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This paper proposes a multimodal fusion emotion recognition method based on Dempster-Shafer 
evidence theory, which includes electroencephalogram (EEG) and electrocardiogram (ECG). For EEG, we 
use the SVM classifier to classify features, and for ECG, we establish the corresponding Bi-directional Long 
Short-Term Memory network emotion recognition structure, which is fused with EEG classification results 
through the evidence theory. We selected 25 video clips with five emotions (happy, relaxed, angry, sad, 
and disgusted), and a total of 20 subjects participated in our emotional experiment. The experimental 
results prove that the performance of the multi-modal fusion model proposed in this paper is superior 
to the single-modal emotion recognition model. In the Arousal and Valance dimensions, the average 
accuracy is improved by 2.64% and 2.75% compared with the EEG signal-based emotion recognition 
model. Compared with the emotion recognition model based on the ECG signal, the accuracy is improved 
by 7.37% and 8.73%.

© 2021 Elsevier Inc. All rights reserved.
1. Introduction

To improve the ability to cooperate or interact with others, in-
telligent human-machine systems with the ability to accurately 
understand interpersonal communication are highly demanded [1]. 
Emotional computing plays an important part in human-computer 
interaction [2] and is a key stage in sentiment analysis. Many men-
tal illnesses are expressed as emotions, such as depression, autism, 
and other diseases [3,4], which motivates the recognition and un-
derstanding of human emotions.

Physiological and non-physiological signals have been investi-
gated for emotion recognition. Methods based on physiological 
signals demonstrated greater reliability. In recent years, studies 
have been conducted with physiological signals such as electroen-
cephalogram (EEG), electrocardiogram (ECG), electrooculogram 
(EOG), and electromyography (EMG), among which EEG provides 
key information in the recognition of emotions [5]. The success 
of EEG-based emotion recognition inspired many methods [6–8]. 
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However, as different signals present various aspects of emotions, 
integration of EEG with other physiological signals has been ex-
plored [9]. The challenges lie in the amalgamation of inconsistent 
signals distorted with noise [10].

In this article, we proposed a method that fuses the results 
of certain channel data classification using fuzzy integration to 
achieve an improved emotion recognition model. A Bi-directional 
Long Short-Term Memory (Bi-LSTM) network is developed to build 
an emotion recognition model. Features including heart rate (HR) 
and heart rate variability (HRV) in the time domains are extracted 
and classified with the Bi-LSTM network. The classification outputs 
are fused with the outputs from the classification of EEG signals to 
make the final emotion recognition.

The rest of this article is organized as follows. Section 2 briefly 
reviews the related methods for emotion recognition. Section 3
presents the preprocessing, feature extraction, classification meth-
ods, and multimodal fusion strategy. Section 4 discusses the de-
tailed experimental steps, experimental preparations, and our ex-
perimental results in detail. Section 5 concludes this paper with a 
summary.
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2. Related work

For sentiment computing, there are many signals available for 
us to use, including facial expressions, speech, and gestures [11,12]. 
Since cerebral cortex activity is necessarily related to human emo-
tions, it is feasible to use EEG signals for emotion classification. 
Compared to the external signals described above, EEG has at-
tracted much attention due to its low cost and high reproducibility 
and portable implementation [13].

EEG signals capture the changes in the electric potential of 
a human subject. It is necessary to extract features of the pre-
processed EEG signals to reflect the distinction between different 
emotions. Features extracted from EEG include time-series fea-
tures [14], spectrum features [15], spatial synchronization features 
[16] and complexity measurement features [17]. Krisnandhika et 
al. [18] studied the utilization of relative wavelet energy as the 
feature extraction, and a modified radial basis function neural net-
works are implemented as the classifier. Pereira et al. [19] explored 
the effect of different emotional stimulation times on emotional 
recognition rate. Higher-Order Crossing (HOC) feature values are 
selected and SVM is used as a classifier. When the duration of the 
collection exceeds 60 seconds, the emotion recognition rate is bet-
ter.

Since EEG signal acquisition devices often have multiple chan-
nels, to make better use of the information on each channel, Chao 
et al. [20] proposed a new integrated deep learning framework, 
which integrates parallel DBN-GC and CRF, applies to multiple 
channels of EEG signals, and finally obtains the final sentiment pre-
diction result through the KNN-based decision merge layer. Zheng 
et al. [21] demonstrated that in the EEG-based emotion recogni-
tion process, using a subset of data from a few selected channels 
obtains the highest emotion recognition accuracy.

