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Abstract: Real measurements of power grids are usually limited for research 
and modelling of extreme events such as the impact of typhoons due to 
confidentiality concerns. To overcome the dearth of valuable, trustworthy data, 
this paper proposes an adaptive learning method based on the generative 
adversarial network. To obtain informative examples, the falsely classified 
examples together with examples that are correctly classified with low 
confidence are used to train a GAN for producing synthetic examples to 
reinforce the learning. The new power grid examples are selected according to 
the likelihood of the true data distribution. An evaluation was conducted with 
data acquired by the China Southern Power Grid in Hainan. Most significantly, 
the performance of detecting the occurrence of a power grid fault under the 
impact of typhoons is greatly improved. It was demonstrated that the proposed 
method improved the performance of predicting power grid fault in extreme 
events by 8.9%. Using the modulated GAN network, the synthetic data closely 
follows the distribution of the real data as indicated by large p-values. Our 
method takes minutes to complete training a model, which enables an efficient 
response to disasters with modern computing facilities such as edge computing. 
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1 Introduction 

After natural disasters such as typhoons and flooding hit the coastal cities, restoring 
power is a vital component to disaster response for running hospitals, providing light and 
warmth to citizens, establishing communications, etc. (Elhoseny et al., 2018). There is 
apparently a growing need for credible data to support the risk and sustainability analysis 
of the impact of natural disasters on the complex electricity network (Fan et al., 2016; 
Elhoseny et al., 2014). The rapid development of internet of things introduces new values 
to the existing sensor network in the power grid by injecting smart devices and intelligent 
applications, which improves the quality of data. On the other hand, the real measurement 
of power grids is usually confidential and subject to protection according to regional  
or national regulations or laws such as the Critical Energy/Electric Infrastructure 
Information Regulations (Federal Energy Regulatory Commission, https://www.ferc.gov/ 
legal/maj-ord-reg/land-docs/ceii-rule.asp). To overcome the dearth of valuable data, the 
demand is usually responded by simulation software. However, physical models often 
face challenges of model complexity and deviation from the real measurements. 
Alternatively, model-free methods created from the available, but limited real data are 
promising for generating synthetic data by modelling the behaviour of the real power grid 
system (Yuan et al., 2018). An assumption is usually made that the space between  
two examples of a class is filled with examples of the same class. Hence, sophisticated 
data interpolation methods have been developed and used to augment the real examples 
in ensemble learning methods for circumventing the data imbalance problem (Yuan and 
Abouelenien, 2015). Such an assumption is plausible, but a large portion of the newly 
generated synthetic examples are distance to the decision boundary, which provides 
limited new information to shape the learner. 

To generate credible datasets that better capture the underlying systems,  
learning-based methods have been developed, among which generative adversarial 
network (GAN) demonstrated much superior performance in producing synthetic  
data following a competitive, self-verification strategy (Goodfellow et al., 2014).  
Two competing components are employed in a GAN model: a generator and a 
discriminator, where the training of the generator is to maximise the probability of the 
discriminator. The goal is to minimise the difference-based costs between real image 
examples and the synthesised ones. Following this idea, Mathieu et al. (2016) train a 
convolutional network to generate video frames that preserve the image sharpness by 
combining adversarial training and gradient-based loss function. The network was used to 
generate future frames provided with an input video sequence. Yi et al. (2017) develop a 
dual-GAN to translate images by training a primal GAN and a dual GAN with two sets of 
unlabeled images of different domains. The primal GAN learns to translate images from 
one domain to those in a second domain, while the dual GAN learns to reverse the 
translation. To circumvent the vanishing gradients that cause training instability, 
improved methods have been developed such as least square GAN (Mao et al., 2017) and 
Wasserstein GAN (Arjovsky et al., 2017; Gulrajani et al., 2017). 

