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Abstract—Industrial fault diagnosis often faces challenges
from insufficient examples. Methods leveraging Generative
Adversarial Network or transfer learning address this prob-
lem. However, the model trained by the labeled examples of
one component is not applicable to classify the new fault
categories of other components. This problem aggravates
when there exist very few examples. In this paper, we propose
a cross-category fault diagnosis method (CFDM) based on
few-shot learning. Our method constructs a convolutional
Siamese neural network to extract fault features from exam-
ple pairs. A cross-entropy based loss function is used that
includes parameters for feature discrepancy to maximize
the inter-category distances and minimize the intra-category
distances. This enables the proposed method to learn the
accurate classification boundaries between fault features of
the example pairs. We conduct experiments on two public
benchmark datasets and one lab-built dataset. Our evaluation
includes analysis of the proposed method to classify fault types with one or five examples in each category of the target
component. Our results demonstrate that the proposed method improves the fault diagnosis accuracy and robustness in
comparison to the state-of-the-art methods.

Index Terms— Fault diagnosis, few-shot learning, cross-category, Siamese neural network.

I. INTRODUCTION

MECHANICAL fault diagnosis is important to ensure
the safety of equipment and personnel. In recent years,

deep neural network models have been developed to pre-
dict fault and assist diagnosis [1]–[4]. The success of deep
learning-based methods heavily depends on a large number
of training examples and the training and testing data follow
identical data distribution and fault category [5]–[8]. In the
actual industrial scenarios, the data distributions of the training
and testing sets are usually different due to the variable
working conditions and numerous mechanical components.
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Collecting a large number of faulty examples model training
and deriving a general model for all operating conditions
and components are challenging if not impractical [9]. This
situation poses an obstacle to the direct application of the
existing deep learning methods.

To circumvent this problem, transfer learning has been
employed that inherits the knowledge of the source domain (or
problem) and refines the model with additional examples of the
target domain to accommodate the discrepancy between data
distributions. Transfer learning refers to a class of machine
learning methods, which obtain some additional data or an
existing model and apply it to new and relevant tasks. We can
divide the data for transfer learning into two categories:
source data and target data. Source data refers to additional
data, which is not directly related to the task to be solved,
while target data is directly related to the task. In a typical
transfer learning model, source data is often huge, while
target data is often small. Fig. 1(a) shows the existing transfer
learning-based fault diagnosis problem, in which data are of
the same or similar mechanical component. Hence, the training
and testing cases share the same fault categories.

However, a more practical industrial scenario is that we
can only obtain a large amount of labeled fault data of one
component to train a model and need a model to identify the
fault types of another different component with much fewer
labeled examples. Due to the different fault categories in target
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Fig. 1. Intelligent fault diagnosis: (a) existing transfer learning-based
fault diagnosis model; (b) cross-category fault diagnosis model.

components, the well-developed transfer learning methods are
less capable of addressing this issue. We call such learning
tasks that develop models for datasets that include drastic
different fault categories the cross-category fault diagnosis
problems. A graphical illustration is shown in Fig. 1(b). The
training data and testing data are of different mechanical
components. The fault categories in these two datasets are
different. To our best knowledge, limited studies can be found
on the cross-category fault diagnosis.

Few-shot learning methods model new categories from few
labeled examples, which is a promising approach to solve the
cross-category fault diagnosis problem. Few-shot learning is
committed to learning from a limited number of examples with
supervised information. Usually, one considers the N-way-K-
shot classification, in which the training set contains I = K ∗N
examples from N classes each with k examples, k is usually
less than 20. Transfer learning is one of the implementation
methods to solve the problem of few-shot learning. In recent
years, studies begin to apply few-shot learning methods for
fault diagnosis. However, the current fault diagnosis meth-
ods based on few-shot learning deal with fault diagnosis of
the same component with insufficient examples [10]–[14].
Thereby it is urgent to explore an effective cross-category fault
diagnosis approach.

This paper proposes a few-shot learning-based cross-
category fault diagnosis method (CFDM). We model the
metric space as an embedding function with a convolutional
Siamese neural network. The fault features from sample pairs
are extracted through the network, then the distance distri-
bution between example pairs is derived through learning,
rather than the data distribution of the training examples.
Thereby the output of the model is a probability of the
inputs belonging to the same class. Specifically, the training
example pairs are drawn from a mechanical component, e.g.,
a bearing, whereas the testing example pairs are from a
different mechanical component, e.g., a gear. Then the model
compares the high-dimensional feature distance between the
testing data and all the samples in the support set to get the
most similar sample in the support set. Then the model predicts

the fault category of the testing data by comparing the distance
to the paired fault examples of the support set.

