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Scene recognition aims at classifying a scene image to one of the predefined scene categories by compre-
hending the entire image. The complex composition of scenery images makes scene recognition a chal-
lenging task. However, most state-of-the-art visual recognition methods are developed on general-
purpose datasets and omit the uniqueness of scene data. In this work, we propose an efficient Scale
Attentive (SA) Module to address the predicament of scene recognition, which streamlines the scale-
aware attention learning pipeline to assist the feature re-calibration and refinement process. By integrat-
ing SA Module into ResNet-50, we obtain a boost of Top-1 accuracy by 1.83% on the benchmark scene
dataset with only 0.12% additional parameters and 0.24% additional FLOPs. Moreover, comprehensive
experiments show that our method achieves better performance compared with the state-of-the-art
attention and multi-scale methods in a computationally efficient manner.

� 2021 Elsevier B.V. All rights reserved.
1. Introduction

Convolutional Neural Networks (CNNs) have demonstrated sig-
nificant advances in a multitude of computer vision tasks, which
are majorly expounded on ImageNet dataset [16,39,46,56]. The
images in the ImageNet dataset often include a salient object that
is close to the center and occupies a large portion of the image.
Applying such a pre-trained network from a general-purpose data
set on scenery images could neglect the traits of scenery data and
mislead classification because scenery images often represent a
complex view that includes multiple objects at different scales in
complicated background clutters [40,44]. The scale variance of
objects poses a great challenge to the understanding of scenery
images. CNNs learn the coarse-to-fine multi-scale features with
its intrinsic feature extraction mechanism, but its capability is con-
strained by the balance between network depth and efficiency. It
is, therefore, important to improve the capability of CNNs to handle
objects of various sizes without dramatically increasing the learn-
ing complexity [17].

Multi-scale features have been widely adopted in the design of
scene recognition frameworks. The conventional multi-scale scene
recognition approaches sample the input image to various scales,
these resized images in each scale are used to train a network
and the extracted features are combined using operations such as
concatenation. However, training multiple networks separately
faces an increase in computational cost. More importantly, there
is no mechanism to differentiate the importance of scales. That
is, features at the scales that best represent the discriminative con-
tents could be suppressed by equally weighted features of other
scales, which leads to sub-optimal performance.

To differentiate the contributions of different scales, scale
weighting strategies have been explored [31,52]. Chen et al. [5]
use inputs of different sizes to generate multi-scale features and
learn an attention map for each scale to assist semantic segmenta-
tion tasks. Liu et al. [31] adopt CNNs trained with inputs of differ-
ent sizes to extract the multi-scale features, and use multiple
kernel learning [13] to compute the weights for fusing the multi-
scale features for classification. Alternatively, Laban et al. [29] train
networks of different scales, from which the scale that yields the
best performance is selected to generate a model. These studies
still require training multiple networks, and there is a disconnec-
tion between multi-scale features and the model development,
which degrades the efficiency and performance of the system.

Alternatively, end-to-end multi-scale learning strategies have
been developed. Instead of using CNNs as feature extractors, end-
to-end multi-scale algorithms extract features that present differ-
ent scales in the training process and aggregate features to obtain
a multi-scale representation. Specifically, multi-kernel, multi-
branch, and skip-layer architectures have been deployed. Another
strategy to facilitate training is applying attention, which learns
the important features in the training process to improve the deci-
sions. Attention has been implemented to handle spatial impor-
tance [53], channel significance [20], and kernel importance [28].
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Fig. 1. Comparison of state-of-the-art attention modules using ResNet-50 as
backbone in terms of top-1 accuracy, number of parameters and FLOPs. Diameter
of circles indicate model computation amount (FLOPs). Clearly, our SANet obtains
higher accuracy while having less model complexity. SKNet and SKNet* denotes the
SKNet variants with group number G = 32 and 1, respectively.
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To address the aforementioned problems, this paper presents a
Scale Attentive (SA) Module to extract and learn the importance of
features in various scales. Our proposed SA Module can be inte-
grated into any existing deep networks and construct the corre-
sponding multi-level Scale Attentive Networks (SANet). SANet
presents an end-to-end learning strategy for extracting prominent,
scale-dependent features. The discriminative features are propa-
gated to cater to the inter-scale correlations and to re-weight the
contribution of each scale. Different from the conventional scene
recognition methods, as shown in Fig. 1, SA Module introduces
very few additional parameters and negligible computations, while
bringing notable performance gain.

The preliminary results of our study were reported in ICPR 2020
[41]. In this version, we made a substantial extension to both dis-
cussion and evaluation of our proposed method. Specifically, we
include extensive comparisons with methods such as Inception,
MobileNet, and SkNet as well as comprehensive ablation studies.

The rest of this paper is organized as follows: Section 2 reviews
the related work on multi-scale learning methods with an empha-
sis on scene recognition. Section 3 presents the details of our pro-
posed Scale Attentive Module. Section 4 discusses the experiment
settings and provides an in-depth analysis in terms of SANet. Sec-
tion 5 concludes this paper with a summary.
2. Related Work

To aggregate multi-scale features of scenery images, Farabet
et al. [10] integrate several CNN models that are trained with
resized images. The images of one scale are used to separately train
one CNN. Features extracted by these CNNs are used as the input to
a classifier for scene parsing. Following a similar idea, many
attempts and improvements have been made [25,31,49,32,34] by
resizing input images or constructing a Gaussian/Laplacian pyra-
mid [2]. Alternative, rescaled image patches at different resolutions
are generated to train CNNs [17,52,22,27]. In these methods, the
multi-scale features extracted by the pre-trained CNNs are com-
monly integrated via concatenation [17,52,22,27,34] or summation
[49]. Encoding methods such as Codebook [52] or Fisher Vector
[42] are also used in several works to sparsely select or integrate
the extracted features. Despite the demonstrated empirical
improvements in these studies, training multiple CNNs is often
computationally expensive. In addition, the feature aggregation
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operation departs the training process into two separate tasks,
which allows no feedback from the classification to the feature
extraction and, hence, could degrade the model performance.