The success of GAN in producing imagery and videos excited researchers to extend 
the idea to other data modalities and applications. Reed et al. (2016) extended the GAN 
model for image synthesis that translates text descriptions to plausible images of birds 
and flowers. In the proposed method, a manifold interpolation regulariser for the GAN 
generator was developed, which generates text embeddings by interpolating between 
embeddings of the captions of the training set. Yang et al. (2017) applied GAN for 
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symbolic domain music generation with multiple channels. The proposed MidiNet 
employs convolutions on a 2D matrix representing the presence of notes over different 
time steps to generate melodies in a successive manner. A discriminator is used to model 
the distribution of melodies. Chen et al. (2018) employed GAN to learn renewable energy 
production patterns for a large number of correlated resources. The proposed method 
successfully synthesised photovoltaic power and wind profiles in both temporal and 
spatial dimensions and new examples retained the diversity. 

This paper aims to address the problem of dearth of valuable examples to model  
real-world systems under the influence of rare events, specifically in the case of  
power-grid under natural disasters of typhoons. In addition, the fidelity of the training 
examples is of paramount importance in the development of a reliable model. In response 
to these problems, we present a learning method that leverages synthetic examples to 
improve the characterisation of systems under extreme events. To obtain informative 
examples for training a model, the falsely classified examples by a base learner together 
with examples that are correctly classified with low confidence are used to train a GAN 
network for producing synthetic examples to reinforce the learning process. A filtering 
strategy based on the significance of the training examples is devised. The new power 
grid examples are selected according to the likelihood of the true data distribution. Our 
proposed adaptive learning strategy supports the analysis of typhoon impact based on 
different conditions of interest with scarce examples. 

The rest of this article is organised as follows: Section 2 gives an overview of our 
proposed method and presents the details of the key components. Section 3 discusses the 
experimental results using a real dataset acquired from the power grid of Hainan, China 
during a severe typhoon disaster. We examine our proposed method in the aspects of 
model performance, data fidelity and computational efficiency. In the evaluation of 
model performance, we compared the base learner performance to the proposed method 
with various parameter settings and performance metrics. Section 4 concludes this paper 
with a summary of the proposed method and our key findings. 

2 Adaptive learning with GAN 

Because of the limited training examples, especially the ones that represent rare, but 
important, events, our proposed method employs GAN to produce additional examples 
for model training. The question is what examples to be synthesised. The basic idea of 
the GAN is that the synthetic data are representative of the real examples if the 
distribution of the synthetic data is highly similar to that of the real examples. Hence, a 
well-trained GAN generates more examples to supplement the learning of the minority 
class, i.e., the class with much less number of examples, as well as the majority class, 
which in part circumvents the data imbalance problem. However, employing the 
expanded training dataset for model training still faces the problem of lacking 
representative examples that are key to differentiate the classes. The idea of our proposed 
method is to build a GAN from the most confusing examples, which is used to enrich the 
training set with informative cases. 

Figure 1 illustrates the overall architecture of our proposed method. Our method takes 
training examples and random noise as input to fuel the modelling of both a classifier 
(i.e., a learner) and the GAN network. After the learner is trained, it is applied to all the 
examples to make a prediction. Using the confidence of the prediction, examples are 
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selected and used as input for the training of the GAN network. By minimising the 
difference between the new instances produced by the generator, a GAN network is 
created to mimic the power grid where the real data are acquired. The random input for 
the GAN network is gradually updated to model the distribution that favours the 
production of minority examples. To update the learning, the most representative 
examples are used, together with the real examples, to circumvent the lack of examples 
and innate data imbalance. In the rest of this section, we present the details of our 
example filtering strategy and modulated the GAN network. 

