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A B S T R A C T   

Agricultural irrigation accounts for nearly 70% of global freshwater withdrawal. Among irrigation practices, 
contour-levee cascade irrigation is of particular interest as it is water-intensive and widely used in many rice 
production regions. Despite its significant environmental implications, no study has quantified the distribution of 
contour-levee irrigation. One major challenge of remote sensing-based contour-levee field detection is how to 
accurately identify the thin and curved levee lines whose appearance varies dramatically in different fields. This 
paper presents a new deep network-based method that jointly optimizes semantically meaningful features to 
quantify the contour-levee fields. This new method uses a bi-stream encoder-decoder architecture to capture 
spectral information and gradient features. To maintain image gradient sharpness, a skip connection approach is 
employed to facilitate gradient propagation across long-range connections. Moreover, the new method uses deep 
supervision to generate more informative features from the earlier hidden layers and superpixel segmentation to 
reduce classification noise as a post-processing step. By testing against 41 images across 10 Arkansas counties, 
the average accuracy was 86.23% and the method achieved 15%-17% improvement over benchmark methods. 
The results show that IrrNet-Bi-Seg maintains good transferability and is thus promising for larger-scale 
applications.   

1. Introduction 

Irrigated agriculture represents 20% of cultivated land and accounts 
for 40% of global crop production (UNESCO, 2014) and nearly 70% of 
freshwater withdrawals globally (Molden et al., 2007). Effective water 
resources management requires accurate quantification of irrigation 
water usage and efficiency, which are synergistically related to the 
irrigation method and land form (Hsiao et al., 2007). A natural focus for 
advancing this goal is a spatially explicit accounting of fields using the 
contour-levee irrigation strategy—the most water-intensive yet widely 
used method by some major crops, such as rice and soybean (Massey 
et al., 2017). In contour-levee fields, water flows by gravity from upper 

to lower fields, and levees are used to maintain inundation to control 
weed growth. Thus, an excessive amount of water is drained off by 
gravity and wasted (Massey et al., 2018; Vories et al., 2005). The irri-
gation application rate for contour-levee fields is 8%-14% or 46–57% 
higher than some newer flooding methods, such as straight levee or zero 
grade, respectively (Henry et al., 2016; Massey et al., 2017; Reba and 
Massey, 2020). Knowing the distribution of contour-levee fields is a 
fundamental step to assess their impact on the regional hydrological 
cycle and is critically important to provide stakeholders information to 
understand and manage water resources and other sustainability metrics 
(Moreno-García et al., 2021). 

Historically, irrigated land area is reported through the Irrigation 
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and Water Management Survey, but this tabular data is less informative 
about its spatial distribution. Remote sensing technique can demarcate 
the extent of irrigated lands at various scales (Ketchum et al., 2020; 
Pervez and Brown, 2010; Thenkabail et al., 2009; Xie et al., 2021), but 
methods to classify irrigation types are underdeveloped due to the 
complex visual characteristics of different geometry, photometry, and 
texture in various irrigation types. The center pivot is widely mapped 
because its simple and distinct large circular shape is easily captured by 
satellite or aerial images (Rundquist et al., 1989; Yan and Roy, 2014). 
Despite the significant ecological and environmental implications of 
contour-levee irrigation, its spatial distribution is rarely known. The 
major challenges are that different contour-levee fields pose distinct 
image color and texture, and the levee appearance (e.g., spacing be-
tween levees and levee width) varies dramatically in different fields. 
Traditional pixel-based methods thus have difficulty incorporating 
textural features (e.g., contour-levee) in making predictions (Jawak 
et al., 2015). Object-based image analysis is also not viable as field 
contours are diverse in shape and would require repeated tests and trials 
in parameter optimization (Yang et al., 2019a,b). 

