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a b s t r a c t 

The COVID-19 pandemic has affected many countries, posing a threat to human health and safety, and 

putting tremendous pressure on the medical system. This paper proposes a novel SLAM technology us- 

ing RGB and depth images to improve hospital operation efficiency, reduce the risk of doctor-patient 

cross-infection, and curb the spread of the COVID-19. Most current visual SLAM researches assume that 

the environment is stationary, which makes handling real-world scenarios such as hospitals a challenge. 

This paper proposes a method that effectively deals with SLAM problems for scenarios with dynamic 

objects, e.g., people and movable objects, based on the semantic descriptor extracted from images with 

help of a knowledge graph. Specifically, our method leverages a knowledge graph to construct a priori 

movement relationship between entities and establishes high-level semantic information. Built upon this 

knowledge graph, a semantic descriptor is constructed to describe the semantic information around key 

points, which is rotation-invariant and robust to illumination. The seamless integration of the knowledge 

graph and semantic descriptor helps eliminate the dynamic objects and improves the accuracy of track- 

ing and positioning of robots in dynamic environments. Experiments are conducted using data acquired 

from healthcare facilities, and semantic maps are established to meet the needs of robots for delivering 

medical services. In addition, to compare with the state-of-the-art methods, a publicly available dataset 

is used in our evaluation. Compared with the state-of-the-art methods, our proposed method demon- 

strated great improvement with respect to both accuracy and robustness in dynamic environments. The 

computational efficiency is also competitive. 

© 2021 Published by Elsevier Ltd. 
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. Introduction 

The introduction of robots to healthcare facilities provides many 

ervices for dealing with the coronavirus crisis such as allowing 

ealth care workers to remotely take temperatures and measure 

lood pressure and oxygen saturation from patients hooked up to 

 ventilator. Robots could also be used to disinfect with ultravio- 

et light or bring food to the quarantined. These are just a few of 

ozens of ways robots to reduce contact and the risk of infection 

uring the COVID-19 pandemic. 

To enable robots to work in unknown or dynamic environ- 

ents, simultaneous localization and mapping (SLAM) technology 

s developed to build a semantic map of healthcare facilities to 

btain the spatial layouts and understand the surrounding envi- 

onment. Using the SLAM technology, a robot uses its sensors in 
∗ Corresponding author. 
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n unknown environment, locates its position and estimates pos- 

ure through the observed environmental characteristics during the 

ovements, and incrementally builds a map of the interior. Vi- 

ual SLAM (VSLAM) uses cameras as sensors, including monocular, 

tereo, and RGB-D cameras. Benefiting from the fast developments 

f computer vision techniques and high-quality visual sensors [41] , 

SLAM has received widespread attention [9,24] . 

However, there are still problems with VSLAM that require fur- 

her investigation. The existing VSLAM approaches derive no se- 

antic information from the videos, partly because of the com- 

lexity of the analysis [14] . Instead, geometric methods are used 

o track the movements and generate maps, which faces the dif- 

culty of differentiating objects of various geometric entities [8] . 

his is critical in complex environments such as healthcare facili- 

ies, where patients are moved around and equipment is replaced 

rom time to time. For robots to understand the environments and 

rovide better help for the treatment of the COVID-19 pandemic, 

emantic information needs to be introduced. With the develop- 

https://doi.org/10.1016/j.patcog.2021.107822
http://www.ScienceDirect.com
http://www.elsevier.com/locate/patcog
http://crossmark.crossref.org/dialog/?doi=10.1016/j.patcog.2021.107822&domain=pdf
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ent of convolutional neural networks [11] , there are many high- 

erformance networks for image semantic/instance segmentation 

12,43] . The combination of these networks and the VSLAM sys- 

em is helpful to improve the scene understanding ability of robots 

31] . In addition, the existing VSLAM methods usually assume that 

he environment is static. The presence of moving objects in the 

ospital scene, such as medical staff, patients, and moving medical 

quipment, greatly affects the accuracy of VSLAM, and may even 

ead to the failure of traditional methods. Therefore, how to detect 

ynamic objects and eliminate their influence on pose estimation 

as become the key to VSLAM’s handling of dynamic scenes. Pose 

stimation means estimating the camera’s position and direction. 

In this paper, we extend ORB-SALM2 [24] . This paper extends 

he ORB feature points and proposes a semantic descriptor for map 

onstruction. Using semantic descriptor and knowledge graph, a 

igh-level semantic relationship can be established. By that, we 

etect and remove dynamic objects in the environment, to improve 

he accuracy of pose estimation. The main contributions of this pa- 

er are as follows: 

1. Use a knowledge graph to construct the relationship between 

entities and obtain high-level semantic information. 

2. A descriptor of semantic information is constructed by leverag- 

ing Mask R-CNN to describe the semantic information around 

key points and, together with the knowledge graph, accurately 

detect the dynamic objects. 

3. In the process of feature point matching, dynamic feature 

points are eliminated to improve the accuracy of pose estima- 

tion. 

