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Abstract. Gradually crowded, complex airspace makes it necessary to identify the flight track
patterns of interested targets. Existing studies on radar-based target track recognition rarely con-
sider the impact of outliers in the acquired data, which happens very often for small air vehicles
such as drones. In addition, the performance achieved with a few labeled track examples has
significant room for improvement. We propose a semisupervised target track recognition algo-
rithm based on a semisupervised generative adversarial network (SSGAN) that learns a robust
model from a few labeled target track examples with the presence of outliers. Our method iden-
tifies and eliminates the outliers in the data set and fills in for the removed data. The proposed
method extracts a strong recognition flight feature from the basic flight features and forms the
strong recognition flight feature combination (SRFFC) by integrating the advanced flight fea-
tures. The SRFFC is fed into the SSGAN model to identify target track patterns. Experiments
were conducted using simulated data sets. Our results demonstrate that the proposed method
achieves a highly competitive target track recognition performance in terms of accuracy, pre-
cision, and recall in comparison with the state-of-the-art methods. The minimum accuracy of our
proposed method is 97%, which achieves an improvement of 15.7% compared with the state-of-
the-art methods. In addition, our method exhibits great robustness with respect to the number of
labeled data and choice of parameters. © 2021 SPIE and IS&T [DOI: 10.1117/1.JEI.30.3.031204]
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1 Introduction

With the increasing popularity of unmanned aerial vehicles and the continuous development of
the commercial airline industry, the airspace is becoming an increasingly crowded and complex
environment.1 According to the International Air Transport Association (IATA), the average
number of registered aircraft flights per day was ∼10;000 in 2015, and this number will likely
double by 2035.2 Identifying and tracking potential threats of flight targets in the airspace is a
great demand for the security and intelligence agencies. Anomalous flights could be potential
hazards to other aircrafts in the airspace or, in the case of an extreme event, a hazard to thousands
of civilians or military personnel.3

Although target tracking has been extensively studied and tracking objects on the ground
and in the air processes a sequence of geolocations of the targets,4 the differences among their
movement characteristics are quite dramatic: (1) the movements of ground targets are usually
constrained by physical environment restrictions, e.g., roads and traffic signals, whereas flight
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targets have greater freedom in movement; (2) the dynamic range of the moving speed differs
greatly for flight and ground targets; and (3) the moving space of flight targets is much larger
than that of ground targets. Therefore, the approaches for track recognition of ground targets
cannot be directly applied to recognition of flight target track patterns.

A primary means of monitoring flight targets5 is using active radar, which detects the dis-
tance, speed, flying direction, and other information of flight targets and enables flight target
recognition based on radar data. There has been extensive research on radar-based flight target
recognition, which mainly uses spectrum information in radar echoes, polarization characteris-
tics, and high-resolution range profile (HRRP) to realize the recognition of target attributes and
types. The track patterns imply the intention and mission of the target. For example, when the
target is in an S maneuver, the target is likely avoiding some threat; when the target is circling in
the air, the target could be performing surveillance and detection. The classification and recog-
nition of target track patterns help with understanding the intention of flights and provide
auxiliary decision-making information for airspace supervision. The radar data are prone to be
distorted by noises such as recorder system errors, electromagnetic interference, random inter-
ference during the acquisition of track data, etc. The uncertainty increases for small flying
objects, which results in outliers and hinders the analysis of track patterns.6

Another challenge faced in flight track pattern recognition is the lack of labeled examples
despite the massive amount of radar target track data available for processing. It is expensive to
annotate examples, which is a widely acknowledged issue faced in deep learning and motivates
the study of semisupervised learning strategies to reduce the dependence on labeled data. The
success of generative adversarial networks (GANs)7 in the field of machine learning inspires
researchers to increase training data by generating confidence maps of unlabeled data. In this
paper, we propose a semisupervised target track recognition algorithm (SSTT) based on a semi-
supervised generation adversarial network (SSGAN) for few labeled radar target track data with
outliers.

The main contributions of this paper are as follows. We investigate the problem of flight
target track pattern recognition based on few labeled radar target track data with outliers and
propose an efficient algorithm to recognize track patterns. Our proposed method introduces out-
lier recognition based on the improved Letts criterion (ORLC) to identify and eliminate the out-
liers and adopts missing point filling based on improved linear interpolation (MPFL). We define
four basic flight features (BFFs) for the track data and select the strong recognition flight feature
(SRFF) with the best track pattern recognition effect from the BFFs. Advanced flight features
(AFFs) are extracted from BFFs and combined with the SRFF as a strong recognition flight
feature combination (SRFFC) to the constructed SSGAN classification model. This enables
accurate classification with few labeled radar data with outliers.

The rest of the paper is organized as follows. The related work is introduced in Sec. 2.
The problem is defined in Sec. 3. We present our proposed algorithm in Sec. 4. In Sec. 5,
we experimentally evaluate the proposed algorithm. Finally, we conclude the paper in
Sec. 6.