The integration of deep learning (DL) and very-high-resolution im-
ages have emerged as a promising solution considering their combined 
ability to optimize semantically meaningful feature extraction and 
classification (Mi and Chen, 2020). Here, we present a novel DL 
approach named IrrNet-Bi-Seg for the automatic detection of contour- 
levee agricultural fields with the following highlights. First, it used 
pre-trained model to reduce the effort of developing a large training 
dataset for classification on new images. Second, its bi-stream network 
architecture fused both spectral and textural information. Third, skip 
connection and deep supervision are incorporated in the deep multilayer 
network to address the gradient vanishing challenge. Fourth, image 
segmentation was used in the post-processing to suppress classification 
noise. Using this approach, we provide a comprehensive assessment of 
the distribution of contour-levee irrigation for the state of Arkansas, 
which also tests whether a generalized DL model developed and cali-
brated at a local scale is suitable for application at a larger scale or in a 
different region. This first study of its kind is of great importance to 
evaluating the environmental, ecological, and societal impacts of this 
prevalent irrigation system type, and to providing stakeholders and 

Fig. 1. The Lonoke County, Arkansas, and the 27 Arkansas counties covering the Mississippi Alluvial Plain region. Lonoke County was seamlessly cropped into 
numbered image tiles and overlain on the 2015 Cropland Data Layer. Edge tiles with no valid pixel values are not mapped. 
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managers information to better understand and manage water 
resources. 

2. Study area and data 

2.1. Study area 

Our study area is the Mississippi Alluvial Plain (MAP) region of 
Arkansas (Fig. 1). This highly productive agricultural region encom-
passes nearly 14 million acres of cropland across 27 counties (Fig. 1, 
“USDA/NASS 2020 State Agriculture Overview for Arkansas,” 2020). In 
particular, Arkansas is the top US rice producer and approximately half 
of its total rice acres use contour-levee irrigation (Wilson and Branson, 
2004). The dry season coincides with the rice-growing season, which 
usually starts from late March to mid-May and lasts till mid-August to 
mid-October (Liang et al., 2019). As a result, irrigation has surged in 
demand. Between 1992 and 1997, the irrigated area increased by 
438,553 ha (Reba and Massey, 2020). Given the projected changes in 
drought frequency and crop water needs (Yang et al., 2019a,b) and large 
uncertainty in the distribution and timing of water availability (Gosling 
and Arnell, 2016), irrigation water use will increasingly compete with 
natural ecosystem and municipal water needs in this region. 

2.2. High-resolution aerial NAIP imagery 

A typical field usually only has 3 to 10% of the land in levees that are 
28 to 33 cm wide (California Rice Production Workshop, 2018). Due to 
their thin serpentine nature, levee features can barely be visualized on 

medium or coarse-resolution satellite images (Figure S1). We used the 
United States Department of Agriculture (USDA) National Agriculture 
Imagery Program (NAIP) aerial imagery acquired during the agricultural 
growing season of 2015 at a 1 m resoluiton to discern field-level details 
(free access at https://datagateway.nrcs.usda.gov/). Because no signif-
icant increase in accuracy was found when DL algorithms trained on 
multispectral images were applied over their natural-color counterpart 
(Salamati et al., 2012), we used the three natural color bands (Red, 
Green, and Blue) to reduce data volume and increase transferability to 
other data sources.. We cropped the image covering Lonoke into 149 
tiles at the dimension of 5000 × 5000 pixels leading to each image 
capturing 25 km2 (Fig. 1). For the entire MAP region, there are 4,229 
image tiles. 

3. Proposed method 

3.1. Training sample selection, label annotation, and augmentation 

We used manual annotation to build a training database of irrigation 
practice types following previous protocols (Liang et al., 2016). Because 
contour-levee irrigation is strongly associated with rice and soybean 
cultivation, we selected 16 representative tiles from Lonoke County 
(Fig. 1)—the largest rice production county in Arkansas and 99% of its 
irrigated croplands use surface flooding irrigation (Dieter et al., 2018). 
For test samples, we picked 41 tiles from 11 counties in Arkansas’s MAP 
region for an independent assessment (Fig. 2, Step 1). 

