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ABSTRACT
Urban regions are complicated functional systems that are closely
associated with and reshaped by human activities. The propagation
of online geographic information-sharing platforms and mobile
devices equipped with the Global Positioning System (GPS) greatly
proliferates proximate sensing images taken near or on the ground
at a close distance to urban targets. Studies leveraging proximate
sensing images have demonstrated great potential to address the
need for local data in the urban land-use analysis. This paper
reviews and summarizes the state-of-the-art methods and publicly
available data sets from proximate sensing to support land-use
analysis. We identify several research problems in the perspective
of examples to support the training of models and means of inte-
grating diverse data sets. Our discussions highlight the challenges,
strategies, and opportunities faced by the existing methods using
proximate sensing images in urban land-use studies.
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1. Introduction

Analysis of urban land-use enables researchers, practitioners, and administrators to under-
stand city dynamics and to plan and respond to urban land-use needs. It also reveals
human social activities in terms of locations and types in cities, which is closely related to
human behaviors with respect to buildings, structures, and natural resources (Wang and
Hofe 2008, Yuan and Sarma 2011). Applications such as urban planning, ecological
management, and environment assessment (Säynäjoki et al. 2014) require the most
updated knowledge of urban land-use. Conventionally, urban land-use information is
obtained through field surveys, which is labor-intensive and time-consuming. The
employment of proximate sensing data has demonstrated the potential of automatic,
large-scale urban land-use analysis (Leung and Newsam 2009, Qiao et al. 2020) and thus
attracted researchers from fields of computer science and geographic information sys-
tems (Qiao et al. 2021).

Proximate sensing images, which refer to images of close-by objects and scenes (Leung
and Newsam 2009), complements the overhead imagery by providing information of
objects from another perspective and brings completely disparate clues for urban land-
use analysis. Urban land-use is closely related to human activities and demands more
approximate means to investigate the cities (Lef’evre et al. 2017). The crucial features
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associated with human activities are usually obscured from overhead imagery such as
satellite images (Karasov et al. 2019). For example, differentiating commercial (e.g. office
buildings) and residential buildings (e.g. apartments) is a typical problem in urban land-
use analysis and the overhead imagery alone provides insufficient information for the
aforementioned issue. Moreover, publicly available data that can be adopted as prox-
imate sensing images are massive in volume. For example, over 300 million images are
uploaded to Facebook every day (Dustin 2020), which enables the development of large-
scale, data-driven approaches for urban land-use analysis.

This article is the first one that reviews the up-to-date studies on the employment of
proximate sensing images for urban land-use analysis. The unique properties of proxi-
mate sensing images have motivated the development of novel methods, which necessi-
tates a survey of data and methods to provide researchers a comprehensive review of the
state-of-the-art. We categorize a diverse collection of emerging technological advance-
ments on this topic and identify technical challenges, existing solutions, and research
opportunities. Throughout the literature, we observe challenges in two aspects: a myriad
of data sets and technical obstacles. Discussions are hence assembled on these chal-
lenges. Figure 1 illustrates the data sets and two associated issues: data cleaning and
labeling. The AiRound, CV-BrCT, UCF Cross view, and Brooklyn and Queens data sets
consist of ground-level and overhead images, and the rest contain only ground-level
images. The majority of data cleaning methods use classifiers to filter out incompatible
examples and for land-use labeling, information from OpenStreetMap (OSM) serves as the
primary reference. Figure 2 shows the taxonomy of land-use analysis methods, which are
grouped into three categories: building classification, ground imagery aggregation, and
cross-view integration.

The remainder of this article is organized as follows. Section 2 summarizes the prox-
imate sensing data for land-use analysis and presents the technical challenges in data
cleaning and land-use example labeling. Section 3 reviews the state-of-the-art methods
from the perspectives of building classification, data aggregation, and cross-view land-use
classification. Section 4 presents a discussion and summarizes this paper with highlights
of the opportunities for future research.

2. Proximate sensing data and preprocessing

2.1. Data sets

A vital source of proximate sensing images is the street view images provided by map
service providers such as Google Street View, Apple Look Around, and Bing StreetSide.
These services cover most major cities worldwide. In addition, companies such as Baidu,
Tencent, Yandex, and Barikoi also provide regional street view images. Among these map
service providers, GSV is the most influential geographical information service and was
debuted in 2007. As of 2020, GSV has covered nearly 200 countries on four continents,
which makes it an opportune data source for urban land-use analysis (Wikipedia 2020).

Another major source of proximate sensing images is the volunteer geographic
information (VGI) platforms such as OpenStreetMap and social media services such as
Instagram, Facebook, and Flickr. The affordability and portability of modern mobile
devices rigged with cameras and GPS make every social media user a potential data
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provider (Terroso-Saenz et al. 2021�). Consequentially, a large volume of images with GPS
information has been created and continues to be updated every day. Such VGI data also
contain annotations to assist urban land-use analysis (Munoz et al. 2020, Mahabir et al.
2020a). Antoniou et al. (2016) reviewed VGI images for mapping land-use patterns and

Figure 1. Proximate sensing data sets and associated issues.
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found that more than half of the collected images are helpful to extract the land-use
related information. An emerging form of volunteered street view images, e.g. Mapillary
and OpenStreetCam, provides a rich source of spatial geotagged street-level images
along roads. The coverage of the VGI images, however, varies greatly within and across
cities (Mahabir et al. 2020b).

