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Abstract: To solve the problems of low positioning accuracy and poor robustness caused by the 
inability of Simultaneous Localisation and Mapping (SLAM) algorithm to deal with dynamic targets in 
dynamic scenes, a SLAM algorithm based on bounding box and depth continuity in dynamic scenes is 
proposed. Firstly, the pixel random search filling process is carried out in combination with the depth 
and the bounding box to obtain the pixel-level segmentation result of the prior dynamic target. Then, 
the dynamic features are screened to eliminate the influence of dynamic targets. According to the 
screening results, relative static features which can be used for posture optimisation are selected. 
Posture optimisation is carried out by combining the static features to obtain the optimised camera 
posture. All experimental results show that the proposed algorithm significantly improves the 
positioning accuracy and real-time performance of SLAM algorithm in complex dynamic scenes. 
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1 Introduction 

In recent years, with the rapid development of mobile robots, 
autonomous driving, unmanned aerial vehicles and other 
technologies in the field of artificial intelligence, Simultaneous 
Localisation and Mapping (SLAM) technology, as one of the 
prerequisites for intelligent robots to complete advanced tasks, 
has been widely concerned by Du et al. (2018) and Fang et al. 
(2019).With the further reduction of camera manufacturing 
cost and the continuous enrichment of collected information, 
SLAM technology based on vision sensors has become a hot 
research topic (Fuentes-Pacheco et al., 2015)). 

Visual SLAM obtains data from cameras (monocular, 
binocular, RGB-D cameras, etc.), and can obtain abundant 
visual texture information from the environment, to locate itself 
and perceive the environment. At present, mature visual SLAM 
algorithms include Oriented FAST and rotated BRIEF SLAM 
(ORB-SLAM, Mur-Artal and Tards, 2017), Direct Sparse 
Odometry (DSO, Engel et al., 2018), Large-Scale Direct-
SLAM (LSD-SLAM, Engel et al., 2014), and so on. Although  
 

these systems have good results in pose estimation, they are all 
assumed to be in a static environment. However, the existence 
of moving objects will obviously reduce the accuracy of pose 
estimation of these visual SLAM algorithms, and even fail to 
locate them (Mur-Artal and Tards, 2017; Engel et al., 2018, 
2014). Therefore, how to accurately and stably realise 
autonomous positioning of robots in dynamic scenes has 
gradually become an important research direction in SLAM 
field. 

Some visual SLAM algorithms proposed at present  
(Sun et al., 2016; Kim and Kim, 2016; Wang and  
Huang, 2014) can be applied to dynamic scenes, but the 
traditional visual SLAM algorithms have slightly insufficient 
perception ability for dynamic objects and cannot obtain 
environmental semantic information. Because the cost of 
obtaining semantic information has been reduced in recent 
years, the SLAM algorithm combined with semantic 
information (Wang et al., 2021; Fang et al., 2021) has better 
adaptability to dynamic scenes, but its real-time performance 
cannot be guaranteed. 

Figure 1 An overview of our system 
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To solve the above problems, we propose a SLAM algorithm 
based on bounding box and depth continuity in the dynamic 
scene. The flowchart of this algorithm is shown in Figure 1. It 
shows the operation process of our system: The original RGB 
image is used for the YOLO detection and ORB features 
extraction, and the YOLO detection result is used for dynamic 
object segmentation together with the original depth image. 
The segmentation results are used for dynamic feature 
elimination, and then effective dynamic feature detection is 
carried out. The detection results and static features are finally 
used for pose estimation. The main contributions are as 
follows: 

  To deal with dynamic objects in the environment 
effectively and in real-time, we propose an online 
segmentation method of dynamic objects based on 
bounding box and depth continuity to obtain pixel-level 
segmentation results of prior dynamic objects, which can 
well deal with the influence of dynamic targets. 

  To maximise the use of all the effective information in the 
field of vision to improve the accuracy of pose estimation, 
we propose a relatively static feature detection method 
based on feature Data association, which selects effective 
dynamic features which can be used for pose optimisation. 
Based on these works, a dense semantic map is 
constructed in the dynamic environment, which eliminates 
prior dynamic targets. 

Section 2 introduces the related work, Section 3 introduces our 
main work in detail, Section 4 shows and analyses the 
experimental results and Section 5 concludes the paper with a 
summary. 

2 Related works 

The key of the SLAM algorithm in dynamic scene lies in 
whether the dynamic target in the visual field can be detected 
correctly, and how to deal with the dynamic target 
subsequently. 

Yang et al. (2020) eliminated dynamic features by 
grouping pixel regions of keyframes and detecting motion 
consistency. Dai et al. (2020) used the correlation between map 
points to separate points belonging to static scenes and points 
belonging to different moving targets into different clusters to 
eliminate the influence of dynamic targets. 

These methods are all pure vision SLAM. Although they 
perform well in processing speed and dynamic scene pose 
estimation, the positioning accuracy decreases slightly in a 
complex and highly dynamic environment, and the semantic 
information of the environment cannot be understood. 

With the innovation of deep learning algorithms in the field 
of computer vision, there are many excellent algorithms in 
target detection and semantic segmentation technology, such as 
YOLO (Redmon and Farhadi, 2018), Mask R-CNN (He et al., 
2017), etc. Therefore, the SLAM algorithm combined with 
semantics also shows good performance in a dynamic 
environment. 