To boost annotation efficiency, we used a web-based image anno-
tation tool Label4RS based upon an open-source program Label Studio 
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Fig. 2. Proposed deep learning and image segmentation fused system detection workflow (IrrNet-Bi-Seg).  
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(Tkachenko et al., 2020) (Supplementary File 1). Contour-levee fields 
display curved lines with irregular intervals that seem to resemble a 
topographical pattern (Figure S1). All other irrigation systems (e.g., 
straight-levee, center-pivot, and zero-grade), non-irrigated and non- 
agricultural lands are considered as background. The annotation star-
ted with boundary delineation of contour-levees fields by wall to wall 
examination. Fields that were difficult to classify were revisited by a 
second analyst. Three rounds of annotation and quality control were 
conducted independently. The agreement between different annotations 
was measured by the Cohen Kappa score (Cohen, 1960). The average 
Cohen Kappa score across all annotated images is 0.84, which indicates 
high annotation reliability (Artstein and Poesio, 2008). 

The labeling process identified 23.75% of the total pixels as contour- 
levee fields and the rest (76.25%) as background. Because the class 
distribution’s skew could induce a class-imbalance problem, we rotated 
the original image tiles every 5 degrees from 0 to 180 degrees to 
generate additional images with different views. Sub-sample images at 
300 × 300 size were then extracted using a sliding window strategy. The 
window was convolved over the images with a stride of 40 pixels and the 
region encompassed by the window was selected. We generated more 
than 1.7 million samples out of the 16 image tiles and we took an equal 
number of samples from each class to balance the data distribution. A 
total of 200,000 were randomly selected to train the model. 

3.2. Two-stream convolutional neural network IrrNet-Bi 

3.2.1. Bi-stream encoder-decoder convolutional network IrrNet-Bi 
To overcome the challenge in field levee recognition caused by 

variation of image color and texture from irrigation scheduling, crop 
type, and varied levee appearance, a bi-stream CNN IrrNet-Bi that pro-
cesses RGB images and image gradients is implemented (Fig. 2 Step 2; 
Fig. 3). The RGB stream takes the color image as the input, whereas the 
other stream uses image gradients from the intensity (Meyarian et al., 
2021). Both streams have encoder and decoder layers, and shared 
convolution layers are used to share feature maps. In the encoder 
network, the RGB and image gradient data are first processed through 
two convolutional layers, the results of which are concatenated and 
passed to the next layer, allowing feature incorporation from each 
stream and reducing the feature map’s dimensionality. The outcomes of 
this convolution layer feed to the next units of both streams. 

Supplementary File 2 gives two examples to demonstrate how bi-stream 
data fusion benefits the process. 

Gradient vanishing, where a deep multilayer network fails to prop-
agate useful updates to the layers near the input of the network, is a 
common challenge in DL (Ronneberger et al., 2015). We employed skip 
connections to facilitate gradient propagation across deep layers by 
passing the outputs from three levels of the encoder to the decoder 
(Fig. 3). The combined usage of low-level features from the encoder and 
high-level features of the decoder allows the integration of both detailed 
and abstract features, leading to more accurate predictions (Huang 
et al., 2018; Ronneberger et al., 2015). 

Another key improvement in IrrNet-Bi is deep supervision, which 
provides an integrated loss function as a means to directly supervise the 
earlier hidden layers, rather than only the output layers (Xie and Tu, 
2015). This step forces the decoder to generate more informative fea-
tures in a way that the final output mask balances information from 
earlier and later input layers. At each of the four prediction stages in the 
decoder, the feature maps generated by both streams are concatenated 
and then processed by the next convolutional layer (Fig. 3). Due to the 
size variance of the first three predicted masks, a bilinear upsampling is 
used to match the mask size with the size of the annotated image. 
Finally, the predicted masks are compared against the annotated image 
to calculate the overall loss. 

