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Abstract

Background: The study of protein complexes and protein functional modules has become an important method to
further understand the mechanism and organization of life activities. The clustering algorithms used to analyze the
information contained in protein-protein interaction network are effective ways to explore the characteristics of
protein functional modules.

Results: This paper conducts an intensive study on the problems of low recognition efficiency and noise in the
overlapping structure of protein functional modules, based on topological characteristics of PPI network. Developing
a protein function module recognition method ECTG based on Topological Features and Gene expression data for
Protein Complex Identification.

Conclusions: The algorithm can effectively remove the noise data reflected by calculating the topological structure
characteristic values in the PPI network through the similarity of gene expression patterns, and also properly use the
information hidden in the gene expression data. The experimental results show that the ECTG algorithm can detect
protein functional modules better.
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Background
More and more clustering algorithms are proposed to
identify protein complexes with the constantly develop-
ment of proteomics. Although many of those algorithms
have been verified to have good performance [1–4], min-
ing the complex only through the protein network itself
will inevitably limit the effectiveness of its results, because
the available protein data is incomplete due to the diver-
sity of protein network structures and the complexity of
data sources, and there is a certain amount of noise in
protein networks. Therefore, other biological data such as

*Correspondence: glc@ahau.edu.cn
†Wenjun Xu and Zihao Zhao contributed equally to this work.
1School of Computer and Information, Anhui Agricultural University, 230036
Hefei, Anhui, China
Full list of author information is available at the end of the article

fusion of gene expression provide new ideas for detect-
ing protein functional modules [5, 6]. For example, Chin
et al. [7] proposed method HUNTER to detect func-
tional modules, this method firstly calculates the similar-
ity value of high-throughput data (for example, calculat-
ing pairwise similarity of gene expression patterns from
microarray data), then, detecting weak signals that can-
not be distinguished with existing methods by using the
network of genes or proteins and the similarity values
between them and by applying network topological con-
straints to the expression data clusters, finding connected
sub-networks (or modules) with highly similarity, which
improves the effectiveness of compound identification.
Although there are many ways to analyze the network and
similar data separately [8–11], there is still a lot of room
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for development in the method of using two information
sources for analysis.
We find that topological structure and attribute infor-

mation are very effective in identifying protein complexes
by analyzing the existing mainstream PPI network meth-
ods for identifying protein functional modules [12, 13],
even though there are not much approaches take both
information into consideration. Moreover, many algo-
rithms for detecting protein functional modules use some
special optimized attributes to find clusters, obviously,
the process of detecting protein functional modules can
be regarded as an optimization problem [14, 15]. There-
fore, this paper proposes a new protein complex recogni-
tion algorithm. ECTG(Evolutionary Clustering Algorithm
Based on Topological Features and Gene expression data
for Protein Complex Identification). This method is based
on evolutionary algorithm (EA), which effectively fuses
protein topology and gene expression data. It has an
advantage of dispensing with working under linear con-
straints like a typical numerical optimization problem. It
can also find multiple solutions and be executed in par-
allel, so it can solve big data source problem quickly and
efficiently. In order to verify the performance of ECTG,
we conducted experiments on three real PPI network data
sets [16–18]: DIP, Krogan, and Gavin. The used com-
pound standard set was the CYC2008 data set. The exper-
imental results show that the algorithm proposed in this
paper has more obvious advantages in multiple indicators.

Methods
Similarity measure of gene expression patterns
Calculating the similarity between gene expression pat-
terns (co-expression degree) by using gene expression data
has an important guiding function in understanding the
relationship between the corresponding proteins of the
gene, and can help to identify whether different proteins
have same or similar functions and whether they can be
composed as protein complexes or functional modules. At
present, there are multiple similarity measurement meth-
ods for different data types. Methods such as Euclidean
distance, Cosine similarity and Pearson correlation coef-
ficient are usually used to calculate the similarity of gene
expression patterns.

