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A B S T R A C T

In an environment with poor illumination, such as indoor, night, and overcast conditions, the image
information can be seriously lost, which affects the visual effect and degrades the performance of machine
systems. However, existing methods such as retinex-based method, dehazing model-based method, and machine
learning-based method usually have high computational complexity or are prone to color distortion, noise
amplification, and halo artifacts. To balance the enhancement effect and processing speed, this paper applies
the Weber–Fechner law to the grayscale mapping in logarithmic space and proposed an adaptive and simple
color image enhancement method based on the improved logarithmic transformation. In the framework, the
brightness component is extracted from the scene of the low-light image using Gaussian filtering after color
space conversion. The image is logarithmically transformed by adaptively adjusting the parameters of the
illumination distribution to improve the brightness of the image. The color saturation is hence compensated.
The proposed algorithm adaptively reduces the impact of non-uniform illumination on the image, and the
enhanced image is clear and natural. Our experimental results demonstrate improved performance to the
existing image enhancement approaches.
. Introduction

Digital image processing is widely applied in industrial production,
ntelligent transportation, video surveillance, remote sensing monitor-
ng, and other fields. It plays a significant role in the industry, human
ife as well as the military. However, under the condition of poor
llumination [1–3], such as indoor, nighttime, and overcast conditions,
he reflected light on the surface of the object is weak, and the image
olor obtained is distorted and contains much noise [4]. Especially
n the fields of video surveillance, intelligent transportation, and au-
omatic driving, which require constant intelligent analysis, low-light
cenes such as dim light or night conditions affect not only the visual
erception of human eyes but also the object recognition accuracy of
ubsequent machine systems and even lead to system paralysis [5,6]. A
onventional infrared compensation scheme can obtain a clear image in
completely dark environment, but it will lose color information and

orm only a gray image with a large amount of noise. Therefore, under
oor lighting conditions, enhancing image details and restoring color
nformation to the full have become urgent requirements in various
ields. Shown as the poorly lit images in Fig. 1, which are taken
t night, indoors, or with backlighting, the non-uniform illumination
akes some areas of the image too bright, while some areas are too
ark.

∗ Corresponding author.
E-mail address: wwcwfu@126.com (W. Wang).

Therefore, how to enhance the validity of the data and make the
image more in line with human’s visual perception while profiting
the equipment’s analysis is of great significance. For example, in a
face recognition system, as Oloyede et al. [7] proposed, a new eval-
uation function was combined with the optimization algorithm based
on metaheuristics, so as to select the best-enhanced face image auto-
matically according to the linear combination of different key quan-
tization indicators. In the field of underwater image enhancement,
Hou et al. [8] proposed a new hue-preservation-based improvement
method for underwater color images through the combination of hue-
saturation-intensity (HSI) and hue-saturation-value (HSV) models. To
measure yarn parameters more accurately, Wang et al. [9] proposed
an adaptive grayscale improvement and linear region threshold seg-
mentation algorithm, which enhanced the gray level contrast between
the background and the yarn and improved the yarn hairiness recog-
nition and measurement accuracy. In [10], aiming at the problem of
low contrast in retinal fundus images, the author applies independent
component analysis (ICA) to image enhancement and proposes an au-
tomatic retinal vascular segmentation method based on ICA, which can
segment retinal vessels quickly and accurately. Pei et al. [11] put for-
ward a color optimization algorithm for low-backlighted displays, and
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Kallel et al. [12] presented a new optimization algorithm for computed
tomography (CT) scans using discrete wavelet transform with singu-
lar value decomposition (DWT-SVD) and adaptive gamma correction
(AGC), which consistently produced satisfied contrast enhancement and
preserved brightness.

However, these methods have many parameters that need to be ad-
justed, which tend to be over-enhanced in local areas with non-uniform
illumination, and it is hard to keep the trade-off between the speed
and performance. To solve the above problems, an image enhancement
method based on Weber–Fechner law is proposed in this paper. This
method applies local and global information to parameter adaptive
adjustment and realizes fast enhancement through local logarithmic
transformation, which can restore the low-light image into its natural
scene of high contrast, vivid color, and rich details and can provide
a valuable reference for the correction of non-uniform illumination
images. Compared to previous work, our method offers the following
contributions:

- It is a simple and effective strategy to map the gray levels of the
image pixels to logarithmic space based on Weber–Fechner law;

- In the framework, the image is logarithmically transformed by
adaptively adjusting the parameters of the illumination distribution to
improve the brightness and has the compensation mechanism of color
saturation;

- It applies local and global information to reduce the influence of
non-uniform illumination on the image adaptively, and the enhanced
image is clear and natural;

- This method does not need lots of datasets for training and can
produce satisfying results with less computational complexity.

The rest of this paper is summarized as follows. Section 2 gives
a brief introduction to related works. Section 3 presents the details
of the model put forward in this paper. Qualitative and quantitative
comparisons are reported in Section 4. We conclude our research in
Section 5.

2. Related works

According to the working principle, the methods of low-light image
enhancement are mainly divided into six categories: the gray map-
ping method, histogram equalization, frequency domain-based method,
retinex-based method, dehazing model-based method, and machine
learning-based method.