To improve the performance, feature selection has been adopted 
and developed for ECG signal processing. Ferdinando et al. [22]
investigated supervised dimensionality reduction, linear discrimi-
nant analysis (LDA), NCA (neighborhood component analysis), and 
MCML (maximum fold metric learning) for emotion recognition 
based on ECG signals from the Mahnob-HCI database. The clas-
sification was performed using the KNN classifier and the re-
sults showed that NCA outperformed the other methods. Mert 
and Akan [8] adopted multivariate synchrosqueezing transform to 
extract time-frequency features from EEG signals and applied a 
neural network to make the classification. Hsu et al. [23] pro-
posed an ECG-based emotion recognition algorithm using a class 
separability-based (SFSF-KBCS’s) feature selection algorithm based 
on a sequence forward floating selection kernel and utilized gen-
eralized discriminant analysis (GDA) to efficiently select important 
ECG features associated with emotions and to reduce the selection 
function. A least-squares support vector machine (LS-SVM) is used 
for emotion recognition.

Emotion has a close relationship with physiological and psycho-
logical changes, and signals from different modalities can reflect 
different information about emotion. Hence, the fusion of signals 
from multiple modalities is beneficial to make full use of all the 
information to get a more stable and higher recognition accuracy 
emotion recognition model. Asibul Islam et al. [24] carried out a 
multimodal fusion of EEG signals and facial expressions. The final 
experimental results indicate that the accuracy after multi-modal 
fusion is higher than that of the individual modal. Yea-Hoon et 
al. [25] combined EEG signals with GSR signals, and used CNN to 
fuse EEG spectrograms with GSR features, and finally completed 
the process of multimodal emotion recognition. Katsigiannis et al. 
[26] used a portable device to acquire EEG and ECG signals during 
emotion elicitation by audiovisual stimuli. PSD features were ex-
tracted from the EEG signals, where were fused with the HRV and 
HR features of the ECG signal at the feature level. The classification 
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was achieved with an SVM. The experimental results demonstrated 
that the recognition accuracy obtained is better than that of uni-
modal EEG and ECG in the Arousal dimension. Zhao et al. [27]
performed a multimodal fusion of EEG with other physiological 
signals, including EOG and EMG. The EEG signal was used as aux-
iliary information during training. The other physiological signals 
were used to create a new emotion recognition space using DCCA 
(discriminative canonical correlation analysis). In the testing stage, 
only other physiological signals used for testing are spatially pro-
jected and classified. The results show that combining EEG and 
ECG improves the emotion recognition rate. However, the recogni-
tion rate does not meet the real-life application needs. Therefore, 
improving the multimodal fusion emotion recognition rate is still 
an open challenge. This paper proposes a multimodal fusion emo-
tion recognition model based on Dempster–Shafer (DS) evidence 
theory.

3. Proposed method

For emotion recognition, one of the most important steps is fea-
ture extraction, in which we extract its time domain, frequency 
domain, or time-frequency domain features from the signal. Fig. 1
illustrates an overall view of the proposed method. For EEG data, 
we extracted features in five frequency bands and all bands. The 
five frequency bands are Delta(1-3 Hz), Theta(4-7 Hz), Alpha(8-13 
Hz), Beta(14-30 Hz), Gamma(31-43 Hz), and classified them using 
SVM. For the ECG data, we extracted the features of HR and HRV 
related parameters and classified them by Bi-LSTM network. The 
classification results of EEG signals and ECG signals are fused us-
ing the DS theory.

3.1. Feature extraction

For the EEG signal, we extract four kinds of features, the 
Lempel-Ziv complexity, the wavelet detail factor, the degree of 
cointegration relationship, and the approximate entropy after Em-
pirical Mode Decomposition (EMD) [28]. For the Lempel-Ziv com-
plexity, it is first necessary to binarize the raw signal to 0 and 1 
according to the threshold T (usually using the median) to ob-
tain the sequence P = s1, s2, ..., sn , traverse the sequence P , and 
increase the complexity counter c(n) by one unit when a new sub-
sequence appears, i.e., c(n) is the number of new patterns in the 
sequence P and n is the length of the sequence.