3.2.2. Loss function 
The loss function C is a weighted summation of the individual loss at 

all stages, comparing the generated prediction with the annotated masks 
(Eq.1): 

C =
∑4

i=1
λi × Γ(G,Mi)+Lr (1) 

where G is the annotated mask for a given image; Mi is the output at 
the i th stage of the decoder; λi is the weight associated with the output 
for each level of prediction in the decoder; Γ(∙) is a Softmax cross- 
entropy function for binary classification (Eq.2): 

Γ(G,Mi) =
1
N
∑

x,y
− (G(x, y) × log(Mi(x, y)) + (1 − G(x, y)) × log(1

− Mi(x, y))) (2) 

Fig. 3. The bi-stream convolutional neural network architecture of IrrNet-Bi.  
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where N is the total number of pixels; G(x, y) is the annotated label at 
(x, y) pixel, i.e., one for contour-levee fields and zero for background; 
Mi(x, y) are the predicted probability of contour-levee for the pixel at (x,
y). The weight λi is decided empirically. To regularize the network pa-
rameters, L2-norm is used: 

Lr = λR ×
∑N

i=1
w2

i 

where λR is the regularization coefficient, empirically set to 10-5 here, 
that controls the amount of contribution of the L2-norm; wi is the weight 
parameters. The weights of the network are initialized randomly. 

3.3. Superpixel-enhanced post-processing 

Given the detailed spatial information contained in the NAIP imag-
ery that can cause large variation of spatial structures, a post-processing 
superpixel segmentation step is introduced to reduce classification noise 
and to sharpen field boundaries (Fig. 2 Step 3). We tested four main-
stream image segmentation techniques, separately: simple linear itera-
tive clustering (Achanta et al., 2010), quick shift (Vedaldi and Soatto, 
2008), Felzenswalb and Huttenlocher (Felzenszwalb and Huttenlocher, 
2004), and compact watershed (Neubert and Protzel, 2014). We 
downsized the original 5000 × 5000 resolution to 100 × 100, 200 ×
200, 300 × 300, 400 × 400, and 500 × 500 using bilinear interpolation 
to suppress fine details. Note that the downsized images are only used 
for image segmentation and not for the IrrNet-Bi model. We used the 
shape elongation term E(S) to remove superpixels with elongated shapes 
to avoid false-positive predictions (Stojmenović and Žunić, 2008). The 
detailed process is provided in Supplementary File 3. For each super-
pixel, a majority voting evaluation is performed among the pixel-wise 
DL predictions to generate the final classification IrrNet-Bi-Seg. 

3.4. Performance evaluation 

We evaluated model performance in four ways (Fig. 2 Step 4). We 
first used ten-fold validation to estimate the skill of a new model on 
unseen data using the 16 training tiles. Then, we used the 41 indepen-
dent test image samples to provide an unbiased estimate of the final 
tuned model. A set of pixel-level accuracy metrics were used, including 
Accuracy, Precision, Recall, F1, Specificity, and Balanced Error Rate (BER), 
as described in the Supplementary File 4. Moreover, we evaluated the 
network without the inclusion of image gradient stream—leaving only 
the RGB stream as the input feature (named as IrrNet-RGB-Seg model). 
Finally, we adopt two benchmark methods including Random Forest 
(RF) and FCN-ATR-SKIP for comparison. RF (Breiman, 2001) is often 
established as a baseline model in land cover mapping (e.g., Liang et al., 
2016). FCN-ATR-SKIP is a fully convolutional network that is made of 
atrous convolutional layers and exploits contextual information (Mboga 
et al., 2020), which has proven robustness to poor radiometric quality 

and could be suitable for the NAIP images that lack atmospheric and 
radiometric corrections. We trained and tested both RF and FCN-ATR- 
SKIP models in the same way as IrrNet-Bi-Seg model. 