The gray mapping method is changing the gray values of an im-
age through a mathematical function. For example, Drago et al. [13]
designed an adaptive logarithmic function to map the image gray
level, which can enhance the image dynamic range. Huang et al. [14]
presented an algorithm that adaptively obtains gamma correction pa-
rameters in accordance with cumulative distribution function (CDF).
Wang et al. [15] put forward an adaptive local gamma transformation
for low-light image correction, which obtained the intensity component
with a fast guided filter and built a local gamma transform function to
improve the brightness of the image. This kind of method is simple;
however, it has the limitation of robustness.

The histogram equalization (HE) method enhances the image by
modifying the gray-level distribution. For example, Kim et al. [16] used
block iteration to propose an adaptive histogram equalization (AHE)
method. Kim [17] put forward the brightness-preserving bi-histogram
equalization (BBHE) approach to perform HE on two sub-images after
threshold division. As Celik and Tjahjadi [18] suggested, the nonlinear
data mapping is carried out by a two-dimensional histogram of the
input image. They also proposed a contextual and variational contrast
enhancement (CVC) method to enhance a weak lighting image. Parihar
and Verma [19] proposed a dynamic sub-histogram equalization algo-
rithm based on entropy, which assigns a new dynamic range to each
sub-histogram according to the number of entropy and gray levels. Gu
et al. [20] applied a quality assessment model to the optimization of
histogram parameters and Xu et al. [21] generalized the equalization
2

Fig. 1. Examples of different poor lighting conditions. (The first row shows images
under night, indoor and backlit conditions; the second row displays the images
enhanced by the proposed method).

model to effectively solve the problem of over-enhancement. Histogram
equalization is simple and can be used in real-time scenes. However, it
is easy to lose details caused by gray merging.

The method based on frequency domain analysis is to weaken
the noise and enhance the contrast by processing the high and low-
frequency information separately. For example, Zong et al. [22] put
forward a contrast optimization algorithm according to the multiscale
wavelet analysis, which enhanced an ultrasound image by setting a
high-pass function to calculate wavelet coefficients. Loza et al. [23]
put forward an adaptive contrast optimization algorithm through the
local wavelet coefficients statistics, in which a nonlinear enhancement
function was obtained for optimization by modeling. These kinds of
methods are simple in principle and focus on contrast enhancement;
however, they do not make full use of the true brightness of the image
and risk of over-enhancement or under-enhancement.

Retinex is a color constancy-related theory created by Land and
McCann [24]. Later, Jobson et al. [25] put forward the SSR (single
scale retinex) method for image enhancement and further developed it
into the MSR (multiscale retinex) method, MSRCR method (MSR with
color restoration) [26,27], MSRCP method (MSR with chromaticity
preservation) [28] and other conventional algorithms. In addition, Jang
et al. [29] put forward an MSR algorithm on account of subband
decomposition of fusion strategy. Wang et al. [30] proposed an algo-
rithm called image naturalness preserved enhancement (NPE) through
a bright-pass filter; it can both enhance the image contrast and avoid lo-
cal over-enhancement. Fu et al. [31] put forward a weighted variational
model by simultaneous reflection and illumination estimation (SRIE)
on the observed image. After separating the reflection component and
the luminance component with retinex theory [32], some researchers
use a local nonlinear transformation model to enhance the luminance
component to make the image look more natural and bright [33], intro-
duce an enhancement adjustment factor [34], or adjust the enhancing
degree of different luminance values to prevent noise amplification and
color distortion [35,36]. Retinex-based algorithms have the advantages
of clear physical meaning and easy implementation, but they have high
computational complexity, and halo phenomena will occur in restored
images.

In 2011, Dong et al. [37] inverted a low-light image to obtain
a similar foggy image and then improved the image contrast by us-
ing dark/bright channel prior (DCP or BCP). Later, the algorithm is
optimized by Zhang et al. [38], but the parameters in transmission
estimation are directly obtained by experience, so the robustness is
not satisfactory. Jiang et al. [39] adopted filters to process details and
obtained transmission coefficient with a pyramid model; it can both
increase the running speed and obtain better naturalness. On this basis,
Pang et al. [40] introduced gamma transformation to enhance image
contrast. Zhang et al. [41] put forward a real-time low-light image opti-
mization algorithm through the combination of defogging and bilateral
filtering, in which a joint bilateral filter is used to reduce the impact

of noise after parameter estimation with DCP. Tao et al. [42] adopted
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BCP with a convolutional neural network (CNN), and Park et al. [43]
combined BCP with a retinex optimization method, all got satisfactory
results. Hu et al. [44] put forward a fast low-light video optimization
method through the combination of retinex and DCP theory, which
incorporated scenario detection and edge and interframe compensation
to improve the optimization performance. Low-light image has its own
features after inversion, and the usage of dehazing method for low-light
image processing is still not ideal for obtaining a satisfactory effect.
How to improve the scientific rigor of transmission estimation is still a
technical difficulty.