Table 1 summarizes the data sets adopted in the past studies. To our best knowledge,
there is no widely adopted benchmark proximate sensing data set for urban land-use
analysis. Some of these data sets, e.g. AiRound, CV-BrCT, UCF Cross view, and Brooklyn

Figure 2. Taxonomy of land-use analysis methods. SVI denotes the unspecified street view images.
The ones in italic are methods that employ deep learning.

Table 1. Proximate sensing data sets. Image types include overhead (O), ground (G),
multi-spectral (M). Cityscapes consist of images in fine and coarse resolutions. For the
data sets that have object detection examples, the corresponding entries denote the
number of annotated objects.
Data Set # of Images # Class Application

Places (Wang et al. 2017) 10,624,928 434 Classification
BIC GSV (Kang et al. 2018) 19,658 8 Classification

1,165 (O)
AiRound (Machado et al. 2020) 1,165 (G) 11 Classification

1,165 (M)
CV-BrCT 24,000 (O) 9 Classification
(Machado et al. 2020) 24,000 (G)
SUN 131,072 908 Classification
(Xiao et al. 2010) 313,884 4,479 Obj. Detection
BEAUTY 19,070 4 Classification
(Zhao et al. 2020) 38,857 8 Obj. Detection
UCF Cross View 40,000 (O) – Obj. Detection
(Tian et al. 2017) 15,000 (G)
Brooklyn and Queens 53,649 (O) 206 Segmentation
(Workman et al. 2017) 177,930 (G)
Cityscapes 5,000 (fine) 30 Segmentation
(Cordts et al. 2016) 20,000 (coarse)
Mapillary Vistas 25,000 152 Segmentation
(Neuhold et al. 2017)
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and Queens data sets, include both proximate sensing data and overhead imagery.
Among these data sets, BIC GSV, AiRound, CV-BrCT, and Brooklyn and Queens data sets
are designed specifically for the task of urban land-use classification. UCF Cross View data
set has been used to align overhead and proximate images. Places and SUN data sets
consist of a fairly large volume of data, part of which has been used for urban land-use
classification by supplementing land-use annotations.

2.2. Data cleaning

A great challenge faced in the employment of the available data sets is image incon-
sistency, which necessitates data cleaning. Proximate sensing data vary greatly and the
major issue is three-fold.

(1) Only a portion of the images captured from the ground perspective includes spatial,
contextual information for urban land-use analysis. The geo-tagged images available
in online services such as Flickr and Facebook contain a large number of selfies,
photographs of food, pets, and other contents that provide little help in under-
standing urban structures and land-use.

(2) There exists a disconnection between the contents of an image and its geographic
coordinates. Images are often captured views at a distance from the shooting point
of the photographer. The geographic coordinates automatically embedded in
these images reflect the location of the photo taker instead of the objects captured
in the image. The images illustrate buildings or structures that are outside of the
current land-use functional unit.

(3) Useful information of the image sets after removing irrelevant instances is limited for
achieving high accuracy with satisfactory robustness. Objects in images that provide
hints of land-use may be insignificant due to the small size or off the center of the
image. After all, these images are not taken intentionally for land-use classification,
which makes data cleaning a crucial component in the process of land-use analysis.

Hence, the cleaning and refinement of proximate sensing images is a non-negligible
problem.

To sift usable data from street view images, Movshovitz-Attias et al. (2015) constructed
a database of manually identified business entities that are presented by location and
textual information. The same description of unlabeled street view images was generated.
The business entity was assigned to a street view image if the distance between the entity
and the image is less than one street block. Images with irrelevant information or taken
from a distance were discarded. Zhu and Newsam (2015) employed polygon outlines and
classifiers to clean VGI data. Flickr images that are outside of the extracted polygonal
regions are removed. A search strategy was used for data augmentation to ease the
imbalance among classes of the training data.

An alternative means for data cleaning is applying pre-trained deep network models.
Kang et al. (2018) adopted the VGG16 (Simonyan and Zisserman 2014) model fine-tuned
on Places2 data set (Zhou et al. 2016). A large number of training examples in the Places2
data set and the overlapping of Places2 data and proximate sensing data make it a proper
source to fine-tune the VGG16 model for land-use classification. The fine-tuned model
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was used to decide if an image is relevant to urban land-use. Zhu et al. (2019) developed
an online training method for data cleaning. To create a relatively large data set for fine-
grained urban land-use classification, both Flickr and Google Images were used. The
online adaptive training was implemented following the intuition that if the Softmax
scores of an image are evenly distributed among all categories, this image is likely to be
confusing and irrelevant to the land-use analysis. Images with strongly skewed prediction
scores benefit the development of the model. Similar to negative mining (Yuan et al. 2002,
You et al. 2015, Shrivastava et al. 2016), samples that result in a low probability value are
discarded.

