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ABSTRACT
To better understand how contour-levee irrigation practice impacts 
water resources for formulating effective water management poli
cies, it is important to obtain its application on large-scale data sets, 
e.g. state-wide. Automatic classification of contour levee croplands 
from high-resolution aerial images is of great potential given the 
success of deep neural networks and the availability of high- 
resolution remote sensing imagery. This paper proposes a gradient 
CNN model to classify fields with contour levees from remote 
sensing images. Our model produces high-quality segmentation 
masks that are refined with superpixel-based segmentation post- 
processing. Our method is evaluated using images by the National 
Agriculture Imagery Program (NAIP) for the counties in Arkansas. 
A comparison with the state-of-the-art methods demonstrates the 
improved performance of our proposed method. Our method 
demonstrates superior performance in the classification of challen
ging cases and achieves an overall 3.08% of accuracy improvement 
and 28.57% BER error reduction, compared to the second-best 
method. The p-value with respect to the second-best method is 
0.005, which indicates great statistical significance. In addition, the 
results for data of different counties demonstrate the exceptional 
generalization ability of our method.

1. Introduction

Water used for irrigation accounts for nearly 65% of the world’s freshwater withdrawals 
excluding thermoelectric power. The most conventional and dominant irrigation method 
is contour levees, where water flows by gravity from upper to lower paddies, and levees 
are used to maintain flood between them. To better understand how contour-levee 
irrigation practice impacts water resources for formulating effective management poli
cies, it is critical to obtain its spatially explicit information. However, the existing irrigation 
maps only depict the irrigation status and are produced from images of coarse spatial 
resolution. Differentiating fields with contour levees from other types is a critical task to 
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understand the impact of agricultural practice on water resources and formulate effective 
policies for management. Automatic classification of contour levee croplands from high- 
resolution aerial images is of great potential given the success of deep neural networks 
and the availability of high-resolution remote sensing imagery.

Contour levees are usually depicted as curved lines in aerial images with uneven spaces 
in between. Given the importance of line features for differentiating contour levees, we 
use gradients as inputs for the network model. Image gradients are considered a sparse 
representation of an image that has non-zero values assigned to pixels where the 
intensity changes. In this sparse representation, colour features are suppressed from the 
gradient images. The model deals with a more distinct set of features, allowing it to focus 
only on the line features.

Figure 1 illustrates examples of fields with contour levees. There are many line features in 
the aerial images of croplands besides levees, such as field boundaries and tractor tracks. In 
addition, levees vary in spacing, visibility from the image, and texture of the background. 
A challenge is to deal with the great variety of gaps between levees that make correct 
detection of fields with contour levees a non-trivial task, as there is a high chance of classifying 
cropland as a non-contour levee class if the levees are not represented in the image due to the 
large gaps between them when the images are sub-sampled from high-resolution imagery. 
Therefore, providing enough context in an image for the model is essential. CNN models have 
been commonly used to perform the task of semantic segmentation by providing more 
contextual information through multi-scale feature extraction using convolution units (Chen 
et al. 2017; Qiao, Yuan, and Elhoseny 2020; Zhuang, Yuan, and Wang 2020).

Due to the similarity in colour and texture of croplands, it is possible that many small 
areas in an image are misclassified as contour levee. The boundaries produced by the 
model are not exactly a match to the actual boundaries. Hence, we used a boundary- 
guided post-processing method to refine the predictions, using the superpixel maps 
representing semantic units in the images. This method provides a chance to perform 
majority voting on the existing classes in prediction corresponding to each cropland and 
select the most dominant class in terms of frequency as the label for the whole cropland.

Our contributions of this paper include an encoder-decoder network equipped with a 
deep supervision mechanism that uses image gradients to classify croplands with contour 
levees. The network leverages a superpixel-aided image sampling as well as a post- 
processing technique. The sampling method maximizes the possibility of having only 
levees inside the images by selecting the samples from inside each cropland. The post- 
processing method uses the boundary information to perform majority voting in each 
cropland and improve the predictions.

(a) (b) (c) (d) (e) (f)

Figure 1. Fields with contour levees. (a) and (b) present samples of different levee spacing. (c) and (d) 
show weakly and strongly visible levees, respectively. (e) and (f) depicts a share of texture in croplands 
with different irrigation systems.
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The organization of the rest of this paper is as follows: Section 2 reviews the related work 
for land segmentation and classification. Section 3 presents the proposed network for 
contour levee classification and post-processing using superpixels to refine the predictions. 
Section 4 discusses the experimental results of classifying high-resolution aerial images for 
fields with contour levees. Section 5 concludes this paper with a summary and future work.

