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Abstract. Our study presents a probabilistic non-rigid point set registration method to deal with
large and uneven deformations. Our method treats the registration as a density estimation prob-
lem. In our method, we add two key constraints to enforce landmark correspondences and pre-
serve local neighborhood structure. We assume that the landmarks, which represent the salient
points in the point sets, are given or can be detected using keypoint detectors such as scale-
invariant feature transform or MeshDOG. By enforcing landmark correspondences, we preserve
the overall global shape of the point set with significant deformations. Furthermore, by lever-
aging stochastic neighbor embedding, we incorporate constraints to preserve local neighborhood
structure, which penalizes incoherent transformation within a neighborhood. Our experimental
results in both 2D and 3D datasets show that our method outperforms state-of-the-art methods in
a large degree of deformations. In particular, quantitative results show that the error is 29% better
than the second-best result (from the state-of-the-art methods). Our analysis shows that a
relatively small number of landmarks is sufficient to deal with large deformations. Finally, our
study shows that our method is computationally comparable to state-of-the-art methods. © 2021
SPIE and IS&T [DOI: 10.1117/1.JEI.30.3.031202]
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1 Introduction

Registration of point set identifies correspondences between two sets of points, from which a
transformation function is derived to achieve alignment. It is a fundamental task in many com-
puter vision and pattern recognition applications such as range image-based human pose
tracking, three-dimensional object reconstruction,1 transfer of information,2,3 and medical image
registration.4 In such applications, however, large deformations make point set registration a
challenging task.5

To address non-rigid deformation, coherent point drift (CPD) was proposed to regulate the
transformations of points within a neighborhood.6 This method assumes that the transformation
for points that are in close vicinity is highly similar. Ge et al.7 and Ge and Fan8 extended the CPD
method by adding constraints to handle non-rigid and articulated deformations. In their method,
the authors added local linear embedding (LLE)9 and the Laplacian coordinate (LC) to maintain
local neighborhood structure and scale, respectively. Several other methods have introduced
techniques to preserve the local neighborhood structure of point set.10–12 Ma et al.11 used feature
descriptors such as shape context13 and fast point feature histogram14 to ensure the local structure
of point subsets. Despite the success demonstrated by the aforementioned methods, obtaining
accurate correspondences between point sets and maintaining the shape and structure in the case
of large and uneven deformation after transformation is still an open challenge in non-rigid point
set registration. In the applications of tracking humans in actions, for example, deformation from
movements of limbs is common. As a consequence, the body shape appears dramatically
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differently, whereas the local structure of a rigid body part remains unchanged. So, in such large
uneven deformations during registration, maintaining local neighborhood structure of point set
and avoiding getting trapped on local minima is critical for accurate results.

In this paper, we present a non-rigid point set registration method by incorporating con-
straints of corresponding landmarks to register point sets that represent a large deformation.
Landmarks represent the salient points in point sets and can be identified using methods such
as scale-invariant feature transform15 or MeshDOG.16 In our evaluation, we manually select land-
marks in the point clouds and their correspondences. The correspondence between landmarks
enables us to regulate the optimization process. In addition, by leveraging stochastic neighbor
embedding (SNE),17 we aim to penalize incoherent transformation within a neighborhood and
hence preserve the local structure.

The remainder of this paper is organized as follows: Section 2 reviews the related methods for
non-rigid point set registration. Section 3 presents our proposed method for non-rigid point set
registration. Section 4 discusses our experimental results and comparison with state-of-the-art
methods. Section 5 concludes this paper with a summary.

2 Related Work

Iterative closest point (ICP) is one of the earliest methods for rigid point set registration.18,19 The
ICP method is very popular due to its simplicity and computational efficiency. The method has
two iterative steps: first, compute the closest point correspondences from one point set to another
point set, and then obtain the best transformation parameters using the mean least square prob-
lem given the correspondences. The method iterates these two steps until convergence. Later,
many modifications to the ICP have been proposed,20 and it has been extended to support non-
rigid registration.21 Chui et al.22,23 proposed a general framework based on robust point
matching.24 In this framework, the authors used thin-plate spline (TPS) as a non-rigid spatial
mapping, which performs a soft assignment, instead of binary assignment, for point correspon-
dence and employs deterministic annealing to favor global rigid transformations at the early
stage of the optimization and local, non-rigid transformations in a later stage using thin-
plate-splines. Tin et al.25 proposed kernel correlation by extending the correlation technique
to point set registration. This method also used soft correspondence assignment, and the corre-
lation of the two kernel density estimates was the main part of the cost function. A similar strat-
egy was used by Jain et al.,26 in which the point sets were modeled as Gaussian mixtures, and the
registration problem was formulated as minimizing the L2 distance between the two Gaussian
mixtures.

