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A B S T R A C T   

Background: Electroencephalogram (EEG) signals may be contaminated with muscle artifacts that are usually 
difficult to be removed. 
New method: In this article, a new hybrid method for suppressing muscle artifacts is proposed. Our method le
verages variational mode decomposition (VMD) and canonical correlation analysis (CCA) algorithms. Each 
channel of EEG is decomposed into intrinsic mode functions (IMFs) with VMD to achieve an extended data set 
that contains more channels than the original data set. The potential artifact components are decomposed by 
CCA for further isolation. 
Results: The proposed method is evaluated with semi-simulation and real contaminated EEG signals. The results 
show that the performance of removing artifacts for VMD-CCA exceeds the comparison methods. 
Comparison with existing methods: Regardless of the number of EEG channels and the signal-to-noise ratio of the 
signal, the VMD-CCA approach is superior to the existing methods. As the number of EEG channels decreases, the 
average de-artifact effects of VMD-CCA and the comparison approaches are basically the same, but the 
randomness increases. 
Conclusions: The VMD-CCA method can effectively isolate muscle artifacts in EEG in case of multiple channels or 
few channels.   

1. Introduction 

Electroencephalogram (EEG) signal is often contaminated by non- 
cerebral artifacts, e.g. muscle artifacts, that cause confusion in the 
analysis and interpretation process (Song and Sepulveda, 2018; Ren 
et al., 2019; Lopez-Larraz et al., 2018; Nathan and Contreras-Vidal, 
2016). Muscle artifacts exhibit a high amplitude with variable topo
graphical distributions, and span almost the entire spectrum of the EEG 
signals (Goncharova et al., 2003; McMenamin et al., 2011), which 
makes muscle artifact removal a challenging problem. 

Blind source separation (BSS) techniques, such as independent 
component analysis (ICA) (Goncharova et al., 2003; Urigueen and 
Garcia-Zapirain, 2015; Minguillon et al., 2017; Mannan et al., 2018; 
Jiang et al., 2019) or canonical correlation analysis (CCA) (Nam et al., 
2002; De Clercq et al., 2006), extracts components from EEG for artifact 
isolation. Yet, a clean separation of cerebral and non-cerebral compo
nents is still issue (McMenamin et al., 2011). In many real-world ap
plications (Chaudhary et al., 2016; Minguillon et al., 2017), EEG 
equipments with a small number of electrodes or single electrode are 

often used due to cost and complexity concerns. In such settings, the 
multichannel decomposition methods face challenges because the 
number of underlying signal sources (e.g., muscle groups) are often 
more than the number of EEG channels. 

Alternatively, single-channel decomposition methods separate each 
channel of EEG signals into several components. Using wavelet trans
form, EEG signals are decomposed into time-frequency representations 
and the artifact-like coefficients are suppressed using thresholding 
(Govindan et al., 2014; Yong et al., 2012). While the empirical mode 
decomposition (EMD) (Huang et al., 1999) and the ensemble EMD 
(EEMD) (Wu and Huang, 2009) require no pre-set basis function and are 
therefore suitable for non-stationary signal analysis. 

Hybrid methods have been proposed to exploit the advantage of 
different methods (Mannan et al., 2018; Jiang et al., 2019). For 
single-channel EEG contaminated by muscle artifacts, the EEMD-ICA 
(Mijovic et al., 2010) approach combining EEMD and ICA demon
strated an improved performance in muscle artifacts suppression. 
Similar approaches, such as EEMD-CCA (Sweeney et al., 2013), further 
improve denoising effect. In multichannel situation (Zeng et al., 2016; 
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Fig. 1. Flowchart for the proposed VMD-CCA approach. The gray rectangles indicate the components suspected of containing artifacts, and the white rectangles 
indicate no artifacts. 