2 Related Work

As an important tool of monitoring the status of flight targets, radar plays an irreplaceable role in
the field of target recognition. Extensive research has been conducted on radar target recognition.
Lee et al.8 proposed a radar output recognition method based on the frequency-diversity radar
cross section (RCS) and kernel scatter difference discrimination to reduce the space measure-
ment time for solving the problem of low recognition accuracy when RCS contains random
components. Ding et al.9 designed a synthetic aperture radar (SAR) automatic target recognition
method using an attributed scattering center matching approach that evaluates the global
consistency and structural correlation between two attributed scattering center sets to provide
a reliable and robust similarity measure for SAR automatic target recognition. Lee et al.10

proposed a new target identification scheme for HRRP-based recognition that extracts scale-
invariant features using the relaxation algorithm and the simple resampling process and
constructs a nearest-neighbor classifier to determine the true target class. Chantasen et al.11
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presented a radar target identification method of the coated object that uses poles extracted by
a Cauchy method to determine the perfectly electrically conducting sphere. Guo et al.12 adopted
the least square support vector data description to alleviate the over-fitting of support vector
data description (SVDD) for HRRP-based recognition. Karine et al.13 proposed a SAR target
recognition method based on the statistical model and the weighted sparse representation-based
classification that uses the Kullback–Leibler divergence between the parametric statistical
models of training and test sets to improve the recognition effect. However, these traditional
radar target recognition methods are proposed for specific applications and are unable to be
adapted to general and complex targets and environments.

In recent years, the exceptional performance of deep learning in the applications of image
classification motivated researchers to apply deep networks to radar-based target recognition.
Chen et al.14 proposed a radar target recognition algorithm based on CNN to solve the recog-
nition problem of limited training data through developing the convolution factor analysis prob-
ability generation model. Pan et al.15 constructed a method of radar HRRP target recognition
based on t-distribution stochastic neighbor embedding (t-SNE) and a depth belief network
(DDBN) to solve the problem of imbalanced HRRP data by adopting t-SNE and synthetic sam-
pling for preprocessing and constructing the DDBN for recognition. Xu et al.16 designed a target-
aware recurrent attentional network for HRRP radar target recognition to discover target regions
through a recurrent neural network and attention mechanism. Although the aforementioned
studies advanced our ability in radar target recognition, there is still room to improve in the
recognition of track patterns. Note that the track of a radar target often implies the intention
and mission of the target, and hence the recognition of track patterns is important to airspace
supervision and threat assessments.

Methods have been developed for track recognition of ground targets. Choi et al.17 combined
a statistical hypothesis test and a random sampling method based on the renowned Monte-Carlo
method to statistically categorize drivers for identifying the resting behavior pattern of drivers,
which could be used to construct a proper resting strategy or a drowsy-driving avoidance
strategy, resulting in fewer traffic accidents related to drowsy driving or loss of concentration
while driving. Wu et al.18 designed a vehicle-pedestrian near-crash identification method based
on the tracks of vehicles and pedestrians extracted from roadside laser radar that was coded into
an automatic procedure for near-crash identification.

The movement of flight targets is different from that of ground targets, which makes
the existing target recognition approaches designed for ground track pattern recognition
difficult to apply to the track recognition of flight targets. To our best knowledge, very few
studies have been conducted on the radar target recognition of flight objects. Pan et al.19

presented a sequential multifactor Hausdorff nearest-neighbor conformal multiclass classifier
based on the conformal multiclass classifier and the multifactor nonconformity measure
designed by the authors, which could online learn and classify flight target track patterns.
Fan et al.20 proposed a GAN-based approach to target track recognition with insufficient
labeled data.

The outliers of radar data hinder the processing and analysis of track data such that track
outlier detection plays an important role in data processing.6 Deshmukh and Hwang21 proposed
a temporal-logic-based outlier detection algorithm for the air traffic surveillance data that can
update the old models with the new overnight data to detect outliers in air traffic tracks. Habler
and Shabtai22 adopted the long short-term memory (LSTM) encoder–decoder algorithm to
model ADS-B data and compared the simulated flight track generated by the LSTM model with
the ADS-B data received to identify outliers. Puranik and Mavris23 studied an outlier detection
model composed of clustering and single-class classification algorithms that uses energy-based
metrics as features to quickly and efficiently identify outliers in the approach and landing phase.
However, the current research on track outlier detection fails to utilize the spatial position
relationship between adjacent points in identifying outliers.

The existing research on track pattern recognition based on deep learning rarely considers the
difficulty in labeling a massive amount of track data. To alleviate the negative impact of outliers
and reduce the dependence on labeled data, we propose an SSTT recognition algorithm to
achieve radar flight target track pattern identification based on few labeled radar data with
outliers.
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3 Problem Formulation

3.1 Radar Target Point and Track

The symbols and notations used in the paper are listed in Table 1. The target scanned by the radar
corresponds to multiple points in the scanning area. Each point includes target information such
as the position. Multiple points indicate the flying direction, speed, etc. A radar target track
consists of multiple measurements (i.e., points), and a track can be regarded as a time-series of
multiple radar target points that are sequential in time.

The position of a radar target track point is represented in the spherical coordinate system
with the radar as the coordinate origin, as shown in Fig. 1. The radar is at the origin O of the
coordinate system, and P denotes the target. The distance from P to O is l, and OL is the pro-
jection of OP on the XY coordinate plane. The elevation angle ∠POL is denoted by θ, and the
azimuth ∠XOL is expressed as φ. The relative time when the target is located at the point is t.
Assuming that there are M radar targets and each track includes N points, the i’th point of the
m’th target is pi;mðli;m; θi;m;φi;m; ti;mÞ.

Table 1 Symbols and notations used in this paper.