Table 2 summarizes the existing data cleaning methods. Most of the efforts are based
on applying a classifier to identify suitable instances. Despite the effectiveness of remov-
ing loosely related instances, a gap between image contents and the land-use types still
exists. The development of novel methods that automatically select the most representa-
tive images or preclude less informative ones is still of great importance to ensure
successful land-use classification.

2.3. Land-use labeling

Proximate sensing requires labels for buildings and urban functional regions to support
land-use analysis. The labels of land-use are often not readily available for the images,
which poses a great challenge in research and deployment. OSM tags and the Point of
Interest (POI) have been used in studies to derive land-use labels and annotate proximate
sensing images (Vargas Muñoz et al. 2020). The OSM database consists of several sub-sets:
points, places, roads, waterways, railways, buildings, land-use, and natural areas. OSM and
map service providers such as Yahoo! Local (Jiang et al. 2015), Foursquare (Gao et al.
2017), Google Places, and ATTOM Data Solutions (2020) also provide geo-tagged POI data.
However, the quality of OSM tags and POIs is usually undermined due to limited regular-
ization and censorship. Hence, studies have been conducted to understand the usage of
OSM tags and POIs.

An early effort of deriving labels from OSM data was conducted by Haklay and Weber
(2008). The study found that the OSM tags are suitable for land-use analysis with an
accuracy of 80% comparing to the existing survey data. Estima and Painho (2013)
employed OSM tags for land-use classification and achieved an accuracy of 76%. Fan
et al. (2014) asserted that OSM tags contain a vast amount of building information and the
size and shape of building footprints also provide clues to the function of buildings.
Arsanjani et al. (2015) evaluated OSM tags in four metropolitan areas in Germany and the
Global Monitoring for Environment and Security Urban Atlas data (GMESUA) (Copernicus
Land Monitoring Service 2020) data set was used as the reference. Fonte and Martinho
(2017) assessed the OpenStreetMap for the creation of reference databases in the

Table 2. Data cleaning strategy.
Method Data set Strategy

Movshovitz-Attias et al. (2015) GSV Text & Image Matching
Kang et al. (2018) GSV Pre-trained Classifier
Zhu and Newsam (2015) Flickr Fine-tuned Classifier, Location
Zhu et al. (2019) Flickr Fine-tuned Classifier, Location
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evaluation of land-use/land cover maps. The study concluded that a small portion of the
OSM-based reference data set requires photointerpretation of high-resolution imagery.

Besides OSM data, POIs have been heavily used to generate urban land-use labels for
proximate sensing images. Estima and Painho (2015) explored the POI data extracted
from OSM in an area of Continental Portugal. The experiments demonstrated that among
the 26,191 POI examples, the agreement rate to the official land-use data is 78%. Jiang
et al. (2015) devised a set of rules to compare POIs and map POIs provided by different
data sets. The POIs were then aggregated with retail employment data. Gao et al. (2017)
developed a statistical framework based on the latent Dirichlet allocation topic model to
discover urban functional regions. The study concludes that consociating the spatial
pattern distribution of POIs helps extract urban functional regions.

Combining OSM tags and POIs for data labeling has also been investigated.
Arsanjani et al. (2013) developed a hierarchical GIS-based decision tree to generate
the land-use map from OSM point, line, and polygon features. Ye et al. (2019) fused
OSM tags, POIs, and satellite images and proposed a Hierarchical Determination
method that extracts roads from OSM to generate functional units. Liu et al. (2020)
randomly sampled points in the OSM polygons and used the OSM tags as the label for
these points. This method built a semi-automatic framework to map urban land-use
using OSM data.

Despite the great success of using OSM and POI data for label generation, online
services that rely on voluntary contributors face issues of great inconsistency and errors.
The major blemishes of OSM tags include misaligned tags with the images and buildings
as well as missing annotations for buildings. To address these issues, Vargas-Muñoz et al.
(2019) developed a tag correction method based on Markov Random Field and
Convolutional Neural Network (CNN). A probability map was constructed from the corre-
lation between tags and buildings and a CNN model was trained from building shapes to
assign labels for buildings without a label.

Table 3 summarizes the existing land-use labeling methods. Among all the supple-
mentary data sources, OSM serves as a major source for land-use annotation. However,
OSM, as well as other similar service providers, allows users to define their labels (or tags).
This enables the flexibility and adaptability of tagging but increases inconsistency and
bewilderment of using the tagged data for land-use labeling. The alignment of the tags
and the land-use types has not yet been fully studied. Label extraction, sorting, alignment,
and refinement are still subjective and obscure. The development of automatic methods
for land-use labeling of the proximate sensing images is needed.