Fig. 2. A demo of comparison of VMD and EEMD decomposition effects. (a) A EEG signal is decomposed into 3 components by VMD and EEMD respectively (black: 
VMD components, green: EEMD components, the same below), (b) the same signal is decomposed into 10 components, (c) decompose the signal into 2, 3, …, 10 
components respectively, and display the first component obtained by each decomposition, (d) decompose the signal into 3, 4, …, 10 components respectively, and 
display the second component obtained by each decomposition. 
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Safi et al., 2018; Chen et al., 2019), every channel is decomposed into 
several components, then all or artifact-like components from all 
channels are put together as the input for the following BSS procedure. 
EEG and muscular sources are further separated in BSS. Finally, those 
cerebral-related are used to reconstruct pure EEG. 

However, EMD/EEMD lacks a solid mathematical foundation. Vari
ational mode decomposition (VMD) (Dragomiretskiy and Zosso, 2014) is 
an alternative to EMD, which can adaptively decompose the signal into 
some limited bandwidth and approximately orthogonal IMFs. It has 
been proved that VMD is better than EMD in signal decomposition and 
noise robustness (Wang and Markert, 2016). In this paper, we propose a 
hybrid approach that leverage VMD and CCA. In the VMD-CCA 
approach, each channel of EEG is decomposed with intrinsic mode 
functions (IMFs) for enriched data set. The data consisting of artifacts is 
decomposed using CCA, and the artifact components are removed. In the 
artifact removal step, information between channels are used. A clean 
EEG is reconstructed from the non-artifact components. 

The organization of the rest of this paper is as follows. Section 2 
presents the proposed hybrid approach. Section 3 details the perfor
mance of VMD-CCA using a comparison study on both synthetic and 
real-life signals. Section 4 concludes the paper with a summary. 

2. Methods 

Fig. 1 illustrates the architecture of the proposed hybrid approach, 
which consists the following procedures: (1) decompose each EEG 
channel into IMFs, denoted as Fc, using VMD and select IMFs with 
artifact, FcArtifact, using autocorrelation thresholding; (2) obtain a 
cleaned Ỹ with CCA and replace each FcArtifact with the corresponding 
components in ̃Y to get cleaned IMFs, denoted as FcClean, then reconstruct 
an artifact-free EEG by integrating FcClean. 

2.1. Signal decomposition and artifact concentration 

2.1.1. VMD 
VMD is a data-driven algorithm, which decomposes a signal f(t) into 

a given number of IMFs, or modes uk, and each mode has limited 
bandwidth with different central frequencies (Dragomiretskiy and 
Zosso, 2014). 

In VMD, the problem is described as the sum of the estimated 
bandwidths of the modes being minimized under the constraint that the 
sum of the modes is equal to the original signal f(t). The constrained 
variational formulation of VMD can be expressed as 

min
{uk},{ωk}
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where δ(t) denotes the Dirac distribution, * and ∂ denote the convolution 
and partial differential operators, and uk and ωk denote the kth (k = 1, 2, 
…, K) mode of VMD and corresponding center frequency respectively. 

The solution is obtained as the saddle point of the augmented 
Lagrangian ℒ as follows: 
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where α is the penalty term. To find the saddle point of ℒ, alternate 
direction method of multipliers (ADMM) is used. The optimal uk(ω) is 
directly updated by Wiener filtering in Fourier domain. 

2.1.2. Over-segmentation problem 
When using single-channel decomposition technology, a common 

problem is how many components should the signal be decomposed 

into. The number of decomposed components in the VMD, denoted as K 
in Eq. (1), needs to be predefined. Obviously, if the K is too small, it is 
not conductive to separation of signal and artifact. But if the K is too 
large, so-called over-segmentation, what will be impact in addition to 
increasing the calculation load? Fortunately, a good feature of the VMD 
is that when the signal is over segmented, the redundant modes are 
basically noise components (Dragomiretskiy and Zosso, 2014). 