The specific algorithm is the following. We construct the se-
quences S , Q and S Q , where S Q is the concatenation of S and 
Q , S Q π is the sequence obtained by deleting the last character 
of the S Q sequence, and v(S Q π) denotes the set of all distinct 
subsequences in S Q π . Initially, let c(n) = 1, S = s1, Q = s2, S Q =
s1, s2, S Q π = s1, and in general, S = s1, s2, ..., sr , Q = sr+1, S Q =
s1, s2, ..., sr, sr+1, and S Q π = s1, s2, ..., sr . If Q belongs to v(S Q π), 
then Q is a subsequence of S Q π , S remains unchanged, Q is up-
dated to Q = sr+1, sr+2, and continues to determine whether Q
belongs to S Q π until Q does not belong to S Q π . If Q does not 
belong to S Q π , c(n) is increased by one unit, S is updated to 
S = s1, s2, ..., sr+i , and Q is updated to Q = sr+i+1. The above pro-
cess is repeated till the last character in Q . The resulting complex-
ity counter c(n) is time-dependent and needs to be normalized. An 
upper bound of c(n) is given by [29],

c (n) <
n

(1 − εn) logα (n)
(1)

where α represents the number of possible symbols in the se-
quence P . Thus α = 2 and εn (n → ∞) converges to 0, i.e.,

lim
n→∞ c (n) = b (n) = n

. (2)

log2 (n)
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Fig. 1. An overall view of the proposed method for emotion recognition.
The Lempel-Ziv complexity after normalization is

L Z C = c (n)

b (n)
= c (n) × log2 n

n
. (3)

L Z C is the normalized Lempel-Ziv complexity, which represents 
the growth rate of the new pattern of the sequence. The wavelet 
detail coefficients are the mean values of the wavelet coefficients 
computed after triple decomposition using db5 wavelets under 
each channel. An optimal channel is selected from the other chan-
nels using the ReLiefF algorithm [30]. The amount of cointegration 
relationship between that a channel and its optimal channel is the 
degree of cointegration relationship. The amount of cointegration 
relationship is the mean value of the number of cointegration re-
lationships to the two channels by EG test [31] method in the 
sample time. A finite number of Intrinsic Mode Functions (IMFs) 
are obtained after EMD decomposition. Since the variance contri-
bution is an indicator for evaluating IMFs, and the first four IMFs 
reach more than 95% of the sum of the variance of all IMFs, the 
first four IMFs are selected and their approximate entropy is cal-
culated to obtain the feature.

ECG signals are typically characterized by extracting specific pa-
rameters of heart rate (HR) and heart rate variability (HRV) in the 
time and frequency domains. Before extracting the features, the 
signal was divided with an overlap-free window of length 15s, 
and a total of 4200 samples were acquired. A complete ECG signal 
mainly consists of P-wave, Q-wave, R-wave, S-wave, and T-wave. 
Therefore, we can extract these five waveforms from the pre-
processed ECG signal. Fig. 2 shows that the R-wave is at its highest 
peak, and when the R-wave is extracted, the other waveforms are 
correspondingly easier to extract. We use the Pan-Tompkins QRS 
detection algorithm [32] to detect the R wave and then detect the 
other four peaks separately.

In our method, we calculate the statistical characteristics of P-
wave, Q-wave, R-wave, S-wave, and T-wave, including the mean, 
median, standard deviation, maximum, minimum, and the differ-
ence between maximum and minimum values, as well as the PQ 
spacing, QR spacing, RS spacing, and ST spacing. The HRV-related 
parameters are then extracted, and in the time domain, the num-
ber of all normal heartbeat intervals (NN), the mean of all nor-
mal heartbeat intervals (NNAVG), the mean of R-wave intervals 
(MeanRR), the standard deviation of all normal heartbeat intervals 
(SDNN), the number of all pairs of vector normal heartbeat inter-
vals that differ by more than 50 ms (NN50), NN50 divided by the 
3

total number of intervals between normal heartbeats for all pairs 
(pNN50), the difference between consecutive RR intervals (RMSSD), 
the quotient of SDNN divided by RMSSD (SDRM). Table 1 shows 
the features extracted from the EEG and ECG signals.