Bescos et al. (2018) obtained the semantic information of 
the scene through the Mask R-CNN instance segmentation 
network and combined it with the multi-view geometry method 
to detect and reject the dynamic target. However, the multi-
view geometry method is easily affected by the current pose 
estimation results. In the dynamic scene, the pose estimation 
accuracy of this method is excellent, but the processing speed is 
a little slow, which cannot meet the real-time requirements. 
MaskFusion (Runz et al., 2018) recognises, tracks and 
reconstructs multiple targets based on ElasticFusion (Whelan et 
al., 2016). Mask R-CNN is also used to recognise and segment 
the pixel level of dynamic targets. Combining with geometric 
segmentation based on depth discontinuity and non-concavity, 
the interference of dynamic targets is eliminated. Finally, the 
camera pose is calculated by minimising spatial geometric 
error and photometric error. This algorithm achieves good 
results in a dynamic environment. But it needs dual GPUs to 
run, which consumes a lot of computing resources. Yu et al. 
(2018) used SegNet semantic segmentation network to obtain 
the segmentation results of objects in the environment, 
combined with motion consistency detection method to 
eliminate the interference of dynamic objects, and built an 
octree map with semantic tags based on a probability model. 
This method can meet the real-time requirements, but the 
accuracy of pose estimation is insufficient. 

SLAM algorithm combined with semantic information still 
has some problems in the above dynamic scenarios, either it 
can’t effectively deal with the impact of dynamic targets, which 
leads to insufficient positioning accuracy or it can’t guarantee 
real-time. Therefore, this paper uses a dynamic target online 
segmentation method based on semantic bounding box and 
depth continuity, combined with relatively static feature 
detection, which performs well in a dynamic environment and 
improves real-time. On this basis, an environment map with 
semantics is established. 

3 Framework and process of the  
SLAM algorithm 

The datas flow diagram is shown in Figure 2. It shows the 
structure of our system. In this paper, four modules have 
been added to the visual odometer: semantic information 
acquisition module, dynamic target segmentation module, 
dynamic feature screening module and effective dynamic 
feature reuse module. 

 In the dynamic target segmentation thread, the semantic 
information acquisition module obtains the bounding box 
results of target detection in the environment. 

 The dynamic object segmentation module obtains pixel-
level segmentation results of prior dynamic objects based 
on bounding boxes. 

 In the tracking thread, after extracting the ORB features of 
the image, the dynamic feature screening module 
completes the feature screening task and screens the 
features into static and dynamic features. 
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 The effective dynamic feature multiplexing module 
detects the relative static features and obtains the effective 
dynamic features which can be used for posture 
optimisation. 

Finally, the back-end mapping thread uses the pose estimation 
results and the dynamic target segmentation results to build a 
semantic environment map. 

3.1 Semantic information acquisition 

At present, most semantic SLAM algorithms use semantic 
segmentation networks to obtain semantic information, such as 
Mask R-CNN (He et al., 2017), DeepLabv3 (Chen et al., 
2017), SegNet (Badrinarayanan et al., 2017) and so on. 
Although the semantic segmentation algorithm is excellent in 
accuracy, it can get accurate classification to pixel level, but it 
is slow and unable to be real-time. These defects have a great 
impact on the real application of the SLAM system in robots. 
And the target detection algorithm can meet the basic 
application requirements, so we choose to use the target 
detection algorithm instead of the semantic segmentation 
algorithm. In this paper, YOLOv3 (Redmon et al., 2018) is 
chosen, and YOLO takes target detection as a regression 
problem, which has extremely fast recognition speed and high 
recognition accuracy, and has low-performance requirements 
for hardware devices. We train YOLOv3 on COCO data sets 
(Lin et al., 2014) and it can identify 80 categories. 

In this paper, these 80 categories are divided into two 
categories, and the targets with the possibility of autonomous 
movement are defined as priority dynamic targets, named PDT, 
such as people, cats, dogs, etc. Targets without the possibility 
of autonomous motion are defined as priority non-dynamic 
targets, named PNDT, such as seats, cups, books, etc. The 
PNDT is divided into two categories. Targets with a high 
probability of involuntary movement are defined as high 
probability passive moving targets, named H-PNDT, such as 
chairs, books, cups, etc. A target with a low probability of 
involuntary movement is defined as a low probability  
passive moving target, named L-PNDT, such as a table, 
monitor, sofa, etc.  

The returned results of YOLO contain information  
such as target category, bounding box, confidence level, etc. 
The corresponding object bounding box set bounding_box   

box of YOLO detection result set of a certain frame is  
shown in:  

  bounding_box , , , ,, , , 0i i i i
id u id v id w id hb b b b i N    (1) 

where N represents the total number of targets detected in a 
certain frame. ,u

i
idb  and ,v

i
idb  represent the coordinate 

information of the upper left corner of the i-th target bounding 
box. ,w

i
idb  and ,h

i
idb , respectively represent the width and height 

of the i-th target bounding box. 

Figure 2 Datas flow of our algorithmic. Our system is based on ORB-SLAM2, on which a dynamic object segmentation thread is added 
and the tracking thread is modified. A semantic mapping thread is added in the back-end part 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 SLAM algorithm based on bounding box and deep continuity in dynamic scene 353 
 

3.2 Dynamic target segmentation 

In the real environment, the movement of a PNDT is usually 
associated with a PDT, so the first concern is the PDT in the 
field of vision. 

YOLOv3 can’t get the classification results at the pixel 
level, so it can’t accurately get which pixels belong to the PDT. 
Because of the wrapping property of bounding boxes, if the 
features in the bounding boxes of the PDT are simply removed, 
too much effective information in the field of vision will be 
lost, which will have a bad influence on SLAM. 