One popular method for non-rigid registration is a probabilistic approach in which the regis-
tration is mapped into density estimation based on Gaussian mixture model (GMM). In this
approach, GMM centroids are represented by one point set (template or model) and the other
point set represents the input data. The template points are transformed with prior constraints so
that the point sets are aligned as much as possible by maximum likelihood fashion. Several of the
earliest methods using this probabilistic technique are in.27,28 The authors in these methods used
GMM to identify hand-printed digits. Initially, individual GMM centroids are equally spaced
around the spline and the model is fitted to the image using the expectation–maximization
(EM) technique. Chui et al.29 proposed a general point matching framework using GMM, called
mixture point matching, for both rigid and non-rigid (TPS-based) registration under the presence
of noise and outliers. CPD is a robust probabilistic point set registration method based on GMM;
the key idea is moving points coherently to maintain the topological structure of the point set6

based on the motion coherence theory.30 Extensions to the CPD have been proposed to preserve
point set structure and the intrinsic geometry of the data.7,8,11,12,31 Panaganti et al.12 proposed
using proximity weight between the points using shape context13 to calculate correspondences
and a graph-Laplacian regularization term to preserve the intrinsic geometry of the point set. Ge
et al.7 and Ge and Fan8 extended the CPD method, called local structure preservation (LSP), to
handle complex non-rigid and articulated deformations by adding two regularization terms,
LLE9 and LC, to maintain the local neighborhood relationship and scale (size), respectively.
Instead of using equal membership probabilities to the mixture model such as that in some
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works,6,8 recent methods have assigned membership probabilities to the mixture model; they
show robustness to noises, outliers, and occlusions.11,31 The idea is to match similar local neigh-
borhood structures between point sets with the help of feature descriptors.13,14,32 However, these
methods are vulnerable to a local minimum in case of large and uneven deformations. Also the
assumption of similar local structure in both point sets is problematic as distortions and stretches
are always present in real data.

Another registration strategy is point matching, which contains two steps.33–36 First, a set of
initial correspondences is created using feature descriptors matching, which usually contains a
large number of incorrect correspondences, outliers. Second, points are transformed with the
constraint to identify the true correspondences and filter out the outliers. Ma et al.33 proposed
a method, called vector field consensus (VFC), that created a set of putative correspondences
using a local feature descriptor, such as shape context13 for 2D and MeshHOG37 for 3D, and then
identified correct correspondences by interpolating a smooth vector field between the point sets.
Later, the VFC method was extended with manifold regularization38 by Refs. 34 and 35, in
which the manifold regularization was used to preserve the intrinsic structure of the point set.

Other methods that used constraints to preserve local neighborhood structures or intrinsic
geometry of point sets for robust point set registration are in Refs. 10 and 39. Zheng and
Doermann10 proposed a method for a general point matching problem to preserve local neigh-
borhood structures using a graph matching technique. It used shape context13 for good initial-
ization to avoid local optimum for 2D point sets but was unclear on 3D point sets. Wang et al.39

presented context-aware Gaussian fields that used inner-distance shape context32 for initial cor-
respondences between the point sets and added the Laplacian regularized regularization term to
preserve the intrinsic geometry of transformed point set. Learning-based registration methods
have also been proposed.40 Wang at el.41 proposed a learning-based method, called deep closest
point, to address the issues of the classical ICP method such as stalling in suboptimal local
optima.

3 Method

Our method takes two sets of points as inputs and corresponding landmarks as a strong con-
straint. The optimization process leverages the GMM that enforces both local coherence using
SNE and global constraint through landmarks.