4. Extensive evaluation with real hospital scene to build a se- 

mantic map and the effectiveness of the algorithm is verified 

through comparative experiments on the TUM dataset. 

The rest of this paper is organized as follows: Section 2 intro- 

uces related work, Section 3 details the main work, Section 4 

resents experimental results, and Section 5 concludes the paper 

ith a summary. 

. Related work 

In the treatment of the COVID-19 pandemic, researchers have 

roposed methods of using robot-assisted medical treatment. Ye 

t al. [39] evaluated the feasibility of using a robot-assisted remote 

ltrasound system for cardiopulmonary assessment of COVID-19 

atients. Yang et al. [38] developed the use of wearable motion 

apture devices to remotely control robots to complete tasks such 

s medicine delivery and remote operation of medical equipment. 

he robots are equipped with a remote video conferencing system 

or doctor-patient communication. Robots rely on maps to move 

nd need to understand the surroundings to complete various ad- 

anced tasks. This paper establishes a semantic map through visual 

LAM technology to serve the application of robots in COVID-19 

reatment. 

Over the past decades, researchers have developed many meth- 

ds in the field of visual SLAM. Traditional visual SLAM systems, 

uch as PTAM [18] , Fang [10] , SPM-SLAM [25] and UcoSLAM [23] ,

re based on geometry properties of the image. However, these 

ethods ignore the semantic information from the surroundings. It 

s, therefore, difficult to accomplish complex tasks such as navigat- 

ng within high-traffic facilities, e.g., hospitals. In recent years, se- 

antic SLAM that associates geometric entities with semantic in- 

ormation has drawn the attention of researchers. McCormac et al. 

22] obtain semantic information through neural network segmen- 

ation and use incremental semantic label fusion to build a seman- 

ic map based on ElasticFusion [37] framework. Zhao et al. [42] use 

D texture information and 3D geometric information jointly to 
2 
uild a novel semantic segmentation network to get more accu- 

ate segmentation results. Hu et al. [13] employ deep networks 

hat leverage 3D features achieve an improved classification and 

dentification. The above methods only focus on semantic map- 

ing, while semantic information is not well used in other parts of 

LAM. Alonso et al. [1] construct a lightweight semantic segmenta- 

ion network, namely MiniNet, and make use of it for keyframe se- 

ection. However, their methods regard objects segmented by neu- 

al networks as independent individuals, with no connections be- 

ween them. In this paper, connections between objects will be es- 

ablished using a knowledge graph. Thus we can obtain high-level 

emantic information. 

The majority of the approaches are based on the assumption of 

tatic environments. When the space is highly dynamic, e.g., peo- 

le moving around, the existing methods tend to have a serious 

eviation in pose estimation and trajectory tracking. To deal with 

ynamic scenarios, Klappstein et al. [17] calculate motion informa- 

ion between frames by optical flow method to detect moving ob- 

ects. N. D. Reddy et al. [27] add support for stereo cameras by 

xtending the method in [17] . Tan et al. [34] projected the map 

nto the current frame to verify the consistency of appearance and 

tructure, thereby detecting changes in the scene. 

In addition to the above methods, researchers have also pro- 

osed methods for processing SLAM problems in dynamic scenes 

sing semantic information. Kaneko et al. [15] use the segmenta- 

ion results of DeepLab v2 [6] to remove feature points detected 

n the sky and cars. Berta et al. [4] combine multi-view geomet- 

ic models with MASK R-CNN segmentation results to detect and 

xclude dynamic objects. Riazuelo et al. [28] deal with human 

ctivities in the scene by recognizing and tracking “people”. Sun 

t al. [33] detect the dynamic area by calculating the difference 

etween the current and last frame. Kim and Kim [16] propose 

 robust background model-based dense-visual-odometry (BaMVO) 

lgorithm in dynamic environments to reduce the impact of dy- 

amic objects. Li and Lee [19] apply a static weighting method for 

dge points in the keyframes. The static weight indicates the like- 

ihood of one point being part of a static environment. Yu et al. 

40] combine SegNet [2] with motion consistency detection to fil- 

er dynamic feature points and build a static semantic map. Wang 

t al. [35] not only exclude dynamic objects but also constructed a 

nified framework for mutual promotion of SLAM localization and 

emantic segmentation, which improved the accuracy of both. In 

his paper, we directly describe the surrounding of objects using a 

emantic descriptor, which is used to detect and remove dynamic 

bjects. In contrast, the aforementioned methods face problems of 

andling complex scenarios due to the lack of the ability of seman- 

ic analysis. 

. Method 

This section presents our method in detail from five aspects. 

irstly, the overall framework of our system based on the ORB- 

LAM2 is described. Secondly, we introduce the establishment of 

 knowledge graph in the hospital scene to build a priori move- 

ent relationship between objects. Thirdly, a detailed description 

f the Semantic Descriptor established on the semantic segmenta- 

ion network, which combines ORB features to describe the seman- 

ic information of frames, is presented. Subsequently, the knowl- 

dge graph is combined with semantic descriptors to detect and 

emove dynamic objects to improve the accuracy of pose estima- 

ion. Finally, we introduce our idea of constructing a semantic map. 