The main contributions of this study are summarized as
follows:

1) Different from the existing methods, the proposed
method leverages training examples of one mechanical
component and achieves fault classification of a different
mechanical component. The data distribution of the
training and testing sets differs and the classes (i.e., fault
categories) could be disjoint. We name such problems
as cross-category fault diagnosis, which is common in
real-world applications but has not yet been studied.

2) The proposed method extends the Siamese network
and builds upon the deep convolutional neural network
to capture invariances to transformation in the input
space and use a large number of training examples to
prevent overfitting. The training of the network derives
a model of the metric space of temporal data (e.g.,
vibration signals), which enables few-shot learning for
fault diagnosis of mechanical components.

3) A novel loss function is designed using parameter
weighting factor and distance factor. By reducing the
intra-category distance and increasing the inter-category
distance, an accurate optimization classification bound-
ary is obtained.

The rest of the paper is organized as follows. Section II
includes the related works. Section III presents our pro-
posed method. Section IV discusses the experimental results.
Section V concludes this paper with a summary.

II. RELATED WORK

The prevalent approaches to deal with the intelligent
mechanical fault diagnosis with the insufficient labeled sample
are based on Generative Adversarial Network (GAN) and
transfer learning mechanism.

GAN-based fault diagnosis approaches lie in augmentations
of the available data by GANs [15]. The most published
works can be divided into two directions. One approach is
using unlabeled data for model-assisted training to improve the
fault diagnosis accuracy by semi-supervised GAN [16]–[18].
Alternatively, GANs are used to create synthetic examples
to enrich the training set [19], [19], [20]. Wang et al. [21]
proposed a conditional Variational auto-encoder generative
adversarial network to solve the imbalanced fault diagnosis.
Wang et al. [22] proposed a fault diagnosis method that com-
bined GAN and Stacked Auto Encoder (SAE).

These GAN-based methods have achieved satisfactory per-
formance since training and testing data follow a similar or
even identical data distribution. Otherwise, transfer learning
offers an alternative method to transfer source domain knowl-
edge to solve fault classification tasks in target domains with
the different data distribution [23]–[25].

There are two general strategies of transfer learning-based
fault diagnosis methods: pre-trained transfer methods and
domain adaptation methods. The pre-trained transfer meth-
ods fine-tune the parameters of the specified layer in the
model trained with source domain data, and the model
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identifies the faults of the target domain [26]. The domain
adaptation method minimizes the probability distribution dis-
tance of the two domains to realize cross-domain fault
recognition [27]–[29]. Li et al. [30] used a deep convolutional
neural to extract the fault features from the bearing under
different operating conditions and then minimize the maxi-
mum mean difference to learn transferable feature distribution.
Lei et al. [31] transfer the fault knowledge of the laboratory
bearings to locomotive bearings by using multi-layer domain
adaptation and pseudo-label learning to reduce the distance of
probability distribution of different domains.

While a number of studies can be found on diagnostic
knowledge transformation across different domains, they still
focus on the shift problem with respect to different operating
conditions of the same components, i.e., rely on the hypothesis
that the data of the two domains must be from the same
category space.

The current aforementioned two studies both deal with
cross-domain fault diagnosis of the same component with
insufficient examples. That is, testing set Dtest is small, mean-
while training set Dtrain and testing set Dtest are different data
distributions with the same set of fault categories. Formally,
I (p(Dtrain); p(Dtest)) = 0, and Ytrain = Ytest . Ytrain and
Ytest denote the class sets of and training set and testing set,
respectively.

However, our work deals with a completely different prob-
lem called Cross-category fault diagnosis, that is, the target
problem has a different set of fault categories. Formally,
I (p(Dtrain); p(Dtest)) = 0, and Ytrain ∩ Ytest = ∅.

To our best knowledge, limited studies have been conducted
and reported so far. Thereby it is urgent to explore an effective
cross-category fault diagnosis approach.

Few-shot learning is committed to understanding new cat-
egories from tiny labeled samples, which has demonstrated
success in the field of image classification [32]–[34]. Some
implementation approaches include metric-based [35]–[37],
model-based [38], optimization-based [39], and Graph Neural
Network (GNN) methods [40], [41].