2. Related work

There have been many studies on the classification of remote sensing images for crop 
type (Phalke et al. 2020; Shen, Liu, and Yuan 2017) and land cover classification (Fang et al. 
2018; Qiao and Yuan 2021). Two commonly used strategies in these applications include 
pixel-based methods and region-based methods (Yuan, Shi, and Gu 2021). Pixel-based 
methods predict the class of each pixel at a time. Teluguntla et al. (2018) proposed 
a Landsat-derived cropland extent method for agricultural lands. The proposed technique 
uses Random Forest as the classifier and provides eight bands of pixel features for the 
model. Xie et al. (2019) worked on the semi-automatic classification of irrigated croplands 
provided in Landsat-based dataset (LANID-US 2012). A total of 112 features are given to a 
Random Forest model to perform the classification. Löw et al. (2013) investigated the 
effect of the feature space provided to a Support Vector Machine (SVM) on its perfor
mance on pixel-level crop mapping. The proposed method calculates the importance of 
different features based on the number of decrements in Out-Of-Bag (OOB) error for a 
Random Forest model in the classification of the crop types. Afterward, the highly 
informative features are chosen, and the corresponding subset of the dataset is given 
to the SVM. The pixel-based classification makes predictions for each pixel independent 
from the others in the neighbourhood. That is, such methods often fail to ensure spatial 
integrity.

With the recent advancements in deep learning, CNNs have been studied and applied 
to many computer vision tasks. Seferbekov et al. (2018) proposes Feature Pyramid 
Network (FPN) for multi-class land segmentation. The FPN extends ResNet50 by having 
two additional parallel pathways to extract features from the aerial images. The first 
stream down-samples the image and produces the deep features, while the second 
stream takes the feature map of each stage and applies 1� 1 convolution to reduce 
the depth. The modified feature maps of each stage are passed to two convolution layers 
followed by upsampling to create feature maps of the same dimensionality as the input 
image. All feature maps of different stages are concatenated and used to generate the 
final prediction. (Mohammadimanesh et al. 2019) designed a model with an encoder and 
decoder network (referred to as FCN-M in this paper). The encoder uses a series of 
convolution, batch normalization, and ReLU activation along with inception and residual 
module to extract the features from images. The decoder also tries to retrieve the 
segmentation mask by means of conventional and transpose convolution. Multi-scale 
feature processing is not considered in the architecture of this network. Although region- 
based methods improve the consistency among local neighbourhoods, the results are 
often inaccurate near the boundary of the objects, which are in the forms of false positive 
or false negative.
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Martins et al. (2020) proposed a Multi-OCNN composed of six networks for land cover 
classification. The method performs the classification task at the pixel level. For each 
pixel in the image patches of different scales are extracted. For each scale, an individual 
network is trained to provide a label for the centre pixel. This method can be regarded 
as a hybrid pixel-based/region-based model. The inference time and computational 
cost are dramatically high, as the model performs the classification for each pixel at 
a time, by collecting the predictions from all networks. Mboga et al. (2020) proposed 
a fully convolutional neural network that fuses feature maps of different levels to 
produce the final segmentation map. This mechanism for feature fusion helps the 
model to involve features at a low and high level in inferring the label of pixels. The 
transformer is another type of model that was designed for natural language proces
sing and has recently been adapted for computer vision tasks. Swin-UNet Cao et al. 
(2021) is an UNet-like Transformer, designed for image segmentation. The image is 
divided into patches of size 4 by 4 that are fed to the encoder network, which performs 
a series of hierarchical Swin Transformer with a sliding window. Skip connections are 
used between the encoder and the decoder networks to capture the global and local 
relations between the patches and different scales of images. Despite the much- 
improved performance, the pixel-wise classification makes Swin-UNet facing the spatial 
integrity issue.

3. Gradient convolutional neural network

3.1. Network architecture

Colour images have been vastly used in many recent image segmentation and object 
detection (Yuan, Shi, and Gu 2021; Lu et al. 2019) methods. However, agricultural crop
lands share highly similar colours regardless of the irrigation system type. On the other 
hand, contour levees are often distinguished with irregular curved lines of uneven 
spacing. The presence of such patterns in cropland is a necessary condition for deciding 
a contour levee. Therefore, if a model is able to distinguish other types of lines such as 
boundary lines from levees, there is a potential to achieve high performance in the 
detection of contour levees.

Based on this observation, we designed a convolutional neural network that uses 
image gradients as the input to detect fields with contour levees from high-resolution 
images. Image gradient provides the model with key information about where intensity 
level changes drastically. Figure 2 shows the architecture of our proposed network with its 
two main components: an encoder network and a decoder network. The encoder network 
extracts the convolutional features. It is a CNN with eight convolutional layers. The second 
convolution layer of the first three stages has a stride of two, which achieves an effect of a 
down-scale ratio of eight. Hence, the encoder extracts image features at different scales. 
The decoder network generates the prediction for each pixel from the extracted features 
using a mask generator. The network leverages the skip connections to pass the feature 
maps from three levels of the encoder to their counterparts in the decoder. The fine-grain 
features from the corresponding layers in the encoder network are concatenated with the 
convolutional results from the coarse resolution. A deconvolution process is used to 
restore the spatial resolution.
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The integration of the low-level features from the encoder alongside the high-level 
features of the decoder makes it possible to use the detailed features as well as coarse 
features. Hence, the network produces a high-resolution prediction map. In our imple
mentation, as the size of feature maps is not always divisible by two, the feature of 75 �
75 � 128 in the encoder network is resized to 76� 76� 128 in the decoder network to 
ensure a compatible size with the deconvolution output. The resize is achieved with 
padding and in the next deconvolution process, the padded row/column is removed.