.1. System framework 

The ORB-SLAM2 system has an excellent performance in most 

ases and achieves a good balance of real-time performance and 
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Fig. 1. Framework diagram of our system. 
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Fig. 2. An illustration of a knowledge graph. 
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ccuracy. Therefore, this paper chooses to work on the ORB-SLAM2 

ramework with an RGB-D camera in the hospital scene. The over- 

ll framework of our system is shown in Fig. 1 . 

Before the system runs, the Knowledge Graph is used to es- 

ablish the relationship between various object entities in advance. 

mages captured by the Microsoft Kinect camera are processed by 

he tracking thread and the semantic segmentation thread at the 

ame time. The tracking thread first extracts ORB feature points 

nd then waits for the segmentation results of the semantic seg- 

entation thread. After receiving the segmentation results, the 

racking thread constructs semantic descriptors and then combines 

he pre-established entity relationships to mark dynamic feature 

oints and exclude them, leaving only stable static feature points 

hich are used for feature matching and semantic map building. 

.2. Knowledge graph 

During COVID-19 treatment, there is a complicated move- 

ent relationship between objects. It is easy to get that: doc- 

ors, nurses, etc. are dynamic objects while ventilators, tempera- 

ure guns, teacups, etc. are static objects; however, the process of 

emperature guns being taken away by nurses is also dynamic. In 

he past, semantic SLAM regards objects segmented by neural net- 

orks as independent individuals so only low-level semantic infor- 

ation can be obtained. 

This low-level semantic information can easily recognize dy- 

amic objects like doctors and nurses, but the situation of “a tem- 

erature gun was taken away by the nurse’ needs to be handled 

y combining with other geometric methods. This paper intends 

o establish relationships between objects by building a knowl- 

dge graph, to process complex dynamic scenes, which is a type of 

igher-level semantic information. A knowledge graph is a struc- 

ured representation of facts, consisting of entities, relationships, 

nd semantic descriptions. We can define a knowledge graph as 

 = { E, R , F } , where E, R and F are sets of entities, relations and 

acts, respectively. A fact is denoted as a triple of head ( h ), relation

 r) and tail ( t): (h, r, t) ∈ F , where h ∈ E, r ∈ R and t ∈ E . 

For ease of description, the set of feature points belonging to 

objects with motion attributes” in the image is marked as P mov ing , 

uch as doctors, nurses, etc. The set of feature points belonging to 

objects with attributes that can be moved” is marked as P mov able , 

uch as temperature guns, cups, etc. These do not have motion 

ttributes themselves, but they can be operated on or moved by 

edical staff. That is, these objects can be moved by different 

 mov ing objects to be in motion. Taking medical staff and some com- 
3 
on objects in hospitals, for example, the knowledge graph is es- 

ablished as shown in Fig. 2 . Health care personnel, patient, and 

isitors are part of the set P mov ing ; movable medical equipment be- 

ongs to P mov able ; whereas beds and stationary medical equipment 

re static objects. We refine the relationships between doctors, pa- 

ients, medical equipment, and others from real hospital scenarios. 

t present, the knowledge graph established in this paper is suf- 

cient to meet the demand for robot assistants during COVID-19 

reatments. However, it is possible to extend the knowledge graph 

n more complex indoor or outdoor scenarios, such as in a living 

oom or a downtown area. 

.3. Local semantic descriptor 

In this paper, we have constructed a new type of descriptor, 

alled a local semantic descriptor. Common descriptors, such as 

he descriptors in the SIFT [7] feature, the SURF [3] descriptor, and 

he BRIEF [5] descriptor, all describe the photometric information 

round key points in some forms without semantic information. 

RB [29] feature takes BRIEF as its descriptor and obtains direction 

nformation. The semantic descriptor proposed is a descriptor that 

pecifically describes the semantic information around key points. 

To construct local semantic descriptors, we adopt the MASK 

-CNN network to extract semantic information. MASK R-CNN 

emonstrated highly competitive image instance segmentation ac- 

uracy and can obtain instance-level semantic information. MASK 

-CNN was trained on the MS COCO dataset [20] and classifies ob- 

ects of 80 categories. Specifically, we employ the implementation 

ith Tensorflow by Matterport [21] . 

As shown in Eq. (1) , we use a set C to represent all possible

bject categories, in which c i ( 1 ≤ i ≤ m ) represents the i th object,

nd c represents the unclassified object. In this paper, m is set to 
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Fig. 3. Semantic map and 5 × 5 descriptor. (a) RGB image (b) semantic map (c) semantic descriptor. p and q in (a) are two key points and the zoom-in views of these two 

points and the neighborhood patches are shown in (c). 