Machine learning-based method for image enhancement has just
emerged recently. For example, Cepeda-Negrete et al. [45] established
a set of fuzzy rules by combining three conventional enhancement
methods with machine learning and adaptively chose the best enhance-
ment algorithm for different image processing tasks. Lore et al. [46]
adopted an auto-encoder in a low-light image optimization frame-
work and trained the characteristics of different low-light images to
achieve self-adaptive enhancement and denoising by deep learning.
Shen et al. [47] combined the MSR method with CNN and put for-
ward an optimization method for low-light image enhancement. Tao
et al. proposed a framework to learn low-light images with different
kernels, and multilevel feature graphs were used to generate enhanced
images [48]. Park et al. [49] put forward a convolutional automatic
encoder to process image data for noise reduction during the bright-
ness optimization and achieved a good effect. Enlightened by the
approach of image fusion, Cai et al. [50] put forward an algorithm
to train a single image intensifier with CNN on a large-scale multi-
exposure image dataset, and produce an improved image from a series
of images. Gharbi et al. [51] designed a deep bilateral learning (DBL)
framework, which realized real-time processing of image enhancement.
Wang et al. [52] designed a global illumination-aware and detail-
preserving network (GLADNet), which uses a CNN to reconstruct details
based on global a priori knowledge and original input images. This kind
of method has a good enhancing effect, but its computational model
requires too much time or too many expensive resources for training.

According to Weber–Fechner law, there is a certain relationship
between mental perception in the human visual system and the true
quantity of light intensity [53]. The reason why human eyes can distin-
guish different objects is that those objects have different reflectance,
thus forming a contrast in the brightness and color between objects.
To cause visual perception differences, the same stimulus difference
must reach a certain proportion, which is the difference threshold. The
difference threshold is proportional to the standard stimulus, and the
proportion coefficient is a constant 𝜆, which is expressed by 𝜆 = 𝛥I/
I. Therefore, if the smallest sensible difference is taken as the sensory
quantity unit, the psychological quantity will be increased by one unit
for each additional difference threshold. Let f (x) be a function of the
change in visual perception with the increase in light intensity, then
f ′(x) is a function of subjective perception with the increase in the
stimulus increment 𝛥x. According to Weber–Fechner law, then:

𝑓 ′(𝑥) = 𝜆 × 𝑑𝑥
𝑥
, (1)

Taking the integral of both sides:

𝑓 ′(𝑥)𝑑𝑥 = 𝜆 × ∫
1
𝑥
𝑑𝑥, (2)

The integral results are as follows:

𝑓 (𝑥) = 𝜆 × ln 𝑥 + 𝐶, (3)

When f (x) = 0, then, C = 𝜆 × ln 𝑥′. The factor 𝑥′ is an absolute
threshold, indicating that the stimulus under this threshold intensity
causes a perceptual difference of 0, that is, no perceptual change.
Combining the above formulas, we can obtain:

𝑓 (𝑥) = 𝜆 × (ln 𝑥 − ln 𝑥′), (4)
3

If the absolute threshold is set to 1 as the measuring unit, then ln
𝑥′ = 0, and Eq. (4) will change to:

𝑓 (𝑥) = 𝜆 × ln 𝑥, (5)

It can be seen from the formula that the subjective sensation of the
HVS f (x) and the intensity of light x are logarithmic. If the pixels of
the image are transformed into logarithmic space, the current value
of the logarithmic domain of the global image is processed to get the
enhanced image.

3. Framework of the proposed method

The overall algorithm framework in this paper is shown in Fig. 2.

3.1. Color space conversion

For color images, RGB color space is limited to distinguishing
chroma and brightness information. If the three channels (R, G, B) are
corrected directly in RGB color space, not only can color distortion
easily occur but also the complexity of the calculation increases. So,
we convert the image to Lab color space for processing. In this space, L
represents the color brightness; positive values of a represent redness,
and negative values represent greenness; positive values of b represent
yellowness, and negative values represent blueness.

The conversion from RGB to XYZ color model is as follows:
⎡
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, (6)

Then, XYZ space is converted to Lab space by:

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝐿 = 116𝑓 (𝑌 ∕𝑌𝑛) − 16

𝑎 = 500[𝑓 (𝑋∕𝑋𝑛) − 𝑓 (𝑌 ∕𝑌𝑛)]

𝑏 = 200[𝑓 (𝑌 ∕𝑌𝑛) − 𝑓 (𝑍∕𝑍𝑛)]

, (7)

𝑓 (𝑡) =

⎧

⎪

⎨

⎪

⎩

𝑡1∕3 𝑡 > ( 6
29

)3

1
3
( 29
6
)2𝑡 + 4

29
𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

, (8)

In these two formulas, L, a, and b are the three channels’ values in
the Lab color space. X, Y, and Z are calculated after converting to XYZ
color space. Generally, the values for 𝑋𝑛, 𝑌𝑛, and 𝑍𝑛 are 95.047, 100.0,
and 108.883, respectively. After converting RGB to Lab color space, the
image examples of each component are displayed in Fig. 3.

3.2. Illumination estimation

To estimate the illumination information from an image, the L-
component image is blurred and smoothed with the hypothesis that the
illumination usually changes slowly in local regions. The blurred image
sets the current pixel to the mean of the pixels in its neighborhood,
as shown in Fig. 4. The center pixel value in the left image is 4.
After summing the values in its 3*3 neighborhood, the average value
1.6 will replace the center pixel, as in the right image. This simple
average blurring is unreasonable because an image is continuous in
space, which also means that the closer the distance, the higher the
weight should be. Although bilateral filtering and guided filtering are
often used for image blurring, those are the edge-preserving filters.
Therefore, the Gaussian function was used in the weighted average
method for blurring. If the two-dimensional template size is m × n, the
orresponding Gaussian function of the elements (x, y) on the template

is as follows:

𝐺(𝑥, 𝑦) = 1 𝑒−
(𝑥−𝑚∕2)2+(𝑦−𝑛∕2)2

2𝜎2 , (9)

2𝜋𝜎2
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Fig. 2. Proposed algorithm framework.
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Fig. 3. An example of converting RGB color space to lab color space.