4. Results 

4.1. Evaluation of image segmentation performance 

After performing a visual comparison of the image segmentation 
results generated by four different methods on a series of downscaled 
images, the Felzenswalb and Huttenlocher algorithm achieved the best 
results on the downscaled 12.5 m resolution image (Supplementary File 
3). By testing on 41 independent test tiles, the slightly increased Accu-
racy from 0.83 to 0.86 indicated overall improvement of IrrNet-Bi-Seg 
over IrrNet-Bi, though the difference is not significant using a paired t- 
test at the significance level of 0.05 (Fig. 4). Precision, which quantifies 
how well the contour-levee fields have been classified, has significant 
improvement from an average of 0.49 to 0.61. The other metrics, other 
than Specificity, do not show significant differences in the values. 
However, these results should not imply that the superpixel processing 
does not affect the mapping results, which are discussed in the next 
section. The non-significant changes in metric values could derive from 
their calculation on a pixel basis. While superpixels can remove some 

Fig. 4. Boxplots displaying the accuracy assessment reported by IrrNet-Bi and IrrNet-Bi-Seg using 41 independent test samples. The bottom and top of the box are the 
first and third quantiles, and the band inside the box is the median. Asterisks on top of the accuracy group indicate that the difference between the means of IrrNet-Bi 
and IrrNet-Bi-Seg accuracy values is statistically significant.*: p-value < 0.05; **: p-value < 0.01;. 

Table 1 
Performance comparison of random forest, FCN-ATR-SKIP, and IrrNet-Bi-Seg 
based on the 16-fold validation and accuracy assessment using 41 indepen-
dent test samples. The average values of each metric alongside the standard 
deviation were reported.  

Model Accuracy BER Precision Recall F1 Specificity 

16-fold validation 
IrrNet-Bi- 

Seg 
0.90 ±
0.07 

0.17 
±

0.09 

0.80 ±
0.11 

0.73 ±
0.18 

0.75 
±

0.15 

0.94 ±
0.05 

Independent test 
Random 

Forest 
0.76 ±
0.07 

0.44 
±

0.09 

0.21 ±
0.18 

0.29 ±
0.23 

0.21 
±

0.16 

0.82 ±
0.08 

FCN-ATR- 
SKIP 

0.81 ±
0.09 

0.44 
±

0.09 

0.25 ±
0.02 

0.25 ±
0.21 

0.21 
±

0.17 

0.88 ±
0.09 

IrrNet- 
RGB- 
Seg 

0.81 ±
0.09 

0.39 
±

0.11 

0.40 ±
0.28 

0.29 ±
0.22 

0.29 
±

0.22 

0.92 ±
0.05 

IrrNet-Bi 0.83 ±
0.08 

0.35 
±

0.10 

0.49 ±
0.26 

0.36 ±
0.20 

0.39 
±

0.20 

0.93 ±
0.04 

IrrNet-Bi- 
Seg 

0.86 ±
0.08 

0.34 
±

0.13 

0.61 ±
0.29 

0.37 ±
0.27 

0.41 
±

0.28 

0.96 ±
0.04  
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falsely classified pixels if most of their pixels were correctly classified, 
errorous superpixels can add false positive pixels. Overall, the number of 
corrected pixels slightly surpasses the number of miscorrected pixels, as 
evidenced by the marginally increased accuracy values. 

4.2. Performance evaluation and benchmark comparison 

The 16-fold cross-validation reported the mean accuracy of 0.90, 
mean BER at 0.17, and F1 score of 0.75 (Table 1). The relatively high 
accuracy and low error imply that IrrNet-Bi-Seg can generally perform 
well when used to make predictions on data not used during the training 
phase, which was further confirmed by the independent accuracy 
assessment. Image gradient stream benefited the model, as evidenced by 
the increased values of all five accuracy metrics and decreased BER from 
IrrNet-RGB-Seg to IrrNet-Bi-Seg. The degree of improvement is also 
positively associated with the amount of levels (Supplementary File 5), 
which suggested that images with larger area coverage of contour-levee 
fields will likely to have increased accuracy with the inclusion of 
gradient steam. Finally, compared to RF and FCN-ATR-SKIP, respec-
tively, our method improved 15% and 17% in accuracy and reduced 53% 
and 48% in BER. The consistently high accuracy of our model is sug-
gested with the considerably low rate of BER at 0.33. Moreover, the 
improvement in precision (of 18% and 5.3%) and in recall (1.1% and 
19.8%) also confirm the superior performance in this application. 