Following the idea of deep supervision (Xie and Tu 2015), we designed Mask Generator 
blocks (MGBs) to produce the segmentation masks in different stages of our network. The 
structure of an MGB is shown in Figure 3. At each stage, a segmentation mask is generated 
given the last feature map passed forwards from the last convolution layer of that stage. 
Starting from the second stage, the production of a mask is achieved in a two-step 
procedure inside the MGBs in each stage: generation of an initial mask, which is con
catenated with the mask from the previous stage. The concatenated masks are fed into 

Figure 2. The architecture of the proposed gradient convolutional neural network.
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the convolution layers. This operation is performed to improve the quality of the current 
mask based on the prior results. To ensure the consistent size of the masks in each stage 
with the ground truth, these masks are up-sampled.

3.2. Objective function

We formulate the cost function as a weighted sum of the individual cost function, 
comparing the generated prediction at different stages with the ground-truth masks, as 
follows: 

X4

i¼1

λiΓðG;MiÞ þ Lr (1) 

where G is the ground-truth for a given image, Mi is the mask generated by i th stage of 
the decoder, λi is the weight associated with the mask for each level of prediction in the 
decoder and Γð�Þ is a Softmax cross-entropy function for binary classification. Softmax 
calculates the probability of each pixel belonging to every class. Γð�Þ is computed as 
follows: 

ΓðG;MiÞ ¼
1
N

X

x;y
� ðGðx; yÞ logðMiðx; yÞÞ þ ð1 � Gðx; yÞÞ logð1 � Miðx; yÞÞ (2) 

where N is the total number of pixels, Gðx; yÞ and Miðx; yÞ are the ground-truth label 
and the predicted probability for the pixel at ðx; yÞ, respectively. The value for the weight 
parameters λi is determined empirically by testing different cases of giving more weight 
to the last prediction, early prediction, and evenly distributed among all stages.

To regularize the network parameters, a weighted sum of l2-norm is adopted to the 
network weights as follows: 

Lr ¼ λR

XN

i¼1

w2
i (3) 

where λR is the regularization coefficient and wi denotes single weight parameters of 
the network.

Figure 3. The mask generator block in the decoder.
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3.3. Crop field segmentation and decision fusion

Superpixels provide a perceptual representation of the entities inside an image, in 
which pixels are grouped in terms of spatial, colour, or texture attributes (Liu et al. 
2018; Mi and Chen 2020; Yang et al. 2020). Superpixels are a key component in our 
model, as they are used in both pre- and post-processing phases. To prepare the 
training images, we perform image sampling inside the superpixels with a single 
class type. Ideally, a superpixel is one crop field. Moving the sampling window 
inside croplands guarantees that the borderlines and contents from a nearby field 
are not captured. Hence, levees are the only type of line features in the selected 
samples.

Segmentation of an image into superpixels is semantically imperfect. Most of the 
algorithms rely on colour and spatial similarities to decide which pixels can be grouped 
into a superpixel. Under these circumstances, these models may divide a semantic unit 
into smaller or elongated superpixels.

Superpixels representing the croplands with contour levee systems or other types of 
irrigation systems often have a low level of elongation and have a compact shape, which 
means the distribution of pixels in all directions is almost uniform. However, superpixels 
covering roads and boundary regions that separate large croplands have usually 
a prolonged shape.

To select the superpixels of crop fields, we use the number of pixels in a field and the 
elongation of the region to rank the superpixels with respect to their shape. The elonga
tion E (Stojmenović and Žunić 2008) of a superpixel (region) I is computed as follows: 

EðIÞ ¼
�m2;0ðIÞ þ �m0;2ðIÞ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4ð �m1;1ðIÞÞ
2
þ ð �m2;0ðIÞ � �m0;2ðIÞÞ

2
q

�m2;0ðIÞ þ �m0;2ðIÞ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4ð �m1;1ðIÞÞ
2
þ ð �m2;0ðIÞ � �m0;2ðIÞÞ

2
q (4) 

where �mp;qðIÞ are centralized moments: 

