise is often used with various 
standard deviations to the point coordinates. To mimic outliers, random points are added 
in proportion to the levels of distortion. Points from a certain region of the point set are 
removed explicitly for occlusion experiments. However, in data sets such as human pose 
point sets, self-occlusions are usually evaluated. Point sets are also often rotated with dif-
ferent degrees to evaluate the robustness of rotation.

Table 5 presents the quantitative registration performance of five methods with respect to 
data used in the evaluation. Many methods reported the experimental results using plots and 
visual illustrations and are excluded from this table. The first methods include the average 
RMSE error at different levels of deformation, outliers, and occlusions, which are presented in 
a triple. PR-GLS (Ma et al. 2016) reported lower RMSE errors for deformation, outliers, and 
occlusions in the 3D Wolf shape point set, and the method show robustness to data degrada-
tion. MR-RPM (Ma et al. 2019a) presented results using Fish and Chinese Character (Chui 
and Rangarajan 2003) point sets and achieved low errors for all the occlusion cases, that is, 
the method is less sensitive to occlusions. Note that it is difficult to compare the quantita-
tive results because the data degradation levels reported in the literature are inconsistent even 
though the same point sets were used. In addition, it is an open problem where there is no 
standard or consistent way to obtain different levels of data degradation. Many existing meth-
ods either used the data sets that already contain levels of degradation or fabricated degrada-
tion by introducing noise or distortion to point coordinates.

The last three methods in Table 5 provide no differentiation among degradation and an 
average error is reported for each data set. The results of GL-CATE (Zeng et al. 2017b) sug-
gest incorporating both global and local features achieves improved performances. The last 
two methods used Euclidean distance as the evaluation metric. Yet, the error of DSMM (Zhou 
et  al. 2018) is the average physical Euclidean distance in millimeters (mm); whereas Yang 
et  al. (2018) reported the average Euclidean distance between the corresponding points. 
Because different data sets and metrics were used in these methods, it is difficult to draw a 
conclusion about the performance. Even when the same metric was used, e.g., RMSE, because 
of the point spacing of the data set, the results could be drastically different. A normalized 
RMSE error using the average point spacing is helpful in future studies to provide a more 
plausible comparison.

Table 6 lists the performances in terms of the precision and recall of outlier rejection of 
methods using different data sets. The evaluation is formulated as a decision of correct corre-
spondence. Wang et al. (2016a) used both synthetic data sets and data sets of images to evalu-
ate MRCVF. The average precision and recall of MRCVF across all data sets are 98.03% and 
98.37%, respectively. Using different data sets, Ma et al. (2014) reported an average precision 
and recall of 96.11% and 97.75%, respectively. Ma et al. (2017) achieved an improved preci-
sion of 99.16% and recall of 99.36% using the Affine Covariant Regions data set (Mikolajczyk 
et al. 2005). Leveraging the correct correspondence between point sets, the average Euclidean 
distance of VFC (Ma et al. 2014) and LPM (Ma et al. 2017) is in the range of [0, 0.04] with 
an improved performance by LPM when the occlusion and outlier are in a greater magnitude.

Robustness to data degradation such as noises, outliers, rotations, deformations, and occlu-
sions is key to any successful registration method. Among the aforementioned data sets, few, 
if any, provide quantitative levels of degradation for each point set. Many methods attempted 
to provide an in-depth evaluation of the levels of data degradation to registration performance. 
However, the experiments present inconsistency among different studies. It is, hence, neces-
sary to have the means to quantitatively evaluate the data degradation and include that into 
data sets for future studies and evaluation.
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4  Conclusion, trend and future work

Non-rigid point set registration has been used in a wide range of computer vision appli-
cations and is a very challenging task. Methods have been developed for the challenges 
such as data degradation and deformation. This paper presents a review and analysis 
of the existing methods to gain a better understanding of the open challenges, existing 
strategies, and future trends.