3.1 Problem Formulation

Let X and Y denote two sets of points in a D-dimensional space. We have X ¼ fx1; x2; : : : ; xNg
and Y ¼ fy1; y2; : : : ; yMg, where M and N denote the number of points of the respective set.
Assume noise follows the uniform distribution, i.e., p�

n ¼ 1
N; the probability density function of

point xn given Y is as follows:

EQ-TARGET;temp:intralink-;e001;116;258pðxnÞ ¼
XM
m¼1

pðxnjymÞpðymÞ þ p�
n; (1)

where pðymÞ ¼ 1
M. We assume the moving point set Y as the GMM centriods and the other point

set X as the fixed point set. Further, we also assume equal isotropic covariances σ2I for all GMM
components, where I is an identity matrix. Let γ ∈ ½0;1� denote the rate of noise and outlier in the
observed dataset X, and Eq. (1) is rewritten as follows:

EQ-TARGET;temp:intralink-;e002;116;158pðxnÞ ¼
ð1 − γÞ
M

XM
m¼1

1

ð2πσ2ÞD∕2 exp

�
−
kxn − ymk2

2σ2

�
þ γ

N
: (2)

Given that the points in X are independent and identically distributed, the joint probability of
X is
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EQ-TARGET;temp:intralink-;e003;116;735pðXÞ ¼
YN
n¼1

pðxnÞ: (3)

By taking the negative logarithm on both sides of Eq. (3), we have

EQ-TARGET;temp:intralink-;e004;116;682E ¼ − ln L ¼ − ln pðXÞ ¼ −
XN
n¼1

ln pðxnÞ; (4)

which can be regarded as an error function; minimizing E is then equivalent to maximizing the
likelihood L.42 Following the work in Ref. 42, we use the EM algorithm to find the best set of
parameters, θ and σ2, of the mixture model for maximum likelihood. We minimize the following
function after dropping terms independent of the parameters:

EQ-TARGET;temp:intralink-;e005;116;583Qðθ; σ2Þ ¼ 1

2σ2
XN;M

n;m¼1

pi−1ðymjxnÞkxn − τðymÞk2 þ
NPD
2

ln σ2; (5)

where

EQ-TARGET;temp:intralink-;e006;116;520pði−1ÞðymjxnÞ ¼
exp

�
−1
2

����xn−τðymÞ
σði−1Þ

����
2
�

P
M
k¼1 exp

�
− 1

2

���� xn−τðykÞ
σði−1Þ

����
2
�
þ C

; (6)

and C ¼ γ½2πσ2ði−1Þ�D∕2M∕½ð1 − γÞN�, τ is a transformation function that maps a point ym in Y to

a new spatial location such that it coincides with a point xn in X, i.e., xn ¼ τðymÞ,
and NP ¼ PN;M

n;m¼1 p
ði−1ÞðymjxnÞ ≤ N.

3.2 Global Shape Constraint Using Landmark Correspondences

Given a set of landmarks ˙X ∈ X and _Y ∈ Y, we have the correspondence between each pair of
points ˙xj ↔ ˙yj, where ˙xj ∈ ˙X and ˙yj ∈ ˙Y. Hence, our optimal transformation function must
minimize the total distance between all pairs of the corresponding _xj and _yj as follows:

EQ-TARGET;temp:intralink-;e007;116;326EG ¼
X
j

k˙xj − ˙yjk2: (7)

To avoid possible singularity in the matrix inverting operation, we revise Eq. (7) as follows:

EQ-TARGET;temp:intralink-;e008;116;270EG ¼
XM;N

m;n

Am;nkxn − τðymÞk2; (8)

whereAM×N is landmark coefficient matrix;Am;n ¼ 1 if ðxn; ymÞ ∈ L, otherwise 0; and L is a set
containing all pairs of landmark correspondences.