Table 3. Land-use labeling. The rows with more than one class denote that the classifica-
tion was performed in multiple levels following a coarse to fine manner.
Method Source of Label Feature # Class

Estima and Painho (2013) OSM Polygon 5, 15, 44
Fan et al. (2014) OSM Polygon 6
Arsanjani et al. (2015) OSM Polygon 15
Liu et al. (2020) OSM Polygon 16
Arsanjani et al. (2013) OSM POI, Line, Polygon 2, 4, 15
Ye et al. (2019) OSM POI, Line 10
Estima and Painho (2015) OSM POI 5, 15, 44
Jiang et al. (2015) Yahoo! Local POI 14
Gao et al. (2017) Foursquare POI –
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3. Methods for land-use analysis

3.1. Building classification

Differentiating building usage from overhead images is ill-posed in urban settings due to
the uncertainty of correspondence between rooftops and the surroundings of a building
to its actual usage. Proximate sensing images enable researchers to integrate building
side views, texture, and decorations (e.g. signs and sculptures) to more accurately decide
the building usage.

An early exploration of associating street view images with building functions was
conducted by Zamir et al. (2011). In this study, a set of 129,000 street view images and
textual information were used to identify commercial entities. The list of businesses was
generated from services such as Yellow Page and the text information detected from the
street view images are matched to the business entities using Levenshtein distance. The
experiments achieved an overall accuracy of 70%. Iovan et al. (2012) used scale-invariant
feature transform (SIFT) descriptors randomly sampled from each image to create a visual
dictionary. Bag of Words (BoW) model (Zhang et al. 2010) and Bag Of Statistical Sampling
Analysis (BOSSA) model (Avila et al. 2011) were applied to generate image signatures.
Using a kernel Support Vector Machine (SVM), the method classifies urban structures such
as shops, porches, etc. Tsai et al. (2014) employed OpponentSIFT (Van De Sande et al.
2009) as image features and created a codebook using clusters of BoW features. The
recognition was conducted using distributional clustering. A similar strategy was imple-
mented by Rupali and Patil (2016), in which SIFT descriptor and clustering were used. The
proposed two-phase framework recognizes the on-premise signs of business entities
using street view images. Li and Zhang (2016) used the GSV images of New York City to
differentiate single-family buildings, multi-family buildings, and non-residential buildings.
Feature descriptors such as GIST, HoG, and SITF-Fisher were implemented for classifica-
tion. It was demonstrated that the SIFT-Fisher descriptor achieved the best accuracy of
91.82% on classifying residential and non-residential buildings.

Besides the aforementioned feature engineering methods, deep networks, especially
CNN models pre-trained on large-scale data sets, have been broadly used for building
function classification. Movshovitz-Attias et al. (2015) created a large training data set
using an ontology-based labeling method, which was used to learn multi-label, fine-
grained storefronts. A CNN model based on GoogLeNet was trained with ImageNet (Deng
et al. 2009) and fine-tuned using street view images. Wang et al. (2017) employed AlexNet
(Krizhevsky et al. 2012) to classify stores from street view images. Kang et al. (2018) used
a CNN model trained with Place2 to filter out images irrelevant to buildings and employed
pre-trained deep networks including AlexNet, ResNet18, ResNet34, and VGG16 for build-
ing classification. Hoffmann et al. (2019) performed a five-class classification using geo-
tagged images from Flickr and supplementary building polygons from OSM. A spatial
nearest neighbor classifier was developed to assign images to buildings. A VGG16 model
pre-trained with ImageNet was adopted for feature extraction and a logistic regression
classifier trained using SAGA optimizer (Defazio et al. 2014) was applied to make the final
prediction.

Object detection has been employed for building classification. Hoffmann et al. (2019b)
used a ResNet50 based the Single Shot MultiBox Detector (Liu et al. 2016) trained with the
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COCO data set (Lin et al. 2014) to detect the frequently appeared objects in social media
images. The rasterization was performed by counting the detected objects, the mutual
information between the object frequency and the function of the nearby buildings was
computed. The study found a strong correlation between the object counts in social
media images and the building functions. Zhao et al. (2020) devised a ‘Detector-Encoder-
Classifier’ network to detect buildings in GSV images using object detectors (Ren et al.
2015, Cai and Vasconcelos 2018), which were fed into a Recurrent Neural Network (RNN)
for urban land-use classification. A recent study by Sharifi Noorian et al. (2020) imple-
mented a framework to classify the retail storefronts using GSV images. YOLOv3 (Redmon
and Farhadi 2018) was applied to detect the storefronts, then ResNet pre-trained using
Places365 data set was used to further perform the classification.

