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A B S T R A C T

The rapid development of the aviation industry imposes an urgent need for airspace traffic management.
Meaningful clustering of flight tracks is of paramount importance for efficient operation and management
of increasingly complex aerial space and traffic. Two key components exist in track clustering: similarity
metric and clustering method. Most of the existing studies on track similarity metrics only consider the spatial
coordinates of the track points without taking into consideration of the rich information of the track data, such
as flight heading and flight speed, on the measurement of track similarity. In addition, temporal properties
and the derived features of the flight tracks shall be utilized to reveal the underlying patterns and overcome
distortions from noise. In this paper, we propose a track similarity based on the spatial–temporal characteristics
of flight tracks and a Deep Temporal Clustering method using a denoising autoencoder. Our proposed method
employs the Deep Temporal Denoising Auto-encoding network to extract the latent representations of the track
sequences. By extending the idea of 𝑘-means clustering, Deep Temporal Clustering groups the flight tracks with
a Time Clustering Layer. Experiments are conducted using Automatic Dependent Surveillance-Broadcast track
data. In comparison with classical and state-of-the-art methods, among all cases, our Deep Temporal Clustering
method achieved a much-improved performance of more than 57.3%. When we introduce noise to the track
records and increase its magnitude, the performance of our method degrades but the trend slows down as the
noise magnitude increases. The change is less than 7% and, in some cases, is close to zero, which demonstrates
the robustness of our method to noise.
1. Introduction

The aviation industry has been steadily advancing with many air-
lines and flights among cities worldwide, which imposes an urgent need
for airspace traffic management. With the increasing air traffic, the
flight trajectory data increases exponentially. The study of flight track
clustering is the premise and foundation of air traffic control, which
identifies the traffic patterns from flight track data and finds clusters
according to operational flows within an airspace (Oliver, Basora, Viry,
& Alligier, 2020). For sector planning, clustering is performed on the
historical tracks, which enables us to obtain sector boundaries. In
addition, fight clusters allow us to generate the average flight track,
which enables us to gain improvements in flight operations. In the
terminal area, the cluster analysis of flight trajectories helps decision-
making in airspace scheduling and management. Meaningful clustering
of flight tracks is of paramount importance for efficient operation and
management of increasingly complex aerial space and traffic.
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Track clustering can be achieved via analyzing track points, group-
ing sub-tracks, and evaluating the entire tracks. However, two key
components exist in these approaches: (1) a metric for measuring
the distance or similarity between flight tracks or points; and (2) an
algorithm to divide the tracks into groups. For computing the simi-
larity between track data, most existing methods rely on Euclidean
distance, Manhattan distance, Cosine Similarity, Dynamic Time Warp-
ing (DTW) distance, Longest Common Sub-Sequence (LCSS) distance,
etc. (Dahlbom & Niklasson, 2007; Lee, Han, & Li, 2008; Piciarelli,
Foresti, & Snidaro, 2005). With regard to clustering strategies, methods
such as 𝑘-means (Lloyd, 1982), Affinity Propagation (AP) (Liu, Liu, Jin,
Li, & Zheng, 2020), density (Pan, He, Wang, Xiong, & Peng, 2016) have
been employed. Note that flight track data consist of both spatial and
temporal information. Each track point includes information such as
the position of the flight and the points in a track form an ordered
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temporal sequence. The temporally and spatially uneven data points
introduce an interesting but challenging clustering problem. Most of
the existing studies on track similarity metrics only consider the spatial
coordinates of the track points without taking into consideration of the
rich information of the track data, such as flight heading and flight
speed, on the measurement of track similarity. In addition, temporal
properties and the derived features of the flight tracks shall be utilized
to reveal the underlying patterns and overcome distortions from noise.

In this paper, we propose a method for clustering flight tracks
based on the space–time relationship of the trajectory data. The main
contributions of this paper are as follows:

• We introduce a novel metric of track similarity based on the
spatial–temporal characteristics of flight tracks. The similarity
metric integrates the point-to-point distance, point-to-track dis-
tance, and ultimately track-to-track distance for characterizing
the resemblance of the flight tracks.

• We propose a deep trajectory clustering model, Deep Tempo-
ral Clustering (DTC), that leverages a denoising autoencoder to
extract the latent representation of the track sequences. By ex-
tending the idea of k-means clustering, the DTC model clusters the
flight tracks using a Time Clustering Layer (TCL). The proposed
network fuses the outputs of the autoencoder and the TCL for
improved track clustering.

The rest of the paper is organized as follows. Section 2 reviews the
elated work with respect to similarity metrics and the existing methods
or track clustering. Section 3 starts with a formal definition of the
roblem followed by a detailed description of our proposed method.
ection 4 presents our experimental results and a comparison study
ith the state-of-the-art methods. Section 5 concludes this paper with
summary.

. Related work

.1. Track similarity measurement

Clustering of flight trajectories is based on a track similarity met-
ic, which is challenging for clustering the flight trajectories with
ime-series track point sequences. The approaches to quantitatively
epresenting similarity are divided into two categories according to
hether using the distance to represent the similarity of two objects.

When the distance is used to measure the similarity between two
bjects, the smaller distance means the two objects are more similar.
urrent methods of calculating the distance between trajectories in-
lude Euclidean distance, Manhattan distance (Niedermeier & Sanders,
996), Hanming distance, Chebyshev distance, Mahalanobis distance,
tc. For example, Euclidean distance is a popular approach that simply
amples the trajectory to obtain a multi-dimensional feature vector of
rack points for further clustering algorithms.