�mp;qðIÞ ¼
X

x;y
Iðx; yÞðx � �xÞpðy � �yÞq (5) 

where x; y indicate the position of a pixel in the image and p; q are the order of the 
moment, �x and �y are the mass centres, mp;q, as follows: 

mp;qðIÞ ¼
X

x;y
Iðx; yÞxpyq;where�x ¼

m10

m00
and�y ¼

m01

m00
(6) 

The score D of a superpixel I is the ratio of the number of pixels in I, denoted with NðIÞ
and its the elongation factor EðIÞ: 

DðIÞ ¼
NðIÞ
EðIÞ

: (7) 

Our method classifies pixels of fields with contour levee. Ideally, all pixels of a crop field 
have the same class label. However, as the semantic information is missing, we often see 
a single field consisting of pixels classified into different classes, and a small group of 
pixels is put into one class that is different from the surroundings. The left panel 
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(prediction) of Figure 4 illustrates the output of the classification model. Pixels of contour 
levee class are depicted in green, and the rest are in gray. There exist many small regions 
that are classified as contour levees, which are misclassifications. The middle panel 
(Superpixel map) illustrates the superpixels that capture the crop fields. Comparing the 
superpixels with the classification outputs, we see fields with a mixture of contour levee 
pixels and non-contour levee pixels. To rectify such errors, we leverage the boundary 
information of the superpixel map and perform majority voting of all pixels within each 
superpixel. The final classification is decided to the class with the greatest count.

4. Experimental results and discussion

4.1. Dataset and settings

The National Agriculture Imagery Program (NAIP) acquires imagery during the agri
cultural growing seasons in the continental U.S. Images are acquired at 1-metre 
resolution. The dataset used in our study is a subset of NAIP 2015 that includes 
138 image tiles that cover Lonoke County in Arkansas. Each image tile has a size of 
5; 000 by 5; 000. Among all samples, 16 tiles are annotated into two classes (contour 
levee and non-contour levee) and are used for training and testing. The spatial 
distribution of the tiles is shown in Figure 5.

Among all samples, only 23.75% of the pixels are labelled as contour levees and 76.25% 
of them are considered as background. The original images are rotated by ½5; 10; . . . ; 180�
degrees as a way to augment the samples of all classes. More than 1.7 million samples are 
generated, and 88 thousand samples are randomly selected for training the network.

For each network, the initial parameters are chosen randomly from a normal distribu
tion with μ ¼ 0 and σ ¼ 0:1. The technique used for optimization of the network is Adam 
with β1 ¼ 0:9 and β2 ¼ 0:999. We assigned equal weight to the output of each level for 
the deep supervision mechanism in our network, with values of 
½λ1 ¼ 1; λ2 ¼ 1; λ3 ¼ 1; λ4 ¼ 1�. The learning rate of the networks is initialized with 
η¼ 10� 3. After 65,000 iterations, the learning rate is reduced to η¼ 10� 4. After 75,000 
iterations, it is reduced again to η¼ 10� 5.

In our evaluation, we use precision, recall, accuracy, F1-Score, Mean-IoU, and Balanced 
Error Rate (BER) (Le et al. 2018; Wang, Li, and Yang 2018). The balanced error rate 
computes the average error of classification with respect to each class: 

Figure 4. Classification refinement using superpixels.
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BER ¼ 1 �
1
2

TP
TP þ FN

þ
TN

TNþ FP

� �

(8) 

where the first term in the parenthesis is known as Sensitivity and the second term is 
called Specificity. In all of the evaluations, a high value of accuracy and a low value for BER 
is desired.

4.2. Comparison of superpixel segmentation methods

A robust and accurate superpixel segmentation algorithm plays a crucial role in improving 
the performance of our method. Superpixel segmentation methods are generally cate
gorized into graph-based and gradient-based classes. Superpixel segmentation methods 
such as Felzenswalb and Huttenlocher(Felzenszwalb and Huttenlocher 2004) model the 
problem using a graph-based similarity measurement technique. Quick Shift(Vedaldi and 
Soatto 2008) uses both color and position attributes to measure the similarity of pixels 
presented in a form of ðX; Y; R;G; BÞ with an approximation of kernel-based mean-shift, 
where X; Y present the position of the pixel and R;G; B are the pixel colors. Supported by 
many recent works in object-based classification and segmentation of remote sensing 
data, (Gao et al. 2021; Abd Manaf et al. 2018), to have a fair comparison between 
segmentation methods of all categories, we choose to evaluate SLIC(Achanta et al. 
2010), Compact Watershed(Neubert and Protzel 2014), Quick Shift(Vedaldi and Soatto 

Figure 5. Arkansas state and the layout of images presenting the Lonoke county. The left sub-figure 
shows the boundaries of the Arkansas state and other countries. Lonoke county is shown with red 
boundaries. The right sub-figure shows the spatial location of all tiles with training tiles shown in red 
and 6 additional test tiles in blue color. The red tiles are also used for testing in each iteration of the 
k-fold cross-validation.
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2008), and Felzenswalb and Huttenlocher(Felzenszwalb and Huttenlocher 2004) in identi
fying the boundaries of the croplands, among which, the first three methods are gradient- 
based and the last method is a graph-based technique.