Table 4 summarizes the methods for building classification. Among the available
imagery data, street view images, especially GSV images, serve as a major source of
proximate sensing data for building classification. Besides using conventional image
features, studies conducted by Movshovitz-Attias et al. (2015), Wang et al. (2017) and
Hoffmann et al. (2019) adopted CNN models that follow an end-to-end design and, hence,
integrate feature extraction with classification. Multi-functional buildings (e.g. apartment
buildings with restaurants on the ground floor) pose greater difficulty in comparison to
the single functional ones, which appear often in large metropolitan and dense urban
areas. The development of multi-label classification could be responsive to such a unique
problem. In addition, leveraging interior photographs demonstrated the potential for
fine-grained building classification but calls for further exploration.

3.2. Aggregation of proximate sensing images

The proximate sensing images are largely diverse in contents, perspectives, and field of
view. Imagery data from online social networks and mapping services facilitated the
practicability of aggregating various proximate sensing images to reform urban land-
use classification and segmentation (Yuan et al. 2021). Leung and Newsam (2012)
explored the Flickr images of two university campuses. Geo-tagged images are grouped
based on the spatial locations, contributor, and acquisition time. Text annotations were
used as auxiliary data for training an SVM classifier. Images taken from the building
interior and surrounding areas provide additional clues of human activities and, hence,

Table 4. Building classification methods. ‘SVI’ denotes unspecified street view images and ‘GSV’
denotes Google street view images.
Method Data # of Class Classifier Feature

Zamir et al. (2011) SVI 2 Levenshtein Dist. Text, Gabor
Iovan et al. (2012) SVI 4 SVM SIFT, BoW, BOSSA
Wang et al. (2017) SVI 8 AlexNet Deep features
Tsai et al. (2014) GSV 62 Thresholding SIFT
Movshovitz-Attias et al. (2015) GSV 208 GoogLeNet Deep features
Rupali and Patil (2016) GSV 62 Thresholding SIFT
Li and Zhang (2016) GSV 4 SVM GIST, HOG, SIFT
Kang et al. (2018) GSV 8 AlexNet, ResNet, VGG Deep features
Zhao et al. (2020) GSV 4 Cascaded R-CNN, RNN Deep features
Sharifi Noorian et al. (2020) GSV 24 YOLOv3, ResNet Deep features
Hoffmann et al. (2019) Flickr 5 Logistic Regression Deep features
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can be used as auxiliary data sources. Zhu and Newsam (2015) extended the method by
differentiating indoor and outdoor images with a classifier trained with the SUN data set
(Xiao et al. 2010) and extracting semantic features using a pre-trained CNN model. The
aggregation was achieved by majority voting. Fang et al. (2018) integrated OSM data with
geo-tagged images from social networks for urban land-use classification. The urban
space is divided using the hierarchical urban street networks. Object Bank (OB) (Li et al.
2010) was used to extract features and predict labels to the individual image. The land-use
type of each parcel is generated by the weighted sum of the image classes within the
parcel. Chang et al. (2020) leveraged the semantic segmentation of GSV images to
construct a representation for urban parcels. The features from GSV, Luojia-1, Sentinel-
2A, and Baidu POIs were integrated. A random tree was implemented for classification.

To enrich the training data for the employment of deep networks, images from multi-
ple platforms are often used. Tracewski et al. (2017) employed VGI images from Flickr,
Panoramio, Geograph, and Instagram. A CNN trained with the aggregated data sets was
fine-tuned for land-use classification. Zhu et al. (2019) built a large-scale, fine-grained
land-use data set that include images from Flickr and Google Images. A two-stream model
was developed for object recognition and scene recognition. The object stream was
a CNN model pre-trained with ImageNet and the scene stream is another CNN model pre-
trained with the Places365 data set (Zhou et al. 2014). Srivastava et al. (2018b) adopted
CNN models for the task of multi-label building function classification. The building labels
were derived from Addresses and Buildings Databases (Ministry of Infrastructure and the
Environment 2020). Features of three street view images of different perspectives at each
street location were extracted using a pre-trained VGG16 model for classification. It was
demonstrated that aggregated network outperforms the uni-modal network and the
vector stacking method. Followup studies (Srivastava et al. 2018a, 2020) demonstrated
that using multiple images at the same location improves the accuracy of land-use
classification.

Table 5 summarizes the methods that aggregate multiple approximate sensing images
for urban land-use classification. Besides the conventional semantic features, BoW and OB
are used for feature extraction. The dominant strategies for aggregation include feature
level concatenation and averaging and decision level majority voting. The key motivation
is that each image represents only a partial view of the land unit; hence, aggregating
multiple views from different perspectives results in an informed decision. Apart from
multi-perspective images, Leung and Newsam (2012) leveraged text information from

Table 5. Methods of land-use classification that combine proximate sensing images. GSV denotes
Google Street View images; GI denotes Google Images; Deep represents deep features; Ave. denotes
the average aggregator; Con. stands for concatenation.