Convolution-based strategies have been developed to make
multi-scale information an integral part of the deep learning pro-
cess. Multi-kernel aggregating methods apply a group of kernels
in parallel with various receptive fields to simultaneously learn
the scale information. Examples of such multi-kernel deep net-
works include the Inception serial networks [47,45] and Res2Net
[11]. The idea is to learn the kernels of different sizes in each path.
Res2Net [11] also learns multi-scale features using kernel groups,
which represent gradually increasing receptive fields. This strategy
has been adopted in several scene recognition studies [48,1]. Ker-
nels of different sizes [48] or dilated convolution [1] are used to
extract multi-scale features from scenery images and the results
are stacked to form a unified multi-scale representation. Another
strategy is multi-branch learning that factorizes convolutional fea-
ture maps into different resolutions. Multi-branch algorithms use
several branches to learn features of different scales and fuse the
extracted features using concatenation [30] or summation opera-
tion [35,4,6]. Different from training multiple kernels or branches,
skip-layer integration methods use skip connections to combine
layers of gradually increased receptive fields. These layers often
produce outputs of different resolutions and are stacked to achieve
a multi-scale representation [25,50,36,26,8,55]. In these methods,
multi-scale features are treated equally without differentiating
their importance in the integration or decision phase.

Features of different scales bring in unequal contributions to the
recognition tasks [57,33]. A strategy of weighing the features is
attention, which has been intensively studied and demonstrated
improved performance in many tasks. Attention strategies have
been developed for learning channel importance [20,19], spatial
importance [51,3], and kernel importance [28,58]. To include the
attention in the loop of a learning process, SENet [20] introduces
a ‘‘Squeeze-and-Excitation” operation that learns the dependency
among channels. The ‘‘squeeze” operation operates on the channels
to embed the global information, and the ‘‘excitation” operation is
used to calibrate feature responses by aggregating the attention
maps produced by the ‘‘squeeze” operation and the original feature
responses. Park et al. [37] aggregate spatial and channel attention
using Bottleneck Attention Module. Following this pipeline, Woo
et al. [53] employ spatial- and channel-attention components in
a sequential manner. The spatial attention is generated using both
max and average pooling operations in the spatial dimensions, as
well as convolution operation. The channel attention is achieved
with max and average pooling operations in the channel dimen-
sion, as well as multi-layer perceptron learning. SKNet [28] pre-
sents a ‘‘kernel attention” method that allows the network to
adjust the receptive fields (dilation rate) based on the input fea-
tures. The kernel attention generates multiple paths with kernels
of different receptive fields. The outputs of these paths are fused
using the summation operation and are processed with two fully
connected layers to generate the selection weights for different
paths. The selection weights are used to re-weight the feature
maps via a multiplication operation.

Different from the aforementioned kernel attention methods,
our proposed SA Module parses the input into several scales and
learns to weigh the multi-scale features according to their promi-
nence. The SA Module is a standalone component (discussed in
Section 3) that can be easily integrated into many existing back-
bone networks, e.g., ResNet, to enhance the exploitation of the
multi-scale features. Applications such as classification of remote
sensing images and medical images and semantic image segmen-
tation share several characteristics with scene recognition includ-
ing similar or same objects at various scales. Our SA Module will
benefit these applications by deriving the scale information from



Table 1
Architectures for ResNet-50 and SANet-50.
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the training images and hence improves the handle of object scale
variance.
Output ResNet-50 SANet-50

112�112 convolution (7 � 7, 64, stride 2)
56 � 56 max pooling (3 � 3, stride 2)
56 � 56 1� 1;64

3� 3;64
1� 1;256

2
4

3
5� 3

1� 1;64
3� 3;64
1� 1; SA;256

2
4

3
5� 3

28 � 28 1� 1;128
3� 3;128
1� 1;512

2
4

3
5� 4

1� 1;128
3� 3;128
1� 1; SA;512

2
4

3
5� 4

14 � 14 1� 1;256
3� 3;256
1� 1;1024

2
4

3
5� 6

1� 1;256
3� 3;256
1� 1; SA;1024

2
4

3
5� 6

7�7 1� 1;512
3� 3;512
1� 1;2048

2
4

3
5� 3

1� 1;512
3� 3;512
1� 1; SA;2048

2
4

3
5� 3

1 � 1 global average pooling, 365-d FC, softmax
3. Scale Attention Module

Without loss of generality, we use ResNet-50 as the backbone
network in the rest of this section. Table 1 presents the architec-
ture of ResNet-50 [16] and our proposed method SANet-50
(ResNet-50 integrated with the proposed SA Module). The contents
inside brackets are used to present the operations and parameter
settings of the building blocks. For instance,

1� 1; 64
3� 3; 64
1� 1;256

2
64

3
75� 3

denotes a 1� 1 convolution with 64 channels followed by a 3� 3
convolution with 64 channels and another 1� 1 convolution with
256 channels. The process is repeated three times (a.k.a. stacked
blocks). As shown in this table, our proposed method integrates
the SA Module to the convolution blocks in stage 2 to stage 5.