Notation Definition

Lm Label of the m’th target track

pi;m The i ’th point in the m’th target track

l i ;m , θi ;m , φi ;m , t i ;m The distance, elevation angle, azimuth, and time of point pi;m , respectively

k i;m The coefficient of standard deviation of point pi;m during outlier identification

f d i;m Fluctuation degree of point pi;m

cðk i;m; f d i;mÞ The correlation coefficient between k i;m and f d i;m for each point pi;m

x i;m , yi;m , zi;m , t i ;m The x , y , z coordinates and the time stamp of point pi;m , respectively

x f
i;m , y

f
i ;m , z

f
i;m The x , y , z coordinates of the fitted point for point pi;m

xd
i;m , y

d
i;m , z

d
i;m The absolute value of the difference between ðxf

i ;m; y
f
i ;m; z

f
i;mÞ and ðx i;m , y i;m , zi;mÞ,

i.e., xd
i;m ¼ jx f

i ;m − x i;m j, yd
i;m ¼ jyf

i ;m − y i;m j, and zd
i;m ¼ jzf

i ;m − zi;m j, respectively

xd
i;m , y

d
i;m , z

d
i;m The average of xd

i;m , y
d
i;m , z

d
i;m , respectively.

xr
i;m , y

r
i ;m , z

r
i;m The residue of ðxd

i;m; y
d
i;m; z

d
i;mÞ and the corresponding average value,

i.e., xr
i ;m ¼ jxd

i;m − x i;m j, yr
i;m ¼ jyd

i;m − y i;m j, and zd
i;m ¼ jzd

i;m − zi;m j, respectively

wi;m The weight of interpolation point pi;m during the missing point fitting

FC 0
a The a’th fully connected layer in the generator G of SSGAN model

FCa The a’th fully connected layer of the discriminator D of SSGAN model

Fig. 1 Spherical coordinate system.
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3.2 Radar Target Track Pattern Recognition

Based on the analysis of a large number of track data, we classify the track patterns into four
types: line-type, arc-type, S-type, and circle-type (encoded as 1, 2, 3, and 4, respectively) as
shown in Fig. 2. A track m consists of N points, and the class label is as follows:

EQ-TARGET;temp:intralink-;e001;116;545p1;m; p2;m; : : : ; pi;m; : : : pN;m; Lm: (1)

For track data with outliers, we deal with the outliers in the target track, extract track features,
and construct an SSGAN model to classify the track pattern.

4 Flight Track Pattern Recognition Method

This section presents our proposed method, and Fig. 3 shows its overall flowchart. Our method
consists of two modules: outlier processing and track pattern recognition. Outlier processing
module: To reduce the negative impact of outliers in the original target track data on target track
recognition, ORLC is introduced to recognize and eliminate the outliers in the target tracks.
MPFL is adopted to fill the missing points caused by the outlier removal. Track pattern recog-
nition module: To reduce the dependence on the labeled data, our method extracts four BFFs
from the target track data and selects the SRFF with the best target track recognition effect from
the BFFs. An AFF from the BFFs is extracted to improve the robustness of recognition, which is
combined with the SRFF to obtain the SRFFC. The SRFFC is input into the constructed SSGAN
model to recognize target track patterns.

4.1 Outlier Processing

Outlier processing consists of two stages: identifying and eliminating the outliers in the target
tracks based on ORLC and filling the missing points after removing the outliers based
on MPFL.

Fig. 2 Target track types.

Fig. 3 Diagram of algorithm SSTT.
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4.1.1 Stage 1: Outlier recognition based on improved Letts criterion

According to Letts criterion,24 when the target data follow a normal distribution, the probability
that the residues between the target data and the arithmetic average fall within three times the
standard deviation, i.e., ½−3σ; 3σ�, is more than 99.7%. We regard the target data that fall outside
the range as outliers. However, this probability varies for each data point in the original
radar target track data with outliers. If the Letts criterion is used directly to identify outliers,
we cannot recognize the outliers effectively. Therefore, for each point pi;m, we set a range
½−ki;m · σ; ki;m · σ�. If point pi;m falls within ½−ki;m · σ; ki;m · σ�, pi;m is a normal point; other-
wise, pi;m is an outlier.

Note that the spatial position of a normal track point pi;m is closely related to the angle
between the lines formed by pi−1;m, pi−2;m before point pi;m and piþ1;m, piþ2;m after point
pi;m, as shown in Fig. 4. When the angle is large, the fluctuation of the track segment where
point pi;m is located is small, and the fluctuation amplitude of point pi;m is smaller than that of
the adjacent points. By contrast, when the angle is small, the track segment where point pi;m is
located is large, and the fluctuation amplitude of point pi;m should be larger than that of the
adjacent points. Therefore, we define fluctuation degree fdi at point pi;m as the angle between
the lines formed by the two points before point pi;m and the two points after point pi;m in time
sequence, which is used to adjust ki;m at each track point pi;m. When fdi is large, we decrease
ki;m. When fdi is small, we increase ki;m. In particular, we set the relationship between ki;m and
fdi as ki;m ¼ cðki;m; fdi;mÞ∕fdi, where cðki;m; fdi;mÞ is the correlation coefficient between
ki;m and fdi for each point pi;m.

The input to algorithm ORLC includes the target track data containing N points
fp1;m; p2;m; : : : ; pN;mg, set fk1;m; k2;m; : : : ; kN;mg, and set ffd1;m; fd2;m; : : : ; fdN;mg. We set

k1;m, k2;m, kN−1;m, and kN;m as the default value 3 of the Letts criterion. The ORLC algorithm is
as follows (Algorithm 1):

Since the outliers are included in the calculation of the data standard deviation, we perform
multiple iterations during the outlier identification, that is, the residue and standard deviation
should be recalculated based on the data after the previous outlier recognition. Finally, algorithm
ORLC outputs the radar track data after the outlier recognition and elimination.