Visualization of selected results shows how our model achieves the 
best match to the reference (Fig. 5). In contrast to RF and FCN-ATR- 
SKIP, our model demonstrates a meticulous segmentation of contour- 
levee fields with a homogeneous prediction for the crop fields. IrrNet- 
Bi produced less pixelated prediction and more agglomerated patches 
that depict the crop fields more realistically. The remaining isolated 
small patches that are most likely due to misclassification were further 

removed by the superpixel post-processing. 

4.3. Application: state-wide contour-levee field mapping 

We predicted the contour-levee fields for the 27 agricultural counties 
in Arkansas (Fig. 6a). To better understand how the contour-levee sys-
tem is used for rice cultivation and how it stands out among other irri-
gation methods, we calculated the latitudinal distribution of contour- 
levee fields, rice fields derived from the 2015 CDL, and irrigated land 
area derived from the 2015 LANID product. We summarized total 
acreage of contour-levee fields, rice fields, irrigated lands, and irrigated 
rice fields by county (Fig. 6c). The data of irrigated lands and irrigation 
by crop types were acquired from the Crop Acreage Data in the year 
2015 (USDA Farm Service Agency, n.d.). 

Across the latitudinal gradient, the distribution of contour-levee 
fields shares a similar pattern as the rice field coverage distribution 
(Fig. 6b). At the higher latitude (north of 35.5oN), the coverage of 
contour-levee fields is slightly lower than that of rice fields. Whereas in 
the lower latitude regions (south of 34.5oN), the two curves almost 
coincide. The high overlap between rice and contour-levee fields implies 
that, despite the higher water consumption, contour-levee irrigation is 
still the most dominant method in rice cultivation in the State of 
Arkansas. Besides rice, other crops such as soybean may also use 
contour-levee irrigation, which may result in their small acreage dif-
ferences. The latitudinal distribution of our predicted contour-levee 
fields also follows the trend of the total irrigated land acreage. At the 
county scale, Poinsett, Cross, Arkansas County are the top three with the 
highest coverage of contour-levee fields (Fig. 6c). A more in-depth 
spatio-temporal analysis will be conducted in future studies. 

Fig. 5. Comparison of contour-levee field predictions generated from IrrNet-Bi, IrrNet-Bi-Seg, and the two benchmark methods RF and FCN-ATR-SKIP. NAIP column 
displays the 5000 × 5000 NAIP images at which those models are tested. The reference column represents all the annotated labels. All red pixels indicate the contour- 
levee fields and green pixels are backgrounds. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of 
this article.) 
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5. Discussion and perspectives 

This research is the first field-scale, contour-levee irrigation type 
mapping activity by using a DL algorithm on high-resolution aerial 
imagery, and achieved satisfactory results based on the following ob-
servations: 1) The 16-fold validation showed overall accuracy of 0.90; 2) 
The independent test achieved an average accuracy of 0.86, demon-
strating model generalizability and transferability; 3) IrrNet-Bi-Seg 
achieved 15% and 17% accuracy improvement over the benchmark 
methods; 4) Our latitudinal and county analysis is consistent with the 
reported USDA data. 

Several improvements enhanced the model performance. The bi- 
stream network design fuses spectral information and the boundary 
pattern captured by gradients. Skip connection and deep supervision 
addresses the gradient vanishing problem. A previous study suggested 
that the deep supervision enhanced CNN model not only prevented 
overfitting but extracted features more transparently and outperformed 
several state-of-the-art methods by 2–7% (Muhammad et al., 2018). 

Finally, superpixel-based majority voting suppressed noise generated in 
the IrrNet-Bi prediction. This step is critical to many agricultural ap-
plications that require accurate boundary depictions for making parcel- 
based crop or water management decisions (Cheng et al., 2020). 