Some approaches represent similarity between two object via kinds
f non-distance functions. Popular such methods include Cosine Sim-
larity (COS) (Zobel & Moffat, 1998), Pearson Correlation-based Simi-
arity (COR) (Golay et al., 1998), Dynamic Time Warping (DTW) (Li,
021), Longest Common Sub-Sequence (LCSS) (Gariel, Srivastava, &
eron, 2011), divergence, trajectory point or shape similarity, track pat-
ern similarity, multiple feature similarity, etc. (Dahlbom & Niklasson,
007; Lee et al., 2008; Piciarelli et al., 2005).

For trajectory point or shape similarity, Rehm (2010) proposed a
rack similarity metric based on track point comparison. Lv, Kang, Lu,
nd Xu (2021) used pairwise similarity and self-expression layer to
eigh the reconstruction loss to capture local structure information

or deep clustering. Yang, Tang, Chen, and Wang (2021) defined a
imilarity metric between two trajectories by considering the start-
ng time and the Euclidean distance between the closest track points
f each period of trajectories. Besse et al. proposed a shape-based
2

distance, the Symmetrized Segment-Path Distance (SSPD), which com-
pares trajectories as a whole to avoid incidental variation between
trajectories (Besse, Guillouet, Loubes, & Royer, 2016). Seal, Karlekar,
Krejcar, and Gonzalo-Martin (2020) proposed a divergence-based simi-
larity measure by using the idea of Jeffrey’s divergence. Zhang and Shi
(2021) proposed an improved trajectory similarity measure based on
SSPD.

For track pattern similarity, Cai, Lee, and Lee (2018) used the im-
proved Ordering Points To Identify the Clustering Structure (OPTICS)
algorithm to extract the common behavior pattern of trajectories with
additional contextual semantic annotations according to different ap-
plication scenarios. Liu and Guo (2020) proposed a semantic similarity
of trajectories to capture global relationships among trajectories based
on community detection from the perspective of the network.

For multiple feature similarity, Yu, Luo, Chen, and Chen (2019)
designed a new multi-feature trajectory similarity measure that uses
the characteristics of orientation, speed, shape, location, and continuity
of each trajectory for clustering. Varlamis et al. (2021) made use of
a similarity measure TraFos to compare multiple aspect trajectories
(MATs) across each aspect and then combined similarities into a single
measure.

Note that flight trajectory data have both spatial and temporal
characteristics since each track point indicates the position of the flight
and the points in a track are sequential in time. Most of the existing
research on track similarity metrics only considers the positions of track
points, while failing to accumulate the impacts of the positions and time
of tracks, flight heading, and flight speed, etc. on the measurement of
trajectory similarity.

2.2. Track clustering

There has been extensive research on clustering algorithms. Depend-
ing on the difference of clustering implementations, clustering algo-
rithms can be broadly divided into partition-based methods, density-
based methods, etc. Partition-based methods include 𝑘-means (Lloyd,
1982) and its variations, such as 𝑘-means++, bi-𝑘means, 𝑘-medoids (Kr-
ishnapuram, Joshi, & Yi, 1999), etc. Density-based methods (Campello,
Moulavi, & Sander, 2013; Ester, Kriegel, Sander, Xu, et al., 1996;
Pan et al., 2016) include Balanced Iterative Reducing and Clustering
using Hierarchies (BIRCH) (Zhang, Ramakrishnan, & Livny, 1996),
OPTICS (Ankerst, Breunig, Kriegel, & Sander, 1999), Density-Based
Spatial Clustering of Applications with Noise (DBSCAN) (Ester et al.,
1996), Hierarchical Density-Based Spatial Clustering of Applications
with Noise (HDBSCAN) (Campello et al., 2013), etc. Other clustering
algorithms include Affinity Propagation (AP) (Liu et al., 2020), Self
Organizing Maps (SOM) (Qu et al., 2021), spectral clustering, graph
clustering (Kang, Lu, Liang, Bai, & Xu, 2020; Lin, Kang, Zhang, & Tian,
2021), etc.

Some methods of track clustering are dedicated to flight track
clustering from the perspective of specific track characteristics. Olive
et al. proposed a specific clustering method to identify converging flows
in terminal areas (Olive & Morio, 2019). Oxenham et al. proposed
a skywave over-the-horizon radar track clustering method based on
hypothesis test (Oxenham, 2000). Zhong et al. proposed a clustering
algorithm on trajectory characteristic points to better analyze the TMA
system (Zhong, Liu, & Qi, 2021). Sun et al. proposed a clustering
method based on Minimum Bounding Rectangle and buffer similarity
to improve trajectories clustering and reduce computation time (Sun &
Wang, 2021).

Some research on track clustering improves classical clustering
methods to solve flight track clustering problems. Eckstein combined
Proper Orthogonal Decomposition (POD) with 𝑘-means to evaluate
the performance of individual flights in Terminal Control Area (TMA)
procedures (Eckstein, 2009). Rehm and Enriquez et al. conducted clus-
tering on the arrival procedures of different runways in the terminal

area of an airport based on spectral clustering (Enriquez, 2013; Rehm,
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2010). Murca et al. presented a framework based on DBSCAN and
other machine learning algorithms to identify and characterize air
traffic flow patterns in terminal area (Conde Rocha Murca et al., 2016;
Murça, Hansman, Li, & Ren, 2018). Yan et al. proposed a clustering
algorithm based on fitness proportionate sharing to map the problem
into a multimodal optimization problem (Yan et al., 2019). Gui et al.
presented a semantic-based trajectory clustering method for arrival
aircraft, which is based on 𝑘-means and DBSCAN (Gui, Zhang, & Peng,
2021). Devarakonda et al. introduced a clustering approach based on
hybrid optimization technique and 𝑘-means algorithm (Devarakonda,
Saidala, & Kamarajugadda, 2021). Wang et al. proposed a trajectory
clustering method based on HDBSCAN, which adaptively clusters tra-
jectories with their shape characteristics (Wang, Chen, Chen, & Mou,
2021).