4.1.2 Stage 2: Missing point filling based on the improved linear interpolation

The recognition and elimination of outliers lead to missing points at the corresponding positions,
and we need to fill these missing points. As an interpolation method commonly used for data
filling, linear interpolation can obtain good filling performance for linear track. However, when
the point that needs to be interpolated is in the position where the direction of the track changes
greatly, it is difficult to fit an accurate point using linear interpolation. Therefore, we propose
an MPFL algorithm for missing point filling. While keeping the characteristics of the linear
interpolation, algorithm MPFL considers the relationship between the fluctuation degree of the
missing point and the predicted coordinate value, thereby improving the performance of data
filling for the nonlinear track.

The input of algorithm MPFL (Algorithm 2) is the track containing N points
fp1;mðx1;m; y1;m; z1;m; t1;mÞ; p2;mðx2;m; y2;m; z2;m; t2;mÞ; : : : ; pN;mðxN;m; yN;m; zN;m; tN;mÞg after
the outliers’ removal.

Fig. 4 Fluctuation degree.
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4.2 Track Pattern Recognition

The track pattern classification consists of five stages: (1) we extract four BFFs from the radar
data for track pattern classification; (2) we select the SRFF which contributes the most to the
target track classification from the BFFs using the SSGAN model; (3) we extract an AFF from
the BFFs to improve the robustness of target track recognition; (4) we combine the SRFF and
AFF to get the SRFFC, and we use the SRFFC as the input of the SSGAN model for track type
classification; and (5) we construct the SSGAN model to achieve identification of track patterns
using few labeled radar target track data. The detailed description of each stage is as follows.

4.2.1 Stage 1: extraction of the BFFs

The radar data contain several flight features such as speed, acceleration, track angle, etc. When
the target is in flight, some features change, which differ significantly under different types of

Algorithm 1 Outlier recognition based on the improved Letts criterion.

Step 1: We use Eq. (2) to convert every track point pi;mðl i ;m; θi ;m;φi ;m; t i ;mÞ to the rectangular coordinate system
in space, with the radar as the origin, the positive east direction as the x axis, the true north direction as
the y axis, and the vertical upward direction as the z axis, to obtain pi;mðxi;m; y i;m; zi;m; t i ;mÞ

EQ-TARGET;temp:intralink-;e002;116;678

8>><
>>:

x i;m ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2i ;m − φ2

i

q
· cos θi ;m

y i;m ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2i ;m − φ2

i

q
· sin θi ;m

zi;m ¼ φi ;m

: (2)

Step 2: To make the difference between the outliers and the normal points significant, we use the least square
fitting25 on the corresponding x axis coordinate value set Xm ¼ fx1;m; x2;m; : : : ; xN;mg,
y axis coordinate value set Ym ¼ fy1;m; y2;m; : : : ; yN;mg, and z axis coordinate value set
Zm ¼ fz1;m; z2;m; : : : ; zN;mg to obtain the corresponding fitting data set Xf

m ¼ fx f
1;m; x

f
2;m; : : : ; x

f
N;mg,

Y f
m ¼ fy f

1;m; y
f
2;m; : : : ; y

f
N;mg, and Z f

m ¼ fzf
1;m; z

f
2;m; : : : ; z

f
N;mg.

Step 3: We calculate the absolute value of the difference between the original data and the fitting data to obtain
Xd

m ¼ fxd
1;m; x

d
2;m; · · · ; x

d
N;mg, Yd

m ¼ fyd
1;m; y

d
2;m; · · · ; y

d
N;mg, and Z d

m ¼ fzd
1;m; z

d
2;m; · · · ; z

d
N;mg, which are

used as the target data for outlier recognition. For example, for each xd
i;m ∈ Xd

m , xd
i;m ¼ jxi;m − xf

i ;m j.

Step 4: The Letts criterion requires that the target data follow the normal distribution, and the Kolmogorov–
Smirnov test (K-S test)26 is often adopted to verify whether the data conform to the normal distribution.
Therefore, we adopt the K-S test to verify the normal distribution of the target data before using the
Letts criterion. For the data that do not follow the normal distribution, we apply logarithmic processing to
the data to make the target data conform to the normal distribution.

Step 5: We calculate the average of the data in sets Xd
m , Yd

m , and Zd
m , respectively, to get xd

m , yd
m , and zd

m . For
example, xd

m is calculated with Eq. (3).

EQ-TARGET;temp:intralink-;e003;116;435xd
m ¼ 1

N

XN
i¼1

xd
i;m: (3)

Step 6: We calculate residue sets Xr
m ¼ fxr

1;m; x
r
2;m; · · · ; x

r
N;mg, Y r

m ¼ fyr
1;m; y

r
2;m; : : : ; y

r
N;mg, and

Z r
m ¼ fzr

1;m; z
r
2;m; : : : ; z

r
N;mg for sets Xd

m , Yd
m , and Zd

m , respectively. For example, for every xr
i ;m ∈ Xr

m ,
xr
i;m ¼ jxd

i;m − xd
m j.

Step 7: We calculate the standard deviation σx , σy , and σz for the data in sets Xd
m , Yd

m , and Zd
m , respectively.

Step 8: For each point pi;m , we evaluate whether each of the i ’th elements in sets Xr
m , Y r

m , and Z r
m falls within

½−ki;m · σx ; k i;m · σx �, ½−k i;m · σy ; k i;m · σy �, and ½−ki;m · σz ; k i;m · σz �, respectively. If yes for all three i ’th
elements, point pi;m is a normal data point; otherwise, point pi;m is an outlier, and we set the coordinate
of pi;m as ð0;0; 0; t i ;mÞ.