The visualization of the segmentation using each method on a 5000� 5000 pixel tile 
from Lonoke County is presented in Figure 6. In the figure, the detected boundaries are 
overlaid with blue colour on the NAIP image. Moreover, two sample regions are shown on 
the top of each test image for the models. In the first case, shown in the green for each 
method, the Felzenszwalb segmentation technique has identified the boundaries of the 
wood in a more accurate way, and the boundaries aligned with the semantic structure of 
the land, compared to the other three methods. In the second case, which belongs to 
agricultural cropland with a simple texture structure (shown in red), Compact Watershed 
(CW), Quick Shift, and SLIC have divided the land into several small regions, which can 
introduce inaccuracies if these segmentation boundaries are used for the post-processing 
step. This issue occurs as many small regions in the image can have different irrigation 
types in the prediction. The only potential way to resolve this issue is to perform the 
majority voting with the correct boundaries of the whole cropland not separately on the 
small partitions. In this case, also Felzenszwalb performed the best and was able to 
recognize the boundaries most accurately.

The effect of using the majority voting on three prediction tiles, each from Lonoke, 
Woodruff, and Arkansas counties with and without the four selected methods is provided 
in Table 1. The average value of each metric on all test samples is reported with the 
standard deviation in the parentheses. The best results are highlighted in boldface font 
and the second-best results are underlined. Using the Felzenszwalb method improves the 
overall accuracy with a 2.13% margin compared to the second-best method, as well as 
6.92% compared to the case of using the raw predictions. An improvement of 14.81% in 
precision over the cases without using the superpixels demonstrates the effectiveness of 
majority voting in restoring the misclassified false-negative predictions.

(a) Felzenszwalb (b) SLIC (c) Quick Shift (d) Watershed

Figure 6. A comparison of superpixel segmentation methods. The resulted segmentation boundaries 
are overlaid on the image in blue.
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4.3. Superpixel generation

Using superpixel help improves the integrity of the classification of crop fields. We 
compute the scores for the superpixels following Eq. (7). According to our score, small 
scores are often indicative of small or extremely elongated regions. Examples of such 
superpixels include roads between fields. These superpixels should be eliminated. A crop 
field often appears as a rectangle region that is close to square in shape with a reasonable 
size. Hence, an appropriate threshold should follow these observations.

Figure 7 shows the heatmap of superpixel scores of a sample image. We can observe 
that most low-score samples are the connecting roads between the croplands. The 
superpixels with median-range scores are the ones with a fairly large number of pixels 
and a small elongation rate. The difference between superpixels with large and median- 
range scores is the number of pixels. The elongation factor among them is very similar.

To decide the threshold, we create the histogram of the superpixel score from all 
training images as shown in Figure 8.

This histogram illustrates the distribution of the scores that range from zero up to over 
250,000. The majority of the superpixels are in the lower end of the distribution. The box 
plot underneath the histogram in Figure 8 shows the outliers and quartiles of the 
distribution. The red bars in the histogram plot highlight the first quartile, i.e. 25th 
percentile, and the median. Due to the highly skewed distribution, the average score is 
in between the first quartile and median. Based on our empirical analysis, we use 
the second quartile as the range for selecting the thresholds, i.e. [4,000, 20,000]. Note 
that the lower and upper bound of this range is round to thousands. In our study, to be 
more inclusive yet avoid unlikely crop fields, our threshold is set to 4,000.

Figure 7. Geometric superpixel score of a superpixel map. A sample image colored according to the 
scores and groups of superpixels with low, medium, and high scores.

Table 1. Classification performance with and without superpixel for post-processing.
Model Accuracy BER Precision Recall F1-Score M-IoU

w/o sup. pix. 0.86 (0.04) 0.16 (0.03) 0.81 (0.04) 0.80 (0.05) 0.80 (0.02) 0.73 (0.04)
CW 0.88 (0.04) 0.13 (0.02) 0.86 (0.05) 0.81 (0.01) 0.84 (0.02) 0.77 (0.06)
SLIC 0.89 (0.04) 0.12 (0.03) 0.88 (0.03) 0.84 (0.04) 0.79 (0.06) 0.86 (0.02)
Quick Shift 0.90 (0.05) 0.11 (0.04) 0.86 (0.04) 0.87 (0.02) 0.86 (0.03) 0.80 (0.08)
Felzenszwalb 0.92 (0.03) 0.10 (0.02) 0.93 (0.01) 0.84 (0.04) 0.88 (0.02) 0.83 (0.05)
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Figure 9 depicts the result of the Felzenswalb method using images of different 
resolutions as input. The boundary of superpixels is highlighted in red and is overlaid 
on the image.