An SA Module consists of three sequential parts: multi-scale
pyramid extraction for extracting multi-scale information, scale
dependency learning to assign weights for each scale of the pyra-
mid, and cross-scale aggregation to fuse the responses. We use a
three-scale SA Module in our explanation of the proposed idea.
Fig. 2 illustrates the structure of an SA Module with three scales.
A multi-scale pyramid is constructed from the input using multi-
scale pooling operations. A weight is derived for each scale to high-
light the important features, which results in a re-weighted pyra-
mid. Using upsampling, the features of different scales are
reshaped to the same size for aggregation. The attention map is
integrated with the input via element-wise multiplication.
3.1. Multi-scale Pyramid

Let X 2 RH�W�C denote the input to an SA Module, where H;W ,
and C denote the height, width, and the number of channels,
respectively. Using the spatial pooling operations, the input X is
down-scaled in height and width to get X0;X0 2 RH0�W0�C , where
H0 < H and W0 < W . The spatial pooling operation retains the
prominent coarse features by suppressing fine details within local
neighborhoods. In practice, we partition the feature maps into
increasingly fine-grained sub-regions. Assuming that the size of
the original feature is n� n and the feature map is partitioned into
s� s sub-regions. Multi-scale pyramid extraction can be consid-
ered as performing pooling operations in a sliding window manner
with window size n=s and stride n=s, where s is determined by the
scale level. For each sub-region, the result of pooling operation x0
can be described as:

x0 ¼ 1
n=s� n=s

Xn=s�n=s

i¼1

xi; ð1Þ

where xi denotes the feature response enclosed in the sub-region.
We perform the pooling operation for each channel of the feature
map X. In practice, the resulting three scales of the pyramid are of
size N � C � 1� 1;N � C � 2� 2 and N � C � 4� 4, where N is the
number of examples in the batch and C is the number of channels.
We use S1; S2; S3 to present the pooled feature map of the three
scales, which denote the global, intermediate, and local information
for the input feature map. The multi-scale pyramid is indeed a 3-D
pyramid with 3� C levels, which is a stacking of S1; S2; S3, and each
part represents the compact feature of a scale.
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3.2. Scale Dependency

To adaptively allocate the weight of every scale in the multi-
scale pyramid, we multiply the feature map of every scale by a
trainable parameter a which demotes the dependency weight of
the corresponding scale, as follows:

�Si ¼ a� Si; ð2Þ
where Si is the re-weighted feature map for scale i and � stands for
element-wise multiplication. We emphasize that the SA Module
computes a soft weight for each scale. As soft attention is a fully dif-
ferentiable deterministic mechanism that can be plug-and-played
on existing systems, the learnable parameters can be updated by
standard backpropagation of the error. Thus, the multi-scale pyra-
mid is transferred into a scale-weighted pyramid which consists
of three scales of S1; S2; S3. The scale-weighted pyramid adaptively
adopts the information from the output of convolution blocks to
settle the optimal weights for each scale, as a result, the SA Module
decides how much attention to pay to features at different scales.

3.3. Scale Aggregation

To match the dimension of the scales, we implemented nearest-
neighbor interpolation to up-sample S1; S2; S3 to the size of
N � C � H �W . After spatial interpolation, features have aligned
shapes and consistent semantics in the spatial dimensions. Thus

we generate the unified scale attention map SA using element-
wise summation:

SA ¼
X3

i¼1

Si: ð3Þ

The scale attention map is a unified representation of the scale-
weighted pyramid and captures the semantics of scene images at
different positions and scales with the greatest probability.

After scale aggregation, the dimension of the scale attention
map switches back to N � C � H �W , which enables the further
implementation of residual operations. We normalize the scale
attention map using batch normalization [21] to reduce the covari-
ance shift and increase the stability of SANet. We adopt the self-
gating mechanism [23,19] to transform the input feature into a
scale attention-weighted feature map. The attention is created
from SA via batch normalization followed by a sigmoid function.
Hence, important features are amplified. Note that, the weights

are scale-dependent and are expressed with SA. The sigmoid func-
tion restrains the scale attention weights to the range of zero to
one to avoid extreme values and stabilize the distribution of the
attention map. The advantage of this operation is achieving an



Fig. 2. The structure of an SA Module.
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attention-weighted feature map, which is generated using
element-wise multiplication. The output of XA of the SA Module
can be presented as:

XA ¼ X � r BN SA
� �� �

; ð4Þ

where X is the input feature of SA Module, SA is the scale attention
map, r presents the sigmoid function, BN stands for the batch nor-
malization operation, � denotes the element-wise multiplication.
4. Experimental Results and Discussion

4.1. Implementation Details

We train and test SANet on Places365-Standard dataset [60].
The Places365-Standard dataset is the most exhaustive and chal-
lenging dataset for scene image classification. The Places365-
Standard dataset consists of 1.8 million images, which are labeled
with scene semantic categories, comprising a large and diverse list
of the types of scenes. The images in the Places365-Standard data-
set are categorized into 365 classes, including both indoor and out-
door views. The sufficient number of images in the dataset enables
the training of large-scale networks such as the ResNet series. The
creators of the Places365-Standard dataset also provide the official
CNN models trained using the dataset, which will be used as the
baseline in the experiments.

The proposed methods are implemented using PyTorch frame-
work [38]. Stochastic Gradient Descent (SGD) is used for training.
We set the batch size as 256 and the initial learning rate as 0.1.
The learning rate is multiplied by 0.1 after every 30 iterations.
We use the momentum of 0.9 and train on 8 NVIDIA V100 GPUs
for 100 epochs for all the models. Following the standard practice,
we use the random size cropping and random horizontal flipping
[46] and measure top-1 and top-5 classification accuracy on 224
� 224 center-cropped images of Place365-Standard validation
dataset.

As the weights are updated by standard cross-entropy loss and
backpropagation of the error, it is possible that a bad initialization
ends in an unrecoverable adverse effect on the training phase
while using benchmark network initialization methods [12,15].
To avoid this risk, we initialize all the scale dependency weights
a as zero to guide the network to learn the scale weights gradually
from the scratch and stabilize the training process. This approach
ensures that the initialization has minimal impact, and enables
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the module to find the optimal parameters by gradually changing
the value of a.
4.2. Comparison with Benchmark Methods

4.2.1. Comparison with ResNet
We evaluate the effectiveness of SANet by integrating the

benchmark ResNet [16] with our module. Note that for ResNet-
18 and ResNet-50, the validation results are reported on the web-
site of Places365 [59]. For a fair comparison, we re-trained all the
models under the same settings using the Place365-Standard train-
ing dataset and evaluated the trained models on the Place365-
Standard validation dataset. Our evaluation of ResNets exhibited
slight improvements to the accuracy in comparison to the ones
reported in [59].