3. Deep temporal clustering based on denoising autoencoder

Let 𝑇 denote a set of flight tracks:

𝑇 = {𝑇1, 𝑇2,… , 𝑇𝑁} (1)

where 𝑁 is the total number of tracks. A track 𝑇𝑖 consists of a number
of track points:

𝑇𝑖 = {𝑃𝑖1, 𝑃𝑖2,… , 𝑃𝑖𝐿} (2)

where 𝐿 is the number of track points. Each track point 𝑃𝑖𝑚 is a vector
of flight information including time, longitude, latitude, altitude, speed,
and heading angle as follows:

𝑃𝑖𝑚 = {𝑡𝑚, 𝑙𝑜𝑛𝑚, 𝑙𝑎𝑡𝑚, 𝑎𝑙𝑚, 𝑠𝑝𝑚, 𝑎𝑛𝑔𝑚}. (3)

The track clustering process divides all tracks in 𝑇 into disjoint
subsets {𝐶1, 𝐶2,… , 𝐶𝐾} according to a similarity metric. Our goal for
track clustering is to derive meaningful clusters that take into account
the spatial and temporal properties of the track records.

Our proposed Deep Temporal Clustering (DTC) method leverages a
trainable autoencoder network to map the input to a low-dimensional
representation of track point sequences, which is processed with a
Temporal Clustering Layer (TCL) to group tracks into clusters. The
TCL extends the idea of 𝑘-means by allowing soft membership to
generate clusters. The integration of TCL with an autoencoder allows an
end-to-end process for track clustering. To facilitate the evaluation of
similarity, we introduce a novel track similarity metric, namely Track
Similarity (TSim), that encodes the spatial–temporal characteristics of
flight tracks into a distance metric. Our DTC method incorporates TSim
into the deep temporal trajectory clustering model. Without loss of
generality, we adopt Deep Temporal Denoising Autoencoder (Huang &
Xu, 2021) in our description of our method. For clarity, the notations
used in this paper are listed in Table 1.

3.1. Track similarity metric

The track point’s longitude, latitude, and altitude are the indicators
of flight position in the airspace, while the difference of positions
between tracks reflects the spatial distance between tracks. The angle
reflects the flight movement direction and determines the next flight
position. Therefore, the difference of angles between the track points
is also an indicator of spatial distance between tracks. The speed
indicates how fast the flight position changes, which measures the track
similarity since the speed results in the difference in spatial distance
between tracks.

Our proposed TSim integrates the aforementioned track properties
and computes the similarity of two tracks 𝑇𝑖 and 𝑇𝑗 as follows:

TSim
(

𝑇𝑖, 𝑇𝑗
)

= 1
𝐿
∑

𝑑
(

𝑃𝑖𝑚, 𝑇𝑗
)

, (4)
3

𝐿 𝑚=1
Table 1
List of notations used in this paper.

Notation Definition

𝐴𝑖𝑚
𝑎 𝑎-th attribute of track points 𝑃𝑖𝑚

𝐴̄𝑎 Average of the 𝑎-th attribute of tracks
 Autoencoder
𝑎𝑛𝑔 Angle of a track point
𝐶 Track cluster
Con𝑖𝑚(⋅) Convolution output of a track point
𝑑
(

𝑃𝑖𝑚 , 𝑇𝑗
)

Distance between a track point 𝑃𝑖𝑚 to track 𝑇𝑗
𝑑
(

𝑃𝑖𝑚 , 𝑃𝑗𝑛
)

Distance between track points 𝑃𝑖𝑚 and 𝑃𝑗𝑛
ℎ Height of a track point
𝐿 Number of track points in each track
𝑙𝑎𝑡 Latitude of a track point
𝑙𝑜𝑛 Longitude of a track point
𝑀 Number of attributes of a track point
MP𝑖𝑚(⋅) Max pooling operation
𝑁 Number of tracks
𝑃𝑖𝑚 𝑚-th track point in a track
𝑃𝑖𝑚 Preprocessed 𝑚-th track point in track 𝑇𝑖
𝑃 ′
𝑖𝑚 Encoded and decoded track point

𝑝𝑖𝑘 Target probability distribution
𝑞𝑖𝑘 Probability of 𝑍𝑖 belongs to cluster 𝐶𝑘
𝑠𝑝𝑒 Speed of a track point 𝑃𝑖𝑚
𝑇 Set of flight tracks
𝑇𝑖 𝑖-th track in set 𝑇
𝑇̃ Preprocessed track data
𝑇̃ ′ Output of the deconvolution over 𝑍
𝑡 Time of a track point 𝑃𝑖𝑚
TSim

(

𝑇𝑖 , 𝑇𝑗
)

Track similarity between two tracks 𝑇𝑖 and 𝑇𝑗
𝜔𝑘 Center of 𝑘-th cluster
𝛾 Degree of freedom of 𝑡-distribution
𝑍 Set of encoded latent representations of flight tracks
𝑍𝑖 𝑖-th encoded latent representation of a track

where 𝐿 is the number of track points in 𝑇𝑖 and 𝑇𝑗 . Function 𝑑
(

𝑃𝑖𝑚, 𝑇𝑗
)

calculates the distance between a point 𝑃𝑖𝑚 in track 𝑇𝑖 to track 𝑇𝑗 , which
is the average distance between 𝑃𝑖𝑚 and every point in 𝑇𝑗 :

𝑑
(

𝑃𝑖𝑚, 𝑇𝑗
)

= 1
𝐿

𝐿
∑

𝑛=1
𝑑
(

𝑃𝑖𝑚, 𝑃𝑗𝑛
)