A registration method optimizes an objective function including constraints, which 
ensures well-posed, incorporates prior knowledge, and deals with data degradation. 
These constraints are employed to limit the search space for correspondence and trans-
formation functions to achieve a plausible registration result. Besides model-based 
methods, graph matching techniques focus on finding the correspondences by embed-
ding points into a graph and leveraging graph properties in search of a solution. The 
graph matching methods, however, are intractable and typically handled using approxi-
mation solutions (Chang et al. 2020; Leordeanu and Hebert 2005). As deep neural net-
works gain popularity in many fields and demonstrate superior performance in computer 
vision applications, learning-based methods have emerged and achieved promising 

Fig. 5  Data sets and evaluation metrics used by the existing registration methods. The data sets are repre-
sented by their indices (see Table 4 for the data sets)
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results in registration problems. Yet, the challenges of the deep learning methods lie in 
the demand for a large amount of training data to learn the parameters of the network 
and limited generalization power to various applications.

Integrating prior knowledge includes incorporating prior correspondence (or cor-
respondence weight) value, using additional information (such as color information of 
points) while computing correspondences, adding constraints in the deformation model, 
and implementing regularization techniques. Data degradation is the major cause of 
problems in point set registration. Ideas to overcome data degradation include enforc-
ing smoothness to the transformation function, preserving local neighborhood structure, 
rejecting incorrect correspondences from initial putative correspondences, and explic-
itly adding additional uniform distribution. These techniques have been seamlessly inte-
grated into model-based methods as well as learning-based methods.

Although the existing methods have achieved significant progress, non-rigid point set 
registration remains a major research focus with many open technical challenges. The 
following lists a few of the most prominent ones:

• Identifying landmark correspondence plays an important role in the large and uneven 
deformation. Existing methods typically extract landmarks and establish the cor-
respondence of landmarks to assist in matching the rest of the points. Finding land-
marks is easier than finding the correct landmark correspondences between the point 
sets because the search space of landmark correspondence matching is huge. Currently, 
techniques such as using higher-order graph matching (Chang et al. 2020; Zeng et al. 
2016), manually established landmark correspondences (Maharjan et al. 2021), or rely-
ing on feature descriptors matching  (Feng and Feng 2020) are used to deal with this 
challenge. Future research should explore computing efficient and reliable landmark 
correspondences that work for various objects.

• Many low-cost devices including mobile devices capture depth images. Registration 
becomes much more difficult when the data are captured from different types of devices. 
For example, when the resolution of the point sets is different, the registration methods 
need to deal with challenging scenarios such as missing correspondences and point sets 
with different sizes. Some studies explored cross-source point cloud registration in rigid 
case (Huang et al. 2017), while others studied group-wise registration of the point sets, 
which are obtained from similar devices (Wang et al. 2008). Further research is needed to 
explore registering multiple point sets (i.e., group-wise registration).

• Evaluating the robustness of data degradation is very important to understand the effec-
tiveness of a registration method. There are data sets, e.g., 3D Face (Myronenko and 
Song 2010), that provide different levels of deformation, but include no differentiation 
among the magnitudes of noise, outliers, and occlusions. Such levels of degradation are 
absent from the majority of the public data sets. Many studies prepare different levels 
of data degradation in the experiments but lack consistency in rating the deformation 
among the data sets. It is critical to systematically generate quantitative grades for the 
magnitude of deformation.

• Speed of registration is a bottleneck for applying the existing methods to real-world 
applications, especially when the size of the point sets is large. Downsampling is often 
used, which reduces the processing time but is still insufficient for achieving a balanced 
result of real-time performance and satisfactory accuracy. Deep network-based meth-
ods demonstrate promising performance on the registration speed. However, the major 
challenges faced by such methods include the inferior generalization ability to multiple 
categories, high computational costs, and registration accuracy.
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Data availibility Data sharing not applicable to this article as no datasets were generated or analyzed during 
the current study.
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