As shown in Table 2, SA Modules bring consistent improve-
ments over the counterpart in all cases under similar budgets.
For example, SANet18 and SANet50 respectively bring 1.41% and
1.83% improvements in terms of top-1 accuracy when the
Places365 dataset was used. It is demonstrated that adding scale-
aware attention information is more effective than using larger
networks. We also evaluated SANet using the ImageNet dataset.
The SANet-18 and SANet-50 outperform the respective ResNet-18
and ResNet-50 by 0.92% and 1.38% in terms of the Top-1 accuracy,
respectively.

Table 3 reports the computational costs and complexity of the
methods. Note that the number of parameters we reported is less
than the official models provided by PyTorch [38] because we cal-
culated the number of parameters base on 365-class models
(Place365) instead of 1000-class models (ImageNet-1000). Despite
the inclusion of SA Modules, the computational cost increment is
subtle. When the methods were evaluated using both Places365
and ImageNet datasets, the GFLOPs of our method and variants
of ResNet are very close. The number of parameters of these meth-
ods is also highly similar. Hence, the improvement of the accuracy
of our method is not a compromise of computational efficiency.
4.2.2. Comparison with SKNet
As SKNet shares a similar concept to our proposed method by

using kernels of different sizes, we experimentally examine the
performance of SKNet and compared it with our SANet. Table 4
compares the accuracy of SANet and two variants of SKNet [28]
using the Places365-Standard validation set. The best results are
highlighted in bold. We select group G = 32 and 1 for the two SKNet



Table 2
Top-1 and top-5 accuracy (%) of ResNets and SANets.

Dataset Network Top-1 Top-5

ResNet-18 54.216 84.633
Places365 SANet-18 54.978 84.786

ResNet-50 55.688 85.795
SANet-50 56.707 86.597
ResNet-18 70.515 89.556

ImageNet SANet-18 71.166 89.960
ResNet-50 76.018 92.804
SANet-50 77.064 93.590

Table 3
GFLOPs and number of parameters (in million) of ResNets and SANets.

Dataset Network GFLOPs Params

ResNet-18 1.82 11.36
Places365 SANet-18 1.82 11.37

ResNet-50 4.12 24.26
SANet-50 4.13 24.29
ResNet-18 1.82 11.69

ImageNet SANet-18 1.82 11.69
ResNet-50 4.12 25.56
SANet-50 4.13 25.59

Table 5
GFLOPs and number of parameters (in million) of SKNet and SANet. The brakets
enclose the group (G) settings.

Network GFLOPs Params

ResNet-50 4.12 24.26
SKNet-50 (G = 32) 4.18 24.85
SKNet-50 (G = 1) 5.97 35.82
SANet-50 4.13 24.29
ResNet-101 7.84 43.25
SKNet-101 (G = 32) 7.97 44.38
SKNet-101 (G = 1) 11.66 65.05
SANet-101 7.86 43.31
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variants, respectively. As using different convolutional kernels
requires additional computations, setting G = 1 brings accuracy
gain but significant computational burden at the same time, while
setting G = 32 achieves more balanced results between actuary and
computation increase. SANet shows stable accuracy improvements
in both ResNet-50 and ResNet101 with significant computation
efficiency. In ResNet-50, SANet outperforms the two SKNet vari-
ants by 1% and 0.7% in terms of top-1 accuracy. It demonstrates
the benefits of integrating SANet units within the networks.

Table 5 presents the GFLOPs and number of parameters (in mil-
lion) of SKNet and SANet. Note that we reported the GFOPs and
number of parameters base on 365-class models (Place365)
instead of 1000-class models (ImageNet-1000). Overall, SANet is
more computationally efficient compared to SKNet. In contrast to
SANet-50, SKNet-50 increases the GFLOPs by 0.05 and 1.84 using
different group settings. This difference is more significant when
using ResNet-101 as the backbone. The difference in GFLOPs
between SKNet-101 (G = 1) and SANet-101 is as large as 3.8, which
is more than 48% extra computations for SKNet-101. In terms of
the number of parameters, SANet has much fewer parameters
compared to SKNet with different settings, which is consistent
with the computation costs.
4.2.3. Comparison with Other State-of-the-art Backbone Networks
We further examine the performance for embedding SA Mod-

ules in networks with light-weighted structure [18], more collabo-
rated designed structure [45,20], and wider networks [54].
Specifically, we evaluate the effectiveness of embedding SA Mod-
Table 4
Top-1 and top-5 accuracy (%) of SKNet and SANet. The brakets enclose the group (G)
settings. The best results are highlighted in bold.

Network Top-1 Top-5

ResNet-50 55.688 85.795
SKNet-50 (G = 32) 56.142 86.274
SKNet-50 (G = 1) 56.307 86.290
SANet-50 56.707 86.597
ResNet-101 56.471 86.249
SKNet-101 (G = 32) 56.268 86.353
SKNet-101 (G = 1) 56.633 86.682
SANet-101 56.740 86.770
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ules into various backbone networks including MobileNet-V2
[18], Inception-V4 [45], SE-ResNet [20] and ResNeXt [54]. Table 6
lists the accuracy of the compared methods on the Places365-
Standard validation set. For MobileNet-V2, integrating the SA Mod-
ules improves the top-1 performance by 2.60%, and for Inception-
V4, the improvement is 0.24%. For the ResNet variants SENet and
ResNeXt with widths of 32 and 64, our proposed model boosted
the top-1 accuracy by 0.75%, 1.03%, and 0.63%, respectively. These
demonstrate a consistent gain in the employment of different
backbone architectures.