Feature Level Fusion Decision Level Fusion

Method Source of Data # of Class Feature Strategy Classifier Strategy

Fang et al. (2018) Flickr 5 OB – SVM Voting
Zhu and Newsam (2015) Flickr 8 Deep – SVM Voting
Zhu et al. (2019) Flickr/GI 45 Deep – ResNet Ave.
Leung and Newsam (2012) Flickr 3 BoW Ave SVM –
Srivastava et al. (2018a) GSV 13 Deep Ave SVM, MLP Voting
Srivastava et al. (2018b) GSV 9 Deep Con. VGG16 –
Srivastava et al. (2020) GSV 16 Deep Ave/Max VGG –
Chang et al. (2020) GSV 5 Numeric Con. – –
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Flickr as an auxiliary source of information, which demonstrated the feasibility of inte-
grating dramatically different information for improved performance.

3.3. Integrating images of different perspectives

An intuitive way to integrate images of different perspectives is by constructing a pixel-
level land-use map. Workman et al. (2017) combined overhead and proximate images for
land-use, building function classification, and building age estimation. The data set
consists of GSV, Bing Map, and official city planning information. Two pre-trained VGG-
16 models were used to extract features from street view images as well as overhead
images. Hypercolumn was extracted from the feature maps using PixelNet (Bansal et al.
2017). It was demonstrated that the top-1 accuracy of land-use classification by combin-
ing overhead and proximate sensing images achieved an improvement of 11.2%. Cao and
Qiu (2018) extracted the features of street view images using PlacesCNN and used
Nadaraya-Watson kernel regression for spatial interpolation. After constructing the
ground feature map, a SegNet (Badrinarayanan et al. 2017) based network is used to
integrate the overhead imagery and ground feature map and perform the land-use
classification. The proposed network contains two VGG16 based encoders that produce
a pixel-level urban land-use map with a decoder. Feng et al. (2018) developed a multi-
view CNN for pixel-level segmentation. In this network, lower-order potentials were used
for processing overhead images and higher-order potentials were sued for proximate
sensing images. Feature stacking was used to achieve the fusion of proximate sensing and
overhead images.

An alternative strategy is deciding land-use types for each parcel. Zhang et al. (2017b)
developed an urban land-use data set including overhead LiDAR, high-resolution orthoi-
magery (HRO), GSV, and parcel data. The method assumes that the existence of text in the
street view images is an essential indicator to differentiate residential and non-residential
buildings, which was achieved by classifying GSV images for text detection. The classifica-
tion accuracy achieved an improvement of 29.4% in classifying mix residential buildings.
Huang et al. (2020) applied pre-trained DeepLabV3+ (Chen et al. 2018) and ResNet-50 (He
et al. 2016) on satellite and GSV imagery to learn land cover proportion and scene
category of each parcel. Features extracted from building footprint, POI, and check-in
data were fed into an XGBoost classifier for urban land-use classification.

Research has been conducted to associating proximate sensing images to urban
objects or buildings for land-use mapping. Srivastava et al. (2019) associated the GSV
images with urban-object footprints extracted from OSM. The proposed method inte-
grated overhead and proximate sensing images with a two-stream CNN model: a patch-
based classification (Penatti et al. 2015) for extracting features from overhead images and
a Siamese model (Bromley et al. 1994) for proximate sensing images. It was demonstrated
that multi-model CNN models outperform uni-modal CNN models. The overall accuracy
was at 75.07%. Hoffmann et al. (2019a) use the building function information provided by
OSM and associate it with corresponding GSV and overhead images. Two fusion strategies
were implemented: geometric feature fusion and decision fusion. Geometric feature
fusion follows the two-stream model and the decision-level fusion model is based on
model blending and stacking. The experiments demonstrated the decision fusion out-
performed the feature fusion model.
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Table 6 summarizes the methods that integrate images acquired from different per-
spectives (i.e. proximate sensing images and remote sensing images). Most of the meth-
ods extract and combine features from street view and satellite images via concatenation.
Hoffmann et al. (2019a) developed a method for both feature level and decision level
fusions. In the proposed method, decision fusion was achieved by tallying class scores.
The advantage appears to be incremental. Besides satellite images, LiDAR data were also
used. Yet, the results are very limited.

4. Conclusion

4.1. Discussion

Table 7 summarizes the methods for land-use classification. The column ‘number of
Images’ reports the number of proximate sensing images used in the studies. The
numbers in italic are precision instead of accuracy. The results by Li and Zhang (2016)
report two cases: residential building vs non-residential building and single-family build-
ing vs multi-family building. Hence, the accuracy is reported separately. In the studies
conducted by Workman et al. (2017), the accuracy includes the combination of the
number of classes and the number of examples used. In the case of Cao et al. (2018)
and Srivastava et al. (2019), two data sets from different locations were used in the
evaluation, which produced different results.