3.3 Local Neighborhood Structure Constraint

To keep points within a neighborhood relatively close after transformation and points far apart
distant, SNE17 is employed. Let rij be the probability that two points yi and yj are neighbors
before transformation and sij be the probability that these two points become neighbors after
transformation τ. A constraint on local structure is represented as the minimization of the cost
function, which is the sum of Kullback–Leibler divergences between rij and sij distributions
over neighbors of each point:17
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EQ-TARGET;temp:intralink-;e009;116;735EL ¼
X
ij

rij log
rij
sij

¼
X
i

KLðRi

����SiÞ; (9)

where

EQ-TARGET;temp:intralink-;sec3.3;116;684rij ¼
expð−β2kyi − yjk2ÞP

k≠i
expð−β2kyi − ykk2Þ

and sij ¼
exp½−kτðyiÞ − τðyjÞk2�P

k≠i
exp½−kτðyiÞ − τðykÞk2�

:

3.4 Optimization and Algorithm

We define the transformation function τ, as the initial position ym, plus a displacement function
fðymÞ, τðymÞ ¼ ym þ fðymÞ. We adopt the following transformation function:6

EQ-TARGET;temp:intralink-;e010;116;568T ¼ τðY;WÞ ¼ YþGW; (10)

whereGM×M is a kernel matrix with elements gij ¼ Gðyi; yjÞ ¼ expð− 1
2
k yi−yj

β k2Þ andWM×D ¼
ðw1; : : : ;wMÞT is a coefficients matrix. To maintain topological structure of the point set,
we enforce motion coherence, so the transformation model moves neighborhood points
coherently:6,30

EQ-TARGET;temp:intralink-;e011;116;484EMC ¼ trðWTGWÞ: (11)

The objective function of our method integrates motion coherence, local, and global con-
straints in Eq. (5) as follows:

EQ-TARGET;temp:intralink-;e012;116;428Qðθ; σ2Þ ¼ 1

2σ2
XN;M

n;m¼1

pi−1ðymjxnÞkxn − τðymÞk2 þ
NPD
2

ln σ2 þ λ1
2
EMC þ λ2

2
EL þ λ3

2
EG;

(12)

where λ1, λ2, and λ3 are regularization weights for motion coherence, local structure, and cor-
respondence constraints, respectively.

We obtain the coefficient matrixW by taking the derivative of Eq. (12) with respect toW and
setting it equal to zero:

EQ-TARGET;temp:intralink-;e013;116;316½diagðP1ÞG þ σ2λ1Iþ σ2λ2JGþ σ2λ3diagðA1ÞG�W
¼ ½PX − diagðP1ÞY − σ2λ2JY − σ2λ3diagðA1ÞYþ σ2λ3AX�; (13)

where 1 denotes a column vector of all ones, I is an identity matrix, diagðvÞ denotes the diagonal
matrix created from the vector v, and

EQ-TARGET;temp:intralink-;sec3.4;116;242J ¼ ½diagðR1Þ − 2Rþ diagð1TRÞ�:

Similarly, we obtain σ2 by taking the derivative of Eq. (12) with respect to σ2 and setting it to
zero

EQ-TARGET;temp:intralink-;e014;116;185σ2 ¼ 1

NPD
ftr½XTdiagðPT1Þ� − 2trðPXTTÞ þ tr½TTdiagðP1ÞT�g; (14)

where trð·Þ refers to the trace of a matrix and NP ¼ 1TP1. Our algorithm is summarized in
Algorithm 1.
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4 Results and Discussion

4.1 Experimental Data and Settings

In our experiments, we use the publicly available 2D dataset43 and 3D human pose dataset cap-
tured by Microsoft Kinect II.44 The 2D dataset contains point sets of tools such as scissors,
pincer, pliers, and knives. Each tool has five different shapes and each shape contains about
17,000 points. In our 2D tools data experiments, we set the parameters of our method as follows:
λ1 ¼ 8.0, λ2 ¼ 1.0, λ3 ¼ 120.0, β1 ¼ 1.0, β2 ¼ 10.0, and the maximum number of iterations of
EM is 50. The 3D human body dataset includes four human subjects with different body shapes
and sizes having poses such as standing and squatting. Each point set consists of more than
12,000 points. In our experiments on this dataset, the parameters of our proposed method are
as follows: λ1 ¼ 2.0, λ2 ¼ 1.0, λ3 ¼ 150.0, β1 ¼ 1.0, β2 ¼ 15.0, and the maximum number of
iterations of EM is 50. In all our experiments, we manually select five landmarks (except in some
experiments, Sec. 4.3, in which we use different numbers of landmarks) in both the tools and
human datasets, and hence landmark correspondences are known. Figure 3 shows the different
landmarks used in the point sets of both datasets. The tools and human point sets were down-
sampled by a factor of 7 and 5 in our experiments, respectively. After downsampling, the number
of points in the tools case is about 2300, and the number of points in the human case is about
2600. We compute the registration error with a normalized Euclidean distance between the point
of the input point set and the corresponding point of the target point set as follows:

EQ-TARGET;temp:intralink-;e015;116;172ε ¼ 1

N

X
i;j

kxi − yjk2; (15)

where xi ∈ X, yj ∈ Y is the estimated corresponding point of xi after registration and N is the
number of points in point set X. We evaluate our method in the following three aspects: (1) the
different degrees of deformation, (2) the different numbers of landmarks, and (3) the impact of
incorrect correspondences between landmarks.

Algorithm 1 The proposed non-rigid point set registration.

1: Input: Point sets X ¼ fx1; x2; : : : ; xNg and Y ¼ fy1; y2; : : : ; yMg

2: Output: Correspondence probability, P, and the transformed point set T

3: Initialization:

σ2← 1
DNM

PM;N
m;n¼1 kxn − ymk2,

W←0

4: Construct: G∶gij←exp
�
− 1

2

���� yi−yj
β1

����
2
�

5: while convergence of Q do

6: E-step:

7: Compute the posterior probabilities pðym jxnÞ for correspondences following Eq. (6)

8: M-step:

9: Update the weight matrix W using Eq. (13)

10: Update T using Eq. (10)

11: Update σ2 using Eq. (14)

12: end while

13: return
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4.2 Robustness with Respect to the Degree of Deformation

We evaluate our proposed method with different degrees of deformations and compare with the
following state-of-the-art methods: CPD,6 LSP,8 and point set registration by preserving global
and local structures11 using both tools and human point sets. We set three degrees of deforma-
tions in both the tools and human datasets: small, medium, and large. In tools, for each tool type,
we select first and second shapes for small deformation, first and fourth shapes for medium
deformation, and first and fifth shapes for large deformation. Similarly, in human cases, we select
three combinations of human poses for different degrees of deformations. In particular, we select
the both hands-down pose versus three other human poses of raising both hands-up for small,
medium, and large deformations [Fig. 2(b)], respectively. In addition, we also select three other
combinations of squat poses in the human point sets for three degrees of deformations. We select
the both hands-up pose versus three other squat poses: squat starting pose, half squat pose, and
full squat pose, see Fig. 1(b) column 1 and 2 for examples of half squat and full squat poses,
respectively.

Figure 1 shows different registration results of the tools and human point sets using our
method. In this figure, the top two rows show the input and template point sets, respectively.
The bottom row shows the registration results of our proposed method. Figure 1(a) shows the
point sets and results of the tools point sets, whereas Fig. 1(b) shows point sets and registration
results of the human point sets. In each case, the input point sets are of great deformation. The
results show very close alignments, which demonstrates the robustness of our proposed method.

Fig. 1 Exemplar registration results of (a) tools and (b) human point set using our method. Top row
shows the input point sets; middle row shows the template point sets; bottom row shows the regis-
tration results by which the template is transformed to align with the input in each column.
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Figure 2 shows the qualitative registration results of both Fig. 2(a) 2D tools and Fig. 2(b) 3D
human body datasets of three degrees of deformation (small, medium, and large) in the top,
middle, and bottom rows, respectively. In this figure, the first two columns are input and template
point sets, whereas the remaining three columns are the registration results of our method, CPD,6

and LSP.8 For the 2D tools dataset, both our method and LSP have better registration results than
CPD in a small degree of deformation. In the medium degree of deformation, CPD fails to main-
tain structure in the upper part of the tool. Our method and LSP exhibit better results than CPD in
this case, but the structure of the tip of the tool (upper part) from our method is better than that of
LSP. Finally, in the large degree of deformation, our method shows better results than the other
two methods; both CPD and LSP completely fail to maintain the shape of the tool. For the 3D
human body dataset, our method and CPD generate more accurate results than LSP in a small
degree of deformation. In the medium degree of deformation, CPD fails to maintain the shape of
the head and has twisted legs, LSP maintains the local structure but is inflexible in this case, and
our method generates an accurate result. For a large degree of deformation, both CPD and LSP
fail to maintain the human body shape, but our method shows better results (but has some arti-
facts in the hand regions). In both datasets, our method shows significantly better results by
maintaining both local and global structures, especially in a large degree of deformation, which
shows the importance of preserving local neighborhood structure and using landmark
correspondences.