3.2. Emotion classification

For the EEG signals, there are four types of features used for 
classification, as the input to the SVM classifier. The collected EEG 
signals have a total of 14 channels that are positioned in various 
locations on the surface of the head. Considering the influence of 
different brain regions on emotion recognition, the classification 
results obtained by each channel are fused based on Takagi-Sugeno 
fuzzy integration. The classification result obtained for each classi-
fier can be expressed as (a, b), where (1, 0) represents the first 
class and (0, 1) represents the second class. For all channels in the 
classification result, a composes the sequence �x = { x1, x2, . . . , xn }, 
b composes the sequence �y = { y1, y2, . . . , yn }, and n is the total 
number of channels. The fuzzy integral of the two sequences �x and 
�y is calculated as follows, taking the sequence �x as an example,∫

f (�x)dμ =
n⋃

i=1

( f (xi) ∩ μ(Ai)) (4)

where f (xi) represents the value of a and μ(Ai) represents the 
joint fuzzy measure value of the corresponding channel. The fuzzy 
integral of the sequence �y is calculated in the same way, com-
paring the fuzzy integral values of the two sequences, and if the 
former is large, the identification results in the first category, oth-
erwise, the identification is of the second category.

In our previous work [28], the optimal channel selection exper-
iment was also carried out, considering all channel combination 
cases, using an SVM classifier with an RBF kernel function and a 
penalty factor of 1. In each dimension, the channel combination 
with the highest average recognition rate was found separately. Fi-
nally, for the Valance dimension, the optimal channel combination 
was T7, T8, FC5, FC6, F3, and F4. For the Arousal dimension, the 
optimal channel combination was T7, T8, FC5, FC6, F7, and F8.

Long short-term memory (LSTM) network is a special type 
of Recurrent Neural Networks (RNNs) that combines short-term 
memory with long-term memory through gate control, which ad-
dresses the gradient disappearance problem [33]. Fig. 3 shows the 
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Fig. 2. ECG signal.

Table 1
Features Extracted from ECG and EEG Signals.

Modality Extracted features

EEG Lempel-Ziv complexity
wavelet detail coefficients
degree of co-integration relationship
approximate entropy after EMD

ECG PQRST features mean, median, standard deviation, 
min, max
PQ,QR,RS,ST distance

HRV features NN, NNAVG, MeanRR, SDNN, NN50, 
pNN50, RMSSD, SDRM
Fig. 3. The internal structure of the LSTM network.

internal structure of the LSTM network. LSTM has a long-term 
memory state Ct−1 to the previous short-term memory ht−1 and 
new information xt at the current moment to calculate the current 
short-term memory ht , and adds an internal memory neuron C̃t

and three gates to control the passage of information: the forget 
gate ft , the input gate it , and the output gate ot . The forget gate 
determines how much information in Ct−1 is forgotten. The input 
gate determines how much of the information in C̃t is updated to 
the memory cell. The output gate is used to control how much of 
ht depends on the current long-time memory cell Ct .
4

In the forget gate, the input sequence xt and the output ht−1

from the previous moment are used as inputs for the current mo-
ment, and a number between 0 and 1 is output for Ct−1 to com-
plete the processing of the previous information. The activation of 
this gate is calculated as follows.

ft = σ(W f · [ht−1, xt] + b f ), (5)

where W represents the independent weight vector for each input, 
b is the bias vector, and σ is the logistic sigmoid function, and the 
following is the same.

The input gate is divided into two parts, the first part deter-
mines the value to be updated via the sigmoid layer, and the 
second part creates a new candidate value vector C̃t via the tanh 
layer. The calculation process is as follows:

it = σ(W i · [ht−1, xt] + bi), (6)

C̃t = tanh(W C · [ht−1, xt] + bC ). (7)

After passing through the forget gate and the input gate, we obtain 
the new cell state Ct . The results are as follows:

Ct = ft ∗ Ct−1 + it ∗ C̃t . (8)

Finally, a sigmoid layer determines which parts of the cell state are 
output, and the output is obtained by multiplying the tanh by the 
output of the sigmoid layer. The calculation process is as shown 
follows:

ot = σ(Wo · [ht−1, xt] + bo), (9)
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Fig. 4. Bi-directional LSTM network architecture.
ht = ot ∗ tanh(Ct). (10)