8

C

k  

p

c

D

D

w  

i

c

t

s

m

s

c  

c

a

p

b

o

e

[

t

t

o

g

 

Fig. 4. Two examples of the semantic descriptor. The left and right are semantic 

descriptors of P and P ′ , respectively. 
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0, which is the number of MASK R-CNN classifications. 

 = { c 0 , c 1 , . . . , c m 

} . (1) 

For a frame during the SLAM procedure, assume that p is one 

ey point. We take an image patch B p with side length n and the

oint p is at its geometric center. We record the object category 

orresponding to each pixel in B p to form a semantic descriptor 

 

n ×n : 

 

n ×n = 

[ 

d x 1 ,y 1 . . . d x 1 ,y n 
. . . 

d x n ,y 1 . . . d x n ,y n 

] 

(2) 

here d x 1 ,y 1 ∈ C, x i , y i ∈ B p , and 1 ≤ i, j ≤ n . A semantic descriptor

s a matrix, in which each element is a scalar representing object 

ategory id. 

Fig. 3 shows an image, its semantic segmentation, and an illus- 

ration of 5 × 5 semantic descriptors. The segmented objects, e.g., 

taff, bed, etc., are marked in different colors and the areas not 

arked are classified as “background”. The black grid shows the 

emantic descriptors of the two key points P and Q, where each 

ell records the semantic category c i ( 0 ≤ i ≤ m ) of the pixel in the

orresponding position. Among them, point P’s category is “bed”, 

nd its descriptor includes bed, nurse, and background, while the 

oint Q’s category is “person”, and its descriptor includes person, 

ed, and background. We learn from this that the nurse and an- 

ther person are close to the bed. Hence, the semantic descriptor 

ffectively describes the surroundings of key points. 

The semantic descriptor is rotation invariance. In ORB’s FAST 

30] corner point extraction stage, direction information is ob- 

ained. We utilize this information to calculate the rotated seman- 

ic descriptor to make it rotation-invariant. This is similar to that 

f ORB-SLAM. 

The direction information of the key points is obtained by the 

ray centroid method [26] : 

1. In an image patch B, the moment is computed as follows: 

m pq = 

∑ 

x,y ∈ B 
x p y q I(x, y ) (3) 

where p, q ∈ { 0 , 1 } and I(x, y ) represents pixel value at coordi-

nate (x, y ) . 

2. Find the centroid of the image patch ( ̄x , ̄y ) using the moments 

( ̄x , ȳ ) = ( 
m 10 

m 00 

, 
m 01 

m 00 

) (4) 

3. Draw a line between the centroid and the geometric center of 

B (key points) to obtain the vector, and calculate the angle be- 

tween this vector and the x-axis of the image coordinate sys- 

tem: 

θ = arctan ( 
m 01 

) (5) 

m 10 

n

4 
4. rotates the semantic descriptor by θ . 

Since the semantic information comes from the segmentation 

esult of the neural network, the semantic descriptor is robust to 

llumination changes, which extends the ORB descriptor. The il- 

umination changes refer to the changes of indoor lightning and 

aylight through window or door and the mixture of both. In the 

ase of unstable neural network segmentation results, calculating 

he distance between semantic descriptors of two frames as auxil- 

ary information can further improve the accuracy of feature points 

atching. When the accuracy of neural network segmentation is 

igh enough, using only semantic descriptors is enough for match- 

ng, i.e., matching is performed by comparing the semantic infor- 

ation around key points. This matching method has high consis- 

ency with human judgment methods. 

If the semantic descriptor is used for feature matching, the dis- 

ance between two semantic descriptors is calculated as follows: 

 

1 (| f p (x i , y j ) − f p ′ (x ′ i , y ′ j ) | < 1) , (6)

here f p (x i , y j ) , f p ′ (x ′ 
i 
, y ′ 

j 
) ∈ C and f p (x i , y j ) and f p ′ (x ′ 

i 
, y ′ 

j 
) repre-

ent semantic information of p and p ′ at (x i , y j ) and (x ′ 
i 
, y ′ 

j 
) , re-

pectively. 1 (·) is an indicator function, which returns 1 if the dis- 

ance between f p and f p ′ is less than one; otherwise, it returns 

ero. The computation involves all elements in the two patches. An 

xample is shown in Fig. 4 , in which P and P ′ are two key distinct

oints in two adjacent frames and c 1 , c 2 , c 3 , c 4 , and c i denote dif-

erent values. Following the above distance formula, the distance 

etween these two descriptors is 2. 

.4. Dynamic object detection 

Detection of dynamic objects starts after the system extracts 

eature points from a frame and completes semantic segmentation. 

n a hospital scene, we leverage a priori information to decide dy- 

amic objects. For feature points belonging to P mov ing are dynamic, 
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Fig. 5. Flowchart of dynamic object detection and rejection. 
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hey are removed. In case when feature points belonging to P mov able 

re close enough to correspond P mov ing objects in the knowledge 

raph, they are also considered to be dynamic. For example, when 

he temperature gun is very close to a nurse, it is regarded as mov- 

ng by the nurse. 