In the field of fault diagnosis, few-shot learning-based
methods are newly developed. Hu et al. [42] proposed a
data augmentation algorithm based on the Order Tracking and
present a self-adaptive convolutional network for fault diagno-
sis. The few-shot experiments using two bearing databases val-
idated the generalization ability of the model. Ren et al. [43]
proposed a capsule auto-encoder model (CaAE) for intelligent
fault diagnosis. A bearing dataset is utilized to validate the per-
formance of the proposed CaAE. Wu et al. [44] considered two
transfer situations of rotating machinery intelligent diagnosis
named conditions transfer and artificial-to-natural transfer and
construct seven few-shot transfer learning methods based on
a unified 1D convolution network for fault diagnosis of three
bearing datasets.

Although these studies have proposed new application sce-
narios, they still focus on the cross-domain fault diagnosis
problem with insufficient label data. Thereby the existing few-
shot learning-based methods cannot be well adapted in the
cross-category fault diagnosis. Nonetheless, it is still promising
to exploit the relationships of different components and extract

more generalized fault knowledge, where tiny data of the target
component are available.

III. CROSS-CATEGORY FAULT DIAGNOSIS NETWORK

Without loss of generality, the problem of cross-category
fault diagnosis concerns two mechanical components A and B
that are of different types, e.g., bearings and gears. Abundant
samples of component A are acquired and labeled, which are
denoted with set D = {xi , yi }M

i=1 where xi and yi denote
an acquired fault vibration data and its fault category (i.e.,
label), respectively. The fault categories form a category set
Y = {y1, y2, . . . , y L}. Fault vibration data of the mechanical
component B are also acquired, among which limited samples
are labeled. The data set of component B is denoted with D̃ =
{x̃i , ỹi }N

i=1, and its category set is Ỹ = {ỹ1, ỹ2, . . . , ỹ K }. The
data sets and category sets satisfy the following conditions:{

I (p(D); p(D̃)) = 0

Y ∩ Ỹ = ∅,
(1)

where I (·) computes the mutual information of two distribu-
tions p(D) and p(D̃). That is, the data distributions of D and
D̃ are different and the category sets Y and Ỹ are disjoint.

The cross-category fault diagnosis can be formulated as
a few-shot learning problem (a.k.a., N-shot, K-way classifi-
cation). Following the idea of the Siamese neural network
that models the distance distribution between sample pairs,
we model the metric space as an embedding function with a
deep network. The output of this network is a probability of
the two inputs belonging to the same class.

Let’s randomly divide dataset D into training sample pair
set T . A model f (x; θ) trained with sample pairs T , i.e.,
the training sample pairs maps the input pair of examples,
x and x ′, to a target label y ∈ Y by maximizing the pairwise
similarity p(x, x ′):

f (x; θ) : (x, x ′) → y, (2)

where x ′, x ∈ T , and

θ = arg max
θ

M∑
i=1

p(xi , x ′
i ).

When identifying the fault categories of the component B,
we divide the dataset D̃ into a support set S̃ and a testing set
T̃ . S̃ consists of few labelled samples, and the testing set T̃ is
the rest unlabelled samples, where D̃ = S̃ ∪ T̃ and S̃ ∩ T̃ = ∅.
In this paper, there are at most five labeled fault samples in
each category to construct support set S̃. In the Five-shot,
K-way test, the support set is S̃5 = {S̃1, S̃2, . . . , S̃5}, and more
specifically,

S̃5 =

⎡
⎢⎢⎢⎢⎢⎣

(x̃1
1 , ỹ1), (x̃2

1 , ỹ2), . . . , (x̃ K
1 , ỹ K )

(x̃1
2 , ỹ1), (x̃2

2 , ỹ2), . . . , (x̃ K
2 , ỹ K )

...