The LSTM network predicts the output of the next moment 
based on the timing information of the previous moment. Some-
times the output of the current moment is not only related to the 
previous state, but also the future state. Therefore, this paper uses 
a Bi-LSTM network with the network architecture shown in Fig. 4. 
A Bi-LSTM is a combination of a forward LSTM and a backward 
LSTM. The forward LSTM inputs the sequence in positive order and 
the backward LSTM inputs the sequence in reverse order, and then 
the LSTM output results of the corresponding input vector are con-
nected, and the result of the connection is used as the new feature 
vector of the input vector, which takes into account both the last 
long-time memory state of the forward LSTM output and the last 
long-time memory state of the backward LSTM output, and the 
feature vector has the global information of the sequence. In this 
paper, the input data are time-domain features extracted from ECG 
data, and the LSTM layer in the Bi-LSTM network contains 10 hid-
den neurons. The network uses softmax as the activation function 
and Adam as the optimizer, with a learning rate of 0.01.

3.3. Decision fusion

To combine EEG and ECG signals in emotion recognition, we 
adopt a strategy of decision-level fusion based on Dempster–Shafer 
evidence theory. In the classification process, we classify on the 
Arousal and Valance dimensions respectively. There are two classes 
in each dimension, Category I and Category II, denoted with A and 
B, respectively. Given a set X = {X1, X2, ..., Xn} as the set of recog-
nition results, � is a recognition frame that contains all possible 
cases, including the empty set. Combining the n classifications re-
sults in a total of 2n subsets. The Basic Probability Assignment 
(BPA) is a probability for each category, and function m(·) is the 
corresponding probability assignment function on the subset θ . For 
any subset θ of �, the following conditions are required:∑
θ∈�

m(θ) = 1,m(∅) = 0, and 0 ≤ m(θ) ≤ 1.

In our fusion strategy, there are two classifiers for the EEG sig-
nal and ECG signal emotion recognition models. The probability 
assignment functions for the EEG signal are m1(A) and m1(B), and 
the probability assignment functions for the ECG signal are m2(A)

and m2(B). These represent the confidence level of each classifier 
for the two classes. Table 2 presents the computation of the BPA 
function. In EEG, the BPA of each category is obtained by fuzzy in-
tegration. For example, the BPA function value of the first class is 
the ratio of the fuzzy integral value of the first class to the sum 
5

of the fuzzy integral values of the two classes. In ECG, when the 
softmax layer recognizes the emotion as the first type, the value 
of the first neuron represents its probability, which, in this case, is 
greater than the output of the second neuron.

When no conflict of evidence arises, for each BPA, the final 
BPA functions m1 ⊕ m2(A) and m1 ⊕ m2(B) for each category are 
calculated according to the Dempster synthesis rule, where ⊕ rep-
resents the combination of m1(A) and m2(A) or the combination 
of m1(B) and m2(B). The calculation process is shown in the fol-
lowing two equations, representing that all classifiers accumulate 
BPA functions that produce the same result value

m1 ⊕ m2(A) = m1(A) · m2(A), (11)

m1 ⊕ m2(B) = m1(B) · m2(B). (12)

When the values of m1 ⊕ m2(A) and m1 ⊕ m2(B) are obtained, 
the category that corresponds to the maximum value is the final 
classification result. The EEG-based sentiment recognition model 
is chosen as the final classification result when there is a conflict 
of evidence because the EEG-based sentiment recognition model 
performs better than the ECG-based sentiment recognition model 
for both pieces of evidence.

The overall framework is shown in Fig. 5. For EEG, the corre-
sponding EEG features are extracted, and each channel uses LIB-
SVM as a classifier. For channels involved in emotion recognition, 
fuzzy integration is used for multimodal fusion. For ECG, PQRST 
and HRV features are extracted and classified using a Bi-LSTM 
network. The final emotion recognition results are obtained by pro-
cessing the EEG-based and ECG-based emotion recognition results 
using DS evidence theory.

In the fusion process, classification results are obtained based 
on both EEG and ECG sentiment recognition models. Since it is a 
two-class classification in the Valance and Arousal dimensions, the 
BPAs of the EEG-based and ECG-based emotion recognition models 
are calculated for the two classes. The outputs are fused according 
to the Dempster synthesis rule to obtain the final BPAs, m1 ⊕m2(A)

and m1 ⊕ m2(B).