Fig. 4. Average filtering.

Fig. 5. Changes in image blurring with different parameters.

here 𝜎 is the normal distribution’s standard deviation. The larger the
alue of 𝜎, the more blurred the image is.

In two-dimensional space, the surface contour generated by this
ormula is a concentric circle with a normal distribution from the
enter, and its weight distribution is shown in Fig. 5. The process of
aussian filtering is taken as the convolution of the Gaussian function
nd the original image, and the illumination component’s estimated
alue can be obtained. The formula is as below:

𝑔(𝑥, 𝑦) = 𝐿(𝑥, 𝑦) ∗ 𝐺(𝑥, 𝑦), (10)

here L(x, y) is the input image, 𝐿𝑔(x, y) is the estimated illumination
omponent, G(x, y) is the Gaussian filter and * denotes convolution.
 w

4

Fig. 6. Logarithmic transformation curves.

Fig. 7. The output curves with changing k.

In this way, each pixel value is replaced by the weighted average
of its neighborhood. The farther away the neighbor pixels are from the
original pixels, the smaller their weights. In our experimental, we set
the same size of m and n with the parameter s. Fig. 6 is the result of

aussian filtering with three groups of parameters ([𝑠 = 15, 𝜎 = 0.5],
𝑠 = 50, 𝜎 = 2], [𝑠 = 80, 𝜎 = 3], [𝑠 = 15, 𝜎 = 3], [𝑠 = 15, 𝜎 = 5], [𝑠 = 30,
𝜎 = 5], [𝑠 = 30, 𝜎 = 10]).

On the basis of both the efficiency and the effect of the opera-
tion, the paper adopts Gaussian filtering to extract the illumination
component with a filter window size of 15 × 15 pixels and 𝜎 of 0.5.

3.3. Adaptive logarithmic transformation

Logarithmic transformation is mainly used to expand the low
grayscale values of the image and compress the high grayscale values
of the image to achieve image enhancement, and it has the following
standard forms:

𝑂 = 𝑐 ⋅ log𝑣+1(1 + 𝑣 ⋅ 𝐿) 𝑟 ∈ [0, 1], (11)

here O is the corrected image in the range of [0 1], L is the source
mage, c is the gain adjustment parameter and the base value of v + 1 is
he control parameter. When v is greater than 1, the image as a whole
ill be brightened, and when v is less than 1 and greater than 0, the
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Fig. 8. Samples of the enhancement effects with varying 𝑘0..
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⎪

⎨

⎪

⎪

⎩

image as a whole will be darkened. Suppose 𝑐 = 1. The corresponding
transformation curves when v is set to 1, 10, 50, 200, or −0.05, −0.2,
−0.5, and −0.9 are shown in Fig. 6.

As seen from Fig. 6, when v is greater than 0, the base number
is large, and the enhancement of the low grayscale values is strong.
When the image is globally dark or glossy, the algorithm can achieve
satisfactory results by adjusting v, but if one image has under-exposure
and normal exposure areas, the same parameter will easily cause over-
enhancement. Therefore, we propose an algorithm that changes with
the local information of the image to obtain a more satisfactory result
by the following formula:

𝑂 = exp(𝑘 ⋅ ln(𝐿𝑔∕𝐿max + 𝜉)), (12)

where 𝐿𝑔 is the estimated illumination image from L, k is the adjust-
ment factor, 𝐿max is the maximum value of L, and 𝜉 is the compensation
factor that is set to a small value (𝜉 = 0.001) to avoid a zero value in the
logarithmic operation. Generally, for the areas with lower illumination,
strong correction should be implemented, so the value of k should be
small, while for the images with better contrast, the value of k should
e large. The output curves with changes in k are shown in Fig. 7(a).

To enhance the low-light area adaptively according to the illumina-
ion distribution, this paper takes the k value as a parameter that varies
ith the illumination component of the scene and designs a parameter

election strategy based on the combination of the global brightness
nd local brightness, which adaptively adjusts the optimization func-
ion following the image illumination distribution. The parameter 𝑘 can
e expressed as follows:

= max[(𝐿 + 𝐿𝑚 + 𝐿max)∕3, 𝑘0], (13)

here 𝐿𝑚 and 𝐿ma𝑥 are the mean and the maximum value of L,
espectively, and 𝑘0 is the control factor. The output images and
orresponding histograms varying with different values of 𝑘0 are shown
n Fig. 8 (𝑘0 is set to 0.1, 0.3, 0.4, 0.5, 0.6, 0.7, and 0.9 in the
ubfigures). In which m represents the mean and std represents the
tandard deviation.

As seen from Fig. 8, with decreasing 𝑘0, the pixels with small values
re enhanced, and the pixels with large values are suppressed, the
mage dynamic range is compressed, the overall image brightness is
nhanced, but the contrast is weakened. However, when 𝑘0 < 0.4, the
rightness value of the image does not change with the change of 𝑘0.

In practice, 𝑘0 is set to 0.5.

3.4. Grayscale stretching

To alleviate the problem of gray value concentration, we use a
rayscale stretching function to improve the image; that is, through a
imple linear operation, we expand the image grayscale and improve
he dynamic range by image processing.