(x̃1
5 , ỹ1), (x̃2

5 , ỹ2), . . . , (x̃ K
5 , ỹ K )

⎤
⎥⎥⎥⎥⎥⎦ , (3)

a randomly selected sample from the testing set is paired with
an example in the support set of component B and used as
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Fig. 2. The architecture of the cross-category fault diagnosis network.

the input to the model. For an instance x̃ i , its classification
is decided by comparing the embedding distance against the
support set, then the formal representation of the training
sample pair constructed by the i-th test data is as follows:⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(
x̃ i , x̃1

1

)
,
(
x̃ i , x̃2

1

)
, . . . ,

(
x̃ i , x̃ K

1

)
(
x̃ i , x̃1

2

)
,
(
x̃ i , x̃2

2

)
, . . . ,

(
x̃ i , x̃ K

2

)
...(

x̃ i , x̃1
5

)
,
(
x̃ i , x̃2

5

)
, . . . ,

(
x̃ i , x̃ K

5

)

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

, (4)

among them, the probability of the
(
x̃ i , x̃ k

n

)
model output is

the largest, then the fault category of the data to be tested is the
label corresponding to x̃ k

n , where 1 ≤ n ≤ 5 and 1 ≤ k ≤ K .
When N = 1, it is One-shot, K-way test. The support set S̃
contains K categories, and each category contains one sample
x̃k , ỹk is the label:

S̃1 = {(x̃1, ỹ1), (x̃2, ỹ2), . . . , (x̃ K , ỹ K )}. (5)

The structure of the training example pairs from the i-th test
case is as follows:{(

x̃ i , x̃1
1

)
,
(

x̃ i , x̃2
1

)
, . . . ,

(
x̃ i , x̃ K

1

)}
. (6)

Model f (x; θ) is employed to predict the similarity of
samples against the limited data set in D̃

f (x; θ) : (x, x̃) → ỹ, (7)

where x ∈ T̃ and x̃ ∈ S̃. The predicted fault type of component
B is hence decided by the label of x̃ that yields the greatest
similarity.

A. Network Architecture
Our proposed Cross-category Fault Diagnosis Model

(CFDM) consists of a feature extraction module and a distance
embedding module. The feature extraction module extends the
convolution Siamese neural network to learn fault features.
The distance embedding module facilitates the learning of dis-
tinguishable features via distance embedding. Fig. 2 illustrates
the architecture of the network.

The network consists of normalized convolutional layers,
pooling layers, and normalized fully connected layers. For

TABLE I
CFDM LAYERS AND PARAMETERS

convenience, we use C, P, and FC to denote normalized convo-
lutional layers, pooling layers, and normalized fully connected
layers, respectively. The input of the network is the sample
pair, which is processed with five consecutive convolutional
and pooling operations. The output of pooling layer five (P5)
is flattened into a vector and fed into the fully connected
layers. Note that each input example is processed separately
through this network. The output of the fully connected layers
is the key fault features extracted, which is processed in the
distance embedding module to calculate the distance between
the features of the two inputs. If this distance is significant
enough, the sample pair belongs to different categories of
faults; otherwise, it belongs to the same fault category. Table I
lists the key parameters of the CFDM.

B. Loss Function
We present a weighted feature discrepancy metrics loss

function that integrates a weighting factor and the distance fac-
tor to reduce the intra-category distance and increase the inter-
category distance. This loss function highlights the impact of
the small difference of fault vibration data on the training
process to get a more accurate fault classification boundary.

In the training phase, example pairs are randomly drawn
from data set D. Let χ denote a pair of examples xu and xv that
are of the same fault category: χ = {xu, xv , 1}, where xu ∈ D,
xv ∈ D. Let χ̂ denote a pair of examples that are of different
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fault categories: χ̂ = {xu, xv , 0}, where xu ∈ D, xv ∈ D.
The difference between χ and χ̂ is the label that indicates
the same or different category. The training set T consists
of a balanced number of pairs of examples of the same and
different categories: T = {χ1, χ2, . . . , χ M

2
, χ̂1, χ̂2, . . . , χ̂ M

2
}.

This training set is used to build a model of pairwise distance.
In the testing phase, a randomly selected sample is paired

with the example in the support set of component B and used
as the input to the model. For an instance x̃ , its classification
is decided by comparing the embedding distance against the
support set.

The distance of the output of the feature vectors from the
Siamese neural network is computed as follows:

�(xu, xv , θ) = sigmoid(FC(ρ( f (xu), f (xv)), θ)) (8)

where ρ( f (xu), f (xv )) denotes the distance metric between
the fault features of sample pairs. There are many discrepancy
measure methods for feature vectors, including Euclidean
Distance, Cosine Distance, Mean Relative Error, and Pearson
Correlation Coefficient. Variable θ denotes the parameters of
the network.