(1) Euclidean distance
Euclidean distance is often used to measure the similarity
of a pair of gene expression data, that is, a n-dimensional
vector. If given the genes u and v, the Euclidean distance
between u and v is shown in formula 1:

deuc(u, v) =
⎛
⎝

n∑
j=1

(uj − vj)2
⎞
⎠

1/2

(1)

In above formula, uj and vj are the expression components
of gene u and gene v in dimension j.
But Euclidean distance is not suitable for calculating

similarity between gene expression patterns with differ-
ent dimensions. Therefore, it must be standardized to
meet the requirements as mean equal zero and variance
equal one when using Euclidean distance to measure the
similarity of gene expression data.

(2) Cosine similarity, formula 2 as follow:

cos(θ) = A · B
‖A‖ ‖B‖ =

∑n
i=1 Ai × Bi√∑n

i=1 (Ai)
2 ×

√∑n
i=1 (Bi)

2
(2)

The larger the cosine value, the greater the similarity
of gene expression patterns. When the cosine similar-
ity is one, the gene expression patterns are completely
consistent.

(3) Pearson correlation coefficient:
PCC is also an extensive used method for calculating the
similarity of gene expression data. Given a gene u and a
gene v, the calculation formula of the Pearson correlation
coefficient between the two genes is shown in formula 3:

rpea(u, v) =

n∑
j=1

(uj − u)(vj − v)
√

n∑
j=1

(uj − u)2
√

n∑
j=1

(vj − v)2
(3)

In above formula, the definition of u and v are as follow:

u = 1
n

n∑
j=1

uj, v = 1
n

n∑
j=1

vj

Since the Pearson correlation coefficient is sensitive to
outlier data, false positive data is likely occur in the results,
giving higher similarity values to dissimilar gene pairs,
which will cause errors in the results. To avoid that, this
paper measures the similarity of gene pairs by calculat-
ing the Jackknife correlation coefficient. Given n gene
expression data samples under different conditions, the
expression value of gene u under condition j is expressed
as uj, given gene u and gene v, the Jackknife correlation
coefficient GEC between the two genes can be obtained
by the following formula 4:

GEC(u, v) = min{rpea(u(j), v(j)) : j = 1, 2, ..., n} (4)

In the above formula, rpea(·, ·) is defined in formula 3, the
definition of u(j) and v(j) :

u(j) = (u1, ...,uj−1,uj+1, ...,un)T ,

v(j) = (v1, ..., vj−1, vj+1, ..., vn)T

In above formula, j = 1, 2, . . . , n.
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Network reconstruction
Wang X [19] proposed the small world and scale-free
network characteristics of complex networks such as PPI
networks. Goldberg D S [20] et al. proposed the con-
cept of edge-based mutual clustering coefficient based on
the small world network characteristics of the PPI net-
work to quantify the network structure. After calculating
the MCC values of all edges in the network, setting a
threshold and selecting a reliable structure which above
the set threshold. Samanta MP [21] et al. found through
experiments that if the number of adjacent junctions
where two proteins act together is large, they have a close
functional relationship. Segura J et al. [22] proposed a
new method of using neighborhood cohesion to infer the
interaction between protein interaction networks. Exper-
imental results show that this method has good perfor-
mance and can effectively predict PPI network interaction
pairs. Based on those, we use topology coefficient PTC
as a quantitative representation of PPI network topolog-
ical structure feature PTC is obtained by parameter α

adjustment with topological coefficient T(u, v)which rep-
resenting the number of neighboring nodes of a node
and a clustering factor Cn which representing the shar-
ing of interaction nodes with other nodes. The calculation
formula of PTC is shown in formula 5.
Combining the similarity of the PTC representing the

network topology with gene expression patterns, the
weight w(u, v) of the protein interaction pair in the PPI
network is re-assigned and defined as the product of
T(u, v) and GEC(u, v) , as shown in formula 6:

PTC(u, v) = αCn + (1 − α)T(u, v) (5)

ω(u, v) = PTC(u, v) ∗ GEC(u, v) (6)
The weightw(u) of node u is presented by the sum of node
u and its edge in the PPI network, the formula is as follow:

ω(u) =
∑

(u,v)∈E
ω(u, v) (7)