Assume that O(x, y) is the input image; its minimum grayscale A
and maximum grayscale B are defined as follows:

𝐴 = min[𝑂(𝑥, 𝑦)], 𝐵 = max[𝑂(𝑥, 𝑦)], (14)
5

Fig. 9. Images and histograms before and after grayscale stretching.

Fig. 10. Comparison of two different restoration methods. (The first row contains low-
light images; the second row contains the images obtained without color compensation;
the images in the third row are obtained with our method).

Set the darkest 0.5% of the input image to C and the brightest 0.5%
to D. The dynamic range [C, D] is linearly mapped to [A, B], and the
final image 𝐿′(𝑥, 𝑦) is as follows:

𝐿′(𝑥, 𝑦) =
(𝐷 − 𝐶)
𝐵 − 𝐴

𝑂(𝑥, 𝑦) + 𝐵𝐶 −𝐷𝐴
𝐵 − 𝐴

, (15)

s seen from Fig. 9, the image dynamic range is expanded after imple-
enting this algorithm, which can enhance the image contrast while

etaining the details of the areas with too high and too low brightness
alues.

.5. Color saturation enhancement

According to the principle of mutual conversion between Lab and
GB color space, and keeping a and b components unchanged, combin-

ng with the enhanced 𝐿′ component, Eqs. (16) and (17) can be used
o convert Lab to RGB color space.

𝑌 = 𝑌𝑛𝑓
−1( 1

116
(𝐿′ + 16))

𝑋 = 𝑋𝑛𝑓
−1( 1

116
(𝐿′ + 16) + 1

500
𝑎)

𝑍 = 𝑍𝑛𝑓
−1( 1

116
(𝐿′ + 16) − 1

200
𝑎)

, (16)

𝑓−1(𝑡) =

⎧

⎪

⎨

⎪

𝑡3 𝑡 > 6
29

3( 6 )2(𝑡 − 4 ) 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
, (17)
⎩
29 29
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Fig. 11. Examples of images with histograms before and after enhancement.

Fig. 12. Some of the experimental images.

owever, after converting to RGB space using the general method
bove, the image will have a lower color saturation. In Fig. 10, the first
ow contains the low-light images, and the second row contains the
nhanced results without saturation compensation, which shows that
he image appears to be insufficiently colored and the color saturation
n the original image is slightly lost.

To maintain the color saturation of the output image consistent with
hat of the input image, we adopt the following method, which is
xpressed as:

𝑅′ = 𝜔 × [(𝐿′∕𝐿) × (𝑅 + 𝐿) + 𝑅 − 𝐿]

𝐺′ = 𝜔 × [(𝐿′∕𝐿) × (𝐺 + 𝐿) + 𝐺 − 𝐿]

𝐵′ = 𝜔 × [(𝐿′∕𝐿) × (𝐵 + 𝐿) + 𝐵 − 𝐿]

, (18)

where 𝜔 = 0.5 and R, G, B are the three channels of an image,
respectively.

As seen from the third row of Fig. 10, the color saturation and
contrast of the image obtained by Eq. (18) are better than those with
Eqs. (16)–(17). The samples of the original image and its enhanced
image are displayed in Fig. 11.

4. Experimental results analysis

To verify the effectiveness of the method, we built an experi-
mental platform for testing. The computer processor used was i7-
6700@3.4 GHz, and MATLAB was used as the simulation software. The
images used for testing involve urban scenery, natural scenery, indoor
images, etc. Some original low-light images are displayed in Fig. 12.
The common features of the images are low brightness, non-uniform
illumination, and a wide dynamic range. Some samples are shown in
Fig. 13. The odd-numbered rows contain the original images, and the
even-numbered rows contain the enhanced images. It can be seen that
the low illumination area is enhanced and the high illumination area is
suppressed after implementing the algorithm, and the enhanced image
color is natural and the details are clear. This finding shows that the
method can adaptively weaken the influence of non-uniform illumina-
tion on the image quality. In the following section, we will compare
the results with those of mainstream algorithms from subjective and

objective perspectives.

6

4.1. Subjective evaluation

(1) Comparing the proposed method with the traditional image
enhancement methods.

Fig. 14 indicates the experimental results of our method and some
traditional methods. Fig. 14(a) is the original image. Fig. 14(b)–(h) are
the enhanced images of a linear transformation (LT), HE, AHE, homo-
morphic filtering (HF), wavelet transform (WT), the retinex method
(RM) and our method, respectively, and the enlarged areas correspond-
ing to the rectangular box in Fig. 14(a) are shown in the second,
fourth and sixth rows. As seen from the figure, the images processed
by different methods have different degrees of change compared with
the original image. Fig. 14(c) and (g) have a significantly enhanced
visual contrast, and the details have become prominent. However, the
tone has shifted, especially the serious halo noise in Fig. 14(g), leading
to poor visual quality. For Fig. 14(e) and (f), although the overall tone
is not shifted, the improvement in the details is insufficient and the
image is even blurred. Fig. 14(b), (d), and (h) have better visual effects,
but the LT method leads to an over-enhancement of the bright area
of the image, while the color in the AHE image is dark. By contrast,
the proposed method has improved the performance of images both
in color and contrast, and the visual effect is better than that of other
methods.

(2) Comparing the proposed algorithm with some state-of-the-art
(SOTA) methods.