To highlight the impact of the gentle difference of fault
vibration data, we introduce a weighting factor α for fault
samples of the same category to reduce the intra-category
distance and a minimum margin distance factor mr to increase
the inter-category distance. The range of α is [0, 1]. mr is
applied to the default samples of the different categories and
its range is [0, 1] to ensure the distance is at least mr . The
loss function of our model is as follows:
L(xu, xv , θ) = λT �l

i θ
2
i − [y log(�(xu, xv , αθ))

+ (1−y) log(1−min(mr ,�(xu, xv , αθ)))]
(9)

where θ is a vector of the set of model parameters and λ is
a hyperparameter of the model for the regularization, l is the
number of the network parameters and y is the label.

When the two samples are of the same class, i.e., y = 1,
the third term of the loss function becomes zero. Hence,
the loss depends on the probability of χ . When the two
samples are of different classes, i.e., y = 0, the second term
of the loss function becomes zero and the loss depends on
the probability of χ̂ . By introducing α (α < 1), the range
of network outputs is suppressed, which essentially increases
the normalized, quantized outputs (i.e., probability). Hence,
reduced intra-class distance is favored in the training process.
The scalar mr increases the penalty to the examples of the
‘dissimilar’ class (i.e., y = 0). As the cross-entropy based loss
function decreases, the probability with which the inter-class
distance is greater than the intra-class distance increases [45].

C. Training and Application of CFDM
Training and application of our proposed CFDM include

three phases: constructing the training set from component A,
building and training the model, and testing the fault samples
from component B. The flowchart is shown in Fig. 3.

1) Constructing the training data set: Following afore-
mentioned the sample pairwise method, we select the

fault data of the same category or different categories.
We enumerate all the sample pairs to construct the
training set.

2) Training the CFDM model: We enumerate all pair-
wise comparisons about the feature distance discrepancy
between sample pairs of component A to enrich the
supervised information of categories in the training
experience. By calculating the distance between the
high-dimensional features extracted from the sample
pair, the model learns whether the sample pair belongs
to the same fault category or not according to the
feature distance. In this paper, an adaptive moments
algorithm Adam [46] is adopted to optimize the network
parameters.

3) Applying the trained model to the fault samples: the
samples in testing set T̃ are paired with the samples
in support set S̃ as input sample pairs. The model
compares the high-dimensional feature distance between
the testing data and all the samples in the support set
to get the most similar sample in the support set. Then
the testing data belongs to the fault category of the most
similar sample in the support set, i.e. the label Ỹ .

IV. EXPERIMENTAL RESULTS

A. Datasets
The performance of our proposed CFDM is evaluated with

three datasets: the bearing dataset from the Lab-built testbed,
the bearing datasets from Case Western Reserve University
(CWRU) [31] and the gearing dataset [47], as shown in Fig. 4.

1) Bearing Dataset From Lab-Built Testbed: The lab-built
testbed is shown in Fig. 4(a). The three-phase motor through
a flexible coupling controls the speed of bearing, and an
acceleration sensor is used to collect vibration signals as the
training dataset. The experimental bearing contains four faults:
rolling body fault (BF), inner ring fault (IF), outer ring fault
(OF), and normal status under this condition. We simulate
the actual working conditions on our testbed and acquire the
vibration signals from four categories of fault bearings. The
sampling frequency is 128kHz.

2) CWRU Bearing Dataset: The testbed consists of a 2 HP
motor (left), a torque sensor (middle), a dynamometer (right),
electronic control equipment, and acceleration sensors to col-
lect vibration signal, as shown in Fig. 4(b). This dataset is
one of the most commonly used benchmark datasets in the
field of fault diagnosis. Single point pitting faults are arranged
on the bearings using EDM technology with fault diameters
of 0.007, 0.014, and 0.021 inches, respectively. Each fault
diameter contains three faults: rolling body fault, inner ring
fault, outer ring fault, and normal status.

3) Gearing Dataset: The gearing testbed is shown in
Fig. 4(c). A 32-tooth pinion and an 80-tooth gear are mounted
on the first stage input shaft. The second stage consists
of a 48-tooth pinion and a 64-tooth gear. The gear speed
is controlled by a motor. The torque is provided by an
electromagnetic brake, which can be adjusted by changing
its input voltage. The speed of the input shaft is measured
by a tachometer, and the vibration signal was collected by
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Fig. 3. Flowchart of the training and testing of the proposed method.