Figure 1 The architecture of our proposed adaptive learning method (see online version  
for colours) 

 

2.1 Example filtering strategy 

Provided with a set of examples X = {x1, x2, …, xN}, a learner f is trained that maps xi into 
a lower dimensional vector yi: 

( ).i iy f x←  

For the binary classification problems, yi ∈ {–1, 1}. The confidence of a prediction of an 
instance xj, denoted with c(xj), is proportional to the distance of xj to the decision 
boundary, i.e., c(xj) ∝ ||f(xj)|| where c denotes the confidence and ||·|| denotes the distance 
function. To regulate the range of confidence, the confidence follows the sigmoid 
function as follows: 
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It is expected that the real examples selected for training a GAN network help to alleviate 
the uncertainty and the lack of representation of the minority class. Hence, given the ratio 
of the class sizes γ, γ ≤ 1, the significance of an example xj is computed as the inverse of 
the product of the confidence and imbalance ratio: 

( ) ( ) ( )( )
1
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γ y c x
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where γ(yj) denotes the imbalance ratio as a function of class yj of example xj, and we 
have 
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The range of confidence c(xj) is in [0 1]. To avoid the singular case when c(xj) equals 
zero, the confidence is rescaled by adding a one. The probability of example filtering, 
denoted with p(xj) is proportional to its significance s(xj) 

( ) ( ) /j jp x s x S=  (3) 

where S is a normalisation factor 

( ).j
j

S s x=  

The training examples for the GAN network are hence randomly drawn from the 
population of the real dataset following the above probability. 

2.2 Modulated GAN network 

The GAN module consists of two major components: a generative network (a.k.a. 
generator) and a discriminative network (a.k.a. discriminator). Given a random input z, 
the generator g synthesises an instance ( ).x g z=  The discriminator d is trained to 
differentiate if an input instance is a synthetic example or a real one, and returns a 
probability of this instance to be a real sample. The error of the discriminator is expressed 
as the sum of error of the real and synthetic examples: 

( )( )
( )

( , ) log ( ) log 1 ( )

log ( ) log 1 ( )
x z

x x

E g d E d x E d g z

E d x E d x

= + −

= + −
 (4) 

The network is trained such that the discriminator maximises the probability of assigning 
the correct label to both the real examples and the newly generated instances by the 
generator. Simultaneously, the generator is trained to minimise log(1 – d(g(z))), that is, 

min max ( , ).
g d

E g d  (5) 

In practice, this objective function may provide an insufficient gradient to learn a 
plausible generator. In the early stage of the training process when the generator is fairly 
poor, the discriminator can reject synthetic examples with high confidence, which 
saturates log(1 – d(g(z))). Hence, instead of minimising log(1 – d(g(z))), the learning 
process maximises logd(g(z)). This objective function provides stronger gradients early in 
learning. 

In addition to feeding the GAN module with the significant examples selected via the 
filtering process, we introduce a modulated random input to favour the generation of 
examples of the minority class. Let q denote the probability distribution of the random 
input z, which follows Gaussian distribution 

( ; , ) ( , ).q z μ σ μ σ=   (6) 
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As the generator synthesises new instances, the random inputs zk that result in minority 
examples are used to constrain the probability by updating μ and σ of q. Hence, the 
objective function becomes 

min max ( , ) s.t. ( ) ~ ( , )
g d

E g d q z μ σ   (7) 

where the Gaussian parameters μ  and σ  are computed based on the random inputs 
resulted in minority class examples. 

3 Results and discussion 

3.1 Experimental data and settings 

The data used in our study were collected over a period of 48 hours on July 17, 2014, at 
the transformer stations in Hainan, when Typhoon Rammasun made landfall near 
Wenchang in Mainland China. Figure 2 illustrates the area of study with a visualisation 
of the tracks of typhoons in the western Pacific Ocean in 2014 and the topology of the 
power grid of Hainan. Typhoon Rammasun was a category 5 super typhoon and among 
the strongest skirted Hainan, China. It produced strong gales that were over 100 miles per 
hour and heavy rain, which caused severe damage to the infrastructure of several 
countries along its path including the Philippines, China, Vietnam, and the Mariana 
Islands. This presents a typical scenario for the study of typhoon impact to the power 
grid. 