To solve this problem, based on bounding boxes, we design 
a pixel segmentation method to find pixels belonging to the 
PDT in the current image frame. Because the PDT in the 
bounding box should occupy the main body, and the pixels 
belonging to the same target have depth continuity, while the 
pixel depth at the edge of the contour is discontinuous, a pixel 
random search filling process is designed by using the 
difference between the pixel depth values to realise region 
segmentation. The segmentation process is as follows: 

Assuming that the bounding box of a PDT in the current 
frame is dynamic,bounding_boxB , it is particularly important to find 

the Seed point of random search in order to achieve good and 
sufficient pixel segmentation results. Firstly, the centre point 

 ,c c cp u v  of dynamic,bounding_boxB  box is selected as the first 

random search initial seed point. Then, based on this centre 
point, the two central axes of the bounding box are divided into 
four line segments, and the midpoint of these four line 
segments  ,uc tc tcp u v ,  ,dc bc bcp u v ,  ,tc tc tcp u v , 

 ,lc lc lcp u v  are selected as the initial seed point of random 

search, as shown in Figure 3. In Figure 3, five initial search 
points are preset in a bounding box. Firstly, cp  is selected for 

random search filling, and if the filling result is insufficient, 
other initial search points are selected sequentially. 

Figure 3 The initial search point in bounding box 

 

Then, we randomly search and fill pixels in the bounding box 
according to the depth: 

 Step 1, the first seed point above is selected, seed cp p . 

 Step 2, for each pixel point seed_8-np  in the 8 

neighbourhood of the seed point seedp , assume that the 

depth value of seed_8-np  is seed_8-nd . If 

seed seed_8-n pixel| |d d     (2) 

where seedd  is the depth value of seedp . pixel  is a gradient 

limit standard of the pixel random search. Then add the 
pixel point seed_8-np  to the segmentation result if it located 

in the bounding box.  

 Step 3, taking the newly added pixel point seed_8-np  in the 

segmentation result, let seed seed_8-np p . Then returning to 

step 2 and continue to execute. Until no new pixel point is 
added, step 4 will be executed in sequence. The pixel 
search process is shown in Figure 4. As can be seen from 
Figure 4: The random search process is similar to BFS, 
and the initial point first traverses all points in its 8 
neighbourhood. The so-called 8 neighbourhood refers to 
the adjacent points in the 3*3 area centred on the initial 
point. 

 Step 4, judging the validity of the segmentation result, 
taking the pixel  vmin vmin vmin,u vp  with the smallest 

ordinate and the pixel  vmax vmax vmax,p u v  with the 

largest ordinate in the segmentation result, and if the 
difference between vmaxv  and vminv  is greater than 0.75 

times the bounding box height dyn,hb , the segmentation is 

completed. Otherwise, returning to step 1, select the 
remaining initial seed points and continue to execute until 
all five initial seed points are executed. 

Figure 4 Random search diagram 

 

After the above steps, depth-based pixel filling is completed. 
However, because the initial seed point selection strategy tends 
to overfill, the segmentation result will contain some pixel 
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noise points that do not belong to the dynamic target, so it is 
necessary to filter the segmentation result. 

Firstly, the average depth value aved  of the segmentation 

area is calculated as:  

ave /
i

i pd d N
 

   
 

p

  (3)  

where id  represents the depth value of pixel point ip  in the 

segmentation area, and pN  represents the number of pixel 

points in the segmentation area. 
Then, for each pixel point lp in the segmentation result, 

its relative depth difference iD is calculated as:  

avei iD d d    (4) 

where α is the preset parameter, which indicates the criteria 
of pixel screening according to depth.  

Assuming that the pixel coordinate is  ,i i ip u v , the  

X-axis minimum relative distance xg  of this pixel relative to 

the four sides of the bounding box dynamic,bounding_boxB  is 

calculated as: 

 x dyn,u dyn,u dyn,wmin ,i ig u b b b u     (5) 

and the Y-axis minimum relative distance yg  is calculated as: 

 y dyn,v dyn,v dyn,hmin ,i ig v b b b v     (6) 

The minimum relative distance iG  is calculated from xg   

and yg :  

 min ,i x yG g g  (7) 

If the weighted sum of the relative depth difference iD   

and the minimum relative distance iG  of the pixel ip   

is less than zero, ip  is removed from the segmentation 

result: 

0i iD G    (8) 

where   represents the weight of the minimum relative 
distance. The greater the weight, the greater the influence of 
the relative position of pixels on the screening results, and 
the less the influence of the depth of pixels. 

Up to now, the segmentation step based on the bounding 
box jointing depth is finished, and the pixel-level PDT 
segmentation results are obtained. The pseudo code of the 
above algorithm is shown in Algorithm 1. The following 
pseudo-code in Algorithm 1 contains the process of 
segmentation and result optimisation. For each bounding 

box of PDT, the Algorithm 1 steps are carried out. Figure 5  
shows the segmentation results of the algorithm. YOLO 
detection results on the left and segmentation results on the 
right. It can be seen that the segmentation method proposed 
can get pixel-level segmentation results, and the boundary 
of the results is relatively accurate. 