Step 9: We return fp1;mðx1;m; y1;m; z1;m; t1;mÞ; p2;mðx2;m; y2;m; z2;m; t2;mÞ; : : : ; pN;mðxN;m; yN;m; zN;m; tN;mÞg,
where the x axis, y axis, and z axis coordinate values of the outliers are set as 0.
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target tracks. We use the least square method25 to fit the track and extract five BFFs from the
target track data, including distance (spatial distance between adjacent points), velocity, accel-
eration, track angle (the angle between longitude and the tangent of the track where the point is
located), and azimuth.

The different correlations between BFFs may lead to feature redundancy which negatively
impacts the track pattern recognition. To improve the independence of BFFs, we perform a cor-
relation analysis on BFFs to evaluate the relationship between the BFFs, thereby removing the
BFFs with high correlation. Spearman rank correlation coefficients are often used to measure the
degree of correlation between the data without making any assumptions about the data distri-
bution. We use Spearman rank correlation coefficients to measure the correlation between BFFs.
The high correlation between the BFFs indicates the existence of redundant features that should
be eliminated.

Table 2 illustrates the Spearman rank correlation coefficients between different pairs of BFFs,
which shows that there are some correlations among the features. Specifically, there is a strong
correlation between distance and velocity, which indicates that distance and velocity overlap
with each other. Therefore, we remove distance from BFFs, and hence BFFs only include veloc-
ity, acceleration, track angle, and azimuth.

Algorithm 2 Missing point padding based on the improved linear interpolation.

Step 1: Traverse each point pi;m ∈ T to find the missing points. Assuming that the adjacent points of the
missing point pi;m in time sequence are pi−1;m and piþ1;m , respectively. We calculate p 0

i−1;m and
p 0
iþ1;m via Eqs. (4) and (5):

EQ-TARGET;temp:intralink-;e004;116;676

8<
:

x 0
i−1;m ¼ x i−1;m þ vx

i−1;m cos μxi−1;mðt i ;m − t i−1;mÞ
y 0
i−1;m ¼ y i−1;m þ vx

i−1;m sin μxi−1;mðt i ;m − t i−1;mÞ;
z 0
i−1;m ¼ zi−1;m þ vy

i−1;mðt i ;m − t i−1;mÞ
(4)

EQ-TARGET;temp:intralink-;e005;116;607

8<
:

x 0
iþ1;m ¼ x iþ1;m þ vx

iþ1;m cos μxiþ1;mðt iþ1;m − t i ;mÞ
y 0
iþ1;m ¼ y iþ1;m þ vx

iþ1;m sin μxiþ1;mðt iþ1;m − t i ;mÞ
z 0
iþ1;m ¼ ziþ1;m þ vy

iþ1;mðt iþ1;m − t i ;mÞ
; (5)

where vx
i−1;m and vx

iþ1;m are the horizontal velocities at points pi−1;m and piþ1;m , respectively; v
y
i−1;m and

vy
iþ1;m are the vertical velocities at points pi−1;m and piþ1;m , respectively; t i ;m is the time at the

interpolation point pi;m ; and μxi−1;m and μxiþ1;m are the horizontal courses at points pi−1;m and
piþ1;m , respectively.

Step 2: We calculate the coordinates of pA
i;m as the weighted sum of the coordinates of p 0

i−1;m and p 0
iþ1;m ,

i.e., xA
i;m ¼ w 0

i−1;mx
0
i−1;m þ w 0

iþ1;mx
0
iþ1;m , y

A
i;m ¼ w 0

i−1;my
0
i−1;m þ w 0

iþ1;my
0
iþ1;m , and

zA
i;m ¼ w 0

i−1;mz
0
i−1;m þ w 0

iþ1;mz
0
iþ1;m , where the weights of p 0

i−1;m and p 0
iþ1;m are

w 0
i−1;m ¼ 1 − ðt i ;m − t i−1;mÞ∕ðt iþ1;m − t i−1;mÞ and w 0

iþ1;m ¼ 1 − ðt iþ1;m − t i ;mÞ∕ðt iþ1;m − t i−1;mÞ,
respectively.

Step 3: Adopt linear interpolation to calculate pA 0
i ;mðxA 0

i ;m; y
A 0
i ;m; z

A 0
i ;m; t i;mÞ.

Step 4: To make the track data after missing point filling as consistent with the actual target flight state as
possible, we take the weighted sum of pA

i;m and pA 0
i ;m as the interpolation point pi;mðx I

i;m; y
I
i;m; z

I
i ;m; t i ;mÞ.

To be specific, xI
i ;m ¼ wA

i;mx
A
i;m þ wA 0

i ;mx
A 0
i ;m , y

I
i;m ¼ wA

i;my
A
i;m þ wA 0

i ;my
A 0
i ;m , and zI

i;m ¼ wA
i;mz

A
i;m þ wA 0

i ;mz
A 0
i ;m .

The weights wA
i;m andwA 0

i ;m of pA
i;m and pA 0

i ;m are related to the f d i;m of point pi;m . When f d i;m is large, the
fluctuation of the track segment where pi;m is located is small, and wA

i;m should be appropriately
reduced, while wA 0

i ;m should be appropriately increased. When f d i;m is small, the fluctuation of the track
segment where pi;m is located is large, wA

i;m should be appropriately increased, and wA 0
i ;m should be

properly reduced. We set the relationship among wA
i;m , w

A 0
i ;m , and f d i;m as

wA
i;m∕w

A 0
i ;m ¼ cðwA

i;m; w
A 0
i ;m; f d i;mÞ∕f d i;m for each point pi;m , where the interpolation point weight

correlation coefficient cðwA
i;m; w

A 0
i ;m; f d i;mÞ determines the relationship among wA

i;m , w
A 0
i ;m , and f d i;m .