In the networks, the clustering factor indicates the
strength of the connecting edges between the neighbor-
ing nodes of a node, and the topology factor indicates
the strength of the neighboring nodes of the node. The
clustering factor and the topological factor are assigned
weights through parameters and combined, then the topo-
logical structure of the network can be fully expressed.
PTC measures the density of adjacent nodes between a
node and its neighboring nodes, and the value of the
coefficient ranges from 0 to 1.The larger the PTC value,
the more likely the neighboring nodes of the node will
appear in the same cluster. GEC represents the corre-
sponding gene expression similarity of protein interaction
pair, that is, gene expression correlation measures the cor-
relation between two proteins, and its value is between

-1 and 1,the higher the GEC value, the higher the degree
of protein co-expression, the greater the probability of
appearing in the same functional module. Therefore, we
weight the protein interaction by combining the topolog-
ical structure of the PPI network and the correlation of
gene expression, and the network distance between two
nodes is a re-weighting of the topological distance in the
network. Comprehensively consider PTC andGEC to cal-
culate the probability that a node and its neighbor nodes
appear in a cluster.
After integrating the topological coefficient PTC of the

PPI network and the gene expression correlation GEC to
calculate the w of all nodes in the graph, sorting w value of
all nodes, and then choosing the highest weight as starting
point.

Algorithm description
Figure 1 shows the ECTG process, ECTG decomposes the
PPI network into closely connected subgraphs to detect
functional modules. The process is mainly divided into
four steps. The first step is to construct a PPI network
diagram with attributes based on the PPI network and
gene expression data. The second step is to construct a
weighted attribute PPI graph using PTC and GEC, given
the attributed PPI network graph obtained in the first
step, ECTG determines the weight of each edge in the
graph according to the topological coefficient and the
similarity of gene expression. In the third step, given a
weighted graph, EA maximizes the connection weight to
produce a compact graph clusters. In the fourth step,
given graph clusters, a breadth-first search strategy is
adopted, and searching subgraphs in each graph cluster
according to the homogeneity of the attribute values of
the connected nodes. The vertices of these subgraphs have
similar attribute values and are relatively dense, and have
a good correspondence with protein complexes in real life.
ECTG searches PPI pairs with higher values in each

subgraph, and then continuously absorbs seed nodes to
form modules. After ECTG has calculated all the val-
ues of w in the PPI network, the breadth-first search
method BFS (breadth-first search) is used to extend the
seeds, and form a protein complex finally. BFS can be
divided into two stages, the first step: select an edge
with the maximum w value wmax first, and then incor-
porate the two end points vi and vj connecting the
edge into the seed node set of a protein complex; the
second step: on the basis of wmax, search for all adja-
cent nodes of vi and vj and extend all the nodes whose
w value is greater than the threshold λ into the pro-
tein complex. The extended node definition is shown in
formula 8:

e(seed : vk) =
{
e ∪ vm if wkm ≥ λ

e ∪ � otherwise (8)
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Fig. 1 Schematic overview of our proposed ECTG model

In the above formula, vk represents the node in the seed
set, and vm represents the node adjacent to the node vk .
Only points whose w value is greater than the threshold
can be merged into the set. The second stage of the search
process will continue until no new nodes are added to
the seed set. When a cluster completes the above search,
ECTG will use the protein in the seed set to form a pro-
tein complex. Until all nodes are traversed, ECTG stops
absorbing nodes. Due to the high probability of appear-
ing small-scale modules using the above search strategy,
ECTG will delete those modules that have been identi-
fied as containing less than 3 nodes. In order to reduce
the redundancy of proteins in the recognition module,
ECTG calculates the overlap score between any module
and all others. The definition of overlap score is shown in
formula 9:

Ovr = max
|e ∩ PCI |
|e ∪ PCI | (9)

where e and PCI respectively refer to the module obtained
after a search and any other modules in the result set.
ECTG then uses a threshold OvMax to exclude those
modules whose overlap score is higher than the threshold.
In order to explain the ECTG method in more detail, we
give its pseudo code, as shown in Algorithm 1.
The input information of ECTG includes: PPI network,

gene expression data, parameter α used to control the
weight of topological coefficients, used to filter out thresh-
old λ that do not meet similarity, and used to filter the
nodes with higher repeated nodes between the obtained
modules.