In our dataset, each record consists of 13 properties including sensor outputs such as 
coil voltage ratio, current ratio, temperature, core vibration magnitude, etc., as well as 
weather readings such as average wind speed, precipitation, etc. The range of each 
property is normalised to the same scale to suppress the difference in value magnitude. 
The dataset consists of 612 records that report power faults and 6,030 records that 
document the normal performance. In our implementation, without loss of generality, we 
used a support vector machine (SVM) as the learner in our architecture to model power 
grid faults under typhoon. The SVM used polynomial kernel in our experiments. 

Our results are reported with the evaluation metrics that differentiate the rare events  
(i.e., the minority class) from the regular normal operation, which include sensitivity ε, 
specificity ϱ, and balanced accuracy .  The formulas of these metrics are given as 
follows: 

Sensitivity: TPε
TP FN

=
+

 

Specificity: TN
TN FP

=
+

  

1Balanced accuracy: 
2

TP TN
P N

 = + 
 

  

where P and N denote the number of positive and negative examples, respectively, TP 
and TN denote the true positive and true negative predictions, respectively, FP and FN 
denote the false positive and false negative predictions, respectively. Compared to widely 
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used accuracy, balanced accuracy is a performance metric for a model, whether or not the 
data is imbalanced, and hence, provides greater interpretative power. 

Figure 2 Area of study (see online version for colours) 

 

Notes: The bottom-right depicts the tracks of typhoons in the western Pacific Ocean in 
2014. The track of Typhoon Rammasun in 2014 is highlighted in colour; whereas 
the other tracks of typhoons are shown in greyscale. The yellow box highlights the 
area of study: Hainan Province, China. The lower-left shows the degree of impact 
by Typhoon Rammasun in 2014. A local view is shown on the top-left corner of 
figure. The topology of the power grid of Hainan is shown in the top-middle 
portion of figure. 
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3.2 Performance analysis 

Out of all the examples in our dataset, 600 minority examples that represent faulty cases 
and 6,000 majority examples that represent normal operations were randomly selected 
and used in the rest of our experiments. The imbalance ratio γ is hence 0.1. To understand 
the effectiveness of our proposed method, we conducted experiments using the baseline 
method SVM and our proposed method that generated different amounts of synthetic 
examples. In the evaluation of our proposed method, we conducted experiments using 
three contrasting scenarios: 

1 using the modulated GAN to generate synthetic examples and keeping the imbalance 
ratio, i.e., γ = 0.1 

2 using the modulated GAN to generate more synthetic minority examples to reduce 
the imbalance ratio to 0.5, i.e., γ = 0.5 

3 using the modulated GAN to generate more synthetic minority examples to achieve a 
balance between classes, i.e., γ = 1. 

Given the limited number of minority class examples, four-fold cross-validation was 
conducted for each method/scenario to ensure a sufficient number of examples were 
available for evaluation. 
Table 1 The performance of the baseline and our proposed methods 

 Accuracy Sensitivity Specificity Balanced accuracy 
Baseline SVM 
γ = 0.1 

0.987 0.933 0.993 0.963 
0.984 0.907 0.992 0.949 
0.984 0.900 0.993 0.946 
0.982 0.873 0.993 0.933 
0.985 0.903 0.993 0.948 

Our method  
γ = 0.1 

0.988 0.950 0.996 0.973 
0.985 0.960 0.990 0.975 
0.984 0.945 0.992 0.969 
0.983 0.930 0.993 0.962 
0.985 0.946 0.993 0.970 

Our method  
γ = 0.5 

0.983 0.982 0.983 0.983 
0.984 0.978 0.987 0.983 
0.985 0.982 0.986 0.984 
0.987 0.98 0.991 0.986 
0.985 0.981 0.987 0.984 