When a high-resolution image is used as input, the method could result in overly fine 
superpixels. For example, Figure 9(a) and (b) show the results of images of 5000 � 5000 
and 1000 � 1000, respectively, and each contains many small segmentations that split 
one crop field into small pieces. Hence, such overly fine superpixels are inappropriate for 
crop field classification. A low-resolution input (e.g. Figure 9(c) and (d)) gives plausible 

Figure 8. The histogram of superpixel scores. The red bars indicate the range used to choose the 
threshold for selecting superpixels.

(a)
5000 × 5000

(b)
1000 × 1000

(c)
500 × 500

(d)
400 × 400

Figure 9. Results of Felzenswalb on images of different resolutions. Each column shows a different 
case.
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results. The superpixels are mostly aligned with the boundary of the fields. However, as 
we reduce the resolution, staircase artifacts are visible and under segmentation appears 
more often.

In addition, we evaluate the impact of superpixels on classification accuracy. Table 2 
presents the average classification accuracy using superpixels generated from different 
resized images of sizes 400, 500, and 1000. It is clear that when we use superpixels 
generated from images of resolution 1000 � 1000, the accuracy dropped. The accuracy 
of using the size of 400 and 500 is very similar. The overall accuracy of each case is at 
93.3% with slightly better accuracy for contour levees at the resolution of 500. This is 
consistent with our observation of superpixel segmentation illustrated in Figure 9. 
Considering the overall accuracy and the focus of classifying contour levees, we resized 
images to 500� 500 to produce the superpixels in the rest of our experiments.

4.4. Performance analysis and comparison study

We compare our proposed Gradient CNN with a number of classical and state-of-the-art 
methods including Random Forest (Teluguntla et al. 2018; Xie et al. 2019), FCN-ATR-SKIP, 
FCN-M (Mohammadimanesh et al. 2019), Feature Pyramid Network and Swin-UNet (Cao et 
al. 2021). These methods serve as the baseline in our comparison. Among the compared 
methods, we also applied our method to the RGB image that is denoted as RGB-Network. 
In this implication, the only difference between our proposed method and the RGB- 
Network is the inputs. The RGB-Network takes the raw image of the three colour bands. 
The model relies on mostly the colour features instead of gradient features. Using images 
from Lonoke County, 16-fold cross-validation was conducted. Table 3 presents the aver
age performance of the compared methods. The numbers in the parentheses are the 
standard deviation. For each metrics, the best performance is highlighted with the bold
face, and the second-best is marked with an underscore. Large values of accuracy, 
precision, and recall indicate better performance, while a small value of BER is desired.

Among all the models of FCN-ATR-SKIP we trained, only two were successfully 
completed, the results of which are in the table for the comparisons. In terms of all 
metrics, our proposed Gradient CNN exhibited the best performance. Our method 

Table 2. Accuracy (%) with respect to the image down-scale size for gradient extraction.
Class Contour Levee Non-Contour Levee Overall

Size 400 500 1000 400 500 1000 400 500 1000
Accuracy 85.32 85.79 78.71 94.68 94.59 91.41 93.3 93.3 89.52
STD 11.11 10.45 10.19 4.48 4.14 5.32 2.56 2.62 2.83

Table 3. A performance comparison.
Model Accuracy BER Precision Recall F1-Score M-IoU

FCN-ATR-SKIP 0.74 (0.08) 0.26 (0.03) 0.71 (0.18) 0.58 (0.08) 0.62 (0.04) 0.55 (0.09)
Random Forest 0.76 (0.05) 0.24 (0.04) 0.48 (0.15) 0.74 (0.06) 0.57 (0.12) 0.56 (0.07)
FCN-M 0.79 (0.05) 0.23 (0.05) 0.51 (0.15) 0.73 (0.13) 0.59 (0.12) 0.58 (0.06)
Swin-UNet 0.80 (0.06) 0.30 (0.06) 0.57 (0.15) 0.50 (0.16) 0.52 (0.13) 0.56 (0.05)
RGB-Network 0.89 (0.05) 0.18 (0.04) 0.76 (0.12) 0.69 (0.10) 0.73 (0.12) 0.71 (0.07)
Feature Pyra. Net 0.91 (0.03) 0.14 (0.04) 0.77 (0.09) 0.79 (0.11) 0.78 (0.07) 0.76 (0.04)
Gradient CNN 0.93 (0.03) 0.10 (0.04) 0.83 (0.08) 0.85 (0.10) 0.85 (0.08) 0.82 (0.06)
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achieved a 3.08% improvement in terms of accuracy and a 28.57% error reduction 
in terms of BER compared to the second-best method. The high accuracy of our 
model for all classes is consistent with the low rate of BER. Moreover, an improve
ment of 7.7%, 7.5%, 8.9%, and 7.9% in terms of precision, recall, F1-score, and 
Mean-IoU, respectively, compared to the second-best confirms the superior perfor
mance of the Gradient CNN in classifying fields with contour levees. The standard 
deviation of our method is in the lower range, which demonstrates the consistency 
of the Gradient CNN.