Algorithm 1 Protein complex identification
Input:The PPI network G(V, E, �), parameter α, λ and
OvMax
Output:A set of protein complexes PC
1: for each edge (u, v) ∈ E do
2: compute its PTC(u, v) and GEC(u, v);
3: for each node v ∈ V do
4: compute the weight of v,w(v);
5: for each cluster ci do
6: for each vertex vi do
7: find wmax;
8: create a new protein complex e;
9: create a new link list Pvisiting ;

10: Pvisiting= Pvisiting ∪ vi;
11: Pvisiting= Pvisiting ∪ vj;
12: while

∣∣Pvisiting
∣∣ > 0 do

13: vk=head of Pvisiting ;
14: Pvisiting-vk ;
15: e = e ∪ vk ;
16: search vm : neighbors of vk ;
17: if ωkm ≥ λ then
18: Pvisiting = Pvisiting ∪ vm;
19: if Ovr ≤ OvMax then
20: PC=PC ∪ e;
21: return PC;

Results and analysis
Experimental data set
The experimental process is to link the PPI network and
gene expression, and apply the ECTG algorithm to the
Saccharomyces cerevisiae data set, which is downloaded
from the 2013 version of the DIP database. The network
contains 4579 points and 20845 edges after process. And
the Krogan and Gavin data sets, the specific information
is shown in Table 1. Obviously, there are great differences
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Table 1 Datasets

Datasets Number of protein Number of interactions

DIP 4930 17201

Krogan 3581 14076

Gavin 1430 6531

of the datasets in the number of proteins and protein-
protein interactions. This can increase the credibility of
the results obtained by ECTG algorithm and prove to have
better generalization ability of propose algorithm. The
gene expression data is selected from the publications of
Rintala et al. [23], this gene expression data is the data
sequence of yeast response to sudden hypoxia [17], that
is, the glucose-limited cultivation analysis after the tran-
sition from fully aerobic (20.9% O2 or restricted oxygen
(1.0% O2) to anaerobic state. 79 hours (20.9% O2) or 72
hours (1.0%O2) after shifting. These data provide insights
into the adaptive mechanism of the transition from respi-
ration to fermentation growth. After processing, the gene
expression data has 5664 unique non-empty genes, and
each gene expression includes 28 time courses. Compar-
ing the two information, there are 4936 proteins in PPI
network and 4616 proteins have gene expression.

Experimental design
When testing method performance, ECTG is compared
with different algorithms, including ClusterONE [24],
DPClus [25], COACH [26] and CFinder [27]. We use
these five methods to detect functional modules in the
above three data sets. ClusterONE, DPClus, COACH and
CFinder detecting functional modules only based on the
topological structure of the PPI network, not make full use
of node attribute information. Such as MCL, ClusterONE
can be used for weighted PPI network data, which can be
compared with the method ECTG using a weighted net-
work. For the above methods, their respective parameter
settings are shown in Table 2.

Method performance analysis
Table 3 summarizes the indicators obtained by executing
different algorithms. On the DIP data set, the accuracy

Table 2 Parameter settings of different algorithms

Algorithm Parameter

ClusterONE s=3, density=auto(default setting)

DPClus CPin=0.5, din=0.6(default setting)

COACH W=0.225(default setting)

CFinder k=3

MCL inflation=1.8(default setting)