, (5)

where 𝑃𝑖𝑚 ∈ 𝑇𝑖 and 𝑃𝑗𝑛 ∈ 𝑇𝑗 .
To accommodate the different ranges of the track point properties,

we compute the point-wise distance 𝑑 using the normalized exponential
distance as follows:

𝑑
(

𝑃𝑖𝑚, 𝑃𝑗𝑛
)

= 1
𝑀

𝑀
∑

𝑎=1
𝑒
−

|

|

|

𝐴𝑖𝑚𝑎 −𝐴𝑗𝑛𝑎
|

|

|

𝐴̄𝑎 , (6)

where 𝐴𝑖𝑚
𝑎 and 𝐴𝑗𝑛

𝑎 are the 𝑎th attributes of track points 𝑃𝑖𝑚 and 𝑃𝑗𝑛,
respectively. 𝐴̄𝑎 is the average of the 𝑎th attribute of the tracks 𝑇𝑖 and
𝑇𝑗 and 𝑀 is the total number of attributes in one track point.

This track similarity metric takes the form of an exponential func-
tion with a negative first-order norm of the difference of the cor-
responding attributes of two track points. The negative exponential
function is a monotonically decreasing function and maps the differ-
ence in attributes to interval [0, 1]. This similarity metric gives a large
similarity value to track points that are close and a small value to track
points that are far apart.

3.2. Deep Spatial–Temporal Clustering Network

Our proposed Deep Spatial–Temporal Clustering Network consists
of two main components: an autoencoder network and a Temporal
Clustering Layer (TCL). Fig. 1 illustrates the flow chart of our network
including the data preprocessing step.

1. The autoencoder extracts features from the input track data
with suppressed distortions, which serves as the input for the
TCL component. The outputs of the encoder layers are used to

compute the difference between tracks.
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Fig. 1. Flow chart of our proposed Deep Spatial–Temporal Clustering method.
2. TCL takes the features from the encoder and groups the tracks
into clusters using our proposed TSim metric. The output of TCL
is integrated with the track difference from the autoencoder to
compute the final clusters.

In this figure, the illustration of autoencoder follows Deep Temporal
Denoising Autoencoder architecture, which can be replaced with a
different one. The objective function for the autoencoder is based
on Mean Square Error (MSE) and the objective function of the TCL
component is based on Kullback–Leibler (K–L) divergence. Our method
optimizes the clustering and autoencoder by minimizing the total loss
of K–L divergence and MSE. We first pretrain parameters of the au-
toencoder to obtain the latent representation. After pretraining, we
initialize the cluster centers by hierarchical clustering. We then update
the autoencoder weights and cluster centers using Adam optimizer.
This optimization process continues until no more than 0.1% of cluster
assignment is changed.

3.2.1. Feature encoding
In the data preprocessing step, we clean and prepare track data

for learning, which includes the operations of removal of duplicated
data, data selection, coordinate system conversion, and reconstruction
of track data, as shown in the preprocessing block of Fig. 1. The
autoencoder network takes the preprocessed data to extract the latent
representation of tracks. The output of the encoder is the latent repre-
sentation 𝑍 and the new track point 𝑃 ′

𝑖𝑚 after encoding and decoding.
As shown in Fig. 1, the DTDA network consists of four components:
convolution layers, max-pooling layers, bi-directional LSTM networks,
and decoder. The convolution layers, max-pooling layers, bi-directional
LSTM networks form the encoder of the network and the decoder
upsamples the inputs and performs deconvolution.

Convolutional and Max Pooling Layers: One-dimensional convolu-
tion operation is performed via Eq. (7) on each track point 𝑃𝑖𝑚 =
{𝑡𝑖𝑚, ̃𝑙𝑜𝑛𝑖𝑚, ̃𝑙𝑎𝑡𝑖𝑚, 𝑎𝑙𝑖𝑚, 𝑠𝑝𝑖𝑚, ̃𝑎𝑛𝑔𝑖𝑚} which is the preprocessed track data.
We use full convolution in the convolutional layer. One-dimensional
convolution kernel mapping can capture the latent characteristics of
short-distance fluctuation between track sequences. We then perform
max pooling operation with kernel size 𝑟 to reduce dimensions with
Eq. (8). The activation function is Leaky ReLU. After all the operations
above, the track sequence data are compressed into a compact vector,
while keeping the structured information between sequences.

𝐶𝑜𝑛𝑖𝑚 (𝑥) =
𝜅−1
∑

𝑗=0
𝑔(𝜅 − 𝑗)𝐴̃𝑖𝑚

𝑥−𝑗 (7)

where 𝜅 is the kernel size of one-dimensional convolution layer and
𝑔(𝜅 − 𝑗) is the (𝜅 − 𝑗)-th one-dimensional convolution kernel. 𝐶𝑜𝑛𝑖𝑚
is the output sequence of 𝑚th point in track 𝑇̃ after one-dimensional
4

𝑖

convolution, where 𝐶𝑜𝑛𝑖𝑚 (𝑥) is the 𝑥th one-dimensional convolution
output of track point 𝑃𝑖𝑚 (𝑥 ∈ {1, 2,… ,𝑀 +𝐾 − 1}).