Algorithm 1: Dynamic target segmentation algorithm 

Input:   Target detection result set of current frame, 

object , bounding_box  

Output: Pixel-level dynamic target segmentation result, 
Mask 

1： Mask[w][h]  {0,0,0…,0} 

2： For object
i  ∈ object  do 

3：   If object
i  ∈ dyn  then 

4：    visitStack  {,,,, cp } 

5：    Mask[Pix.u][Pix.v]=1, Pix in visitStack 

6：    While visitStack is not empty do 

7：      seedp =Pix, Pix is visitStack.top 

8：      visitStack.pop 

9：      For  ∈ s 8-neighbor do 

10：        If Mask[.u][.v] == 0 then 

11：          If seed seed_8-n pixel| |d d    and  

seed_8-n dynamic,bounding_boxBp  then 

12：            Mask[.u][.v]=1 

13：            Push  into visitStack 

14：          End if 

15：        End if 

16：      End for 

17：    End while 

18：    For Pix∈ 

and Mask[Pix.u][ Pix.v] == 1 do 

19：      If Pix meet formula (8) then 

20：        Mask[Pix.u][ Pix.v]=0 

21：        End if 

22：    End for 

23：  End if 

24： End for 
25： Return Mask 
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Figure 5 Segmentation results 

          

(a) (b) 

         

(c) (d) 

3.3 Dynamic feature screening 

After extracting ORB features, the features belonging to PDT 
can be obtained according to the segmentation results of PDT, 
and the features belonging to PDT are classified as dynamic 
features in this process. 

However, in practical application, the PNDT may be 
moved, e.g., as shown in Figure 6, a man was dragging a chair. 
At this time, the chair is also dynamic, and the features 
belonging to the chair need to be screened as dynamic features. 
After the above steps, only the features belonging to people can 
be set as dynamic features, but in fact, the chair is moving with 
people, but the features belonging to chairs cannot be set as 
dynamic features at this time. Aiming at similar situations 
(such as people holding books and cups, etc.), we design a 
dynamic feature screening method.  

For the case that the PNDT follows the PDT, the motion 
probability pasp  of the PNDT is first set. For H-PNDT, the 

pasp  is set to 0.8 and the pasp  of L-PNDT is set to 0.25. 

Assuming that a bounding box passive,bounding_boxB  of PNDT 

has an area of pasA , judge whether it intersects with any 

bounding box of PDT. Assuming that the area of the 
bounding box of PDT which is intersecting with 

passive,bounding_boxB  is actA , then we calculate whether the ratio 

of pasA  to the intersection area pas actA A  is less than the 

threshold value  :  

pas

pas act

A

A A



 (9) 

the threshold   in (9) is calculated as: 

pasK p    (10) 

where K is a constant. If passive,bounding_boxB  conforms to (10), 

search whether there is a pixel set belonging to the PDT in 
this bounding box (3.2 segmentation result). 

 
Figure 6 Man was dragging a chair 

 



356 B. Fang et al.  
 

After the search is successful, the pixel set belonging to the 
PDT is taken as the initial seed point. The pixel random 
search filling process is carried out in passive,bounding_boxB , 

which is similar to Sub-section 3.2. The only difference is 
that the gradient limit standard pixel  of pixel random search 

should be appropriately increased at this time, to find the 
pixel set of object which is in contact with the PDT.  

After the pixel random search filling process of the 
previous step, the number pasN  of pixels belonging to this 

object in passive,bounding_boxB  is obtained, and whether the ratio of 

pasN  and the total number pasN  of pixels in passive,bounding_boxB  is 

less than the threshold value  is calculated:  

box

pas

N

N
   (11) 

where   represents the threshold, and the calculation 
equation of it is the same as (10). Since we will select 
effective dynamic features which can be used for pose 
optimisation from the dynamic features, if passive,bounding_boxB  

conforms to (11), the features in passive,bounding_boxB  are set as 

dynamic features. The pseudo code of the above algorithm 
is shown in Algorithm 2. It shows the specific operation 
steps in detail, and finally obtains the static feature set and 
the dynamic feature set. 

Algorithm 2: Dynamic feature point screening algorithm 

Input：   Target detection result set of current frame, 

object , bounding_box 、dynamic target segmentation 

result, Mask and the set of ORB features, 
ORBs；  

Output： the set of static features, STAs and the set of 
dynamic features, DYNs； 

1： For ORB ∈ ORBs do 

2：   If Mask[ORB.u][ORB.v]==1 then 
3：     DYNs add(ORB) 
4：   End if 
5： End for 

6： For object
i  ∈ object  do 

7：   If object
i  ∈ passive  then 

8:    If passive,bounding_boxB  meet formula (9) then 

9：       boxN  0， pasN  0 

10：      For Pix∈ do 

11:        boxN ++ 

12:       If Mask[Pix.u][Pix.v]==1 then 
13：          Push Pix into visitStack 
14：        End if 
15：      End for 
16：      While visitStack is not empty do 

17:       Pixel random searching filling and pasN ++ 

18:     End while 

19:     If boxN / pasN ≤ω then 

20：        For ORB∈ORBs ∩ passive,bounding_boxB do 

21：          DYNs add(ORB) 
22：        End for 
23：      End if 
24：    End if 
25：  End if 
26： End for 

27： For ORB ∈ ORBs do 

28：  If ORB not in DYNs then 
29：    STAs add(ORB) 
30：  End if 
31： End for 

Figure 7 shows the results of dynamic feature screening.  
Figure 7(a) is the YOLO detection result of this frame,  
Figure 7(b) is the PDT segmentation result of this frame, 
Figure 7(c) shows the result of chair pixel filling and  
Figure 7(d) shows the final classification effect of features, 
with red as dynamic features and green as static features. 