We conducted a one-way ANOVA analysis of the results of our method and Feature 
Pyramid Network (the method exhibited the second-best performance). The test statistic 
is the F value of 8.97. Using an α of 0.05, we have F0:05 ¼ 4:171. Since the test statistic is 
much larger than the critical value, we reject the null hypothesis of equal population 
means of these two methods and conclude that there is a statistically significant differ
ence. The p-value for 8.97 is 0.005, so the test statistic is significant. Hence, the improve
ment by our method is statistically significant.

Figure 10 depicts the classification results of a sample image. Figure 10(a) shows the 
input image with the ground-truth superimposed as a semi-transparent layer. The crop 
fields with contour levees are in the green shade. Four fields are highlighted in coloured 
bounding polygons. A zoom-in view of the highlighted fields is shown in Figure 10(b). The 
fields with contour levees are depicted in green.

Figure 10(c) shows the result of our method, which is very close to the ground truth 
with two false-positive fields close to the right side of the image. The result of Feature 
Pyramid Network shown in Figure 10(d) also exhibits competitive performance. However, 
many false negatives exist in the resulted field classification. In addition, it failed to keep 

(a) Image & Ground Truth (b) Zoom-in view (c) Gradient CNN

(d) Feature Pyramid Network (e) RGB-Network (f) FCN-M

(g) FCN-ATR-SKIP (h) Swin-UNet (i) Random Forest

Figure 10. Classification results of the compared methods.
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the roads out of the classification, which heavily contributes to the false positives of its 
results. The network using RGB as inputs, as shown in Figure 10 (e), failed to detect several 
large crop fields with contour levees, e.g. the field in the red bounding box, and resulted 
in a sizable false negative as well. Despite the variations of classification performance 
among these three methods, they maintain the integrity of the crop fields. That is, the 
pixels within one crop field share the same class label. Our method demonstrates 
a meticulous classification of contour levees that retains the integrity of the croplands.

It is evident that the performance of FCN-M, FCN-ATR-SKIP, Swin-UNet, and Random 
Forest, as shown in Figure 10(f)-(i), is inferior to Gradient CNN. A more severe issue is the 
lack of field integrity. The predictions of these methods are mostly independent of the 
context. There are many fields that consist of pixels classified into contradicting classes.

Figure 10(a) highlighted four exemplar cases using coloured polygons and a zoom-in 
view of part of the fields is shown in Figure 10(b). The field enclosed by orange polygon 
contains no contour levees and the other three fields are representative ones with uneven 
large gaps (blue), inverted levee colour (yellow), and vague levees (red). Almost all 
methods correctly classified the field in orange. Both Swin-UNet and Random Forest, 
however, resulted in spotty misclassification in that field. The fields in red and blue are 
most confusing and only Gradient CNN and Feature Pyramid Network reached correct 
classification. Even if some pixels were correctly classified by the other methods, it is 
impossible to reach a correct label using majority voting. The classification of the field in 
yellow bounding polygon is mostly satisfactory by all methods. For FCN-M, FCN-ATR-SKIP, 
Swin-UNet, and Random Forest, most of the pixels in the field are labelled correctly.

Figure 11 depicts the classification results of a large region in Lonoke County using our 
Gradient CNN. The detected fields are superimposed to the original image. The fields 
without contour levees are coloured in a blue shade. This illustration consists of six tiles of 
the Lonoke County highlighted in blue in Figure 5. The classified crop fields with contour 
levees are intact with satisfactory accuracy.

4.5. Model generalization

One of the most important aspects of performance evaluation in the classification of 
contour levee is assessing the generalization of a model on sample images different from 
the training set. The dataset used in this study is collected from Lonoke County. The 
dataset used to train all the models covers only a small section of Lonoke County with 16 
tiles out of 138 tiles. In addition to Lonoke County, there are many other counties in 
Arkansas state in which the use of contour levees is common. To evaluate the general
ization ability of our proposed method in comparison with state-of-the-art ones, we 
extend our evaluation using image tiles from the other sample images of Lonoke 
County as well as sample images from Arkansas County and Woodruff County.