ECTG α = 0.8, λ= 0.7/0.8,OvMax= 0.7/0.8/0.9

of ECTG is 0.49, which is slightly lower than that of the
MCL algorithm, but its recall rate is 0.65, which is much
higher than that of MCL, and its F-measure is also about
15% higher than other methods. The situation is similar
on the Gavin and Krogan data sets. ECTG obtained the
best F-measure values on the 3 data sets. Although ECTG
has not always obtained the best Precision and Recall val-
ues, has always obtained better F-measure values than
other methods, indicating that the performance of this
method for detecting functional modules is better than
other methods. At the same time, the algorithm results
will be affected by the difference of datasets. ECTG can
always maintain advanced performance on one or more
indexes on three data sets. From experimental results we
can conclude that the functional modules obtained by
the ECTG method may more accurately represent the
real modules in the standard set and have better gener-
alization ability. Regarding the size and coverage of the
detected modules, the number of modules identified by
ECTG in each set of data is relatively small compared to
MCL, the false positives are low, and the coverage is rel-
atively large, so its coverage is relatively high. In order
to check whether other algorithms obtain the same or
better performance when using the same weighted PPI
network data, we compare the results of those algorithms
that can process weighted network data, including Clus-
terONE and MCL. The results are shown in Table 4.
As shown in the table, ECTG’s accuracy rate is 0.68
on the Gavin data set, which is slightly lower than the
MCL algorithm, but the Recall has increased by nearly
20%, so its F-measure value has increased by about 15%
compared with the other two algorithms. When deal-
ing with weighted networks, ClusterONE and MCL use
weighted network data generated by combining topology
and gene expression data, the performance has varying
degrees of improvement. But ECTG is still superior to
these two algorithms, and the results show that con-
sidering the topological and attribute factors, ECTG’s
performance is better than the algorithm that only con-
siders the network topology. In short, ECTG performs
better in detecting functional modules. It obtains better
F-measure results in most data sets. The result is affected
by the difference of data sets, but ECTG can always
maintain advanced performance on one or more indi-
cators.Therefore, ECTG can achieve better results when
regard the task of functional module detection as the
problem of considered gene expression data and topology
optimization.

Parameter settings
As mentioned earlier, there are three parameters in the
ECTG execution process that determine the result of
the detection module: α, λ and OvMax. In order to
understand how these parameters affect the experimental
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Table 3 Results of CR, precision, Recall and F-measure

Data Set Algorithms Number of PC CR Precision Recall F-measure

Gavin ECTG 297 0.38 0.68 0.57 0.62

ClusterONE 245 0.44 0.39 0.37 0.38

DPClus 219 0.37 0.40 0.36 0.38

COACH 326 0.32 0.42 0.45 0.43

CFinder 99 0.24 0.53 0.19 0.28

MCL 121 0.31 0.72 0.33 0.45

Kroga ECTG 518 0.54 0.55 0.66 0.6

ClusterONE 241 0.59 0.49 0.41 0.45

DPClus 495 0.3 0.26 0.49 0.34

COACH 349 0.48 0.48 0.54 0.51

CFinder 113 0.46 0.48 0.22 0.3

MCL 371 0.47 0.63 0.09 0.16

DIP ECTG 436 0.68 0.49 0.65 0.56

ClusterONE 337 0.38 0.42 0.36 0.39

DPClus 843 0.44 0.21 0.63 0.31

COACH 849 0.56 0.35 0.63 0.45

CFinder 189 0.65 0.38 0.19 0.25

MCL 396 0.52 0.59 0.20 0.29

results, we change α, λ and OvMax from 0.1 to 1 in
steps of 0.1 to detect modules using above three PPI net-
work data. After collecting the experimental results under
different parameter combinations, we evaluated the eval-
uation indexes of Precision, Recall and F-measure. The
Figs. 2, 3 and 4 show the changes of different parameters
of the Gavin data set, listing the impact of changes in λ and
OvMax when α respectively equal 0.2, 0.5 and 0.8 on the
evaluation index. After analyzing the results of multiple
experiments, obtain the changes in evaluation index when
α equal 0.2, 0.5 and 0.8 respectively. It can be seen from
figures that overall precision value, recall value and F-
measure increased by about 12%, 8% and 7% respectively
when α equal 0.5 than α equal 0.2. But the number of pro-
tein complexes decreased by nearly 50. Comparing with α

equal 0.5 When α equal 0.8, the precision value increased
by about 14%, the recall value increased by nearly 4%, the
F-measure value increased by about 9%, and the num-
ber of protein complexes decreased by nearly 20. As α

increases, the value of the index is also increasing, and the
increment in the range of 0.1-0.5 is lower than the incre-
ment in the range of 0.5-1.0. Although the value obtained
near α equal 1.0 is relatively high, many complexes that
actually exist but do not meet the filter conditions are
filtered out, so that the number of modules is relatively
small, the Recall value is relatively increased, and the F-
measure value is relatively increased. This will omit part
of the real modules, which is not the best experimental
result. Therefore, the best value of α in this experiment is
0.8.