𝑀𝑃𝑖𝑚 (𝑦) = max {𝐶𝑜𝑛𝑖𝑚(1 + (𝑦 − 1) × 𝑠𝑡𝑟𝑖𝑑𝑒), 𝐶𝑜𝑛𝑖𝑚(2 + (𝑦 − 1) × 𝑠𝑡𝑟𝑖𝑑𝑒),

… , 𝐶𝑜𝑛𝑖𝑚(𝑟 + (𝑦 − 1) × 𝑠𝑡𝑟𝑖𝑑𝑒)} (8)

where 𝑟 is the size of pooling kernel, and 𝑠𝑡𝑟𝑖𝑑𝑒 is the pooling step
size. 𝑀𝑃𝑖𝑚 is the output sequence of 𝑚th track point in track 𝑇̃𝑖
after one-dimensional max pooling, where 𝑀𝑃𝑖𝑚 (𝑦) is the 𝑦th one-
dimensional max pooling output value of track point 𝑃𝑖𝑚 (𝑦 ∈ {1, 2,… ,
⌊

𝑙𝑒𝑛𝑔𝑡ℎ[𝐶𝑜𝑛𝑖𝑚(𝑥)]−𝑟
𝑠𝑡𝑟𝑖𝑑𝑒 ⌋ + 1}).

Bi-directional LSTM Network: The output of max-pooling is fed into a
bi-directional LSTM network (Cai, Liu, Wei, Li, & Kan, 2021), as shown
in Fig. 2. The BiLSTM network can learn the characteristics of track
sequences from two directions and compress the input sequence into a
more compact representation. BiLSTM is a combination of a forward
LSTM and a backward LSTM. The calculation process of LSTM is
summarized as follows: useful information is transmitted for subsequent
calculations by forgetting and remembering new information in the cell
state, meanwhile useless information is discarded. The hidden layer
representation 𝑍 is the required output. Convolutional layers, max-
pooling layers, and bi-directional LSTM network complete the encoding
process and get the latent representation 𝑍 of flight tracks.

Decoder: The encoded latent representation 𝑍 is converted to a track
𝑇̃ ′, which is of the same size as the input track 𝑇̃ . An up-sampling
operation is applied to 𝑍 that changes its size from 𝑁 × 𝐿∕stride ×
numunits to 𝑁 × 𝐿 × numunits, where 𝑁 , 𝐿, stride, and numunits are the
number of tracks, the number of track points, the pooling step size,
and the number of units in the BiLSTM components, respectively. A
deconvolution with up-sampling is then performed to reconstruct the
track 𝑇̃ ′. The size of tracks 𝑇̃ and 𝑇̃ ′ is the same and is of 𝑁 × 𝐿 ×𝑀 ,
where 𝑀 is the number of attributes of a track point.

Loss Function: We use Mean Squared Error (MSE) to measure the
difference between reconstructed output track 𝑇̃ ′ and input track 𝑇̃
after data preprocessing:

1
𝐿

𝐿
∑

𝑚=1

(

𝑃𝑖𝑚 − 𝑃 ′
𝑖𝑚
)2 ∀𝑖 ∈ [1, 𝑁] (9)

where 𝑃 ′
𝑖𝑚 and 𝑃𝑖𝑚 are points of tracks 𝑇̃ ′ and 𝑇̃ , respectively.

3.2.2. Temporal clustering layer
Our temporal clustering layer takes the latent representation 𝑍𝑖

generated by the encoder as the input and employs a soft 𝑘-means
algorithm to generate the clustering results. The network structure of
TCL is illustrated in Fig. 3. Given 𝑘 cluster centers, denoted with 𝜔𝑘,
similarity of each latent representation 𝑍 to 𝜔 is computed following
𝑖 𝑘
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Fig. 2. Structure of BiLSTM.
Fig. 3. Structure of the temporal clustering layer.
Eq. (6). A distribution kernel function is applied to modulate the
distance for computing the probability of cluster association.

We adopt Student’s 𝑡-distribution (Maaten & Hinton, 2008) to modu-
late the distance, which results in a probability (i.e., a soft membership)
to clusters instead of the hard membership in the conventional 𝑘-means.
The computation of the membership probability is as follows:

𝑞𝑖𝑘 =

(

1 + 𝑆𝑖𝑚(𝑍𝑖 ,𝜔𝑘)
𝛾

)− 𝛾+1
2

∑𝐾
𝑘=1

(

1 + 𝑆𝑖𝑚(𝑍𝑖 ,𝜔𝑘)
𝛾

)− 𝛾+1
2

(10)

where 𝑞𝑖𝑘 is the probability of 𝑍𝑖 belonging to cluster 𝐶𝑘 with center
𝜔𝑘, and 𝛾 is the degree of freedom of 𝑡-distribution. When the degree of
freedom is small, the distribution function has heavy tails in compari-
son to the widely used normal distribution. This property diversifies the
member probability to allow the association of a track to more than one
cluster. In our experiments, the degree of freedom is set to one.

We calculate the loss of clustering using K–L divergence, which is
an asymmetric measurement of the difference between two probability
distributions. We obtain the target distribution 𝑝 from distribution
𝑞 following the method in Hinton, Osindero, and Teh (2006), Xie,
Girshick, and Farhadi (2016).

𝑝𝑖𝑘 =
𝑞2𝑖𝑘∕𝑓𝑘

∑𝐾
𝑘=1 𝑞

2
𝑖𝑘∕𝑓𝑘

(11)

where 𝑓𝑘 =
∑𝑁

𝑖=1 𝑞𝑖𝑘.
The loss of clustering is calculated as follows:

𝑁
∑

𝑖=1

𝐾
∑

𝑘=1
𝑝𝑖𝑘𝑙𝑜𝑔

𝑝𝑖𝑘
𝑞𝑖𝑘

(12)

where 𝑁 is the total number of tracks, and 𝐾 is the number of clusters.
Algorithm 1 presents our Deep Spatial–Temporal Clustering Net-

work. Note that the loop is used to perform the joint optimization
process in the flow chart of Fig. 1. The convergence evaluation is based
on changes to the clusters between iterations. In our experiments, the
threshold of changes to the clusters is 0.1%.
5

Algorithm 1 Deep Spatial–Temporal Clustering Network
Require: Track data, Number of clusters
Ensure: Track clusters 𝐶
1: Initialize the autoencoder 
2: Initialize clusters 𝐶