To decide if P mov able objects are close enough to P mov ing objects, 

e construct semantic descriptors. For every key point belonging 

o the P mov able in each frame, we construct a semantic descriptor 

 

n ×n . N is used to record the number of pixels in it whose seman-

ic category belongs to the ones with motion attributes. Take the 

ategory “person” for example, which is represented by c person in 

q. (7) , N is calculated. That is, we use semantic descriptors to de- 

cribe whether there are P mov ing objects near key points. 

 = 

∑ 

1 (d x i y j = c person ) (7) 

We use the semantic descriptor to determine whether the fea- 

ure point is dynamic. Also take the category “person” for exam- 

le, as shown in Eq. (8) , p represents one feature point in a frame;

 person represents the set of points belonging to category “person”; 

 p is calculated using Eq. (7) ; δ represents a threshold; S p rep- 

esents the state of the point, where 1 represents dynamic and 0 

tands for static. When the feature point category is “person”, it 

s thought dynamic; when the feature point belongs to an object 

hat can be moved by a person, and the number of pixels which 

re “person” in its semantic descriptor exceeds a given threshold, 

t is considered to be a dynamic point since it is close enough to 

eople; otherwise, it is considered static. At this point, the label- 

ng of dynamic feature points is completed, and the set of dynamic 

eature points is recorded as P i 
dynamic 

. 

 p = 

{
1 , p ∈ { P person , P mov able } and N p > δ
0 , otherwise 

(8) 

We remove the marked dynamic feature points from the orig- 

nal ORB feature points set. In Eq. (9) , P orb represents the set of

ll ORB feature points in a frame, and P static represents the set of 

tatic feature points. We use P static points to perform feature points 

atching and pose estimation and complete the follow-up work. In 

his way, we remove all dynamic feature points when appropriate, 
5 
nd reduce the possibility that P mov able objects considered dynamic 

hen they are static. They are dynamic only when they are close 

nough to objects represented by P mov ing . 

 static = P orb − P dynamic (9) 

he flowchart of the dynamic object detection and rejection pro- 

ess is illustrated in Fig. 5 . 

.5. Semantic map construction 

For the robot to complete tasks such as delivering medicines 

nd meals, it is necessary to know the type, size, and spatial loca- 

ion of objects in the environment in advance. In response to this 

eed, this paper constructs a dense semantic point cloud map. 

We generate an instance-level semantic database and seman- 

ic map by the following steps. Firstly, we use the keyframes and 

he transformation matrix between them along with semantic seg- 

entation results to generate a semantic local point cloud map. 

herefore, each point cloud generated has corresponding seman- 

ic attributes, such as people, tables, beds, etc. Secondly, we re- 

ove the point cloud belonging to the dynamic object accord- 

ng to the method described in Section 3.4 so that a static local 

oint cloud map is created. According to the semantic information, 

he point cloud cluster of each instance in the segmentation re- 

ult is obtained. After that, the instance-level semantic database of 

eyframes is established, including index, category, semantic color, 

robability, centroid, cluster, and cluster coordinates boundary. The 

atabase is used for the robot to quickly retrieve the objects in the 

urrent map. To filter out repeated information of the same object 

n different frames, the database of existing keyframes is updated 

ccording to the cluster’s semantic category and centroid distance 

s well as coincidence degree between the current keyframe and 

he local point cloud map. Whenever a new keyframe arrives, we 

epeat the above steps to build a semantic map incrementally. 
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Fig. 6. Examples of semantic maps. From top to bottom, the panels on each row depict the RGB image, the depth image, the rendered point cloud with color, and the 

semantic map. The left column shows a case with only stationary objects and the right column shows a case with non-stationary objects, in which the non-stationary 

objects are removed. 
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. Experimental Results and Discussion 

.1. Semantic map in hospital scene 

In the real hospital scenarios, a total of 15 images sequences 

ere collected by the Kinect camera, including scenes such as 

ard, corridor, nurse station, etc. They are divided into three parts: 

solation area, buffer zone, and clean area. These sequences include 
t

6 
ynamic scenes with people walking around and static scenes 

ithout people. 

Fig. 6 illustrates two scenarios of a static scene and a dynamic 

cene in each column. The first column depicts a scenario of a 

ard with no patient or health care personnel and the second col- 

mn depicts a scenario of a ward with a person. The first two rows 

resent the RGB images and the corresponding depth images. The 

hird row shows the reconstructed 3D views from point cloud tex- 

ured with color information from the RGB image. The bottom row 
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Fig. 7. Robot Trajectory and health facility scenes. 

Table 1 

Trajectory error in terms of average RMSE (aRMSE), absolute error distance, and median error distance. 