Our method  
γ = 1 

0.985 0.983 0.987 0.985 
0.988 0.983 0.993 0.988 
0.985 0.990 0.980 0.985 
0.980 0.977 0.983 0.980 
0.985 0.983 0.986 0.985 
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Table 1 reports our experimental results in terms of accuracy, sensitivity, specificity and 
balanced accuracy. The average performance is highlighted in italic font. By comparing 
the average sensitivity of the baseline method and that of our method with  
γ = 1, we see a significant improvement from 0.903 to 0.983, which is at a rate of 8.9%. 
That is our proposed method demonstrated much-improved performance over predicting 
possible power grid faults. As the dataset became balanced, the specificity reduced 
slightly. With γ = 0.1, the average specificity of the baseline method and our proposed 
method was 0.993, which reduced to 0.987 for γ = 0.5 and 0.986 for γ = 1. The reduction 
rate is at most 0.7%, which is much less significant compared to the improvement of the 
sensitivity. 

Indeed, when taking into account the changes in both sensitivity and specificity, we 
see a constant improvement in terms of balanced accuracy as γ increases. The average 
balanced accuracy of the baseline method is 0.948; whereas the average balanced 
accuracy of our proposed method when γ = 0.1, 0.5, and 1 is 0.97, 0.984 and 0.985, 
respectively. The maximum improvement rate over the average balanced accuracy is 
3.9%. It is worth mentioning that by keeping the same imbalance ratio of the newly 
created synthetic examples, our method improved the average balanced accuracy by 2.3% 
from the baseline. It is evident that the positive change comes from the enrichment of the 
training examples. 

Throughout all the scenarios, the average accuracy remains at 0.985. Clearly, it is not 
a good indicator to evaluate the performance of imbalanced datasets. In contrast, 
balanced accuracy better illustrates the performance variations among imbalance ratios. 
As γ increases, the balanced average approaches accuracy. When γ becomes one, 
balanced accuracy reduces to the conventional accuracy metric and reports the same 
value. 

3.3 Data fidelity 

An interesting question is how close the synthetic examples mimic the real data. For low 
dimensional datasets, a visualisation could reveal how similar are the distributions 
formed by the synthetic data and by the real data. However, our dataset consists of 
instances with 13 dimensions, which makes it impossible to directly visualise the data 
distribution. Hence, we conducted our evaluation using the one-way ANOVA analysis. 

Figure 3 illustrates the distribution of p-values of the datasets. Figure 3(a) shows the  
p-value distribution of the minority class for the real and synthetic datasets. Each bar 
gives the p-value assuming that the null hypothesis is correct. The null hypothesis is that 
the two datasets are drawn from the same distribution. If the p-value is less than a 
significance level (typically 0.05 or 0.01), it suggests that the null hypothesis may be 
rejected, i.e., the two datasets are of different distributions. As shown in this plot, the  
p-values are fairly large (greater than 0.1). In fact, the average p-value is 0.254, which is 
much greater than a typical significant level and provides strong support that the  
two datasets are probably following a similar, if not the same, distribution. Figure 3(b) 
shows the p-value distribution of the majority class for the real and synthetic datasets. We 
clearly see a similar pattern among the p-values of all 13 properties. The average p-value 
for the majority class is 0.205 between the real and synthetic data. It is evident that the 
modulated GAN network produced credible data for developing a model. 
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Figure 3 One-way ANOVA analysis of the datasets, (a) minority (real vs. synthetic) (b) majority 
(real vs. synthetic) (c) real data (minority vs. majority) (d) synthetic data (minority vs. 
majority) (see online version for colours) 

  
(a) 

  
(b) 

 
(c) 

  
(d) 

Note: The bar plots show the p-values vs. properties. 
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In addition to the comparison of data similarity, we also studied the resemblance of class 
disparity. Figures 3(c) and 3(d) depict the p-value distributions of real data and synthetic 
data. Again, the null hypothesis is that the two classes are drawn from the same 
distribution. Among the p-values of the real data, all but four properties are zero. The 
four non-zero properties show a fairly large correlation, which indicates possible 
redundancy for the purpose of differentiating the two classes. This distribution is also 
observed in Figure 3(d) for the synthetic dataset. Properties 5 through 8 have large  
p-values and the rest properties have zero or close to zero p-values, which exactly follow 
the distribution of the real data. The average p-values for the real dataset and the 
synthetic dataset are 0.141 and 0.148, respectively. This also confirms the resemblance of 
the synthetic dataset to the real dataset. 