3.4 Effective dynamic feature multiplexing 

After filtering the dynamic features, the features will be 
divided into static and dynamic features. At this time, if the 
dynamic features are simply eliminated, many available 
information may be ignored in some scenes, resulting in a 
decrease in the number of features that can be used for pose 
optimisation, and a decrease in pose estimation accuracy, 
and even a failure in positioning. For example, as shown in 
Figure 8, the person who is in a sitting posture may only 
slightly move his limbs and heads, so his body still contains 
many effective features that can be used for pose estimation. 
Like this kind of situation, the dynamic features may still 
contain a lot of valid information, and if all of them are 
removed, this part of the information cannot be used. 

Because of this situation, this paper proposes a relatively 
static feature detection method based on feature data 
association, to judge whether there are effective dynamic 
features that can be used to optimise pose estimation. 

Feature Data association means that due to the camera self-

motion, the 2D coordinate  s_cur s_cur s_cur,p u v  of a static 

feature sp  in the current frame will change with respect to its 

2D coordinate  s_last s_last s_last,p u v  in the previous frame. 

Because the similarity between two consecutive images is very 
high, and usually the coordinate change distance between two 
adjacent frames is very small relative to the depth of the scene, 
it can be considered that this motion change should be the same 
for each static feature, i.e. each static feature is relatively static. 
As shown in Figure 9, by placing the 2D coordinates of the 
previous frame and the current frame in the same coordinate 
system, we can intuitively see that pi and another static feature 

2sp  move in the same way between two adjacent frames in 

most cases. 
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Figure 7 Classification results of features 

         
(a)   (b) 

          
(c)  (d) 

Figure 8 Dynamic feature screening results 

 

Figure 9 Transformation correlation diagram 
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Therefore, for each dynamic feature dp , it is detected whether 

it remains relatively static with the static feature. If it remains 
relatively static, dp  is set as an effective dynamic feature. 

Firstly, we choose to use a homography matrix to represent 
this transformation, and calculate the transformation 
homography matrix H through Random Sample Consensus 
(RANSAC) by using the static matching feature pairs of the 
previous frame and the current frame.  

Assuming that the coordinate of a certain dynamic feature 

dp  in the previous frame is  d_last d_last d_last,p u v , we project 

the coordinate of the previous frame of dp  to the current frame 

to obtain the projection coordinate d_projp :  

d_proj d_last

d_proj d_proj d_last

   1    1

u u

p v v H

   
   

     
   
   

 (12) 

Then calculate whether the Euclidean distance EUCD  

between the projection coordinate  d_proj d_proj d_proj,p u v  

and the real coordinate  d_cur d_cur d_cur,p u v  of the current 

frame is less than the threshold value  : 

   2 2

d_cur d_proj d_cur d_proju u v v      (13) 

where the threshold value  represents the displacement 
limit standard. 

If dp  satisfies (13), its depth value and grey value need to 

be verified. Firstly, the grey average value ave-8-nG  and depth 

average value ave-8-nD  of all pixels in the 8 neighbourhood of 

 d_cur d_cur d_cur,p u v , which is the real coordinate of dp  in 

the current frame, are calculated respectively. And the 8 

neighbourhood composite grey value  8-n d_cur d_cur,G u v  and 

composite depth value  8-n d_cur d_cur,D u v  of the point d_curp  

are calculated as:  

 8-n d_cur d_cur d_cur ave-8-n, 2G u v G G   (14) 

 8-n d_cur d_cur d_cur ave-8-n, 2D u v D D   (15) 

where d_curG  is the grey value of d_curp  ,and d_curD  is the depth 

value of d_curp . 

Then 8 neighbourhood composite grey value 

 8-n d_proj d_proj,G u v  and composite depth value  8-n d_proj d_proj,D u v  

of projection coordinate point  d_proj d_proj d_proj,p u v  of dp  in 

the current frame are calculated in the same way.  
At this point, we can calculate whether the composite grey 

difference between the real coordinates d_curp  and the projected 

coordinates d_projp  is less than the threshold g :  

   8-n d _ proj d _ proj 8-n d _ cur d _ cur g, ,G x y G x y    (16) 

and whether the composite depth difference is less than the 
threshold d : 

   8-n d _ proj d _ proj 8-n d _ cur d _ cur d, ,D x y D x y    (17) 

If dp  satisfies (16) and (17), the dynamic feature dp  is set 

as an effective dynamic feature for pose optimisation.  
The pseudo code of the above algorithm is shown in 
Algorithm 3. For each dynamic feature, Algorithm 3 steps 
are performed to determine whether it is an effective 
feature. 

Algorithm 3: Relative static feature detection 

Input：   the set of static features, STAs and the set of 
dynamic features, DYNs of currFrame and 
lastFrame 

Output： the set of effective features, EFs; 
1： Calculate Match_sta by STAs_cur and STAs_last 
2： Calculate Match_dyn by DYNs_cur and DYNs_last 
3： Calculate H by Match_sta 

4： For dp  ∈ Match_dyn do 

5：   d_projp  formula (12) 

6：   If d_projp  meet formula (13) (16) and (17) then 

7：    EFs add  dp  

8：   End if 
9： End for 

Figure 10 shows the selection of effective dynamic features, 
in which green represents static features and red represents 
selected effective dynamic features. The left person is in a 
sitting position with little movement amplitude, so there are 
many effective dynamic features on the body after detection 
and selection, which can be used for posture optimisation to 
improve positioning accuracy. However, the person on the 
right is walking and has a large range of motion, so there are 
no valid dynamic features that meet the requirements. 