Fig. 2 shows the comparison of the decomposition effect of VMD and 
EEMD on a sample EEG signal, which contains obvious muscle artifact 
and may contain other noises, shown in the first line of Fig. 2. As shown 
in Fig. 2a, when the signal is decomposed by VMD, the first two com
ponents are low-frequency component and quasi-periodic signal 
respectively, and the third one is high-frequency component. In EEMD 
decomposition result, the second and third components are all high 
frequency signals. Fig. 2b shows the same signal decomposed into 10 
components by VMD and EEMD respectively. In the decomposition 
result of VMD, the first component is still a low frequency term, the 
other components increase in frequency in turn, and the latter compo
nents are definitely high frequency artifacts or noise in terms of fre
quency. While the first six components of EEMD are all in low frequency, 
which means that they are the over decomposition of EEG baseline. 
Meanwhile the component 9 and 10 are obviously high frequency noise. 
This indicates that with the same K, the components belonging to the 
EEG band in the VMD result is more than the result of EEMD. 

We use VMD and EEMD to decompose signals into 2, 3, …, 10 
components respectively, then list all the first component obtained from 
each decomposition, as shown in Fig. 2c. It can be seen that although the 
K varies, all the components obtained by VMD are almost the same. In 
contrast, the first component obtained by EEMD is quite different when 
the K changes. The second components obtained by VMD and EEMD also 
have the same properties, as shown in Fig. 2d. This indicates that the 
shape of the first few components of VMD decomposition are relatively 
stable. So we don’t need to worry the over decomposition of VMD. 

Through experiments, we found that pretty results can be achieved if 
K ≥ 5. 

2.1.3. Muscle artifact judgment 
Compared to EEG, muscle artifacts are similar to random noise and 

their spectrums are wider (Goncharova et al., 2003; McMenamin et al., 
2011), so their delay-1 autocorrelation coefficients are lower than those 
of EEG. In order to detect muscle artifacts, the threshold is set relative 
higher here (0.95 for 10-s segment empirically) (Chen et al., 2019). In 
the VMD and the following CCA step, any IMF with a delay-1 autocor
relation coefficient below the threshold is considered to contain muscle 
artifacts. 

2.2. Artifact isolation and signal reconstruction 

CCA, based on second order statistics (SOS), is a well-known tech
nique to search underlying correlation between two multidimensional 
signals (Hardoon et al., 2004; De Clercq et al., 2006). The goal of CCA is 
to find the basis vectors of two data sets so that the correlation between 
the projections of the variables on the basis vectors are maximized with 
each other. Let Y1(t) be the EEG signal and Y2(t) = Y1(t − 1) be a 
temporally delayed version of Y1(t). CCA solves the BSS problem by 
obtaining two projection vectors, w1 and w2, which make the correla
tion between the projections of Y1 and Y2 are mutually maximized (De 
Clercq et al., 2006). The objective function is 

maxw1 ,w2

wT
1 Σ12w2

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
wT

1 Σ11w1
√ ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

wT
2 Σ22w2

√ (3)  

where Σ12 is the crosscovariance matrix of Y1 and Y2, and Σ11 and Σ22 
the autocovariance matrices of Y1 and Y2 respectively. 

The weight vectors and their corresponding canonical variates can be 
derived from the optimization function (3) (Hardoon et al., 2004). 
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Projections onto w1 and w2 are called canonical variants, which are 
maximally correlated and the canonical variates within each data set are 
mutually uncorrelated. CCA decomposes an EEG signal into several 
mutually uncorrelated components, which are arranged in descending 
order according to the autocorrelation values. 

Due to the low autocorrelation of muscle artifacts, components with 
autocorrelation value below a threshold can be considered to contain 
muscle artifacts, then these components are set to zero. Then, according 
to the inverse process of the previous signal decomposition process, the 
non-artifact EEG signal can be reconstructed, as shown in Fig. 1. 

3. Experiment results 

3.1. Datasets and experiment settings 

3.1.1. Semi-simulation datasets 
To evaluate the performance of the proposed VMD-CCA, we created 

semi-simulation data sets with real clean EEG and real electromyogram 
(EMG) signals. 