In this section, five images are randomly selected as the samples
to show the advantages of the proposed algorithm by comparing it
with some SOTA methods. The results are shown in Fig. 15, where (a)
contains the low-light images and their enlarged regions. Fig. (b)–(i)
are the processing results of AGCWD [54], SRIE [31], IBOOST [55],
L2UWE [56], KinD [57], RetinexNet [58], FCCE [59] and our method,
respectively. Compared with the original image, the clarity and contrast
of the processed image are greatly improved, and a better enhancement
effect is obtained. For these images, the RetinexNet method enhances
the brightness of the image as a whole, but the tone deviates seriously.
The AGCWD method and the FCCE method have a low enhancement
degree, and the noise of the dark area is enhanced. In particular, the
AGCWD method is limited to restoring the details from severely dark
regions. The IBOOST method and the L2UWE and the KinD method
can enhance the intensity of the image well. However, the IBOOST
method leads to image over brightness, while the L2UWE method has
an obvious hole effect in some regions, and the KinD method will
cause the edge of the image to blur. Compared with the other methods,
the SRIE method and our method maintain a balance of color and
brightness information, and the visual effects are better than those
of the above methods. However, the results of SRIE are not uniform
enough for the areas between brightness and dark, and the overall
effect of SRIE is not as good as that of our method. Comparing the local
details of the content in the image box, there is noise caused by over-
enhancement of the IBOOST, insufficient enhancement by FCCE and
SRIE, there is over-enhancement of the IBOOST, noise amplification by
AGCWD and RetinexNet, and shadows with the L2UWE method and
KinD method in the local area. The proposed method can emphasize
details without over-enhancement and without amplifying the noise in
the dark area and can obtain better clarity, contrast, and image color.

We also adopted the low-light/normal-light image pairs of the
IEC database for the experiment [60]. Some experimental results are
indicated in Fig. 16, where (a) contains the original images and (b)
contains corresponding reference images, which are under-exposed
images and properly exposed images using a single shot, respectively.
Fig. 16(c)–(i) are the processing results of AGCWD, SRIE, IBOOST,
L2UWE, RetinexNet, FCCE, and our method, respectively. From those
images, it can be seen that the outputs of AGCWD, SRIE, L2UWE, and
FCCE are all having lower brightness than the reference image. To
the results of RetinexNet, the hue has shifted. Only the images from
IBOOST and our method are very similar to the reference image both
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Fig. 13. Some of the experimental results before and after enhancement.
Fig. 14. Comparisons of conventional image enhancement methods.
in brightness and color, especially the latter is better. Fig. 17(a)–(h)
are the corresponding polar hue map of Fig. 16(b)–(i). Among them,
red, green, and blue curves represent the value distribution of three
color components. It is easy to see that our method is the closest to
the reference image, which is consistent with the visual perception in
Fig. 16.

In addition, to further compare the processing effects of different
algorithms, several synthesized images are also used in the experiment.
As shown in Fig. 18, the (a) images are actual images with normal
illumination, the (b) images are the low-light images from (a) processed
by a gamma transform (𝛾 = 2), and (c) are images enhanced with our
method. The experimental results show that our new algorithm can
enhance the brightness of the low illumination region and suppress the
brightness of the high illumination region adaptively, and the visual
effect is consistent with the actual images. In Fig. 19, the proposed
method was also compared with some existing methods, in which (c)–
(h) are images that have been enhanced by different methods. We can
see that the enhanced results of this method are the most similar to the
original image in terms of the gray-level distribution and structure, and
its comprehensive performance is far superior to that of other methods;
it achieves the best results.
7

4.2. Objective evaluation

Because different methods have different emphases, subjective eval-
uation is inevitably one-sided. Therefore, objective evaluation criteria
such as image quality assessment

(IQA) and computational complexity are used to further measure
the performance of different methods. IQA can be categorized as no-
reference IQA and reference IQA.

(1) No-reference IQA
In this paper, the FGI (fusion of gradient information) [61] and

NIQE (natural image quality evaluator) [62] were adopted as no-
reference IQA metrics to measure the performances of the different
methods. According to the theory of FGI and NIQE, the higher the FGI
value is, the richer the details. For the NIQE, a smaller value is better.

To show the universality of the proposed method, the images from
the IEC database [60], the LDR database [63], the LoL database [58],
the PMEA database [64], and our self-built database were experimen-
tally tested, the total number of the images is 986. Table 1 shows
the objective evaluation results of methods AGCWD, SRIE, IBOOST,
L2UWE, FCCE, RetinexNet, and our method, in which the results of
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Fig. 15. Comparisons of several existing methods using non-reference images.
Fig. 16. Comparisons of several existing methods using image pairs of IEC database.
the same database’s images were averaged as the final result, and the
numbers parenthesis are standard deviation.

The method proposed in this paper can perform 7/8 the best or
second-best values on the metrics of FGI and NIQE. Especially to the
metric of NIQE, it obtained the three best out of the four databases.
The values of all two indexes of our method are better than those
of the other algorithms when applied to the LDR database and the
PMEA database. To the database of LoL, the SRIE method get the
8

best performance on both FGI and NIQE. On the IEC database, the
performance of the method is better than other methods in terms of the
NIQE. Overall, the results show that among the twelve groups of data,
our method outperforms the other algorithms on eight groups of data,
indicating that our method performs better overall than the others.