Step 5: Fill the next missing point until all missing points in T are filled.

Step 6: Return the target track data after missing point filling.
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BFFs may differ greatly in the dynamic range. Therefore, we perform normalization on
the BFFs to balance the contribution of the features. Assuming that the data that need to be
normalized are d1; d2; : : : ; dN , the normalization is as follows:

EQ-TARGET;temp:intralink-;e006;116;460d 0
i ¼

di − d
σ

; i ¼ 1;2; : : : ; N; (6)

where d and σ are the arithmetic average and the standard deviation of the data, respectively, and
d 0
i is normalized di.

4.2.2 Stage 2: selection of the SRFF

The recognition accuracy varies with different BFFs. The BFF with the highest recognition
accuracy contains the most effective target track recognition information. Therefore, we define
the BFF which contains the most effective identification information as the SRFF. By selecting
SRFF from all of the BFFs, we obtain the BFF that contributes the most to the track pattern
recognition.

We use the data after correlation analysis and normalization as the input of the SSGAN clas-
sification model and select the BFF with the highest target track recognition accuracy as the
SRFF. As shown in Table 3, the track angle for target track recognition obtains the highest
recognition accuracy among the four BFFs, indicating that the track angle contains the most
effective identification information. Therefore, we select the track angle as the SRFF.

4.2.3 Stage 3: extraction of the AFF

Normally, the track angle of a target during a straight flight changes very little, so the fluctuation
of the track angle of adjacent points is small and close to 0. When the target is performing an S
maneuver, the track angle of adjacent points will show periodic fluctuations. When the track is of
circle-type, the track angles of the adjacent points are constantly changing, but the variation
remains mostly stable, as shown in Fig. 5. The variation of the track angles of adjacent points

Table 2 Spearman rank correlation coefficients between different feature pairs.

Feature pair Line-type Arc-type S-type Circle-type

Distance-velocity 1.000 1.000 1.000 1.000

Distance-acceleration 0.714 0.714 −0.524 0.667

Distance-trackangle 0.381 −0.381 0.429 −0.333

Distance-direction 1.000 0.238 0.429 −0.048

Velocity-acceleration 0.714 0.714 −0.524 0.667

Velocity-trackangle 0.381 −0.381 0.429 −0.333

Velocity-direction 1.000 0.238 0.429 −0.048

Acceleration-trackangle −0.024 −0.286 −0.929 −0.048

Acceleration-direction 0.714 −0.048 −0.929 0.000

Trackangle-direction 0.381 0.214 1.000 0.429

Table 3 Comparison of recognition accuracy of different BFFs.

BFFs Velocity Acceleration Track angle Direction

Accuracy 94.4% 85.2% 94.8% 73.9%
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usually increases first and then decreases when the target track is of arc-type. We extract the track
angles at the points and use the fluctuation residues of the track angles of adjacent points (TF) as
the AFF.

4.2.4 Stage 4: combination of SRFF and AFF

We combine SRFF and AFF as the SRFFC. We take the SRFFC as the input of the SSGAN
model for the target track recognition.

4.2.5 Stage 5: construction of the SSGAN model

To overcome the laborious labeling process of massive track data, we devise semisupervised
learning that leverages GAN to learn from a few labeled data. GAN is an unsupervised gen-
erative model based on the game theory, which consists of two networks contest with each other
in a game: generator (G) and discriminator (D). When constructing the SSGAN model, we need
to make some changes based on GAN. The original GAN model uses unlabeled samples during
training to generate samples without category information. The SSGAN uses labeled and unla-
beled samples to jointly train and generate samples with category information. Therefore, we
replace the discriminator D with a multiclassifier. The “fake” samples generated by the generator
G through random noise are input into the discriminator D with the labeled samples and the
unlabeled samples, and the discriminator D outputs ðnþ 1Þ-dimensional classification results.
Each dimension of the former n-dimensional output is the confidence of the corresponding class,
and the ðnþ 1Þ’th dimension represents the confidence of being classified as “fake.”

The constructed SSGAN model is shown in Fig. 6. In each epoch, the noise vector is input to
the generator G and continuously mapped to a high-dimensional vector which is consistent with
the size of the real data through a four-layer fully connected layer. We add a batch normalization
layer (BN) after FC 0

1 and FC 0
2 to improve the convergence and stability of the model.

Meanwhile, the network structure of the discriminator D is implemented with a four-layer fully
connected neural network. After receiving fake data and real data as input, the discriminator
maps the input data through FC1 and FC2 to a 100 × 500-dimensional parameter space so the
network can simulate the characteristics of the data distribution. The dimension is reduced
through full connection layers FC3 and FC4. Finally, the discriminator D outputs the probability

Fig. 5 Change of track angle under a circle-type track.
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distribution of each target track pattern. In particular, we initialize the parameters randomly
according to the standard normal distribution during parameter initialization and perform
normalization for each layer of the parameters in the model as follows:

EQ-TARGET;temp:intralink-;e007;116;520ω̂ab ¼
ωabffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPNa
b¼1 ω

2
ab

q ; (7)

where ωab is the b’th model parameter in the a’th fully connected layer; Na is the number of
neurons in the a’th fully connected layer; and ω̂ab is the updated model parameter ωab after
normalization. With normalization, we can make the dynamic floating ranges of parameters
in the discriminator model consistent, thereby avoiding using different learning rates for different
parameters due to the different dynamic ranges of parameters, which enables fast convergence
during training.