The additional image tiles of Lonoke County, as well as the image tiles of the other two 
counties: Woodruff and Arkansas, were not used in the K-fold cross-validation training. 
The land coverage in these two counties differs from that of Lonoke County. Six image 
tiles were randomly selected from each county. Figure 12 illustrates the average perfor
mance of our model and the state-of-the-art methods together with the standard devia
tion (the coloured bars show the average value of the corresponding metric and the error 
bars show the magnitude of the standard deviation).
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By comparing the results for Lonoke County with the results presented in Table 3, we 
see a highly similar trend for all performance metrics. Almost for all study areas, our 
proposed method remains mostly stable. The stable performance of our method can be 
attributed to the network structure and the employment of image gradients. The variation 
of image gradients is much less compared to that of the colour and texture features 
among image tiles from different counties. Hence, our method achieves a very competi
tive performance when it is evaluated with images of Woodruff and Arkansas Counties. It 
consistently exhibits the best performance in almost all cases.

However, when the models of the compared methods were applied to the image tiles 
of the other two counties, the performance varies. The performance of the Feature 
Pyramid Network degrades when it was applied to a different set of data. FCN-ATR-SKIP 
also exhibits an unstable performance with a slight drop of performance for samples of 
Woodruff County. Among all models, Random Forest shows the highest level of instability 
when it is applied to the additional samples of Lonoke, which is confirmed by the error 
bars in the sub-figure for Lonoke County.

4.6. Computational cost

Table 4 presents FLOPS (floating-point operations per second) and the number of para
meters of the compared methods. FLOPS of a specific model determines how costly and 
time-consuming it is for that model to produce the segmentation mask given an input 
image. Therefore, smaller values are desired. On the other hand, the number of para
meters helps to measure how much the complexity of a model is as well as a rough 

Figure 11. Illustration of segmentation results for six tiles of the Lonoke county. Fields without contour 
levees are colored in blue.
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estimation of the memory usage. Hence, smaller values indicate a simpler model with a 
lower level of memory consumption. The best performing method for each of the metrics 
is shown in boldface font and the second-best method is underlined.

FCN-ATR-SKIP exhibits the least FLOPS and number of parameters among all methods, 
whereas Swin-UNet has the greatest FLOPs due to the use of Multi-Layer Perceptron. 
Additionally, Feature Pyramid Network has the second-highest FLOPs and number, and 
the greatest number of parameters, this is partly because Feature Pyramid Network uses 
the ResNet50 backbone in the structure. Our proposed network is capable of producing 
the segmentation maps with 94.51% and 95.71% improvement in terms of FLOPs over 
Feature Pyramid Network and Swin-UNet, respectively. In our proposed model, we used 
62.61% parameters less than Feature Pyramid Network while keeping the FLOPs close to 
a lightweight model such as FCN-ATR-SKIP with only six layers. The accuracy and effi
ciency of Gradient CNN become an important feature as it helps to provide the raw 
segmentation maps for the post-processing faster and reduce the overall process time to 
obtain a refined segmentation.

Table 4. FLOPS and number of parameters of the compared 
methods.

Model FLOPS (Giga) # of Para. (Million)

Random Forest – –
FCN-ATR-SKIP 0.38 0.19
FCN-M 1.23 5.05
Swin-UNet 17.28 26.60
Feature Pyramid Net 13.49 28.65
Gradient CNN 0.74 10.71

Figure 12. Performance comparison using images from three counties: Lonoke, Woodruff, and 
Arkansas.
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5. Conclusion

Detection of fields with contour levee irrigation system is a key component in providing 
an opportunity to preserve the water resources and to prevent the change of water 
regime in agricultural areas. Differentiation of contour levee from other irrigation prac
tices is a challenging task due to the similarities in terms of texture and specific line 
features representing different practices. Given the importance of the line features and 
contextual information, we develop a region-based network to classify contour levees 
from other types of irrigation practices based on image gradients. We used a deep 
supervision mechanism to improve the quality of the predictions and to prevent gradient- 
vanishing. Having the boundaries of croplands generated by Felzenszwalb superpixel 
segmentation, we proposed a boundary-based majority voting to improve the quality of 
our results.

Our experimental results demonstrate that the proposed method achieved an overall 
3.08% of accuracy improvement and 28.57% BER error reduction rate, compared to 
the second-best method. More importantly, our method demonstrates superior perfor
mance in the classification of challenging cases such as croplands with a low level of levee 
visibility, varying space between levees, and fields with high contrast between levees and 
the background. Our results from data of Woodruff and Arkansas counties demonstrate the 
improved performance of our proposed method with a margin of 5.16%, 1.17%, and 0.02% 
for samples of Lonoke, Woodruff, and Arkansas counties, respectively. From the aspect of 
computational expense, Gradient CNN performs the classification with high accuracy while 
maintaining the computational complexities at a very low level, compared to methods such 
as Feature Pyramid Network. Integration of the post-processing module with the network is 
a potential point of improvement that we consider in our next work. This enables us to train 
the model in an end-to-end manner and reduce the time needed for majority voting.

In our experiments, we observe confusion among contour levees and some straight 
levees. The vague line features of the straight levees introduce false uneven spaces 
between levees. In our future work, we plan to integrate the metric of straightness to 
assist the differentiation of contour levees.
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