(2) Reference IQA
The MSSIM (multi-scale structural similarity) [65], LOE (lightness

order error) [66], and PSNR (peak signal-to-noise ratio) indexes are



W. Wang, Z. Chen and X. Yuan Signal Processing: Image Communication 106 (2022) 116742
Fig. 17. Polar tone maps of images in Fig. 16.
Fig. 18. Samples of synthesized image enhancement using the proposed method.
Fig. 19. Comparison of several state-of-the-art methods using the synthetic images.
Table 1
Objective quality evaluation on images from four databases enhanced with different methods. (The best result is bolded and the second best one is underlined).

Metric Datasets AGCWD SRIE IBOOST L2UWE RetinexNet FCCE Ours

FGI

IEC 0.465 (0.061) 0.353 (0.091) 0.401 (0.080) 0.532 (0.068) 0.326 (0.059) 0.451 (0.064) 0.352 (0.076)
LDR 0.532 (0.071) 0.473 (0.073) 0.478 (0.070) 0.578 (0.048) 0.430 (0.067) 0.509 (0.072) 0.387 (0.105)
LoL 0.420 (0.089) 0.227 (0.087) 0.355 (0.088) 0.381 (0.156) 0.295 (0.055) 0.407 (0.069) 0.368 (0.110)
PMEA 0.514 (0.053) 0.482 (0.056) 0.459 (0.076) 0.570 (0.037) 0.418 (0.069) 0.501 (0.047) 0.379 (0.093)

NIQE

IEC 3.866 (0.920) 3.668 (0.951) 3.838 (0.994) 3.977 (0.909) 4.944 (1.114) 3.955 (1.211) 3.548 (0.929)
LDR 3.347 (0.926) 3.223 (0.864) 3.670 (1.132) 3.366 (0.889) 4.366 (1.147) 3.509 (1.185) 3.078 (0.824)
LoL 4.351 (1.198) 3.602 (0.979) 3.977 (1.093) 4.066 (1.177) 6.512 (2.082) 4.202 (1.409) 3.908 (1.090)
PMEA 3.344 (1.012) 3.181 (0.906) 3.410 (1.097) 3.443 (0.954) 4.461 (1.451) 3.225 (0.753) 3.153 (1.010)
9
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Table 2
Objective quality evaluation on images of Fig. 16 (The best result is bolded and the second best one is underlined).

Metrics AGCWD SRIE IBOOST L2UWE RetinexNet FCCE Ours

Group1
MSSIM 0.876 0.939 0.955 0.761 0.727 0.863 0.970
LOE 534.850 266.717 167.166 926.551 893.877 129.889 206.075
PSNR 14.792 20.671 19.422 17.204 13.935 12.325 21.881

Group2
MSSIM 0.846 0.738 0.886 0.810 0.649 0.844 0.882
LOE 718.598 344.957 322.053 674.256 851.689 497.845 279.406
PSNR 14.361 10.519 17.931 10.429 16.027 13.149 19.657

Group3
MSSIM 0.955 0.843 0.954 0.879 0.792 0.911 0.960
LOE 564.459 346.458 284.519 622.859 1202.721 380.237 359.033
PSNR 16.157 9.131 14.164 9.747 16.831 12.204 21.705
Table 3
Objective quality evaluation on images from two databases enhanced using different methods (The best result is bolded and the second best one is underlined).

Metric Dataset AGCWD SRIE IBOOST L2UWE RetinexNet FCCE Ours

MSSIM IEC 0.874 (0.100) 0.926 (0.077) 0.946 (0.095) 0.752 (0.083) 0.736 (0.092) 0.846 (0.161) 0.952 (0.076)
LoL 0.850 (0.155) 0.810 (0.185) 0.879 (0.177) 0.745 (0.137) 0.788 (0.086) 0.798 (0.158) 0.858 (0.176)

LOE IEC 479.804 (175.894) 218.767 (69.464) 166.566 (68.206) 756.912 (268.587) 857.026 (354.867) 164.628 (94.176) 161.478 (58.791)
LoL 440.257 (133.562) 313.231 (95.686) 249.241 (95.322) 740.402 (257.442) 893.308 (302.028) 387.972 (142.748) 279.643 (104.040)

PSNR IEC 17.749 (4.803) 17.303 (4.106) 19.360 (5.491) 14.306 (2.792) 14.727 (2.710) 14.256 (3.660) 20.508 (4.881)
LoL 16.208 (4.549) 11.556 (3.891) 15.183 (5.568) 10.415 (3.186) 17.027 (3.081) 14.024 (3.978) 16.904 (4.907)
adopted for reference IQA. Greater values of MSSIM and PSNR, or
smaller LOE will be better.

We used several synthesized images for experiments with vari-
ous methods, including the AGCWD [54], SRIE [31], IBOOST [55],
L2UWE [56], RetinexNet [58], FCCE [59] and our method, respec-
tively. The comparison data based on these images of Fig. 17 are shown
in Table 2, in which the best result is bolded and the second best
one is underlined. Our approach achieves the six best values of nine
and the IBOOST method obtains the rest three best values. Comparing
the visual perception of Figs. 16 and 17, it is easy to find that the
conclusion of objective evaluation is consistent with that of subjective
visual evaluation. To make the test more general, the IEC database
and LoL database is also employed for objective evaluation with the
metrics of MSSIM, LOE, and PSNR. From the data in Table 3, the
method proposed in this paper is shown to achieve all best performance
with the above three metrics on the IEC database and three second-
best values on the LoL database, while the IBOOST obtained the two
best performance on the LoL database. This means that the conclusions
drawn from Tables 2 and 3 are roughly the same, i.e., our method
outperforms comprehensive performance over that of others.