Tables 1 and 2 list the quantitative registration errors with respect to different degrees of
deformation and a comparison with the CPD6 and LSP8 methods for the 2D tools and 3D human
body datasets. We have three degrees of deformation: small, medium, and large (an example of
each case is shown in Fig. 2). For each degree of deformation, the best and the second-best
results are highlighted in bold and italic fonts, respectively. Each experiment was repeated five
times. Our method exhibits the smallest registration error [and standard deviation (STD)] in

Table 1 Average registration error using the tools dataset with respect to three degrees of
deformation.

Method

Degrees of deformation

Small Medium Large

Our 2.54 (0.78) 3.11 (1.18) 3.49 (1.61)

CPD 4.78 (2.65) 6.13 (2.89) 7.18 (3.1)

LSP 2.33 (0.41) 4.71 (3.68) 12.98 (17.87)

Fig. 2 Exemplar registration results with three degrees of deformation: results of pair of (a) tool
point sets and (b) human point sets. The left two columns of each figure are the inputs, and the
following three columns are results of our method, CPD, and LSP, respectively.
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almost all cases except the cases of small deformations in both 2D and 3D. In these cases, our
method’s registration error is slightly higher than LSP’s registration error by 0.21 in 2D and
slightly higher than CPD’s registration error by 1.93 in 3D. The average registration errors,
by combining both 2D and 3D deformation results for each method, of our method, CPD, and
LSP are 9.98, 13.98, and 74.26, respectively. Our method has the lowest average registration
error and is 29% better than the second-best result. It is evident that our method has a smaller
registration error (STD) than the other methods as the deformation degree increases.

4.3 Number of Landmarks

We evaluate our method with different numbers of corresponding landmarks in the point sets to
understand the impact of landmarks in registration accuracy. To conduct this experiment, seven
landmarks are identified manually in each point set for correspondence. Figure 3 shows a few
sample point sets with landmarks marked using green dots.

In each point set, we marked up to seven landmarks that are used to conduct experiments. In
this experiment, we select the point sets with large deformations between them (Fig. 4), and the
corresponding landmark pairs are fixed. For example in the human body point sets, we have a
fixed set of the following seven pairs of corresponding landmarks between two point sets: head,
right foot, left foot, right hand, left hand, left elbow, and right elbow, respectively. For each x, we
randomly selected x pairs of corresponding landmarks from the fixed set of landmark pairs.

Table 2 Average registration error using the human body dataset with respect to three degrees of
deformation.

Method

Degrees of deformation

Small Medium Large

Our 16.03 (4.84) 17.21 (6.04) 17.47 (5.01)

CPD 14.10 (5.71) 24.01 (6.91) 27.66 (4.78)

LSP 44.84 (57.29) 174.31 (55.40) 206.36 (17.48)

Fig. 3 Examples of landmarks (depicted with green dots) in our point sets.

Fig. 4 Registration results of our method using different numbers (up to five) of landmarks. The
first two left columns show the input and template point sets, respectively. Columns 3 to 7 show the
results using different numbers of landmarks. Row (a) shows the results of the human body data-
set, and row (b) shows the results of the tools dataset.
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Figure 4 illustrates the registration results using different numbers (up to five) of landmarks in
our method. Figure 4(a) shows the registration results of the human body dataset, and Fig. 4(b)
shows the registration results of the tools dataset. The template and input point sets depict large
deformations. Each row depicts a case with the left two columns showing the input and the
template point sets. The remaining columns in a row show the registration results using an
increasing number of landmark pairs from left to right. Figure 4(a) illustrates a challenging case
with large and uneven deformations between the input and template point sets. When the number
of landmark pairs is <5, the method resulted in poor registration. In human cases, arms and head
are fuzzy or “vaporized.” As the number of landmark pairs reaches five, the results gain sig-
nificant improvement due to more precise shape constraints. This trend is also demonstrated
in the registration of the tools case as shown in Fig. 4(b), but it shows good registration results
even in <5 landmark pairs. In particular, Fig. 4(b) shows improved registration results when the
number of landmark pairs is four or more. Therefore, it is fair to say that the minimum number of
landmarks needed depends on the degree of disparity between the point sets.