4. Experiments and results

4.1. Data sets and settings

In our data acquisition, 20 subjects participated in our emotion 
experiments, including 13 men and 7 women. All participants are 
college students with normal vision and normal hearing and with-
out recent psychological or physiological disorders. We selected 25 
video clips to elicit five emotions: happy, relaxed, angry, sad, and 
disgusted. Five video clips were used for each emotion. Emotiv 
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Table 2
BPA calculation.

Category I (A) Category II (B)

EEG (m1)

∫
f (�x)dμ∫

f (�x)dμ + ∫
f (�y)dμ

∫
f (�y)dμ∫

f (�x)dμ + ∫
f (�y)dμ

ECG (m2) Output of the first neuron Output of the second neuron

Fig. 5. The overall framework of in multimodal fusion process based on DS evidence theory.
Fig. 6. Overall class distribution across all participants after conversion to a two-
class rating score.

Epoc electroencephalograph was used to record the EEG signals. 
The sampling rate of this electroencephalograph is 128 Hz. There 
are a total of 14 channels and two reference electrodes, CMS and 
DRL, which are not used for EEG signal recording. The ECG signal 
was recorded by two ECG electrode patches, which are attached to 
the wrist pulses of the left and right hands, respectively.

Fig. 6 shows the category distribution of the dataset after the 
two classification schemes are divided according to the scoring 
scale. The datasets are slightly imbalanced in the Valance dimen-
sion with a ratio of 1.56 and mostly balanced in the Arousal di-
mension.

Fig. 7 shows the experimental process of each subject. There 
are a total of 25 video clips, 5 seconds of concentration and 5 
seconds of text prompts before each video, and 45 seconds of self-
assessment after watching the video, and finally take a 1-minute 
break. In the self-assessment phase, participants were asked to 
score on the Valance and Arousal dimensions. Among them, Va-
lence (ranging from 1-9) represents the degree of happiness, that 
is, from a negative state to a positive state, Arousal (ranging from 
1-9) represents the intensity of emotion [34].

For the label data, we defined two schemes: low/high valence 
(upset/happy) and low/high arousal (calm/arousal), which were 
subjectively assessed by each participant during the experiment 
using a scoring system from 0 to 9, and which served as our fi-
nal labels. We used five as the midpoint when dividing label data 
according to their scores on the Valence and Arousal dimensions, 
and each dimension was divided into two categories.

To have a holistic model evaluation, accuracy, F1-scores, and 
AUC (Area Under roc Curve) are used in our evaluation. In our eval-
uation of the emotion recognition models, we divided the exper-
6

imental data following the k-fold cross-validation strategy, where 
the percentage of each category of data contained in each fold is 
approximately the same as the percentage of the entire dataset. 
The number of folds is ten.

4.2. Accuracy analysis on bands

In the EEG-based emotion recognition process, we conducted 
experiments on using five bands and using all bands. Fig. 8 shows 
that the EEG signal is easier to distinguish after banding and 
the recognition rate is higher in the higher bands. As shown in 
Fig. 8(a), the beta band performs best in the Valance dimension, 
with an average accuracy of 82.24%. In the Valance dimension, the 
true-positive rate is 84.29% and the true-negative rate is 75.20%, 
which means that the beta band carries more positive emotional 
information than negative emotions. In addition, the beta band also 
obtained the best results in terms of F1-score and AUC, with values 
of 0.84 and 0.74, respectively. Compared to using all the bands, the 
average accuracy, F1-score, and AUC were improved by 0.2, 0.09, 
and 0.27, respectively.

Fig. 8(b) shows that the gamma band exhibits the best per-
formance in the Arousal dimension with an average accuracy of 
71.45%, an F1-score of 0.76, and an AUC of 0.68. Compared to us-
ing all bands, accuracy, F1-score, and AUC are improved by 0.25, 
0.12, and 0.23, respectively. This indicates that filtering the EEG 
signal to a specific frequency band has a more pronounced effect 
on the accuracy and AUC.

4.3. Learning with Bi-LSTM

Fig. 9 shows the accuracy and loss for emotion recognition us-
ing the Bi-LSTM model based on ECG signals in the Valence di-
mension (A) and (C) and in the Arousal dimension (B) and (D). 
The x-axis is the number of epoch used in the training process. 
The training process converged fairly quickly in our evaluation. The 
loss plateaued after 50 epochs for the Arousal and continued de-
creasing slightly after 75 epochs for the Valence. After 100 epochs, 
both the accuracy and the loss rate became mostly stabilized with 
little fluctuation. The obtained accuracy of emotion recognition is 
76.65% in the Valance dimension and 70.15% in the Arousal dimen-
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Fig. 7. Experimental flow chart.