5 Performance Evaluation

5.1 Experiment Settings

We generated synthetic radar returns of multiple targets following methods in Ref. 27, and exam-
ples of the simulated data are shown in Table 4. The data set includes four types of track patterns:
line-type, arc-type, S-type, and circle-type. We created 5000 track sequences for each track
pattern. Each radar track sequence lasts about 10 s, and the time interval between two adjacent
points is 1 s, that is, each track sequence is composed of 10 consecutive points. Each point
has four attributes: distance l, elevation θ, azimuth φ, and time t. The range of distances is
[0 m, 100,000 m] (m denotes meter), the range of elevation is [0°, 90°], the range of azimuths
is [0°, 360°], and the value of the time attribute is within [1000 s, 20,000 s] (s denotes second).
Each track contains one to three outliers that are randomly perturbed.

Fig. 6 The construction of SSGAN model.

Table 4 Schematic diagram of the original radar target track data.

track m l1;m θ1;m φ1;m t1;m l2;m θ2;m φ2;m t2;m Label

1 1694.61 26.50 129.71 1113 1206.36 40.69 138.25 1114 . . . Line-type

2 53,652.2 1.84 52.34 5582 53,576.68 1.80 56.41 5583 . . . Arc-type

3 5133.54 14.99 240.81 7625 5414.66 14.23 229.46 7626 . . . S-type

4 705.81 32.98 1.29 9432 754.54 33.42 29.27 9433 . . . Circle-type

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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We split the dataset into two parts: a training set and a testing set. Specifically, we select
80% of each type of track data from the dataset by random sampling for training and use
the remaining 20% of each type of track data as the test set28 to evaluate the performance
of algorithm SSTT. To make the simulation results robust to randomness, we randomly select
the training set 30 times and take the average of the testing results as the final experimental
result.

The parameters of algorithm SSTT are set as follows: cðwA
i;m; w

A 0
i;m; fdi;mÞ determines the

relationship among wA
i;m, w

A 0
i;m, and fdi;m, and we set the default value of cðwA

i;m; w
A 0
i;m; fdi;mÞ

as 1; both discriminator D and generator G of the SSGAN model use Adam optimizer,29 where
the optimizer parameters β1 and β2 are set as 0.9 and 0.99, respectively; the learning rate is
initialized as 0.001, the batch size is set as 100, and the number of epochs is 200.

We use three performance metrics commonly used in deep learning classification tasks to
evaluate the performance of algorithm SSTT: accuracy, precision, and recall. Accuracy is
the ratio of the correctly classified samples to the total samples and is calculated with
Eq. (8), where TP is the amount of true positive samples, FP is the amount of false positive
samples, FN is the amount of false negative samples, and TN is the amount of true negative
samples:

EQ-TARGET;temp:intralink-;e008;116;527Accuracy ¼ TPþ TN

TPþ TNþ FPþ FN
: (8)

Precision calculated with Eq. (9) is the proportion of all classified positive samples that are
positive, and the value range of precision is [0, 1]:

EQ-TARGET;temp:intralink-;e009;116;460Precision ¼ TP

TPþ FP
: (9)

Recall calculated via Eq. (10) is the proportion of positive samples that are classified as
positive, and the value range of recall is [0, 1]:

EQ-TARGET;temp:intralink-;e010;116;393Recall ¼ TP

TPþ FN
: (10)

5.2 Experimental Results

5.2.1 Impact of the correlation between k i;m and f d i;m

We investigate the impact of the correlation coefficient between ki;m and fdi;m for each point
pi;m, denoted with cðki;m; fdi;mÞ, on the accuracy of track pattern recognition. Table 5 presents
the results with the correlation coefficient ranging from 1 to 9. As the correlation coefficient
increases up to four, the accuracy increases and reaches the maximum of 97.3%. As the corre-
lation coefficient continues to increase, the accuracy reduces. When cðki;m; fdi;mÞ ≥ 8, the out-
lier recognition standard is too loose to identify some of the outliers, while the unrecognized
outliers degrade the accuracy significantly. For example, some outliers with gentle fluctuations
were not recognized. The accuracy reaches the maximum when cðki;m; fdi;mÞ is 4, which means
that the outlier processing achieves a good balance between large fluctuation degree and small
fluctuation degree. In the remaining experiments, we set cðki;m; fdi;mÞ as 4.

Table 5 Recognition accuracy with different cðk i;m; f d i;mÞ.

cðk i;m; f d i;mÞ 1 2 3 4 5 6 7 8 9

Accuracy 85.1% 92.3% 96.7% 97.3% 97.1% 93.2% 94.4% 89.8% 82.4%
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5.2.2 Impact of the correlation coefficient between wA
i;m, w

A 0
i ;m, and f d i;m

We study the impact of different values of cðwA
i;m; w

A 0
i;m; fdi;mÞ, the correlation coefficient among

wA
i;m, w

A 0
i;m, and fdi;m for each point pi;m, on the target track pattern recognition accuracy. Table 6

illustrates that the accuracy of target track pattern recognition increases first and then decreases
when cðwA

i;m; w
A 0
i;m; fdi;mÞ increases from 1 to 5. When cðwA

i;m; w
A 0
i;m; fdi;mÞ is the maximum value

of five, the weight wA
i;m of the auxiliary interpolation point pA

i;m is too large, which leads to a large
deviation when filling the line-type track and arc-type track, resulting in low accuracy. When
cðwA

i;m; w
A 0
i;m; fdi;mÞ is the minimum value of one, the weight wA 0

i;m of the auxiliary interpolation

point pA 0
i;m is too large, which causes the curved track segment to be filled as a straight track

segment such that the recognition accuracy is also low. When cðwA
i;m; w

A 0
i;m; fdi;mÞ is three, algo-

rithm MPFL balances the filling effects of different types of tracks, thereby obtaining the highest
recognition accuracy. Therefore, we set the value of cðwA

i;m; w
A 0
i;m; fdi;mÞ as 3 in the following

experiments.