Table 3 presents the average registration errors and standard deviations of our method using a
different number of corresponding landmarks for the 2D tools and 3D human body cases. In the
case of the 2D tools, we choose two shapes of the scissor tool type with a large degree of defor-
mations between them. In the 3D human case, we choose two poses with a large degree of
deformation between the poses of the human datasets. For each number of landmarks used,
we repeated the experiment five times. As the number of landmark correspondences increases,
the registration accuracy of our method also increases in both cases.

Figure 5 shows the reduction of the average registration errors when one additional pair of
corresponding landmarks is used. The curve with triangles depicts the error reduction of tools
point sets, and the curve with solid dots depicts the error reduction of human point sets. It is clear
that, for the tools point sets, the error reduction becomes very small when four or more land-
marks are used. The trend is mostly true for human point sets. However, the error is greatly
reduced when six landmarks are used. This is probably due to the complexity of the human
point sets, i.e., a large degree of 3D deformation.

Table 3 Average registration error of our method with different numbers of landmarks.

Number of landmarks Tools Human

1 4.61 (2.21) 23.2 (1.58)

2 3.13 (1.22) 22.53 (1.98)

3 2.24 (0.03) 20.73 (2.48)

4 2.2 (0.03) 19.27 (3.41)

5 2.19 (0.04) 18.98 (2.99)

6 2.16 (0.03) 16.32 (3.11)

7 2.13 (0.02) 14.67 (2.31)

Fig. 5 Error reduction as additional landmarks are included.
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4.4 Incorrect Landmark Correspondence

To evaluate the impact of incorrect landmark correspondence, we create three incorrect corre-
spondence cases for each dataset and repeat each registration five times. Figure 6 shows the
results of using incorrect correspondences in our registration method. Figure 6(a) shows regis-
tration results of the 2D tools point sets, and Fig. 6(b) shows the registration results of the 3D
human point sets. The first two columns show the inputs, and the corresponding landmarks are
shown in the same color. The third and fourth columns are the registration results of using correct
and incorrect landmark correspondences, respectively. The two symmetric halves of the point
sets in columns 3 and 4 are colored in green and blue for visual comparison.

For the 2D tools dataset, the registration result [fourth column of Fig. 6(a)] of the first
row shows the thin shape of the tool that is twisted in the middle. This is because the left and
right landmark correspondences at the top and bottom regions are swapped between input and
template point sets. In particular, the left tip landmark (yellow) and right tip landmark (black) of
the input point set correspond to the right tip landmark (yellow) and left tip landmark (black) of
the template point set. In contrast, the registration result is accurate, and colored points appear in
the correct region if correct correspondences are used (third column of Fig. 6). Similar incorrect
left and right correspondences between the landmarks at the bottom regions of the tool point set
are used. In the second case (middle row), the registration result is similar to the result of the first
row, i.e., twisted in the middle part of the tool and thin shape as a result of incorrect landmark
correspondences. In the last case (bottom row), not only left and right landmark correspondences
at the top regions but also landmark correspondences at the middle and lower right handle
regions between input and template point sets are swapped. In this case, the registration result
shows an inaccurate shape of the tool with points from different parts of the tool being mixed.

Similarly, for the 3D human body dataset, head region points are fused with the right
shoulder and the upper body is twisted in the top row [fourth column of Fig. 6(b)]. In the middle
row, the upper body part is twisted and points from the head are mixed with the left shoulder. The
last row is highly inaccurate with twisted and fusion of the different parts of the human body.