ORB-SLAM2 Ours 

Sequence aRMSE Mean (STD) Median aRMSE Mean (STD) Median 

fr3-walking-static 0.3575 0.3243 (0.1490) 0.2870 0.0104 0.0090 (0.0052) 0.0079 

fr3-walking-xyz 0.6770 0.5826 (0.3423) 0.5223 0.0164 0.0139 (0.0087) 0.0116 

fr3-walking-half 0.5186 0.4567 (0.2424) 0.4282 0.0923 0.0857 (0.0344) 0.0838 

fr3-sitting-static 0.0082 0.0072 (0.0039) 0.0066 0.0065 0.0060 (0.0033) 0.0054 

fr3-sitting-xyz 0.0094 0.0079 (0.0051) 0.0070 0.0088 0.0079 (0.0043) 0.0070 

fr3-sitting-half 0.0205 0.0159 (0.0130) 0.0136 0.0145 0.0125 (0.0074) 0.0115 

Table 2 

The aRMSE of ATE for TUM RGB-D dataset in dynamic environments. 

Sequences Sun [33] Li [19] Wang [35] Wang [36] Ours 

fr3-walking-static 0.0656 0.0261 0.0059 0.3080 0.0104 

fr3-walking-xyz 0.0932 0.0601 0.0190 0.3047 0.0164 

fr3-walking-half 0.1252 0.0489 0.0285 0.3116 0.0923 

fr3-sitting-static - - 0.0078 0.0066 0.0065 

fr3-sitting-xyz 0.0482 0.0397 0.0098 - 0.0088 

fr3-sitting-half 0.0470 0.0432 0.0217 0.0196 0.0145 

Table 3 

aRMSE of translational drift (RPE) for TUM RGB-D dataset in dynamic environments 

[m/s]. 

Sequences Sun [33] Li [19] Kim [16] Wang [36] Ours 

fr3-walking-static 0.0842 0.0327 0.1339 0.1881 0.0150 

fr3-walking-xyz 0.1214 0.0651 0.2326 0.2158 0.0241 

fr3-walking-half 0.1672 0.0527 0.1738 0.1908 0.1369 

fr3-sitting-static - 0.0231 0.0248 0.0077 0.0115 

fr3-sitting-xyz 0.0330 0.0219 0.0482 0.0117 0.0131 

fr3-sitting-half 0.0458 0.0389 0.0589 0.0245 0.0189 

Table 4 

aRMSE of rotational drift (RPE) for TUM RGB-D dataset in dynamic environ- 

ments[ ◦/s]. 

Sequences Sun [33] Li [19] Kim [16] Wang [36] Ours 

fr3-walking-static 2.0487 0.8085 2.0833 3.2101 0.3269 

fr3-walking-xyz 3.2346 1.6442 4.3911 3.6476 0.6481 

fr3-walking-half 5.0108 2.4048 4.2863 3.3321 1.5543 

fr3-sitting-static - 0.7228 0.6997 0.2595 0.3514 

fr3-sitting-xyz 0.9828 0.8466 1.3885 0.4997 0.5639 

fr3-sitting-half 2.3748 1.8836 2.8804 0.5643 0.5577 
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hows the semantic maps. The left column presents a static case; 

hereas the right column presents a dynamic case and a movable 

bject, i.e., the person, is removed after semantic segmentation and 

bject detection. Three-dimensional boxes are plotted over the 3D 

odels with only stationary objects. In the semantic maps, the de- 

ected objects are marked by different boxes, which enables scene 

nderstanding and navigation for medical assistant robots. 
7 
We carried out a long-distance mapping of an entire floor in 

 local hospital. Fig. 7 shows the trajectory of our robot and zon- 

ng with example images including clean zone, buffer zone, and 

solation area. It shows a part of an infectious medical facility for 

ovid-19. 

.2. Pose estimation accuracy 

The TUM dataset [32] collected image sequences of 39 different 

ndoor scenes. Each sequence contains 640 ×480 8-bit RGB images 

ith timestamps and 640 ×480 16-bit depth images as well as ac- 

urate real camera trajectories. 

These scenes can be divided into three categories: static scenes, 

ow dynamic scenes, and high dynamic scenes. In a static sce- 

ario, since no P mov ing object can be detected, the tracking thread 

s consistent with ORB-SLAM2. A low dynamic scene refers to a 

cene with a small motion range of objects. The fr3-sitting-static 

equence in the TUM dataset is just such a scene, in which two 

eople are sitting and communicating. There are objects with a 

arge range of motion in high dynamic scenes. Our experiments in- 

lude three sequences of high dynamic scenes, fr3-walking-static, 

r3-walking-xyz, and fr3-walking-half-sphere. 

For the Absolute Trajectory Error (ATE) indicator, this paper se- 

ects six sequences from the data set for testing: fr3-walking-static, 

r3-walking-xyz, fr3-walking-half-sphere, fr3-sitting-static, sitting- 

yz, sitting-half-sphere. The size of the semantic descriptor is set 

o 21 × 21 and the threshold δ is set to 55. We conducted exten- 

ive experiments by comparing the test results with ORB-SLAM2 

nd other dynamic SLAM systems to evaluate the performance of 

ur algorithm. Because the system has a certain degree of uncer- 

ainty, we run ten times on each experimental sequence and the 

edian value is taken to obtain objective and accurate results. 