We organize the methods according to the problems they address and the primary
data sets used. The experimental settings of the evaluation (e.g. number of classes and
training images) vary greatly, which makes it difficult to draw a conclusion on the state-of-
the-art performance. From the perspective of applications, the average and median
accuracy of building classification are 75.15% and 76.21%, respectively, and the average
and median precision of building classification are 67.55% and 68.6%, respectively. For the
ground-view aggregation, the average and median accuracies are 65.31% and 69.05%,
respectively. For cross-view integration, the average and median accuracies are 68.01%
and 74.87%, respectively. It is clear that when a large number of classes exists (e.g. 20 or
more classes), the average accuracy is inferior to the cases where a smaller number of
classes needs to be differentiated. For example, in the case of a large number of classes,
the best accuracy for building classification is 45.01%, which is less than half of the best
accuracy of the cases with a small number of classes.

Table 6.Methods of land-use classification that combine data of cross-view modalities. Prox. and Over.
denotes proximate and overhead data, respectively. Strat. stands for strategies used in the corre-
sponding method. GSV denotes Google Street View images. Deep represents deep features. Con.
stands for concatenation. A/C denotes the average and concatenation.

Feature Fusion Decision Fusion

Method Prox. Data Overhead Data # of Class Feature Strat. Classifier Strat.

Zhang et al. (2017a) GSV LiDAR/Sat. 7 Numeric Con. RF –
Workman et al. (2017) GSV Satellite 206 Deep Con. MLP –
Workman et al. (2017) GSV Satellite 11 Deep Con. MLP –
Cao et al. (2018) GSV Satellite 13 Deep Con. SegNet –
Srivastava et al. (2019) GSV Satellite 16 Deep Con. VGG –
Hoffmann et al. (2019a) GSV Satellite 4 Deep A/C VGG A/C
Huang et al. (2020) GSV Satellite 8 Deep Con. XGBoost –
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Although accuracy and precision are usually reported in the reviewed papers, the
overall accuracy or precision could be misleading in multi-class classification. It is possible
that the overall accuracy might be quite high, but one class or a few classes have much
greater errors. If the accuracy of those very classes is the most important to the user, the
results are unacceptable despite the high overall accuracy. Among the reviewed methods,
when a small number of classes exists, the accuracy could be greater than 90%. However,
the average and median accuracy among all (without considering the factors listed in
Table 7) are 69.1% and 74.3%, respectively. It is expected that this median accuracy is
improved in future studies.

The gap between rich data sets and lack of labeled examples makes data annotation
a pressing need. The adopted land-use types, however, are highly diverse. As shown in
Table 7, the number of classes ranges from two up to more than two hundred. Most
studies adopt two ways to define land-use types for proximate sensing images: 1) a data-
driven approach that defines land-use types based on the function of the structures in the
image (Zhu and Newsam 2015) and selects the proximate sensing images that fit the land-
use types (Kang et al. 2018, Zhao et al. 2020), and 2) a systematic approach that leverages
the published urban land-use data to design land-use types, e.g. Workman et al. (2017)

Table 7. Accuracy/precision (%) comparison of land-use classification methods using proximate
sensing images. ‘Number of Images’ only includes the number of proximate sensing images used in
corresponding researches. SVI denotes unspecified street view images. GSV denotes Google street
view images. GI stands for Google Images. The entries Enclosed in parentheses indicate precision is
reported instead of accuracy.
Problem Method Source of Data # of Classes # of Images Acc. (Prec.)

Zamir et al. (2011) SVI 2 129,000 70.00
Li and Zhang (2016) GSV 2 1,048 74.30
Li and Zhang (2016) GSV 2 1,048 91.82
Iovan et al. (2012) SVI 4 1,516 76.21
Wang et al. (2017) SVI 8 4,636 93.60

Building Sharifi Noorian et al. (2020) GSV 24 1,200 45.01
Classification Kang et al. (2018) GSV 8 19,658 (59.00)

Hoffmann et al. (2019) Flickr 5 343,600 (67.00)
Zhao et al. (2020) GSV 4 19,070 (81.81)
Rupali and Patil (2016) GSV 62 4,649 (68.86)
Tsai et al. (2014) GSV 62 4,649 (68.60)
Movshovitz-Attias et al. (2015) GSV 208 1,300,000 (63.00)
Fang et al. (2018) Flickr 5 24,835 76.50
Chang et al. (2020) GSV 5 – 79.13

Ground-View Zhu and Newsam (2015) Flickr 8 37,784 76.00
Aggregation Srivastava et al. (2018b) GSV 9 – 44.41

Srivastava et al. (2018a) GSV 13 3,4261 69.05
Srivastava et al. (2020) GSV 16 4,4957 62.52
Zhu et al. (2019) Flickr/GI 45 58,418 49.54
Zhang et al. (2017a) GSV 7 – 77.50
Huang et al. (2020) GSV 8 660,000 74.20
Workman et al. (2017) GSV 11 139,327 77.40
Workman et al. (2017) GSV 11 38,603 70.55

Cross-View Cao et al. (2018) GSV 13 139,327 78.10
Integration Cao et al. (2018) GSV 13 38,603 74.87

Srivastava et al. (2019) GSV 16 44,957 73.44
Srivastava et al. (2019) GSV 16 9,908 75.07
Workman et al. (2017) GSV 206 38,603 34.13
Workman et al. (2017) GSV 206 139,327 44.88
Hoffmann et al. (2019a) GSV 4 225,036 (76.00)
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followed the documentation of New York City Department of City Planning and Zhu et al.
(2019) adopted the Land Based Classification Standards to generate land-use types. The
data-driven approaches provide a specialized set of classes for the available data, whereas
systematic approaches are based on standardized land-use conventions that are mostly
uniform and avoid inconsistency.