This work has made advances in both agricultural and remote 
sensing fields. One immediate application is that the work can justify 
focusing conservation programs in regions with the greatest propor-
tional presence of contour-levee fields, such as Craighead, Poinsett, and 
Cross Counties (numbered 8, 12, 13 in Fig. 6). Such public- or private- 
sector programs could incentivize or otherwise encourage adaptation 
of water-saving irrigation pactices such as land-leveling, multiple inlet 
polypipe, or furrow irrigation (Massey et al., 2018; Reba and Massey, 
2020). This work also suggests the future advancement of DL and remote 
sensing integration from a few perspectives: 1) it highlights the pressing 
need for standard training datasets that are customized for specific 
application needs; 2) remote sensing applications should align more 
closely with decision making activities. This work, in particular, will 
enable local (e.g., municipal) and regional (e.g., state and watershed) 

Fig. 6. a) The IrrNet-Bi-Seg predicted contour-levee field map for the Mississippi Alluvial Plain of Arkansas ; b) The latitudinal gradients in the area of contour-levee 
fields, rice fields, and irrigated lands in the mapped area of a). The x-axis is in km2 per 0.1 decimal degree band; c) The total area of contour-levee fields, rice fields, 
irrigated lands, and irrigated rice fields, by county. 
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water and agricultural management organizations, which may not 
otherwise have sufficient and consistent data resources to estimate 
irrigation system type, to make better decisions that influence regional 
water ability. 3) It presents many challenging tasks from some important 
aspects of remote sensing, as follows.  

1) Varying levee spacing. Depending on field slope, levee spacing can 
vary from a very compact to a highly sparse form (Table 2a). In rare 
cases, the widest levee spacing exceeds the sliding window size of 
this study (300 × 300 pixels), leaving no line pattern in those 
captured views. We plan to adopt a multi-scale architecture, with 
inputs centered on the original input image but containing more 
geographic context. By aggregating features from various scales, the 
model may create a more informative set of features for model 
training. 

2) Vague representation of contour lines. Levee visibility is a deci-
sive factor in recognizing the irrigation system. Because the NAIP 
program acquires leaf-on imagery, the visibility of contour lines is 
impacted by high crop biomass (Table 2b). Problems arise when the 
trace of the levees is imperceptible and can barely be detected due to 
its similarity in color to the field. Image enhancement or different 
image sources from other time points may be adopted in future to 
strengthen the levee pattern. Higher weights may be given to the 
single gradient stream to weaken the influence of spectral 
information. 

3) Multiple patterns in one field caused degraded annotation accu-
racy and model performance. One typical example is the co-presence 
of tractor trails with the levees when harvesting occurs earlier than 
the image acquisition dates (Table 2c). Additionally, some previ-
ously contour-levee fields were converted to furrow irrigation, yet 
levee traces are still distinct (Table 2c right). Intensive field land 
modification associated with the high rotation rate of rice also adds 
complexity to the pattern interpretation. About 72% of the state’s 
rice acreage will be rotated into soybeans and will likely to be 
modified to furrow, center-pivot, or straight-levee (Kebede et al., 
2014). In a follow-up study, we plan to incorporate existing infor-
mation on crop cover type and irrigation status maps to support 
annotation and modeling.  

4) Better boundary detection methods for improved superpixel 
quality. We demonstrated the superiority of integrating superpixels 
for improved model performance. However, in some cases where the 
segmented superpixels are inaccurate, the errors are propagated into 
prediction (Table 2d). These undesirable shapes may not signifi-
cantly decrease accuracy but limit the use of such mapping products 
in applications that require precise crop field boundaries. We plan to 
apply advanced techniques, such as Conditional Random Field, 
which considers the spatial relations between the labeled pixels 
modeled in form of a graph. 

6. Conclusion 

A comprehensive understanding of agriculture-induced water con-
sumption is critical to meet the growing need for agricultural products 
amid increasing competition with industry and municipalities. In this 
work, we proposed IrrNet-Bi-Seg that integrates augmented training 
samples, skip connection, deep supervision, and superpixel post- 
processing, which, together, provides new perspectives on using DL 
approaches for crop irrigation type mapping. With this method struc-
ture, field-scale mapping of the contour-levee fields in the MAP region of 
Araksans was accomplished. Given the size and coverage, this work 
could be adapted for larger-scale studies and be tested for multiple 
irrigation type mapping. 
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