Fig. 8. Classification performance of five bands. (For interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)

Fig. 9. Accuracy and Loss of ECG-based Bi-LSTM Models for Valence (A) and (C) and Arousal (B) and (D).
7
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Table 3
Single-modal and multi-modal fusion emotion recognition accuracy.

Modality Accuracy F1-Score AUC

Valence Arousal Valence Arousal Valence Arousal

EEG 82.63% 74.88% 0.8262 0.7640 0.7523 0.6751
ECG 76.65% 70.15% 0.7848 0.7149 0.6749 0.6775
Fusion 85.38% 77.52% 0.8741 0.8409 0.7829 0.6816

Fig. 10. Average accuracy of our proposed method and six state-of-the-art methods.
sion. Based on this training progress, we stop our training at the 
200 epochs and take the model with the best performance in our 
experiments.

4.4. Effect of decision fusion

Table 3 presents the results of emotion recognition based on 
EEG, based on ECG, and multi-modal fusion of EEG and ECG. Com-
pared with EEG-based and ECG-based single-modal emotion recog-
nition models, the average classification accuracy of multimodal 
fusion is improved. With EEG, the average accuracy for valence 
and arousal are 82.63% and 74.88%, respectively. The average accu-
racy of a model using only ECG is 76.65% and 70.15%, respectively. 
Our proposed method fuses the outputs from SVM and LSTM and 
achieved accuracy for valence and arousal at 85.38% and 77.52%, 
respectively. In addition, the F1-score and AUC of the fused model 
have also been improved, which confirms that multimodal emo-
tion recognition using fusion strategy improves the performance of 
single-modal emotion recognition models.

4.5. Comparison with state-of-the-art methods

Fig. 10 compares the average accuracy of our method and six 
state-of-the-art methods [20,23,25,27,28,35]. The accuracy of clas-
sifying for Valence and Arousal are depicted with separate bars. 
The compared methods are sorted according to the accuracy of 
Valence in ascending order from left to right. It is clear that our 
proposed method outperformed the other methods by achieving 
the best average accuracy for both valence and arousal. In con-
trast to the second-best for classifying valence and arousal, the 
improvement is 2.6% and 0.96%, respectively. In particular, when 
one type of signal is used, i.e., ECG or EEG, the information is 
limited [23,35]. Zhao et al. [27] integrated ECG by computing the 
statistics (e.g., mean and median) and concatenating them with 
EEG signals. The performance, although satisfactory, is inferior to 
the others, which implies simple concatenation of multimodal sig-
nals is arguable. As shown in Table 3, the best performance of 
using a single modality using our method is 82.63% and 74.88% 
for valence and arousal, which is competitive but not better. The 
fusion of the decisions improved the performance.
8

5. Conclusion

This paper presents a method that fuses EEG-based and ECG-
based emotion recognition models at the decision level through DS 
evidence theory that relatively improve the performance of emo-
tion recognition. Experimental results demonstrate that the fusion 
of EEG and ECG signal information provides more emotional infor-
mation, and multimodal fusion improves the accuracy of emotion 
recognition. An ECG-based emotion recognition model is proposed 
for decision-level fusion with an EEG-based emotion recognition 
model using the DS theory. For ECG, PQRST and HRV features were 
extracted and then classified using a bidirectional LSTM network 
model to establish an ECG-based emotion recognition model with 
an accuracy of 76.65% in the Valance dimension and 70.15% in the 
Arousal dimension. For the fusion of EEG-based emotion recog-
nition model and ECG-based emotion recognition model, i.e., the 
final fused BPA function value is calculated using the results of 
both models to obtain the final classification results. The emo-
tion recognition accuracy obtained after the multimodal fusion is 
85.38% in the Valance dimension and 77.52% in the Arousal dimen-
sion, which is better than the experimental results of the EEG and 
ECG unimodal models before the fusion, respectively, and signifi-
cantly reflects the effect of fusing the EEG and ECG modalities.
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