Fig. 4. Bearing and gearing platforms: (a) Lab-built experimental bearing
platform, (b) CWRU bearing platform, and (c) Gearing experimental
platform.

an accelerometer. The signals were recorded by the dSPACE
(DS1006 processor board, dSPACE Inc.) The sampling fre-
quency is 20 kHz. The Gearing Dataset contains five cate-
gories: Health, Missing, Spall, Chip, and Crack.

B. Fault Classification of Different Diagnosis Task
We conduct three cross-category fault diagnosis experiments

between the bearing and gearing. The three diagnosis tasks
are shown in Table II. For example, the training set of Task
A is the CWRU bearing dataset, which contains vibration
samples of 10 different fault categories under three kinds of
fault size, 0.007, 0.014, and 0.021 inches. The testing set is a
gear dataset, which contains vibration samples of 5 different
fault categories.

We set up eight cross-category fault diagnosis experiments
for each task to verify the fault classification accuracy of the
proposed method. For each series of experiments, we repeat
the experiment ten times and report the average performance.

The number of sample pairs of the training and testing sets
of the experiments is listed in Table III. One-shot90 indicates
that the training set contains 90 labeled sample pairs of
component A with a length of 2048 time-domain data points.
In the training sample pairs, half of them are the same fault
category, and the rest are randomly matched with different
kinds of faults.

The testing set of Task A and Task B contains 9000
vibration samples of component B, while the testing set of
Task C contains 6600 vibration samples of component B.
The support set of One-shot from the testing set consists
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Fig. 5. Accuracy of fault classification on different diagnosis tasks.

TABLE II
DESCRIPTION OF THREE CROSS-CATEGORY FAULT DIAGNOSIS TASK

of one labeled example for each fault category. The support
set of Five-shot only has five labeled samples for each fault
category.

Fig. 5 illustrates the average classification accuracy and the
standard deviation of the three tasks. It can be seen that the
classification accuracy of all cross-category fault diagnosis
experiments is more than 53% with respect to one or five
labeled samples for each fault category, which shows that the
proposed CFDM is effective. The fault classification accuracy
of Task A is higher than that of Task B and Task C. The highest
accuracy of 8 experiments in Task A is as high as 85%. The
classification accuracy in Task C is the lowest. The lowest
classification accuracy of 8 experiments in Task C is 53.25%.
The reason is that the fault categories of the training set are
less than that of the testing set. When the sample numbers
of the training set are insufficient, the model learned by the
training set is not robust enough for fault classification in the
testing set.

We can also see that experiment results of Five-shot are
generally about 5% higher than that of One-shot in the three
tasks. For example, in the One-shot experiments of Task
A, the fault classification accuracy increases from 75.2% to
84.29%, while in the Five-shot experiments of Task A, the
fault classification accuracy increases from 82.86% to 89.64%.
These results are also reasonable, because as the number of
labeled samples increases, the classification boundary between

TABLE III
NUMBER OF EXAMPLES IN THE TRAINING (trn)

AND TESTING (tst) DATASETS

categories becomes more obvious, which leads to higher
classification accuracy.

In addition, the capacity influence of the training set on
the fault classification accuracy is also discussed. As can be
seen from Fig. 5 that the fault classification results are more
accurate with the increase in the number of training samples.

Fig. 6 depicts the confusion matrix of the fault classification
results of Task A, Task B, and Task C on Five-shot learning
using 6600 training example pairs. The testing set of Task A
and Task B contains 9000 samples of component B and the
testing set of Task C contains 6600 samples of component B.
The support set of Five-shot has five labeled examples for each
category. The abscissa of the confusion matrix is the predicted
label and the ordinate is the ground truth. For tasks A and B,
the accuracy for each class is mostly greater than 70% with
some in the 90% range as shown in Fig. 6(a) and Fig. 6(b).
The accuracy of detecting ‘Spall’ and ‘Crack’ faults are
superior. In task A, the accuracy of detecting ‘Spall’ achieved
100%. The majority of confusion is between ‘missing’ and
‘chip’ and ‘missing’ and ‘health’, which drive the accuracy of
‘missing’ to 68%. In Fig. 6(c), the classification accuracy of
seven out of ten classes is greater than 72% and the accuracy
of four classes is 100% or very close to 100%.