Table 7 lists the GFLOPs and the number of parameters of the
compared methods. Compared to each backbone network, the SA
Module introduces a small amount of GFLOPs and the increment
of the number of parameters is marginal. For MobileNet-V2, as it
is a light-weighted architecture, SA Module only introduced 0.01
extra GFLOPs and less than 0.01 million parameters. For ResNet-
based backbones, the SA induced increment in terms of GFLOPs
and number of parameters is 0.01 and 0.03, respectively, which
is subtle compared to the GLOPs and number of parameters of
the ResNet variants. This confirms the computational efficiency
of the SA Module.

4.2.4. Comparison with State-of-the-art Attention Models
We further compare SANet with the benchmark competitive

attention models and report the result in Table 8 and Table 9. For
a fair comparison, we train all the modules using the same config-
uration. In the experiments, we choose the optimal setting of the
benchmark models according to their public experimental results
[20,19,53,3,28]. For example, for SENet [20], we choose the reduc-
tion rate r ¼ 16; for the CBAM module, we leverage both channel
and spatial-wise attention in a sequential manner as well as adopt-
ing both average and max-pooling strategies.

We observe SANet-50 outperforms all the baseline methods
with a small computational complexity. Note that the number of
parameters we reported is less than the official models provided
by PyTorch [38] or the models in corresponding papers
[20,19,53,3,28] because we calculate the number of parameters
base on 365-class models (Place365) instead of 1000-class models
(ImageNet-1000). As shown in Table 9, CBAM-ResNet50 and SE-
ResNet-50 obtained the second and third-best performance in
the selected modules, however, it is worth noting that CBAM-
ResNet-50 and SE-ResNet-50 require adding 2.53 million parame-
ters to ResNet-50. On the other hand, SANet-50 only requires
0.03 additional million (1.19% of CBAM-ResNet-50 and SE-
ResNet-50), which shows the exceptional parameter efficiency of
SANet. At the same time, the 0.03 million parameters increase of
SANet-50 majorly comes from the batch normalization [21] opera-
tion as the scale-dependency learning only introduces 48 (16 � 3,
see Table 1 for detail) parameters, which is almost negligible.

4.2.5. Comparison with State-of-the-art Multi-scale Models
We also compare SANet with the state-of-the-art, multi-scale

models and report the results in Table 10. We train all the models



Table 6
Top-1 and top-5 accuracy (%) of the compared methods. The cardinally and width
settings of ResNeXt are enclosed with brackets.

Network Top-1 Top-5

MobileNet-V2 51.148 81.959
SA-MobileNet-V2 52.479 82.984
Inception-V4 55.998 85.505
SA-nception-V4 56.131 85.640
SENet-50 56.162 86.258
SA-SENet-50 56.584 86.537
ResNeXt-50 (4 � 32) 55.770 85.990
SA-ResNeXt-50 (4 � 32) 56.342 86.384
ResNeXt-50 (4 � 64) 55.822 85.959
SA-ResNeXt-50 (4 � 64) 56.181 86.578

Table 7
GFLOPs and number of parameters (in million) of the compared methods. For
ResNeXt, the cardinally and width settings are enclosed with brackets.

Network GFLOPs Params

MobileNet-V2 0.31 2.69
SA-MobileNet-V2 0.32 2.69
Inception-V4 12.31 41.70
SA-nception-V4 12.32 41.73
SENet-50 4.13 26.79
SA-SENet-50 4.13 26.80
ResNeXt-50 (4 � 32) 4.27 23.73
SA-ResNeXt-50 (4 � 32) 4.28 23.76
ResNeXt-50 (4 � 64) 8.03 43.89
SA-ResNeXt-50 (4 � 64) 8.04 43.92

Table 8
Top-1 and top-5 accuracy (%) on benchmark attention models. All the methods are
trained using the same training strategy as SANet and evaluated on the Places365-
Standard validation dataset. Bold texts indicate the best results of each part.

Network Top-1 Top-5

ResNet-50 55.688 85.795
GCNet-50 [3] 55.614 85.718
GENet-50 [19] 56.148 86.340
SENet-50 [20] 56.162 86.258
CBAM-50 [53] 56.652 86.534
SANet-50 56.707 86.597

Table 10
Top-1 and top-5 accuracy (%). All methods are trained using the SA Modulee training
strategy as SANet and evaluated on the Places365-Standard validation dataset. Bold
texts indicate the best results of each part.

Network Top-1 Top-5

ResNet-50 55.688 85.795
Inception-ResNet [45] 55.444 85.499
PyramidNet-50 [14] 55.753 85.756
DLA-60 [55] 55.811 85.773
Inception-v4 [45] 55.998 85.505
OctConv-50 [7] 56.142 86.140
bL-Net-50 [4] 56.247 86.307
SCNet-50 [30] 56.296 86.332
PyConv-50 [9] 56.301 86.249
Res2Net-50 [11] 56.381 86.271
PSconv-50 [24] 56.381 86.315
ScaleNet-50 [29] 56.414 86.268
SANet-50 56.707 86.597
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under the same setting as SANet. Note for Inception-v4 [45], as it
has special input size requirement, we calculate the FLOPs based
on input size of 3� 299� 299. In PyramidNet [14], we set a as
270. In bL-Net [4], we choose the parameter a and b as 2 and 4,
respectively. For the networks that adopt ResNet bottleneck, we
choose the 50-layer template for all the models except DLA [55]
as DLA is constructed on the 46- and 60-layer schema. Thus, we
choose DLA-60 to match the model complexity.

It can be seen that the SANet outperforms all the listed multi-
scale models. Res2Net-50 and SANet-50, for instance, have similar
parameter counts (SANet has 0.11 million fewer parameters),
while using SA Modules leads to a top-1 accuracy gain of 0.58 %.
Another notable example is Inception-v4 vs SANet: the SANet
Table 9
GFLOPs and number of parameters (in million) on benchmark attention models. Bold
texts indicate the best results of each part.

Network GFLOPs Params

ResNet-50 4.12 24.26
GCNet-50 [3] 4.13 26.80
GENet-50 [19] 4.14 24.75
SENet-50 [20] 4.13 26.79
CBAM-50 [53] 4.14 26.79
SANet-50 4.13 24.29
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model has a prominent less parameter count but, which demon-
strated the effectiveness of adopting residual-based network
schema.