Figure 10 Effective feature results. The red dot is the effective 
dynamic feature obtained through detection 

 

In the end, the calculated effective dynamic features and 
static features are combined for nonlinear optimisation of 
pose estimation, and the accuracy of pose estimation is 



 SLAM algorithm based on bounding box and deep continuity in dynamic scene 359 

significantly improved, and the robustness of the system in a 
dynamic environment is also improved. Based on the above 
work, a dense map with PDTs removed and semantic tags is 
built for the environment. 

4 Experiment and analysis 

In this part, the algorithm is tested from four aspects: dynamic 
target segmentation, location accuracy test, time performance, 
and map construction, and compared with ORB-SLAM 
algorithm in ORB-SLAM3, ORB-SLAM2, and other excellent 
SLAM algorithms in dynamic scenes. 

The experiment is mainly carried out in the ‘walking’ 
and ‘sitting’ sequences in the TUM data sets (Sturm et al., 
2012). The experimental environment includes Intel i7 
9700K CPU, GeForce RTX 2070 GPU and 16 GB memory. 
In addition, we also test the algorithm in a real environment 
and shows the effect. 

4.1 Dynamic target segmentation 

After YOLOv3 detection results are obtained, whether the 
segmentation results of PDTs are accurate or not will directly 
affect the subsequent process of this algorithm, so the accuracy 
of the segmentation algorithm needs to be tested. Compared 
with the semantic segmentation network based on deep 
learning, our proposed segmentation method has a fast 
segmentation speed. Therefore, considering the real-time, we 
compare the segmentation results with SegNet, a semantic 
segmentation network with extremely fast segmentation speed. 
In the subsequent experiment part (Subsection 4.3), the time 
efficiency test of this method and ours is included. Experiments 
are carried out on the proposed segmentation algorithm under 
four sequences high dynamic scenes fr3_walking_static, 
fr3_walking_xyz, fr3_walking_rpy, and fr3_walking_ 
halfsphere in the TUM data sets. 

Segmentation results are shown in Figure 11. The first 
column is YOLO target detection result, the second column is 
SegNet segmentation result and the third column is 
segmentation result of our algorithm. We can see that YOLOv3 
can only obtain target bounding boxes, but the PDT bounding 
boxes still contain much static information. If this static 
information cannot be used, the accuracy of pose estimation 
will decrease. The SegNet’s segmentation effect is not ideal, 
and there are many defects in the segmentation results, which 
leads to incomplete elimination of dynamic feature points, thus 
affecting the accuracy of pose estimation. However, in most 
cases, our algorithm can obtain more accurate and complete 
segmentation results at the pixel level of PDTs, and separate 
static information from dynamic information.  

Figure 11(a) shows the segmentation situation when a 
person is located at the edge of the visual field and the whole 
body is not blocked (standing posture), and it can be seen that 
our segmentation result is excellent. In this case, SegNet’s 
segmentation results for people at the edge of the field of vision 
are slightly poor, resulting in missing legs. Figures 11(b)  
and 11(c) show the situation when the field of view is tilted and 
rotated, which does not affect our segmentation result. It can be 

seen that SegNet segmentation results are very unstable at this 
time, and most of them are missing. Figure 11(d) shows that 
the General situation, and our method can also get the 
approximate real value. In this case, SegNet segmentation 
results are also very unsatisfactory. To sum up, the 
segmentation algorithm proposed in this paper can obtain 
accurate pixel-level segmentation results of PDTs in a dynamic 
environment without using a semantic segmentation network. 

Figure 11 Segmentation experimental results 

  

(a) 

  

(b) 

  

(c) 

  

(d)  

4.2 Pose estimation accuracy 

All pose estimation experiments are carried out in the dynamic 
sequence of TUM data set, which is the authoritative 
experimental data set in SLAM field at present. The evaluation 
indexes mainly include Relative Pose Error (RPE) and 
Absolute Trajectory Error (ATE). In order to avoid 
contingency, 10 identical experiments were performed on each 
sequence to take the average value. 

First of all, in order to prove the effectiveness and 
advantages of our proposed effective dynamic features 
detection algorithm, we conducted ablation experiments based 
on our system under the condition that other conditions remain 
unchanged. Table 1 shows the experimental results, in which 
ours represents the pose estimation results of our system, and 
OursNE represents the pose estimation results after we disable 
the effective dynamic features detection. As can be seen from 
Table 1, compared with the results after disabling the effective 
dynamic feature detection method, the pose accuracy is 
improved after enabling this method, which can prove that the 
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dynamic feature detection method we proposed is effective. 
The main reason is that more temporary features can be  
used for optimisation when using the uniform velocity  
model to estimate pose, so the accuracy will be improved 
accordingly.  

Next, we will compare the overall accuracy of our 
system with other systems. Table 2 shows the comparison 
results of RPE and ATE between the latest ORB-SLAM3 
and our algorithm. It contains datas such as Root Mean 
Square Error (RMSE) and Standard Deviation (S.D.). Since 
ORB-SLAM3 is not better than ORB-SLAM2 in some 
cases, our algorithm is also compared with ORB-SLAM2. 

Table 3 shows RPE and ATE of ORB-SLAM2 and our 
algorithm. 