3: Pretrain  using MSE loss Eq. (9)
4: while not converged or not reaching the maximum epoches do
5: Compute the latent representation 𝑍 using the encoder of 
6: Generate 𝐶 given 𝑍 following Eq. (4)
7: Compute K–L divergence of 𝐶 following Eq. (12)
8: Compute loss of  following Eq. (9)
9: Update  following Adam optimizer

10: end while

4. Experimental results

4.1. Datasets and experimental settings

In our experiments, we use aircraft Automatic Dependent
Surveillance-Broadcast (ADS-B) data made available by VariFlight to
evaluate our proposed method and conduct a comparison study. ADS-B
is a surveillance technology used by aircraft to determine its position
and periodically broadcast it such that the ground control can track
the aircraft’s status. The system acquires the flight information at
a fine temporal scale that includes flight position, speed, heading,
airline, and flight numbers. The track data of a flight is a sequence
of records. Table 2 presents a section of one flight track used in our
experiments. Among the available track properties, UTC time, airline
number (anum), and flight number (fnum) of the flight data are not
used in the clustering process.

To evaluate our proposed method, we collected 800 flight tracks of
16 flights of Shanghai Hongqiao International Airport from VariFlight.
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Table 2
Sample of flight track data. Columns anum and fnum are airline number and flight number respectively, which are not used in the similarity computation.

Time UTC Time anum fnum Altitude Speed Angle Longitude Latitude

1625107644 2021-07-01 02:47:24 B8562 MU6347 0.0 107.416 177 121.330138 31.212891
1625107679 2021-07-01 02:47:59 B8562 MU6347 152.4 318.544 177 121.330138 31.212891
1625107690 2021-07-01 02:48:10 B8562 MU6347 259.08 311.136 176 121.33306 31.18776
1625107693 2021-07-01 02:48:13 B8562 MU6347 350.52 311.136 176 121.33306 31.18776
1625107700 2021-07-01 02:48:20 B8562 MU6347 396.24 311.136 176 121.33306 31.18776
1625107704 2021-07-01 02:48:24 B8562 MU6347 480.06 311.136 176 121.33306 31.18776
1625107715 2021-07-01 02:48:35 B8562 MU6347 579.12 311.136 176 121.33446 31.16006
1625107719 2021-07-01 02:48:39 B8562 MU6347 624.84 311.136 176 121.33446 31.16006
1625107735 2021-07-01 02:48:55 B8562 MU6347 739.14 320.396 178 121.33457 31.15443
1625107738 2021-07-01 02:48:58 B8562 MU6347 754.38 320.396 178 121.33493 31.14429
Fig. 4. Sample tracks of the 16 flights. To avoid clutter, one track per flight is depicted.

Each of the 16 flights has 50 tracks and each track consists of 100
records (a.k.a. points). Among the 16 flights, eight are in-bounding
and eight are out-bounding flights. These flight tracks represent the
flight status near the terminal area of the airport. That is, for the in-
bounding flights, 100 track points at the end of the entire track near
the airport are used in our experiments. For the out-bounding flights,
the first 100 points close to the start of the flight tracks are used. The
track segments include a few records of taxiing before take-off or after
landing and most of the records of ground maneuver are excluded from
our samples. Fig. 4 illustrates sample flight tracks of our experiment
dataset. Points on flight tracks are spatially uneven due to the flight
speed and sampling process. The tracks of take-off flights are often
spatially sparse point distribution and gradually wider track coverage,
while the landing flights illustrate the opposite characteristics.

In our evaluation, we repeat each experiment fifteen times and re-
port the average results. We adopt the Silhouette Coefficient, Calinski–
Harabase index, and Davies–Bouldin (DB) index as metrics of clustering
performance. Silhouette coefficient combines cohesion and dispersion as
a measurement of clustering performance and is computed as follows:

𝑆𝐶(𝑖) =
𝑑𝑖𝑠(𝑖) − 𝑐𝑜ℎ (𝑖)

𝑚𝑎𝑥{𝑐𝑜ℎ (𝑖) , 𝑑𝑖𝑠(𝑖)}
(13)

where 𝑐𝑜ℎ (𝑖) is the average distance between track 𝑇𝑖 and other tracks
within the same cluster, indicating intra-cluster similarity of track 𝑇𝑖.
𝑑𝑖𝑠(𝑖) is the minimum value of the average distance between track
𝑇𝑖 and all tracks in other clusters, which computes the inter-cluster
dissimilarity of 𝑇𝑖. The range of the Silhouette coefficient is [−1, 1] and a
large Silhouette coefficient (close to 1) indicates track 𝑇𝑖 is highly likely
to be clustered to the right group; whereas a small Silhouette coefficient
(close to −1) indicates that track 𝑇 is inappropriately clustered.
6

𝑖

Calinski–Harbasz index evaluates the variance between clusters and
within the cluster as a measurement of clustering performance. It is
computed as follows:

𝐶𝐻 =
𝑆𝑆𝐵
𝐾 − 1

∕
𝑆𝑆𝑊
𝑁 −𝐾

(14)

where 𝑆𝑆𝐵 is the variance between clusters, and 𝑆𝑆𝑊 is the variance
within clusters. The Calinski–Harabase index is the ratio of the degree
of separation and compactness. The compactness of the cluster is
calculated as the sum of the square distance between every point in a
cluster and the center of this cluster. The degree of separation between
datasets is calculated with the sum of the square distance between the
cluster centers and the center of the whole dataset. Therefore, a large
Calinski–Harabase index indicates better clustering performance.