3.4 Computational efficiency 

Although making predictions using a trained model is usually much efficient compared to 
developing a model via an iterative learning process, it is important to have a knowledge 
of how the proposed method responds to additional training examples when they become 
available. Figure 4 shows the time (in second) used by our proposed method and the base 
learners are SVM (using polynomial kernel) and neural network (20 hidden units  
and Levenberg-Marquardt backpropagation). The programs were implemented using 
Python 3 and executed in a computer with Intel i7-7500U CPU at 2.7 GHz, 16 GB 
memory, and Windows 10 64 bit. 

Figure 4 Time used by GAN and the base learner SVM and neural network (see online version 
for colours) 

 

Note: The x-axis shows the number of additional synthetic examples generated by the 
GAN network. 

The plot illustrates the average amount of time used to train a model by synthesising 
additional 1,000, 1,500 and 2,000 examples. We divided the time used to train the base 
learner (SVM or NN) and the GAN network to provide insights on how the extra 
examples increase the training workload. As the size increases, the amount of time used 
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by the GAN network increases linearly; whereas the amount of time used by training 
SVM (or NN) increases at an accelerated rate. The greater time increment of SVM (or 
NN) is partly caused by the supplemental training rounds using the synthetic examples 
and the example filtering process. A similar pattern is observed in the results by neural 
network. A much greater time increment was used in the training of NN. In the case of 
creating 2,000 synthetic examples, which increase the volume of training dataset by more 
than 30%, the total training time used by our proposed method is 137.1 seconds and 
168.1 seconds when the base learner was SVM and NN, respectively. However, this is 
fairly efficient in real-world scenarios to create or update a model for response to extreme 
natural events. Hence, our method is applicable to scenarios that new real examples are 
acquired or synthetic examples are generated in near real-time. 

4 Conclusions 

Real data of power grids and many other strategic infrastructures are usually confidential 
and limited to research. To overcome the dearth of valuable examples in the event of 
disasters such as typhoons and floods, this paper presents a learning method that 
leverages GAN to generate synthetic examples to improve the characterisation of the 
strategic systems under extreme events. To obtain informative examples, the falsely 
classified examples by a base learner together with the examples that are correctly 
classified with low confidence are selected using a filtering strategy based on the 
significance of the training examples and are used in the training of a modulated GAN 
network. The synthetic examples are then generated using this GAN network to reinforce 
the learning of a model. 

Experiments were conducted using the real data collected during the time when 
Typhoon Rammasun made landfall in Hainan. Our method demonstrated much-improved 
performance over predicting possible power grid faults. Compared to the baseline 
method, our method achieved an improvement by a rate of 8.9% in terms of the average 
sensitivity. In addition, the maximum improvement rate over the average balanced 
accuracy is 3.9%. It is, hence, evident that the positive change comes from the enriched 
training examples. When we look into the resemblance of the synthetic data to the real 
data, the average p-value for both minority and majority class is above 0.2, which is 
much greater than a typical significant level and provides strong support that the two 
datasets are probably following a similar, if not the same, distribution. The p-value 
distribution between classes in the real data and the synthetic data also exhibited strong 
agreement. The modulated GAN network produced credible synthetic data for 
supplementing the training of a reliable model. In the analysis of computational time, our 
method takes minutes to complete training of a base learner and the GAN network, which 
enables an efficient response to disasters such as typhoons with modern computing 
facilities including centralised or edge computing. 
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