Table 4 Experimental results using weighted network data

Data Set Algorithms Number of PC CR Precision Recall F-measure

Gavin ECTG 297 0.38 0.68 0.57 0.62

ClusterONE 155 0.32 0.59 0.36 0.44

MCL 146 0.34 0.73 0.35 0.47

Krogan ECTG 518 0.54 0.55 0.66 0.6

ClusterONE 221 0.55 0.50 0.43 0.46

MCL 412 0.53 0.64 0.18 0.27

DIP ECTG 436 0.68 0.49 0.65 0.56

ClusterONE 239 0.38 0.42 0.36 0.39

MCL 382 0.56 0.61 0.23 0.33
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Fig. 2 Results of precision, Recall, F-measure and the number of protein complexes identified by ECTG using α=0.2 and different settings of λ and
OvMax

Shown in Fig. 4a-c, when α equal 0.8, the changing
trends of precision and F-measure are similar when λ and
OvMax change, simply setting λ and OvMax near 0 or 1,
the obtained results are not optimal. For example, when λ

is set to 0.2, nomatter how you adjust the value ofOvMax,
the precision obtained by ECTG is a relatively low value.
When a smaller value is used, ECTG includes more nodes
with lower similarity, resulting in a larger gap between the
clustered modules and the real modules. Although when
λ and OvMax are set near 1, ECTG cannot identify those
modules that contain more nodes so that some real mod-
ules are lost. Considering these conditions, it is necessary
to set appropriate values of λ and OvMax for the exper-
imental performance of the ECTG method. As shown
in Fig. 4d, ECTG can identify more modules in the PPI
network with higher λ and OvMax values, so this method
can obtainmore protein complexes in the standard set and
achieve a higher recall value.

Therefore, we expect a method to accurately detect rel-
atively more nodes. In general, we recommend that the
values of λ and OvMax are between 0.6 and 0.9 when the
ECTG detects the module. When λ and OvMax is prop-
erly set in this range, ECTG may perform better. This is
why we used the parameter settings shown in Table 2 in
the ECTG experiment.

Functional enrichment analysis
The probability of functional homology of actual pro-
tein functional modules is very high. This part uses the
three kinds of annotation information contained in the
GO database [28] and GO: TermFinder to calculate the
P-value of the module obtained by the algorithm to
determine its biological function significance [29], and
mark it’s functional annotations, so the P-value [30] of
inside modules protein co-occurrence probability need
be calculated. The concept of P-value is described as
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Fig. 3 Results of precision, Recall, F-measure and the number of protein complexes identified by ECTG using α=0.5 and different settings of λ and
OvMax

follows: given ontology d, we use N to represent the pro-
tein quality annotated in ontology d. Given a notes, we
will denote the total number of proteins covering a by
M. Given a cluster b, n represents the number of pro-
tein contained therein, and x represents the number of
proteins with a annotations in it. When the ontology
d and the term a are randomly given, the probability
that the number of proteins is greater than or equal
to x in b is represented by P-value. The definition is
shown in Fig. 5, and the calculation method is shown in
formula 10:

p − value =
∑n

i=x

(
M
i

) (
N − M
n − i

)

(
N
n

) (10)

In order to verify the effectiveness of ECTG, we cal-
culated the P-values of all modules on the DIP network

by comparing the probability of actual exist modules
obtained by various algorithms. Using Go: TermFinder, a
web-based service that can search for important shared
GO items in the obtained module proteins. In our
experiment, the threshold range of P-value is set from
1E-15 to 1E-2. That means those GO items whose P-
value is less than or equal to the threshold are con-
sidered to be meaningful. Not all modules with sig-
nificant GO items have been discovered, that is, they
can be found in such as MIPS/CYGD and CYC2008,
but they can be considered as true module candidates
because of their functional enrichment analysis. After
obtaining the P-value of each module, we count pro-
tein complexes in the detected modules that contain at
least one GO item with a P-value lower than different
thresholds.
In addition to analyzing the modules obtained through

ECTG, we also calculated GMFTP, MCL, ClusterONE,
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Fig. 4 Results of precision, Recall, F-measure and the number of protein complexes identified by ECTG using α=0.8 and different settings of λ and
OvMax