Table 11 shows the GFLOPs and the number of parameter of
each multi-scale model. Note that the number of parameters we
reported is less than the official models provided by PyTorch [38]
or the models in corresponding papers [14,7,55,9,29,4,30,45] as
we calculate the number of parameters base on 365-class models
(Place365) instead of 1000-class models (ImageNet-1000). The
multi-branch designs including OctConv-50, bL-Net-50, and
SCNet-50, the GFLOPs are relatively lower as they manipulated
the resolution of feature maps in their designs. The multi-kernel
based architectures, Inception-ResNet and Inception-v4 have a
heavier computational burden compared to ResNet-base variants.
As SA Module is an add-on module, it is infeasible to decrease
the computational cost but minimize the overhead to a subtle
amount.

4.3. Ablation Studies

4.3.1. Design Options
Nearest-neighbor Interpolation vs. Bilinear Interpolation In

this section, we conduct experiments to validate the effectiveness
of using different interpolation algorithms. Following the results
displayed in Table 12-(a), we observe that the nearest-neighbor
interpolation obtains a better result. Specifically, the bilinear inter-
polation causes a 0.55 % performance decrease in terms of top-1
accuracy compared with the nearest-neighbor interpolation.

To the best of our knowledge, the accuracy drop is because the
nearest-neighbor interpolation distributes the same results for all
the positions inside the designed up-sample region. Conversely,
the bilinear interpolation adopts a three-dimensional interpolation
weight matrix and brings in the imbalance inside the up-SA Mod-
ulepling region. However, the introduced bias cannot fit the scale
attention pyramid we addressed and the statistics of the scene
images, which further impairs the feature re-calibration process.
Thus, we use the nearest-neighbor interpolation in all the
experiments.

Normalization-Sigmoid vs. Sigmoid-Normalization To evalu-
ate the influence of the sequence of Batch Normalization and sig-
moid operation on proposed SANet, we conduct ablation studies
using both Batch Normalization first and sigmoid first structures
and list the results in Table 12-(b). We observed that the shift of
sequence leads to a dramatic performance drop (2.2% in terms of
top-1 accuracy).

This phenomenon can be interpreted as Batch Normalization is
generally used to solve the problem of distribution offset. With the
sigmoid function, when the input has large deviations, the gradient



Table 11
GFLOPs and number of parameters (in million). Bold texts indicate the best results of
each part.

Network GFLOPs Params

ResNet-50 4.12 24.26
Inception-ResNet [45] 6.50 54.87
PyramidNet-50 [14] 4.60 13.69
DLA-60 [55] 4.34 21.68
Inception-v4 [45] 12.31 41.70
OctConv-50 [7] 2.30 24.56
bL-Net-50 [4] 2.88 25.39
SCNet-50 [30] 3.96 24.26
PyConv-50 [9] 3.85 23.55
Res2Net-50 [11] 4.29 24.40
PSconv-50 [24] 5.04 29.91
ScaleNet-50 [29] 3.84 30.18
SANet-50 4.13 24.29

Table 12
Top-1 and top-5 accuracy on Places365-Standard Validation Set. The best results are
highlighted in bold.

Network Top-1 Top-5

a. Using different interpolation methods.
ResNet-50 55.688 85.795

SANet-50 (Bilinear) 56.395 86.444
SANet-50 (Nearest) 56.707 86.597

b. Using different sequence of batch normalization and sigmoid.
ResNet-50 55.688 85.795

SANet-50 (Sig-BN) 55.477 85.592
SANet-50 (BN-Sig) 56.707 86.597

c. Using average pooling and average and max pooling strategy.
ResNet-50 55.688 85.795

SANet-50 (Max) 55.934 86.099
SANet-50 (Ave & Max) 56.030 86.203
SANet-50 (Average) 56.707 86.597

d. Using scale attention maps in different dimensions. ‘‘Cross-C”
denotes the pooling operation is performed cross all the
channels.

ResNet-50 55.688 85.795
SANet-50 (Cross-C) 55.745 85.789

SANet-50 56.707 86.597

e. Using different strategies to extract multi-scale pyramid.
ResNet-50 55.688 85.795

SANet-50 (larger) 55.822 85.937
SANet-50 56.707 86.597

f. Using different strategies to learn scale weights.
ResNet-50 55.688 85.795

SANet-50 (FC) 56.562 86.225
SANet-50 (conv) 56.441 86.148

SANet-50 56.707 86.597
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will likely disappear. After adding Batch Normalization, the distri-
bution is mainly located in the linear part of the sigmoid function,
and the gradient disappearing problem will be alleviated. That is to
say, placing the Batch Normalization layer before the sigmoid func-
tion can help to better retain nonlinear characteristics and further
result in better performance.

Average Pooling vs. Max Pooling In this experiment, we com-
pare the three different ways of extracting multi-scale informa-
tion: max pooling, average pooling, and a combination of them.
The max-pooling is conducted following the same manner as the
average pooling process: we extract a three scales pyramid and
assign learnable weights for each scale. For the models using
max and average pooling operations, the resulting attention maps
of average and max pooling are added together using element-wise
summation.

The results in Table 12-(c) show that introducing max-pooling
degrades the model performance. The possible explanation is
max pooling rejects a large portion of data, which causes remark-
able information loss and may introduce bias. Average pooling
retains more information in comparison to max-pooling and fur-
ther leads to better results.

Attention Map Setting As mentioned in Section 3, the multi-
scale pyramid we extracted is with 3� C channels. To examine
the necessity of learning attention maps for each channel, we per-
form cross-channel averaging to compress the 3� C channels to 3
channels, in which each channel presents the attention informa-
tion of one scale. Not surprisingly, as shown in Table 12-(d), we
obtain a performance drop as less information is involved to guide
the attention learning and feature re-calibration process.