Table 1 Ablation experiments 

Seq 
ATE (m/s) 

OursNE Ours 

fr3_walking_static 0.0098 0.0072 

fr3_walking_xyz 0.0188 0.0147 

fr3_walking_rpy 0.0457 0.0331 

fr3_walking_half 0.0329 0.0253 

Table 2 Comparisons of ATE and RPE of ORB-SLAM3 and ours 

Seq 
RPE: Translation drift (RMSE m/s) RPE: Rotating drift (RMSE deg/s) ATE (RMSE m/s) 

ORB-SLAM3 Ours ORB-SLAM3 Ours ORB-SLAM3 Ours 

fr3_walking_static 0.0364 0.0103 53.789 0.2988 0.0255 0.0072 

fr3_walking_xyz 0.4115 0.0207 22.294 0.5876 0.2838 0.0147 

fr3_walking_rpy 0.3617 0.0448 39.547 0.9605 0.1969 0.0332 

fr3_walking_half 1.0571 0.0347 21.63 0.8903 0.5958 0.0253 

fr3_sitting_xyz 0.4899 0.0188 16.811 0.6029 0.2357 0.0131 

fr3_sitting_half 0.4415 0.0221 37.842 0.6388 0.2852 0.0151 

Table 3 Comparisons of ATE and RPE of ORB-SLAM2 and ours 

Seq 
RPE: Translation drift (RMSE m/s) RPE: Rotating drift (RMSE deg/s) ATE (RMSE m/s) 

ORB-SLAM2 Ours ORB-SLAM2 Ours ORB-SLAM2 Ours 

fr3_walking_static 0.2015 0.0103 3.6028 0.2988 0.3575 0.0072 

fr3_walking_xyz 0.3711 0.0207 6.9625 0.5876 0.6772 0.0147 

fr3_walking_rpy 0.4658 0.0448 9.1274 0.9605 0.8806 0.0332 

fr3_walking_half 0.3418 0.0347 6.7633 0.8903 0.5186 0.0253 

fr3_sitting_xyz 0.0126 0.0188 0.5731 0.6029 0.0090 0.0131 

fr3_sitting_half 0.0315 0.0221 0.6496 0.6388 0.0452 0.0151 

Figure 12 Trajectory comparison in dynamic environment. The first line is the estimated trajectory diagram of ORB-SLAM3, and the 
second line is ours. It can be seen that there is little difference between the estimated trajectory of our system and the ground 
truth 

(a) fr3_walking_halfsphere (b) fr3_walking_rpy (c) fr3_walking_static (d) fr3_walking_xyz  
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Figure 12 shows the comparison result between the 
estimated and real values of the camera motion trajectory on 
the walking sequences of ORB-SLAM3 (the first line) and 
our algorithm (the second line). It can be clearly seen from 
the trajectory comparison diagram that there is a big gap 
between the estimated and real trajectory of ORB-SLAM3 
in the dynamic scene, and there will be tracking failure. 
However, the difference between the estimated pose and the 
real pose of our algorithm is very small, which can track the 
camera trajectory well. 

From the above experimental results, it can be 
concluded that the SLAM algorithm based on bounding box 
and depth continuity proposed in this paper performs well in 
dynamic environment, and significantly reduces the 
translation drift and rotation drift of visual odometer in 
dynamic environment, so that the absolute trajectory error 
of the whole SLAM algorithm is minimised. 

The reasons are as follows: First, the dynamic target 
segmentation algorithm and dynamic feature screening 
algorithm proposed can effectively deal with dynamic targets 
in the environment, eliminate the adverse effects of dynamic 
features on pose estimation, and make our algorithm have 
better adaptability to dynamic environment. Secondly, the 
relatively static feature detection algorithm designed in this 
paper can select the effective dynamic features which can be 
used for pose optimisation, and make full use of the effective 
information in the field of vision to improve the pose 
estimation accuracy.  

In order to further verify the advancement and robustness 
of the algorithm proposed in this paper, Table 4 lists the 
experimental results of our algorithm compared with other 
excellent SLAM algorithms in dynamic scenes. It can be seen 
from Table 4 that our algorithm performs best in most 
sequences compared with other SLAM algorithms in dynamic 

scenes. Only in fr3_walking_static sequence, the positioning 
accuracy is slightly inferior to that of Bescos et al. (2018), but it 
can be seen that the gap is very small. The accuracy of 
fr3_sitting_xyz sequence is lower than that of Dai et al. (2020), 
and the above experimental comparison results show that the 
performance of our algorithm is better than that of other SLAM 
systems in dynamic scenes in most cases. The analysis reasons 
are as follows: First, because our dynamic target segmentation 
algorithm performs well, the dynamic feature screening results 
are more accurate. Second, we didn’t simply eliminate the 
dynamic features but detected the effective features to optimise 
the pose estimation results.  

4.3 Time performance test 

In practical application, real-time performance is an 
important index to evaluate SLAM system. Therefore, the 
running time of some main modules is tested and compared 
with other excellent SLAM algorithms in dynamic 
environment under the same hardware conditions. The 
results are shown in Table 5. The segmentation module, 
motion detection module and the average time of processing 
one frame are compared respectively. The processing time 
of the segmentation module of our algorithm includes the 
running time of YOLOv3. 

The average running time of the proposed dynamic 
object segmentation algorithm is 11.15 ms, and the average 
processing time of relative static feature detection is only 
2.9 ms. Because the system works in multithreading mode, 
the average processing time of each frame by the main 
thread is 18.2 ms. Compared with Yu et al. (2018) and other 
non-real-time dynamic scene SLAM, the proposed 
algorithm can better meet the real-time requirements of 
practical applications. 