Fig. 5 The definition of P-value

CFinder, DPClus and COACH. GMFTP has proven to
be very effective when considering network topology
and functionality. And MCL, IPCA, ClusterONE proved
to be more effective for the recognition module after
considering the topology. The above-mentioned methods
are chosen as the comparison method of ECTG because
they all show better robustness on the three data setsmen-
tioned above. The experimental results of ECTG, GMFTP,
MCL, ClusterONE, CFinder, DPClus and COACH are
shown in Table 5. Obtained from the table: ECTG detects
proteins with more significant GO items than other meth-
ods, especially when the P-value threshold is low, such
as P-value < 1E-15. At the same time, perform specific
GO biological process(BP) annotation and GO molec-
ular function(MF) annotation analysis on the identified
functional modules on the DIP data set. BP stands for a
collection of molecular events that begin and end. These
events are closely related to the functions of integrated
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Table 5 P-value test on protein complexes identified by different algorithms

Data Set Algorithms Average-log(P-value) <1E-15 <1E-10 <1E-5 <1E-2

DIP ECTG 12.3 34.88% 53.50% 83.31% 94.66%

GMFTP 9.6 14.63% 27.9% 55.92% 76.79%

MCL 6.67 7.36% 10.66% 31.07% 61.83%

ClusterONE 7.99 11.12% 25.83% 58.76% 80.96%

CFinder 6.85 5.16% 13.57% 35.24% 67.54%

DPClus 4.45 0.78% 4.01% 12.35% 33.56%

COACH 7.85 11.65% 24.06% 47.27% 82.36%

Krogan ECTG 13.32 32.87% 49.78% 76.55% 89.64%

GMFTP 8.70 17.52% 36.24% 64.25% 70.48%

MCL 5.09 7.26% 13.79% 44.25% 69.21%

ClusterONE 8.13 19.9% 36.7% 69.8% 87.4%

CFinder 6.3 4.23% 11.04% 31.56% 58.90%

DPClus 5.58 2.67% 5.98% 15.86% 36.82%

COACH 9.25 15.86% 26.12% 49.25% 79.35%

Gavin ECTG 13.67 43.52% 64.13% 85.86% 94.59%

GMFTP 9.2 31.8% 52.86% 83.17% 92.13%

MCL 6.23 23.56% 36.27% 65.08% 79.84%

ClusterONE 8.26 21.6% 32.3% 61.7% 90.6%

CFinder 5.96 3.89% 10.56% 29.56% 52.13%

DPClus 6.03 5.17% 10.23% 20.59% 42.26%

COACH 9.96 16.23% 27.26% 48.56% 78.64%

Fig. 6 Percentage of significant clusters for various values of P-value cut-off calculated based on the BP domain



Zhao et al. BMC Genomics          (2021) 22:423 Page 11 of 14

Fig. 7 Percentage of significant clusters for various values of P-value cut-off calculated based on the MF domain

life units (cells, tissues, organs, and organisms). Calculate
the P-value based on the BP and MF domains of GO. In
this experiment, if P < ρ, and ρ is the threshold of P-
value, the predicted cluster P is significant. The figure
shows the percentage of important clusters for several ρ

values. Figures 6 and 7 show the P-values calculated by
BP and MF respectively. It can be seen from the figure
that the ECTG method obtains more clusters with lower
P-values when detecting modules. This data shows that
ECTG can detect more modules rich in biological signif-
icance than other methods. No matter how many protein
complexes are currently known, they have a higher proba-
bility of becoming a real complex that is identified through
biological experiments in the future. Based on the results
of the P-value experiment, it can be seen that ECTG
performs better when detecting functional modules, and
is a better method for detecting and predicting protein
functional modules.
One of the protein functional modules obtained by

the ECTG method, and the module size is more than
5 and the matching degree is more than 0.4, the topo-
logical structure and biological significance are analyzed
as well, and 10 functional modules are selected for list-
ing, as shown in Table 6. They not only have a lower
P-value, but also have a higher consistency with known
protein functional modules, and their P-value is smaller
than 0.001.

Algorithm prediction example analysis
The experimental results show that the functional mod-
ules predicted by combining the topological structure of
the PPI network and gene expression data can match
more modules rich in biological functional significance,
and provide beneficial help for predicting protein func-
tional modules and the proteins whose functions have not
yet been revealed in the modules. As shown in Fig. 8, the
ECTG detection scale is 12 modules, of which 11 belong
to the molecular functional group heterocyclic compound
binding, so the protein YNL189W may also have this
function.