Proximate sensing images, especially VGI data are often biased to the prosperous areas
of the cities, such as landmarks and attractions. This leads to imbalanced data and
negative impacts on learning. Strategies to circumvent this problem include gathering
more data from unpopular regions (Srivastava et al. 2018a, 2018b) and integrating
supplemental data sets (Zhu and Newsam 2015, Zhu et al. 2019). A related problem is
a gap between land-use maps and sparsely distributed VGI images for pixel-level land-use
classification (Fang et al. 2018). Kernel regression and density estimation are used to
convert the imbalanced image features into a dense feature map that is aligned with the
pixel-level land-use map (Workman et al. 2017, Feng et al. 2018, Cao and Qiu 2018).

With the vigorous development of deep learning methods, CNNs and the variants have
been widely adopted and extended for both data preparation (Vargas-Muñoz et al. 2019)
and land-use classification. The dominant strategy of using deep networks is fine-tuning
a pre-trained model with proximate sensing examples, a.k.a., transfer learning strategy.
The rationale is two-fold: lack of a sufficiently large training set and high computational
demand for training from scratch. Transfer learning addresses the problems fairly success-
fully. However, models trained with a data set of one problem are unlikely to be optimal to
address a different problem (Qiao et al. 2020). Our understanding of the capability of
transfer learning is limited. For example, questions such as what the criteria are to ensure
the success of transfer learning and how much refinement is needed to align the model
with the new problem demand further investigations.

A loosely related but important aspect of land-use analysis using proximate sensing
data is the ethical implication. The collection and sharing of proximate sensing data
involve privacy and trust of anonyms. With a wide application of smartphones and dash-
cams, images with embedded metadata are collected automatically, which are shared via
online social networks. In addition, sensitive personal information such as license plates
and biometric data is captured without consent. Enterprises have developed policies and
measures to address the privacy issues by blurring pedestrian faces and license plate
numbers and allowing users to submit requests to remove or obfuscate personal informa-
tion, e.g. face and home view. A similar practice is implemented in platforms such as
OpenStreetCam. Another aspect is related to the commitment and professionalism of the
contributors. The open platforms that allow users to upload images and videos voluntarily
face challenges in ensuring data quality. Users contribute to data without risking the
irrevocable consequences. This necessitates the data cleaning process for using imagery
data from open platforms as well as studies to evaluate the quality of data (Mahabir et al.
2020b).

4.2. Summary and future work

The urban landscape is shaped by the activities of the inhabitants. The emergence of
proximate sensing images has spurred many inspiring studies for better urban land-use
analysis. This paper presents the proximate sensing data sets and methods for urban land-
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use analysis. Despite the great advancements, urban land-use analysis using proximate
sensing images remains a research area with many technical challenges. To date, well-
annotated data sets suitable for method development and evaluation are very limited.
The voluntary nature of most proximate sensing data sets calls for development and
solutions to improve data quality and data annotation. The demand for inclusive, con-
sistent, high-quality benchmark data is a pressing need. Automatic urban land-use
annotation, refinement, sorting, and alignment of labels remain open challenges and non-
trivial tasks.

Several data refinement techniques were developed such as leveraging text, location,
polygonal outline information to remove unusable data. Alternatively, using a pre-trained
and fine-tuned model to filter out the irrelevant images is an acceptable approach. To
automate the process of generating land-use annotations (labels), OSM tagging, and POI
information demonstrated effectiveness in the form of auxiliary information for urban
land-use labeling. Unsupervised or semi-supervised learning strategies need further
investigation and validation.

To leverage complementary remote sensing data, methods that integrate images of
different perspectives and modalities have been developed. In addition to the conven-
tional image features such as SIFT, HOG, GIST, and BoW, deep features have been
extensively explored. Image features are extracted and fused to form a consolidated
input to the classifier. Alternatively, decision level fusion combines land-use predictions
from multiple classifiers via majority voting or Softmax integration. The studies demon-
strated the effectiveness of using proximate sensing images for urban land-use analysis,
especially for differentiating residential and commercial entities and fine-grained urban
land-use classification.

In addition to developing annotation-independent frameworks, introducing supple-
mentary data, e.g. Google Images filtered by keywords, or the land-use related entries in
large-scale scene data sets could help to boost the model performance for land-use
classification tasks. The majority of deep learning-based methods rely on the pre-
trained CNN. Extending recent, advanced network design strategies such as multi-scale
frameworks or attention modules are promising for improving model performance.
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