Noted that three fault types 007BF, 014BF, and 021BF
in task C have relatively low accuracy, rather than other
faults. The reason is partly that the number of categories
differentiable in the training phase is less than that in the
testing phase. In addition, the fault data with different diam-
eters are similar in the CWRU bearing dataset, which makes
correct classification much challenging. Specifically, Fig. 7
shows the time domain vibration signal of the CWRU bearing.
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Fig. 6. The confusion matrix of fault diagnosis of the case of five-shot6600.

Fig. 7. The original time-domain vibration signals of CWRU bearing.

The amplitude range of the signals of BF is significantly
smaller than that of IF and OF. For instance, the maximal
amplitude range of 0F is (−4, 4), while the maximal amplitude
range of 0F is (−1, 1). Noted that the amplitude range of
BF with different diameters is similar. Thus, the difference
in data distribution of BF with different diameters is weak.
It is difficult for the model to distinguish between 007BF,
014BF, and 021BF, rather than other faults. For instance,
the probabilities of misclassification of 014BF to 007BF and
021BF are 0.29 and 0.27, respectively.

C. Parameter Analysis
The weight factor α and the distance factor mr of our

method are empirically determined. In this section, we evaluate
the impact of various choices on the accuracy by varying
α in the range of [0.05, 1] and mr in the range of [0, 1].
Without loss of generality, we conducted experiments with
task A. Fig. 8 illustrates the box plot of accuracy with respect
to various mr . At each mr , we vary α and the data distribution
is depicted.

Compared with the model without the distance and parame-
ter weight factors, as shown in Fig. 5, the fault classification
accuracy improves when the distance and parameter weight
factors are reasonably adopted. For example, in the case of
one-shot 90, when mr = 0.5 the average accuracy of fault clas-
sification is over 80%, which is improved by about 5% than
that of the model integrating the two factors. This demonstrates
that measuring the inter-category and intra-category distances
is important for fault classification. When we combine five
different distance factors and seven parameter weight factors
for multi-scale analysis, the network achieved a stronger fault
classification ability.

In the four cases of one-shot testing, when mr = 0.7, with
the change of α, the fault classification accuracy is higher than
other values of mr , and the change range of the accuracy is
the least. Therefore, the model is most stable when mr = 0.7.
In the four cases of five-shot testing, when mr = 0.5, with the
change of α, the fault classification accuracy is higher than mr

is set to other values, and the change range of the accuracy is
the least. Therefore, the model is most stable when mr = 0.5.
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TABLE IV
THE DESCRIPTION OF THE COMPARISON METHODS

When mr = 0 and 1, the fault classification accuracy in eight
experiments is lower than other values of mr , and the change
range of classification accuracy is also the largest. In addition,
outliers tend to appear when mr = 0 or 1, which implies
unstable performance.

According to Eq.9, when mr = 0, the loss
function of our model becomes L(xu, xv , θ) =
λT �l

i θ
2
i −y log(�(xu, xv , αθ)). Likewise, when

mr = 1, the loss function becomes L(xu, xv , θ) =
λT �l

i θ
2
i − [y log(�(xu, xv , αθ)) + (1 − y) log(1 −

min(mr ,�(xu, xv , αθ)))]. In both cases, mr does not
work to restrain the samples of different classes, thereby
the loss functions are unable to maximize the inter-category
distance, which degrades the performance of the model.
If the support set has only one labeled data for each category
of fault, the larger mr can increase the distance between

Fig. 8. Influence of distance and weighting factor.

different classes as much as possible, thereby the classification
accuracy of the model is superior. If the support set has
five or more labeled data for each category of fault, the loss
function needs to strengthen the constraints of the same class;
thereby the smaller mr will make the performance of the
model superior.

In summary, when mr = 0 and 1, the output of the model
has singular values and exhibits poor accuracy and stability.
If the support set has only one labeled data for each category
of fault, mr > 0.5 is suitable.

D. Fault Classification Using Different Models
In this section, we compare the overall accuracy of our

proposed CFDM method with state-of-the-art methods on
task A. The compared models include SAE, CNN_SVM,
WDCNN, and SSGAN. In addition, a transfer learning method
is implemented based on AlexNet. In our evaluation, the
training examples were randomly selected from the gearing
dataset. The support set of the One-shot case has five labeled
instances, and the support set of the Five-shot case has 25
labeled data. The description of the comparison methods is
shown in Table IV.
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Fig. 9. The overall accuracy of the compared methods for fault
classification.