Conclusion
This paper proposes a functional module detection
method ECTG that combines topological structure and
gene expression data. The idea is expressing the topologi-
cal structure of the PPI network with quantified topolog-
ical features, and then using the gene expression data to
calculate the similarity of gene expression patterns. Com-
bining the two to re-weight the PPI pairs in the network,
reconstructing the PPI network, and finally performing
clustering on the PPI network through the EA algorithm.
First, the reason and goal of introducing gene expression
data and topology structure are explained. Second, the
ECTG clustering algorithm is described in detail. Finally,
perform clustering experiments on three different yeast
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Table 6 Complexes and its P-value detected on DIP dataset by ECTG

P-value predicted complex known complex Biological

1.58e-35 YBR217W, YBR272C, YDL007W, YDL097C, proteasome complex ubiquitin-dependent

YDL147W, YDR394W, YDR427W, YEL037C, protein catabolic

YER012W, YER021W, YFR004W, YFR010W, process

YFR052W, YGL004C, YGL048C, YHL030W,

YHR027C, YHR200W, YKL145W,YLR421C,

YMR314W, YOR117W, YOR259C, YOR261C,

YPR108W

6.86e-17 YBL026W, YCR077C, YDR378C, YER112W, spliceosomal mRNA

YER146W, YGL173C, YJL124C, YJR022W, tri-snRNP processing

YKL173W, YLR147C,YLR275W, YMR268C, complex

YNL118C, YPR178W, YOL149W, YNL147W,

YLR438C-A

2.77e-27 YAL043C, YDR195W, YDR228C, YDR301W, mRNA cleavage mRNA

YER133W, YGR156W, YJL033W, YJR093C, factor complex polyadenylation

YKL018W, YKL059C, YKR002W, YLR115W,

YLR277C, YMR061W, YNL317W, YPR107C

5.92e-18 YBR081C, YBR198C, YDR145W, YDR167W, transcription factor RNA polymerase

YDR176W, YDR216W, YDR448W, YEL009C, TFIID complex II transcriptional

YER148W, YGL112C, YGR274C, YML015C, preinitiation

YML098W, YMR236W complex assembly

1.86e-18 YCR035C, YDL111C, YDR280W, YGR095C, exosome polyadenylation

YGR158C, YGR195W, YHR069C, YNL189W, (RNase complex) -dependent

YNL232W, YOL021C, YOR001W, YOR076C snoRNA

3’-end processing

4.46e-25 YBL093C, YBR193C, YBR253W, YDL005C, core mediator positive regulation

YER022W, YGR104C, YHR041C, YHR058C, complex of transcription from RNA

YOL051W, YOL135C, YPL248C polymerase II promoter

4.03e-17 YBR055C, YDR473C, YPR178W, YGR091W, U4/U6 x U5 mRNA splicing,

YOR308C, YHR165C, YJR022W, YKL173W, tri-snRNP complex via spliceosome

YLR147C, YLR438C-A, YFL017W-A

1.58e-13 YAL021C, YCR093W, YDL165W, YER068W, CCR NOT core positive regulation of

YGR134W, YIL038C, YNL288W, YNR052C, complex transcription elongation

YPR072W from RNA polymerase

II promoter

3.14e-16 YDL232W, YEL002C, YGL022W, YJL002C, oligosacchar protein N-linked

YMR149W,YGL226C-A, YOR085W, YOR103C yltransferase complex glycosylation

1.12e-09 YBR079C, YDR429C, YLR192C, YMR146C, translation formation of translation

YNL244C, YOR361C, YPR041W, YPR086W preinitiation complex preinitiation complex

mutual data sets to detect functional modules. The anal-
ysis of experimental results shows that compared with
other methods, the clustering algorithm proposed in this
paper has a greater improvement in recall rate and F-

measure value, which shows that the combination of topo-
logical structure and gene expression data is effective. The
advantages of ECTG are reflected in two aspects: (1) It can
effectively remove the noise data reflected by calculating
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Fig. 8 Example of predicted clusters

the topological structure feature value in the PPI network
through the similarity of gene expression patterns; (2)
using the information hidden in the gene expression data
appropriately.
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