The comparison results of this algorithm against ORB-SLAM2 

re shown in Table 1 , including average root mean square error 

aRMSE), mean, standard deviation (STD), and median errors. The 

RMSE is computed by computing the average RMSE of the esti- 

ated trajectory against the ground truth trajectory of ten repe- 

itions. The mean and medium are the mean and medium of the 

bsolution difference w.r.t. the ground truth in all repetitions. A 
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Fig. 8. Robot trajectory from test case fr3-walking-xyz. 

Table 5 

RMSE of the trajectories with different values of parameters. 

Sequences n = 5 , δ = 3 n = 55 , δ = 378 n = 21 , δ = 55 

fr3-walking-static 0.0198 0.0163 0.0104 

fr3-walking-xyz 0.0382 0.0285 0.0164 

fr3-walking-half 0.3020 0.2062 0.0923 

fr3-sitting-static 0.0075 0.0074 0.0065 

fr3-sitting-xyz 0.0086 0.0093 0.0088 

fr3-sitting-half 0.0140 0.0181 0.0145 
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mall aRMSE, mean, and median indicate high accuracy of the es- 

imated trajectory. For sequence fr3-walking-half-sphere, the im- 

rovement by our method reaches more than 80%. For sequence 

r3-walking-static and fr3-walking-xyz, the improvement by our 
8 
ethod reaches more than 95%. And for sequence fr3-sitting-static, 

r3-sitting-xyz and fr3-sitting-half-sphere, there are also improve- 

ents. Compared with ORB-SLAM2, it is evident that the proposed 

lgorithm gains great improvement in high dynamic scenarios. In 

ases with fewer or no dynamic objects, e.g., sequence fr3-sitting- 

tatic, the results of our method are as good as ORB-SLAM2 with 

light improvements. The advantage of our method is much sig- 

ificant in dynamic scenarios. By comparing the STD, the results 

f our method are much less than that of the ORB-SLAM2 in 

ost cases. This demonstrates that the proposed method exhibits 

reater robustness. 

We conducted experiments comparing with other dynamic 

LAM systems [19,33,36] . Table 2 presents the RMSE of ATE of the 

ompared methods. In Sun [33] , the number of clusters is set to 
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Fig. 9. Robot trajectory from test case fr3-walking-halfsphere. 

Table 6 

Absolute trajectory error of our algorithm with and without distance calculation. 

Ours without distance calculation Ours with distance calculation 

Sequence RMSE Mean Median S.D. RMSE Mean Median S.D. 

fr3-walking-static 0.0104 0.0090 0.0079 0.0052 0.0095 0.0083 0.0074 0.0045 

fr3-walking-xyz 0.0164 0.0139 0.0116 0.0087 0.0158 0.0131 0.0107 0.0079 

fr3-walking-half 0.0923 0.0857 0.0838 0.0344 0.0916 0.0850 0.0827 0.0332 

fr3-sitting-static 0.0065 0.0060 0.0054 0.0033 0.0058 0.0051 0.0049 0.0030 

fr3-sitting-xyz 0.0088 0.0079 0.0070 0.0043 0.0077 0.0072 0.0062 0.0045 

fr3-sitting-half 0.0145 0.0125 0.0115 0.0074 0.0154 0.0133 0.0121 0.0078 

9 
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Fig. 10. Robot trajectory from test case fr3-sitting-static. 
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 and the reprojection error threshold is set to 3 and the num- 

er of particles is set to 10 0 0. In Li [19] , the coefficient of the

epth-dependent threshold and the depth discontinuity threshold 

re set to 0.015m and 0.04m, respectively; the degree of freedom 

f t-distribution is set to 10 and the mean value is set to 0; the co-

fficient of the static weight is set to 1 if the keyframe is the cur-

ent frame, otherwise set to 0 . 5 N/ (N + v − k ) where N represents

he number of frames between latest and last keyframe while v 
nd k represent the index of the current frame and latest keyframe 

espectively; the threshold of geometric proximity distance is set 

o 1.5m; the distance difference threshold and angle difference 

hreshold for consistency check are set to 0.02m and 3 ◦, respec- 

ively. In [36] , the number of clusters is set to 10. As can be seen
t

10 
rom the table, we get the best result on four out of six sequences. 

n the sequence fr3-walking-static, our result is the second best. 

Tables 3 and 4 show the translation aRMSE and rotation aRMSE 

f relative pose error (RPE) respectively. In Table 3 , we perform the 

est on three sequences and the second-best on the other three 

equences. In Table 4 , we gain the highest accuracy on four of 

he sequences and the second-highest on the other two sequences, 

hich demonstrates that our algorithm achieved competitive per- 

ormance. 

We analyzed the value selection of the parameters. Results of 

ifferent values of the parameters are shown in Table 5 . n rep- 

esents the side length of the semantic descriptor and δ is the 

hreshold mentioned before. We find that if the size is set smaller 

han 10 × 10 , the result will go worse because it is difficult for 
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Table 7 

Average time expense (in milliseconds). 