5.2.3 Recognition accuracy w.r.t. the number of labeled tracks

Table 7 reports the recognition accuracy with respect to the different number of labeled tracks
used for training our model. As the total number of labeled data increases from 100 to 1000, the
recognition accuracy increases. Note that the training data set includes examples for four types
and each type has an equal number of examples. When the amount of labeled data is 400 or
more, i.e., the amount of labeled data for each type of track is 100, the increment of accuracy
reaches the plateau. In our experiments, when about 2.5% of the total radar sequences are used as
examples in training, our proposed method achieved satisfactory performance. To balance the
training complexity and performance, we set the amount of labeled data as 400 in the remaining
experiments.

5.2.4 Impact of different features and feature pairs

We study the impact of different features and feature combinations on the performance of
the radar target track pattern recognition. Figure 7 shows that the SRFFC (a combination
of track angle and TF) achieves the best accuracy, which is above 98% and better than track
angle or TF alone by 4% and 5.5%, respectively. The extracted SRFFC can increase the
classification accuracy, and the introduced AFF can effectively improve the robustness of the
algorithm. Figure 8 shows that the precision with the SRFFC is much higher than that with
other features, indicating that the extracted SRFFC is effective and can significantly improve
the precision of the track classification. Figure 9 shows that the recall of using the SRFFC is
above 98%, which is much higher than that of using other features or feature combinations.
In summary, the extracted SRFFC obtains the best performance in the three performance
metrics.

Table 6 Recognition accuracy with respect to different cðwA
i;m; w

A 0
i ;m; f d i;mÞ.

cðwA
i;m; w

A 0
i ;m; f d i;mÞ 1 2 3 4 5

Accuracy 91.6% 95.8% 97.5% 96.4% 90.5%

Table 7 Track type identification accuracy with different amounts of labeled data.

Amount of labeled data 100 200 400 600 800 1000

Accuracy 91.8% 92.1% 98.0% 98.0% 97.9% 98.2%
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Fig. 8 Precision of track identification with different features.

Fig. 9 Recall of track identification with different features.

Fig. 7 Accuracy of track identification with different features.
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5.2.5 Performance of different track patterns

We study the recognition performance of algorithm SSTT on different types of target tracks.
Figure 10 shows the recognition accuracy of each type of track pattern. The recognition accuracy
is >97% in all cases, which demonstrates that our proposed method accurately identifies
the track patterns. In particular, the recognition accuracy of circle-type tracks reaches 100%.
In addition, the precision of algorithm SSTT for all four types of target tracks is higher than
97%, which shows that the precision of algorithm SSTT for all types of target tracks is high.
For line-type and arc-type tracks, the recall of algorithm SSTT is stable at about 98%, and
the recall for S-type and circle-type tracks is higher than 99%, illustrating that algorithm
SSTT can achieve good performance in terms of recall. In summary, algorithm SSTT obtains
good performance on each type of target track.

5.2.6 Comparison of track pattern recognition algorithms

We compare algorithm SSTT with other target track recognition algorithms, including CNN,30

LSTM,31 and GAN.32 The experimental results in Fig. 11 show that algorithm SSTT achieves
better performance than CNN, LSTM, and GAN in terms of the three performance metrics.

Fig. 10 Recognition performance on different target track types.

Fig. 11 Recognition performance of different algorithms.
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Compared with the second-best, our proposed method achieves a minimum improvement of
15.7%. CNN extracts the features from the track data through the convolution operation for
recognition, while ignoring the temporal relationship between the track points and the impact
of insufficient labeled data. LSTM captures the features of track data in the time domain but fails
to fully utilize the spatial features of track data. GAN solves the problem of insufficient labeled
data while neglecting the negative impact of outliers in the track data. When there is only a small
amount of labeled data, algorithm SSTT improves the performance with outlier processing and
the SSGAN.

6 Conclusions

In this paper, we proposed a radar target track pattern recognition algorithm based on a SSGAN
for few labeled radar target track data with outliers. Our proposed method contains two modules
of outlier processing and target track pattern recognition. In the outlier processing module, we
adopted ORLC to identify and eliminate the outliers existing in the original radar target track
data and used MPFL to realize the filling of missing points. In the target track pattern recognition
module, we extracted four types of BFFs, selected the SRFF from the BFFs, extracted the AFF
from the BFFs, and combined the SRFF and the AFF as the SRFFC. We then input the SRFFC
into the constructed SSGAN model to achieve accurate target track pattern recognition. The
simulation results demonstrate that the proposed algorithm SSTT obtains good performance
on each type of target track and achieves good and stable performance with the amount of labeled
data for each type of track being only 100 and that the extracted SRFFC effectively improves the
target track pattern recognition performance with outliers in terms of accuracy, precision, and
recall.
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