Larger Multi-scale Pyramid Resolution Instead of using multi-
scale pyramid of size 1� 1� C;2� 2� C and 4� 4� C, we also
tested the setting of using larger sizes. For feature maps of different
resolutions, we down-sample both the height and width of the fea-
ture maps to the size of 1/2, 1/4, and 1/8. The result is show in
Table 12-(e). This alternative setting leads to a 0.885% absolute
top-1 accuracy drop, which can be explained as larger attention
maps downgraded the representation power of scales and lack
the ability to guide the network to learn the most discriminate
features.

Strategies to Learn Scale Weights We also tested more sophis-
ticated weight learning design pipelines and illustrate the results
in Table 12-(f). For SANet-50 (FC), we reform the multi-scale pyra-
mid to vectors of size 1� C;4� C;16� C, and concatenate them
together along channel dimension. The concatenated feature is
sent to two FC layers to learn the scale weight. For SANet-50
(conv), we set the attention map at the same size as the multi-
scale pyramid and use convolution to learn the weight for each
scale. These designs lead to a significant increase in the number
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of parameters and GFLOPs but yield slightly worse results, showing
that our design is able to capture scale information using a light-
weighted structure. This phenomenon is because these sophisti-
cated designs inevitably introduced confusion to scale attention
maps and downgraded the learning ability of scale-aware features.
4.3.2. Attention Pyramid Scales
To validate the contribution of scales in our SA Module, we

experimentally analyze the effect of different scales. Following
the description in Section 4.1, we use S1; S2, and S3 to indicates
the three scales in the SA Module. Without loss of generality, S1
denotes the attention map with the smallest resolution, i.e., the
global information, S2 denotes the mid-level scale, and S3 denotes
the local information. We evaluate the performance of the contri-
bution of scales by removing one or two scales.

The experiments were conducted using the Place365-Standard
dataset and the results are presented in Table 13. ‘‘- S1, - S2, - S3”
and ‘‘- S1; S2, - S1; S3, - S2; S3” denote the removal of the correspond-
ing scales of the SA Modules, and ‘‘S1 + S2 + S3” stands for the three-
scale SA Module. The best performance is achieved by adopting
S1; S2, and S3 in terms of both top-1 and top-5 accuracy, i.e., using
multi-scale information yields better performance than a single
scale and two scales, which demonstrated that the improved per-
formance benefits from the complementary advantages from three
different scales. For the two-scale SA Modules, removing S2 causes
the lowest accuracy to decrease while removing S1 and S2 gives rise
to a larger accuracy decrease. This may be caused by the combina-
tion of the most global (S1) and local (S3) features that provide the
most discriminative and comprehensive information and make
better use of both higher-level and lower-level information. For
the one scale SA Modules, using global (S1) features results in the
best accuracy, and using local (S3) features yields the worst perfor-
mance, which denotes the importance of learning long-range
dependency.



Table 13
Top-1 and Top-5 accuracy (%) using SANet with different number of scales. The best
results are highlighted in bold.

Network SANet-50

Top-1 Top-5

ResNet-50 55.688 85.795
- S1 56.019 86.011
- S2 56.482 86.518
- S3 56.099 86.403

- S1; S2 56.192 86.020
- S1; S3 56.285 86.419
- S2; S3 56.460 86.592

S1 + S2 + S3 56.707 86.597

Fig. 3. Box plot of a values with respect to the scale of attention map..
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4.3.3. Distribution of Scale Weights
Fig. 3 illustrates the box plot of a values with respect to the

scale of the attention map. In our experiments, we have large, med-
ium, and small scales denoted S1; S2, and S3, respectively. The size
of the attention maps increases as the scale is enlarged. Hence,
the small scale attention map expresses the coarse structure of
the image contents (i.e., global information), whereas the large
scale attention map encapsulates details (i.e., local information).

The distribution of a in each scale is mostly even with very little
skewness. The medium and average are aligned. Hence, a follows a
normal distribution. The dynamic range of a in each scale varies,
which depends on the contents of images. When fine details dom-
inate the image (e.g., Bamboo Forest in Fig. 5), we see a large
weight to S1. On the other hand, large, prominent objects often
result in a greater weight to S3. Overall, the medium value marked
by the bar in the box increases as the scale reduces despite the
variation of the range of a. This agrees with our intuition that large
objects (whether in the foreground or in the background) are more
important to the understanding of the image.

4.3.4. Network Components Analysis
Table 14 presents the average accuracy of our method on the

Places365-Standard validation set when various combinations of
Table 14
Top-1 and top-5 accuracy (%) of our method using the Places365-Standard validation set
indicate the inclusion of the component. The best results are highlighted in bold.

Component Learnable scale weight Baselin

Batch Norm. U U

Sigmoid U U

SA Module U U U U

Top-1 accuracy 55.359 55.145 55.937 56.707 55.688
Top-5 accuracy 85.885 85.334 86.299 86.597 85.795
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components were used. Batch normalization, Sigmod function,
and multi-scale pyramid are included either individually or
together with other components, which are indicated with check-
marks. The left and right sides of the table provide a comparative
view of using learnable or non-learnable scale weighted features
and the corresponding components are color-coded. The four col-
umns in the learnable scale weight section are using the proposed
SA module that weighs the features according to the scale-
dependent attention map, whereas the columns in the non-
learnable scale weight sections show the combination of compo-
nents and accuracies of SANet-50 with a multi-scale pyramid with-
out using scale-dependent weights. For example, the second
column has one checkmark in the row of SA Module that means
only SA Module was added to the baseline network and the tenth
column has three checkmarks that indicate the inclusion of batch
normalization, sigmoid function, and multi-scale pyramid (non-
learnable scale weight). The baseline column shows the accuracy
of using vanilla ResNet-50. Hence, no checkmark is present in the
column.