Case ORB-SLAM2 Berta [4] Yu [40] Ours 

Dynamic - 235.98 48.31 17.21 

Stationary 20.10 3,362.22 55.19 1,021.37 
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he under-sized semantic descriptor to capture surrounding infor- 

ation. Also, if the size is bigger than 49 × 49 , the result will go

orse too. This is because moving objects (e.g., humans) are cap- 

ured too early by semantic descriptors when they are still far 

rom movable objects such as books. That leads to the elimina- 

ion of static feature points that affect feature points matching. The 

hreshold δ should be kept relatively small. When δ is large, mov- 

ng objects could be missed. On the other hand, δ should not be 

oo small. This is because if the number of points in the semantic 

escriptor that belong to moving objects is too few, it could be the 

ituation that the moving object is in a far distance or the result of 

he semantic segmentation network is inaccurate. Our experiments 

how that keeping δ the range of 1 / 8 to 1 / 2 of the semantic de-

criptor size yielded satisfactory results. 

Figs. 8–10 illustrate the trajectories estimated by ORB-SLAM2 

nd our proposed method. The black trajectories represent the 

round truth while the blue curves represent the estimated tra- 

ectories. In each Figure, (a) shows a comparison of the result of 

ur method and the ground truth and (b) shows a comparison of 

he result of ORB-SLAM2 and the ground truth. It can be seen that 

he estimated trajectory in (a) is closer to the ground truth than 

hat in (b). That is, our method is more accurate than ORB-SLAM2 

n dynamic scenarios. This improvement is attributed to the elimi- 

ation of dynamic feature points. 

We also conducted experiments to show that the accuracy of 

eature point matching can be further improved by calculating the 

istance between two semantic descriptors of different frames. We 

alculate the semantic distance following Eq. (6) . Based on the al- 

orithm proposed, for each matched pair of feature points if the 

emantic distance is far than a threshold (set to 110 in our experi- 

ent), they are considered as an outlier that is excluded from par- 

icipating in the following steps. Table 6 shows the result. Since 

ewer pairs of feature points are mismatched, our algorithm with 

istance calculation is slightly better. 

.3. Efficiency analysis 

We evaluate the time complexity of the dynamic object detec- 

ion and removal algorithm proposed in this paper. The programs 

re written with C++ language and tested on a computer with Intel 

7-8750H CPU, GTX1060 6G GPU, 16GB memory, and Ubuntu16.04 

S. The videos used in our experiments include cases with and 

ithout dynamic objects. Videos consist of RGB and depth compo- 

ents. The frame size is 640 by 480. The number of frames varies 

n the range of 600 to 1500. 

We compare our proposed method with the state-of-the-art 

ethods [4,40] . The experiments were repeated ten times and the 

verage time is reported in Table 7 . The visual SLAM system con- 

ists of several components. To study the time used for dynamic 

bject detection and removal, the results reported excludes the 

ime consumed by the inference of the neural network, which can 

e trained offline with a much powerful computer. In the evalua- 

ion of the stationary cases, the time reported includes the training 

f the network for our method to be consistent with ORB-SLAM2 

hat involves no training process. 

The average time spent by our method is 17.21 milliseconds for 

etecting dynamic objects and removal, which is less than half of 

he time spent by the second-best method [40] . It is evident that 

he proposed method is more efficient in handling dynamic ob- 
11 
ects. In our evaluation for the stationary cases, ORB-SLAM2 spent 

he least amount of time. Our proposed method took 1,021.37 mil- 

iseconds, which involves the training of the network. 

. Conclusion 

This paper presents a novel visual SLAM algorithm, applied in 

 hospital scene serving the treatment of COVID-19. It is imple- 

ented on the ORB-SLAM2 framework, handling complex dynamic 

nvironments. This algorithm uses the semantic segmentation re- 

ults of MASK R-CNN to construct a semantic descriptor and cre- 

tively combines the knowledge graph to obtain high-level seman- 

ic information. We effectively remove moving objects, and, hence, 

educe the impact of feature points mismatching and finally im- 

rove the accuracy of pose estimation. We conducted experiments 

n real hospital scenes and successfully established semantic maps. 

o verify the effectiveness of the algorithm, we conducted exten- 

ive experiments on the TUM dataset comparing with other algo- 

ithms, and the results show great improvement in highly dynamic 

cenarios. This algorithm not only can be applied to RGB-D cam- 

ras but also can be extended to monocular and stereo cameras, 

aving good application prospects. 

In the future, we plan to improve the real-time performance of 

he system. We will investigate other semantic segmentation mod- 

ls considering both accuracy and efficiency. We also find that the 

esults of MASK R-CNN are not that accurate around the contours 

f objects. This can be further studied to help refine the semantic 

nformation around the contours. Also, it will be beneficial to take 

nto account the pixel-wise accuracy of semantic segmentation. 
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