Table 4 lists the quantitative registration results of using incorrect landmark correspondences
in the three different cases. For the 2D tools dataset, all three cases have similar registration
errors (and STDs.). For the 3D human body dataset, the first two cases have better results than

Fig. 6 Exemplar registration results using incorrect landmark correspondences: results of (a) tool
point sets and (b) human point sets. The left two columns of each figure are the inputs (and cor-
responding landmarks have the same color). The third column shows the registration results using
correct landmark correspondences, and the last column shows the registration results. For visual
comparison, the two symmetric halves of the point sets in columns 3 and 4 are colored in green
and blue; only column 3 results show accurate results.
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the last case. The average registration errors, when all three cases are combined for each dataset,
are 6.78 (2.4) for the 2D tools dataset and 19.74 mm (1.5) for the 3D human body dataset.

4.5 Time Complexity

Table 5 lists the average registration time, the average number of iterations of the optimization
process, and the average time used per iteration of our method and the state-of-the-art methods.
The numbers in the parentheses are the standard derivation. In our experiments, the optimization
terminates when it converges or when the maximum number of iterations is reached. The con-
vergence is decided when the objective values between the adjacent two iterations differ by a
small fraction, which is 10−5.

Overall, both LSP and our proposed method took more time on average. The average time for
CPD is about half of that of the other two methods. This is due to the extra constraints included in
the objective functions of LSP and our method. For our method, constraints on local neighbor-
hood structure and global shape using landmark correspondences are included in our optimi-
zation process. This timing trend can also be observed in the columns of time per iteration.

The number of iterations for all methods reveals the possible cause of the time complexity.
CPD and LSP tend to have an early stop in the optimization process. Such early termination
could account for the inferior registration accuracy (refer to Tables 1 and 2 for details). It is likely
that the objective function of CPD presents less of a contrast between the global and local optima
for the point sets with large deformations, and hence, the optimization process terminates before
the maximum number of iteration is reached. Our method consistently ran until the maximum
number of iterations was reached. It is expected that further optimization could potentially
improve accuracy. On the other hand, a prescribed early stop already achieved superior regis-
tration accuracy.

5 Conclusion

This paper proposes a probabilistic non-rigid point set registration method to register point sets
with large and uneven deformations. The main idea of our method is to enforce two key con-
straints: landmark correspondences and preserving local neighborhood structure. Landmarks

Table 4 Registration results (STDs.) of our method with different combinations
of incorrect landmark correspondences in 2D and 3D datasets.

Incorrect landmark
correspondences pair # Tools Human

1 6.47 (3.06) 16.63 (0.85)

2 7.06 (2.07) 18.35 (1.89)

3 6.83 (2.06) 24.24 (1.99)

Table 5 Average registration time (in seconds), number of iterations, and average time per iter-
ation (in seconds). The number in parentheses is the standard deviation.

Time Number of iterations Time per iteration

Method Tools Human Tools Human Tools Human

Our 88.5 (42.3) 117.1 (21.0) 50 (0.0) 50 (0.0) 1.8 (0.8) 2.3 (0.4)

CPD 25.4 (12.1) 40.1 (7.2) 48.3 (3.7) 50 (0.0) 0.5 (0.2) 0.8 (0.1)

LSP 122.2 (65.2) 99.1 (69.5) 47.8 (7.2) 36.2 (15.4) 2.5 (1.2) 2.4 (1.2)
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represent the salient points in point sets and can be detected using methods such as scale-
invariant feature transform or MeshDOG. The correspondences between landmarks enable
us to regulate the optimization process. In addition, by leveraging SNE, we preserve the local
structure of the point set by penalizing incoherent transformation within a neighborhood.

We evaluate our method using both 2D tools and 3D human datasets with three different
aspects: robustness with respect to the degrees of deformation, number of landmarks in regis-
tration, and impact of incorrect landmark correspondences in registration. Our method achieves
the smallest average registration errors when both tools and human registration results are com-
bined and compared with other state-of-the-art methods. In particular, quantitative results show
that our method is 29% better than the second-best result in deformation experiments. Our results
in the medium and large degree of deformations have high qualities than the CPD and LSP.
Further analysis of using different numbers of landmarks reveals that a relatively small number
of landmarks in our method achieves good registration results. The minimum number of land-
marks needed to achieve a satisfactory registration depends on the degree of disparity between
the point sets. Our investigation on using incorrect landmark correspondences demonstrates the
importance of correct correspondences for accurate registration results. Finally, our study on
registration time reports a competitive computational efficiency of the proposed method in com-
parison with the state-of-the-art methods.
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