Table 4 Comparisons of the RMSE of absolute trajectory error (ATE) of other SLAM algorithms in dynamic environment and ours 

Seq Yu et al. Bescos et al. Sun et al. Yang et al. Dai et al. Wang et al. Ours 

fr3_walking_static 0.0081 0.0069 0.0656 0.0074 0.0108 0.0078 0.0072 

fr3_walking_xyz 0.0247 0.0152 0.0932 0.0874 0.0874 0.0162 0.0147 

fr3_walking_rpy 0.4442 0.0351 0.1333 0.0351 0.1608 0.0373 0.0332 

fr3_walking_half 0.0303 0.0261 0.1252 0.0268 0.0354 0.0277 0.0253 

fr3_sitting_half – 0.0172 0.047 – 0.0235 0.0159 0.0151 

fr3_sitting_xyz – 0.0154 0.0482 – 0.0091 – 0.0131 

Table 5 Time evaluation (Unit: ms) 

Module Yu et al. (2018) Bescos et al. (2018) Fang et al. (2021) Ours 

Segmentation SegNet Mask R-CNN Mask R-CNN Dynamic target segmentation 

24.5 236.1 236.1 11.1 

Motion detection Motion consistency Multi-view geometry Semantic descriptor Relative static feature 

18.1 1444 16.2 2.9 

total 36.5 1714 261.1 18.2 
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4.4 Map construction experiment 

On the basis of the previous work, we build a dense map 
with semantic tags and no PDTs. 

Firstly, according to the dynamic object segmentation 
algorithm proposed in this paper, the pixels belonging to PDTs 
in RGB images of key frames are eliminated. Then, according 
to the 2D detection results, for each PNDT detected in the 
keyframe, semantic classification and colouring are carried out 
on the pixels of the RGB image of the keyframe based on its 
bounding box. Finally, according to the keyframe RGB image, 
the depth image and the optimised pose, a dense point cloud is 
generated, and a dense map with semantic tags is constructed in 
the dynamic scene. 

TUM: Figure 13 shows the comparison between  
ORB-SLAM3 (first row) and the algorithm in this paper 
(second row) in the TUM dynamic data sets. Among them,  
we add a point cloud mapping thread for ORB-SLAM3  

and use keyframes and their pose estimation results to  
build maps.  

It can be seen that the readability of the first-row map is 
poor. First, due to the low accuracy of pose estimation, the map 
coincidence degree is low. Second, because the PDTs  
are not eliminated, the map contains a lot of dynamic 
information. However, the map constructed by our algorithm 
eliminates the PDTs, and the pose estimation accuracy is 
excellent, which makes the map achieve good results. On this 
basis, semantic information is added to the map. As shown in 
the second line of Figure 13, yellow is the screen and purple is 
the keyboard, but it can also be seen that the semantic tags of 
some targets are noisy. For people in the field of vision, the 
system also eliminates basically completely. For some noise 
points that still exist, the reasons are as follows: in a few 
keyframes, YOLO did not detect people, which led to the fact 
that people were not removed from these keyframes and noise 
points were generated in the map. 

Figure 13 Map Comparison in Dynamic Scene. The first line is the mapping result of orb, and the second line is ours. We can see that our 
system basically restored the real scene and eliminate PDTs 

    

    

(a) fr3_walking_halfsphere            (b) fr3_walking_rpy              (c) fr3_walking_static              (d) fr3_walking_xyz 

Figure 14 Real environment results display 

        
(a)  (b) 

        
(c)  (d) 
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Reality: Experiments are also carried out in a real environment, 
and the images are captured by Kinect V1 camera. Figure 14 
shows the running results of our algorithm in the real 
environment. The left side is the segmentation result, and the 
right side is the classification result of features. The features on 
the moving person are divided into dynamic features (red), and 
the rest of the static parts are divided into static features 
(green).  

Figure 15 shows a 3D dense point cloud map with 
semantics after removing PDTs. The left side is the real 
environment, and the right side is the mapping result. The 
green point cloud represents sofa, blue point cloud represents 
stool, purple point cloud represents dining table, and blue-green 
point cloud on the left side of the map represents potted plants. 
It can be seen that the mapping effect is good and the real scene 
is basically restored. The experimental results in the real 
environment show that our system can work well in the real 
dynamic environment and build an environment map with 
semantic tags and only static parts. 

Figure 15 Mapping in real environment 

      

(a) (b) 

5 Conclusion 

In this paper, a real-time robust visual SLAM algorithm in the 
dynamic scene is proposed, which can run in real-time and 
ensure high-precision positioning, which is the premise that the 
SLAM algorithm can be applied in the real environment. For 
dynamic target detection and segmentation, a dynamic target 
segmentation algorithm based on bounding box and depth 
continuity is proposed, which can quickly and accurately 
segment the contour of the dynamic target. The influence of 
dynamic targets on pose estimation is eliminated to the greatest 
extent. At the same time, a relatively static feature detection 
algorithm based on feature Data association is proposed,  
and effective dynamic features can be selected for pose 
optimisation, which not only significantly improves the 
accuracy of pose estimation, but also avoids inaccurate pose 
estimation or even tracking failure caused by insufficient 
features in the field of vision, and enhances the robustness of 
the system. Experimental results show that the algorithm 
proposed in this paper is effective and advanced. In the future, 
it will further improve the dynamic perception ability of the 
system, thus reducing the dependence on the target detection 
algorithm. At the same time, we will focus on the research and 
improvement of the mapping module. 
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