The best performance is highlighted in bold-face font, which are
the results of our proposed SANetwork. Without scale-dependent
weights, including multi-scale pyramid also demonstrates
improvement with respect to the baseline method. The change of
top-1 and top-5 accuracy is 0.474% and 0.334%, respectively. This
demonstrates the advantage of explicitly including multi-scale fea-
tures in the network. However, when only the multi-scale pyramid
is added to the baseline network, the performance degrades.
Although adding SA Module to the baseline network results in a
slightly better top-5 accuracy, the improvement is trivial. This indi-
cates the importance of normalizing the attention across scales to
be more meaningful to express the scale-dependent features. In
both learnable and non-learnable scale weight cases, including
batch normalization and sigmoid function makes a difference.
4.4. Qualitative Evaluation of Attention using Heat Maps

Fig. 4 illustrates examples that are miss-classified by the vanilla
ResNet-50 but are correctly classified by our proposed method SA-
ResNet-50. These images consist of six indoor scenarios and six
outdoor scenarios, most of which are quite complex. Some images
contain dominating foreground objects, e.g., Fig. 4. Others consist
of objects of various sizes that contribute to the interpretation of
the images. These cases demonstrate that SA-ResNet-50 success-
fully recognizes the scenes that contain multiple objects of com-
plex scenes.

We use Grad-CAM [43] as the visualizing tool to scrutinize how
our models capture the multi-scale information. In Fig. 5, the
‘‘ImageNet” column indicates the network is ResNet-50 trained
using ImageNet dataset, and so is the ‘‘Places365 Standard” col-
umn. As illustrated in Section 1, scenery images contain objects
at various scales and locations, as well as the cluttered background.
These substances contribute to the semantic representation of the
entire image as a whole. For the standard networks and attention
modules, as they are primarily designed for generic images classi-
fication tasks and commonly trained and validated on the Ima-
when various combination of components is used in the network. The check marks

e Non-learnable scale weight Component

U U Batch Norm.
U U Sigmoid

U U U U Multi-scale Pyra.
54.896 55.318 55.477 56.162 Top-1 accuracy
84.942 85.499 85.592 86.129 Top-5 accuracy



Fig. 4. Examples that miss-classified by the vanilla ResNet-50 but correctly classified by SA-ResNet-50.
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geNet dataset, they focus on the salient features. At the same time,
some potential features which are also important for scene recog-
nition may be suppressed, which could lead to classification bias.

Fig. 5 shows the heat map visualization of six scene images
using different network architectures. We select three best-
performed attention models (SENet, SKNet, CBAM) and multi-
scale models (SCNet, Res2Net, PSConv) and train all the models
using the ResNet-50 template on the Places365 Standard dataset.
SANet identifies prominent objects at various scales. Apparently,
not all objects are important. For example, Barn in Fig. 5 contains
man-made architecture and vegetation. Emphasizing vegetation
has less impact on differentiating the barn from other man-made
architectures. SANet expresses the most relevant features that
are highlighted in the heat map. Also, an outdoor case, Bamboo
Forest contains many similar objects that are almost equally
important to the recognition. Again, SANet successfully identifies
these features, which enables accurate recognition. You may find
ResNet 50 (labeled as ImageNet, 2nd row) performed fairly well
in these two cases. But the results of others are sporadic and
mostly inappropriate. Among the indoor cases, SANet highlights
the regions such as the seats and pin carry in Bowling Alley, which
are essential features of an indoor bowling scene, and decorations
and diners in Restaurant, whereas ResNet 50 failed to emphasize
these prominent features. In summary, SANet locates multiple
regions that help extract features from objects of various sizes that
play vital roles in the expression of scenery. The ability to make use
of the informative features enables SANet to achieve better perfor-
mance on the scene recognition task.
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5. Conclusion

In this paper, we propose a novel and efficient SA Module to
enhance the representation power of CNN networks on the task
of scene recognition. SA Module is extremely light-weighted and
can be easily integrated into the existing network architectures
in a parameter-efficient manner. Our proposed SA Module extracts
scale-aware attention maps to form a multi-scale pyramid. The SA
Module captures scale dependencies and adaptively distributes
weights to each scale. The derived scale attention maps are aggre-
gated to form a unified scale attentive attention map.

We conducted our evaluation using Places365 and ImageNet
datasets. Our proposed method exhibited consistent improve-
ments in contrast to the compared methods including ResNet,
SKNet, and their variants. For example, SANet18 and SANet50
respectively bring 1.41% and 1.83% improvements in terms of
top-1 accuracy in contrast to ResNet18 and ResNet50 when the
Places365 dataset was used. The performance improvement
demonstrated effectiveness of the scale-aware attention idea.
Despite the inclusion of SA Modules, the computational cost incre-
ment to the backbone networks is subtle. When the methods were
evaluated using both Places365 and ImageNet datasets, the GFLOPs
of our method and variants of ResNet and SKNet are very close. The
number of parameters of these methods is also highly similar. It is
evident that the improvement of the accuracy of our method is not
a compromise of computational efficiency. In our qualitative eval-
uation of the attention maps, the heat maps show that SANet
locates multiple regions that help extract features from objects of



Fig. 5. Heat maps of the scale attentions. Warmer color denotes higher weights. All networks except ‘‘ImagesNet” are trained using Places365 Standard -dataset; ”ImageNet”
and ‘‘Place365 Standard” denotes the networks are vanilla ResNet50 modules pre-trained using the corresponding data. The improvement of SANet heavily relies on the
multi-scale strategy, which facilitates the network to grasping rich contextual information.
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various sizes that play vital roles in the expression of scenery. The
ability to make use of the informative features enables SANet to
achieve better performance on the scene recognition task.

Our future study includes the following two thrusts: 1) we
observed from the result of ResNeXt that increasing the width of
the network brings a less significant improvement to the scene
data set compared with the generic data set. This may indicate
learning spatial attributes is more crucial in scene recognition. 2)
Some computer vision domains, e.g., event recognition and scene
parsing use data similar to scene images, improving the perfor-
mance of scene recognition may contribute to these tasks.
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