TABLE V
THE FAULT CLASSIFICATION RESULTS OF DIFFERENT

DISCREPANCY METRIC METHOD

The overall accuracy of fault classification using the afore-
mentioned methods is depicted in Fig. 9. For each method,
two bars depict the accuracy of one-shot and five-shot results.
The accuracies of each case as well as the average are also
listed under the plot.

It is clear that by using more examples (i.e., Five-shot
learning), greater accuracy is achieved by all methods. The
improvement is as much as 66.5% (transfer learning based
on AlexNet). In contrast, our method exhibits the minimum
difference between one-shot and five-shot learning. This is
partly due to the much superior performance and a smaller
margin for improvement. Comparing across all methods, our
method achieved the best accuracy in all cases. The overall
accuracies for one-shot learning and five-shot learning are
84.29% and 89.64%, respectively. The improvement with
respect to the second-best (i.e., WDCNN) is 62.4% in one-shot
learning and 34.1% in five-shot learning. This demonstrates
that the metric model derived with our proposed method from
learning bearing samples is effective for the diagnosis of fault
types of gearing.

The compared methods achieved inferior performance due
to the small training set. Note that for a five-class classification
problem, 20% is the average performance of random guess.
Clearly, the figure illustrates that more training examples help.
For neural networks, it is necessary to train with a large
amount of labeled data to have a satisfactory accuracy. When

Fig. 10. The loss of different discrepancy metrics.

there are only 5 or 25 labeled examples to train a model, it is
difficult for the model to learn the data distribution of the target
domain. Thereby the classification accuracy of the compared
methods is unsatisfactory.

The important message of Fig. 9 is that learning data
distribution is unsuitable for the cross-category classification
problem, which is evident that the much lower accuracy was
achieved by the compared methods.

E. Fault Classification With Different Discrepancy Metrics
We conducted multiple sets of experiments on task A to

evaluate the impact of loss functions using different discrep-
ancy metric methods on fault classification accuracy. We used
four discrepancy metric methods to construct different loss
functions in our model. The training set and testing set are
the same as those in Table III. The average accuracy for each
method is shown in Table V. The numbers in parenthesis
are the standard deviation. Among almost all cases, the fault
classification results using the Pearson correlation coefficient
yielded higher accuracy than the other three discrepancy metric
methods. In the case of one-shot 90, Euclidean distance
achieved the best accuracy at 75.6% that is slightly better than
that of the Pearson correlation coefficient (75.2%).

Fig. 10 shows the loss using different discrepancy metrics
during the training iterations. Loss values at every 20 epochs
are plotted, which are illustrated with a curve in blue. The
red curve presents the moving average of the loss, which
greatly suppresses the spikes and visualizes the trend over
time. Different discrepancy metrics have a great impact on
the loss of the model.

Cosine similarity evaluates the similarity of two vectors
by calculating the cosine of the angle between them. It is
insensitive to the absolute value of the feature. The loss of
cosine similarity fluctuates greatly, which performs similarly
to Mean Feature Error.
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Both Euclidean distance and Pearson correlation coefficient
exhibited much better performance by converging to a smaller
loss. In contrast to Euclidean distance, the Pearson correlation
coefficient is more stable and its convergence appears to be
faster.

The sample pairs of the fault vibration signals from different
components are fine-grained recognition. The range of values
between different categories of fault feature variables is inde-
pendent of the distance, which makes the Pearson correlation
coefficient is more suitable for the fault diagnosis model. From
Fig. 10, we can find that the loss fluctuation using the Pearson
correlation coefficient is the smallest.

V. CONCLUSION

This paper proposes a few-shot learning based cross-
category fault diagnosis method. Different from the existing
methods, the proposed method leverages training examples of
one mechanical component and achieves fault classification
of a different mechanical component. The data distribution of
the training and testing sets differs and the classes (i.e., fault
categories) could be disjoint. The proposed method extends
the Siamese network to extract fault features from sample
pairs. By training the deep network with example pairs, the
method learns the distribution of distances between example
pairs, rather than the data distribution of the training examples.
The training of the network derives a model of the metric
space of temporal data (e.g., vibration signals). When this
model is applied to the testing cases, it predicts the fault types
by comparing the distance to the paired fault examples of
the support set. Experiments were conducted with two public
datasets and a lab-built dataset. The results cross-category
demonstrate that even if there was only one or five labeled
examples in each category for the target component, the model
achieved a superior generalization performance without model
retaining or refinement. The proposed method provides a
new idea for cross-category fault diagnosis with few labeled
examples.
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