Davies–Bouldin index combines inter-cluster distance and
intra-cluster dispersion to determine the performance of the clustering
algorithm, which is computed as follows:

𝐷𝐵 = 1
𝐾

𝐾
∑

𝑘=1
𝑚𝑎𝑥

𝑘′=1,…,𝐾,𝑘′≠𝑘

(

𝜎𝑘 + 𝜎𝑘′
𝑑𝑘𝑘′

)

(15)

where 𝜎𝑘 is the intra-cluster dispersion of 𝑘th cluster, and 𝑑𝑘𝑘′ is the
inter-cluster distance between 𝑘th and 𝑘′-th clusters. A small Davies–
Bouldin index means a favorable clustering performance.

4.2. Analysis of track similarity and model parameters

Similarity metrics play an important role in clustering methods.
In our analysis of flight tracks, our proposed similarity metric TSim
integrates spatial and temporal properties to assist clustering. To un-
derstand its impact on clustering results, we conduct a comparison
study again Manhattan Distance, Pearson Correlation, and Jeffrey’s
divergence (Zhang & Shi, 2021). In our experiments, we replace TSim
of our method with each of these metrics and conduct clustering of 800
flight tracks. The average clustering performance is reported in Table 3
and the numbers in parenthesis are respective standard deviation. The
best results are highlighted in bold and the second best is marked with
an underscore.

Among all three performance metrics, TSim excels in terms of the
Silhouette coefficient and Davies–Bouldin index and ranks the second
best in terms of the Calinski–Harabase index. TSim also exhibits highly
competitive consistency with a small standard deviation in all cases.
Due to the increase of the speed, the track of taking-off flights shows
the characteristic of the track points from dense to sparse, and the
track coverage is wider. On the other hand, the track of landing
flights shows the opposite characteristics. TSim explores the temporal
characteristics to facilitate clustering flights. Consequently, we observe
an improvement of clustering results using TSim over other similarity
metrics. In comparison to Manhattan distance that performed well, the
improvements in terms of the Silhouette coefficient and Davies–Bouldin
index are 14.3% and 14.7%, respectively.

Manhattan distance measures the track similarity according to space
distances between tracks. Jeffrey’s divergence is the symmetric ver-
sion of the K–L divergence, and also reflects the spatial similarity
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Table 3
Clustering performance of using different track similarity metrics. The standard deviation is in parenthesis.

Similarity metric Silhouette coefficient Calinski–Harabase index Davies–Bouldin index

Manhattan Distance 0.49 (0.02) 1652.64 (141.20) 0.78 (0.03)
Pearson Correlation 0.20 (0.03) 2083.19 (306.25) 2.57 (1.10)
Jeffrey’s Divergence 0.47 (0.04) 1473.74 (200.63) 0.88 (0.09)
TSim (our) 0.57 (0.03) 1655.22 (133.44) 0.67 (0.08)
Table 4
Clustering performance using different convolution kernel sizes 𝑟.
𝑟 Silhouette coefficient Calinski–Harabase index Davies–Bouldin index

2 0.34 (0.07) 540.64 (198.27) 1.09 (0.16)
3 0.57 (0.03) 1655.22 (133.44) 0.67 (0.08)
4 0.44 (0.12) 839.06 (446.97) 0.88 (0.22)
5 0.31 (0.11) 541.58 (240.83) 1.42 (0.63)
6 0.37 (0.17) 870.38 (799.61) 1.31 (0.55)
between flights. In the space close to the airport, the flight tracks
are regulated by ground air traffic control. Therefore, both Manhattan
distance and Jeffrey’s divergence achieved good performance in terms
of the Silhouette coefficient and Davies–Bouldin index. However, the
uneven spatial distance among track points makes it difficult for the
two metrics to capture the temporal differences. Pearson correlation
measures the cooccurrence of patterns among random variables, which
is less dependent on the magnitude of the track properties. It resulted
in the largest Calinski–Harabase index among all metrics but performed
poorly in terms of the Silhouette coefficient and Davies–Bouldin index.
TSim ranks the second best for the Calinski–Harabase index metric.

A key parameter of our proposed method is the size of the convolu-
tion kernels. Our DTC method has 50 convolution kernels and the pool-
ing size is two to make the size of latent representation less than 100
for the sake of computational efficiency. The size of the deconvolution
kernels of the decoder is the same as that of the convolution kernels.
To understand the impact of kernel size of the one-dimensional convo-
lutional layer on the performance of DTC, we conducted experiments
using different kernel sizes ranging from 2 to 6.

Table 4 presents the average clustering performance of our DTC
method using different kernel sizes. Again, the standard deviation
is in parentheses. The best results are highlighted in bold and the
second best is marked with an underscore. There is no clear trend of
performance change with respect to the kernel size. In general, better
performance is achieved when the kernel size is about 3 and 4. How-
ever, size three stands out with a much consistently better performance
in terms of both average performance and standard deviation. With
respect to the three metrics, it demonstrates superior results to the
others by at least 27% in comparison to the second best. Hence, in
the rest of our experiments, we set the kernel size to three in both
convolution and deconvolution processes for our DTC method.

4.3. Comparison study

We compare the performance of our proposed DTC method against
the classical and state-of-the-art methods including 𝑘-means,
-medoids, Relation-Guided Representation Learning (RGRL) (Kang
t al., 2020) and a variant of RGRL by integrating our TCL component.
he similarity metrics used in 𝑘-means and 𝑘-medoids is TSim. Table 5

reports the average performance, together with standard deviations, of
the six compared clustering methods.