In Tables 1 and 3, numbers in parenthesis are standard deviation.
Compared to the state-of-the-art methods, the standard deviation of
our method is comparable or better. That is, our method is equally
consistent, and the performance gain is not a compromise of stability.

(3) Computational complexity
To compare the processing speed of various methods, we use differ-

ent sizes of images to carry out experiments in MATLAB. The average
time needed for 20 operations on the same image size is taken as the
runtime of that size image, which is expressed by the following formula:

𝐻 =
𝑛
∑

𝑖=1
𝐻𝑖, (19)

where n is sample quantity and 𝐻𝑖 is the runtime of an image with a
ixed size.

Shown as in Table 4, SRIE has the lowest efficiency in processing a
ingle image, as it takes 242.02 s to process images of 2048 × 1536
ixels [67]. However, CVC [18], MSRCP [28], DCP [37], EFF [68],
PE [30], and the method in this paper take similar amounts of time.
he runtime of the MSRCP method increases rapidly with increasing
10
Fig. 20. Runtime comparison of different steps in the proposed method.

image size, while that of other methods increases approximately lin-
early with increasing image size. Among them, the proposed method
has the shortest runtime and thus has lower time complexity.

After testing and analysis, most time consumed by our method
mainly occurs in the process of converting from RGB to Lab color
space. As shown in Fig. 20, the red column is the conversion time from
RGB to Lab color space, and the blue column corresponds to the time
consumed by enhancement operations. From these columns, it can be
seen that it takes 0.181 s and 0.092 s to process 600 × 400 pixel images,
respectively, while it takes 0.962 s and 0.369 s to process 2048 × 1536
pixel images, respectively. With the increase in the size of the images,
the time-consuming proportion of image space conversion increases.
Therefore, identifying a fast method for converting RGB to Lab color
space will further improve the computational speed of the proposed
method.

We find that the results of our method matched well with human
subjective opinions of image quality, and are statistically superior to
the other methods.

4.3. Adaptivity analysis

Additionally, experiments are carried out using the proposed
method on images with complex illumination and images under nor-
mal illumination. The samples are shown in Fig. 21. The first row
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Table 4
Comparison of the computational complexity (Unit: Seconds).

Method Resolution

400 × 600 pixels 600 × 800 pixels 768 × 1024 pixels 1200 × 1600 pixels 1536 × 2048 pixels

CVC 0.27 0.40 0.60 1.27 2.33
MSRCP 0.17 0.40 0.88 3.29 7.41
DCP 0.33 0.60 1.06 2.42 3.89
SRIE 7.08 13.61 22.38 101.91 242.02
EFF 0.42 0.62 0.94 1.86 3.03
NPE 6.92 13.27 21.33 52.29 89.93
Our method 0.27 0.36 0.48 0.88 1.33
Fig. 21. Examples of image enhancement under different illumination conditions.

ontains the low-light images, while the second row contains the
mproved images. Although the enhancement effect of this method is
nsatisfactory, there is no block effect or noise in the restored image,
hich is consistent with human visual perception. The third and fourth

ows are normal illumination images and the enhancement results,
espectively. For the normal illumination image, the processing result
f the proposed method is nearly unchanged from the original image.
ig. 21(c) shows the enhancement of haze images at night. It can be
een that this method can enhance the details of low illumination, but
ue to the large gray value of the haze image, the contrast will be
educed after enhancement. Therefore, only the algorithm combined
ith defogging can achieve satisfactory results. Overall, the proposed
ethod can adaptively adjust parameters to different scenes and has

xcellent robustness and adaptability.

.4. Failure cases

In the experiment, there will be a slight over-enhancement of the
right areas in the image. Some samples are shown in Fig. 22. It
11
Fig. 22. Examples of backlight image enhancement.

can be seen that for images with outdoor sky areas, it is easy to
enhance the white clouds, resulting in the weakening of the sky color.
This is mainly because the backlight shooting results in the brightness
deviation between bright and dark areas of the image. How to enhance
backlight image better is still a challenging problem.

5. Conclusions

In this paper, we focus on addressing the issues of over-enhancement
due to non-uniform illumination and the lack of self-adaptability in
parameter configurations during the process of low-light images en-
hancement. Based on the Weber–Fechner law and a logarithmic trans-
formation, an adaptive enhancement method for color images is put
forward. After the source RGB color image is converted into Lab color
space and the illumination component is extracted from the scene using
the Gaussian filter function. The image is logarithmically transformed
by adaptively adjusting the parameters of the illumination distribution
to enhance the image brightness. Finally, the saturation of the color
image is compensated. Because this algorithm dynamically adjusts the
parameters of logarithmic transformation by using the illumination
distribution from the scene, it plays a significant role in improving
the visual quality of the image and finding details of low-light areas.
Compared with the existing methods, the proposed algorithm can
adaptively and quickly enhance images with complex illumination,
and the enhanced image is natural. This method can be applied to
video surveillance, scene restoration, and other fields and can provide
a reference for image defogging and underwater image enhancement.
However, the converting color space conversion of RGB and Lab will
take most of the running time of the whole method, how to reduce and
improve the efficiency of this process will be the research focus in the
future.
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