All methods exhibit a positive average Silhouette coefficient, which
indicates plausible clustering results. 𝑘-means and 𝑘-medoids differ in
the ways of computing clustering centers. 𝑘-means updates the centers
by the average of tracks, whereas 𝑘-medoids updates a center by select-
ing the track closest to the previous center. The better performance by
𝑘-means clustering in contrast to 𝑘-medoids can probably be attributed
to the property of the datasets, that is, dense flight tracks near the
airport terminal area. The interpretation of the performance of RGRL
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is arguable. It exhibits inferior performance in terms of the Silhouette
coefficient and Davies–Bouldin index but results in much better perfor-
mance (an improvement of 41.9%) in terms of the Calinski–Harabase
index. In comparison to 𝑘-means, 𝑘-medoids, and RGRL method, DTC
achieves the largest Silhouette coefficient, that is, it improves the
performance by more than 62% in comparison to the second best.
The performance improvements are also significant when the Calinski–
Harabase index and Davies–Bouldin index are used as metrics with an
improvement of 95.6% and 57.3%, respectively.

RGRL leverages sample relations to guide the representation learn-
ing to preserve the local neighborhood structure on the data manifold
and maintains its consistency in both input and embedding spaces. We
conduct experiments by integrating our TCL component with the latent
representation extracted by RGRL. The row of RGRL+TCL in Table 5
presents the results of integration. In contrast to the RGRL method,
the integration of RGRL and TCL suffers performance degradation. This
suggests that the choice of feature embedding strategy is critical for our
method. The Deep Temporal Denoising AutoEncoder provides suitable
latent representations of the flight tracks for clustering.

In our evaluation, we want to understand how the temporal com-
ponents affect the clustering performance of our method. We conduct
experiments by removing the time property from our track records and
repeating the experiments using the exact same parameters of our DTC
method. That is, we eliminate the influence of temporal characteristics
to track clustering. The row of DTC (w/o time) in Table 5 presents our
results. It is clear that the average performance of DTC degrades when
temporal data are absent. The amount of degradation is substantial
in terms of the Silhouette coefficient and Calinski–Harabase index at
24.6% and 37.7%, respectively.

4.4. Robustness to noise

We also analyze the performance of our method in the presence of
noise distortion. Noise is added to each component of the track record
and follows Gaussian distribution with zero mean and a variance in
the range of [0.1, 0.5]. Table 6 lists the average performance of our
proposed DTC method. In the first row where the noise variance is
zero, the results are produced by processing the original track records
without additive noise. There is a clear trend that as we increase
noise variance, the performance of DTC reduces. Both the Silhouette
coefficient and Calinski–Harabase index reduce and the Davies–Bouldin
index increases without an exception. When we look at the performance
between two adjacent noise variances, we observe a relatively large
drop of performance between no noise and noise with a variance of
0.1. The change is more than 10%. As noise continues increasing, the
performance degradation slows down. The change is less than 7% and,
in some cases, is close to zero. This demonstrates the robustness of our
method with respect to noise.

In contrast to the clustering performance by the state-of-the-art

methods reported in Table 5, the performance of DTC is still very
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Table 5
Clustering performance of classical and state-of-the-art methods.

Method Silhouette coefficient Calinski–Harabase index Davies–Bouldin index

𝑘-means 0.35 (0.03) 596.61 (37.29) 1.57 (0.09)
𝑘-medoids 0.26 (0.09) 446.79 (26.28) 2.19 (0.35)
RGRL 0.30 (0.00) 846.75 (5.46) 3.57 (0.57)
RGRL+TCL 0.21 (0.00) 453.49 (8.98) 27.16 (10.08)
DTC (w/o time) 0.43 (0.17) 1031.16 (793.71) 0.70 (0.13)
DTC 0.57 (0.03) 1655.22 (133.44) 0.67 (0.08)
Table 6
Clustering performance of DTC under Gaussian noise of different degrees.

Variance Silhouette coefficient Calinski–Harabase index Davies–Bouldin index

0 0.56 1667.78 0.68
0.1 0.50 1045.84 0.85
0.2 0.48 991.45 0.90
0.3 0.46 835.69 0.93
0.4 0.45 834.34 0.95
0.5 0.42 774.06 0.95
E

E

competitive even under noise distortion. When there is no noise, the
methods that achieve the second best performance are 𝑘-means (in
terms of Silhouette coefficient at 0.35), RGRL (in terms of Calinski–
Harabase index at 843.32), and 𝑘-means (in terms of Davies–Bouldin
index at 1.57). Our proposed method achieves favorable performance
even under the impact of noise with as much as 0.4 in variance. It
confirms that our method is reasonably robust to noise.

5. Conclusion

This paper introduces a track similarity based on the spatial–
temporal characteristics of flight tracks and presents a Deep Tempo-
ral Clustering method using a denoising autoencoder. Our proposed
method employs the Deep Temporal Denoising Auto-encoding network
to extract the latent representations of the track sequences. By extend-
ing the idea of 𝑘-means clustering, DTC clusters the flight tracks with
a Time Clustering Layer.

Experiments are conducted using ADS-B track data. We analyze
the effectiveness of the proposed track similarity metric TSim in the
framework of our proposed method and compared it against Man-
hattan distance, Pearson correlation, and Jeffrey’s divergence. It is
demonstrated that TSim excels in terms of the Silhouette coefficient
and Davies–Bouldin and exhibits highly competitive consistency with
a small standard deviation. In the evaluation of the clustering per-
formance, our comparison study includes classical methods as well
as state-of-the-art methods. Among all cases, DTC achieved much-
improved performance in terms of three metrics by more than 57.3%
in contrast to the second best. By removing the temporal component,
we observe clear degradation of the clustering performance. When we
introduce noise to the track records, the performance of our method
drops. However, as the noise continues increasing, the performance
degradation slows down. The change is less than 7% and, in some cases,
is close to zero, which demonstrates the robustness of our method with
respect to noise. It is worth mentioning that the performance of DTC
when processing tracks with the noise of variance at 0.4 is superior to
the compared methods that cluster tracks without noise distortion.
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