Muscle artifact-free EEG data were recorded from 20 healthy sub
jects. The 19-channel EEG data sets were recorded from an EEG Quick- 
Cap and a NuAmps amplifier (Compumedics Neuroscan, El Paso, TX), 
with the sampling rate 500 Hz and a bandpass filter in the range of 1 and 
70 Hz. Twenty 10-s muscle artifact-free EEG epochs were selected 
through visual inspection by an independent neurophyiologist. These 
clean EEG data sets, denoted as X(i)

EEG (i = 1, 2, …, 20), are used for 
subsequent data generating. 

It is difficult to extract pure muscle activity from contaminated EEG, 
thus real EMG signals are used in this work. Ten-second EMG data 
segments were collected from healthy volunteers by placing electrodes 
on forearms with a Trigno wireless surface EMG system (Delsys Inc., 
Natick, MA). To simulate realistic situations, we collected not only 
continuous muscle artifacts, but also transient ones by controlling the 
contraction intervals. To simulate massive muscle artifacts, a 19-channel 
muscle artifacts data matrix, denoted as X(i)

EMG is generated with a 
random mixing matrix and a 19-channel EMG source matrix (Chen et al., 
2016), which is randomly chosen from the EMG data set. As mentioned 
above, the multi-channel BSS step of the algorithm framework separates 
EEG and muscle artifacts from suspected artifact-like components to 
retrieve useful information as much as possible. ICA, CCA, or other BSS 
algorithms need to use some correlation between signal channels. 

A contaminated EEG matrix can be obtained according the following: 

Xi = XEEGi + λXEMGi (4)  

where the parameter λ is used to adjust the signal-to-noise (SNR) of Xi. 

The meaning of SNR is 

SNR =
RMS(XEEG)

RMS(λXEMG)
(5)  

where the root mean squared (RMS) is defined in equation. (7). 
A demo of semi-simulation data set is shown in Fig. 4a and b. 

3.1.2. Real dataset 
A real-life EEG data set is also employed to evaluate the performance 

of these approaches. The ictal EEG data set is a 21-channel, 10-s scalp 
EEG recording from a long-term epilepsy monitoring unit, with sampling 
rate of 250 Hz and bandpass filtering at the range of 0.3–35 Hz. Obvious 
epileptic waveform can be observed in the channels near the right 
temporal lobe, including T2, T4, T6 and F8. But the ictal EEG is severely 
contaminated with muscle activity, as shown in Fig. 3. The data set can 
be found at http://www.esat.kuleuven.be/sista/members/biom 
edng/biosource.htm. 

3.2. Evaluation metrics 

In synthesized data processing, the ground truth XEEG is known. For 
quantitative evaluation of algorithms performance, the relative root- 
mean-squared error (RRMSE) is used as an evaluation index of muscle 
artifact rejection, defined as 

RRMSE =
RMS(XEEG − X̃EEG)

RMS(XEEG)
(6)  

where the X̃EEG is the processed EEG data, the RMS is defined as 

RMS(X) =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1
C⋅T

∑C

c=1

∑T

t=1
X2(c, t)

√
√
√
√ (7)  

where C denoting the number of EEG channels and T the number of time 
samples. 

3.3. Comparison methods 

3.3.1. Decomposition with EMD & EEMD 
The EMD is a technique which reduce signal f(t) into a sum of several 

subsignals, called IMFs (Huang et al., 1999). Firstly, EMD extracts all the 
local maxima and minima of the signal. Secondly, the upper and lower 
envelopes are produced by cubic spline interpolation of the maxima and 
minima respectively. Thirdly, the mean of two envelopes, i.e. the local 
trend, is substracted from the initial signal to obtain a IMF. To obtain the 
next IMF, new maxima and minima shall be extracted from the local 
trend and all above three steps will be repeated until the last local trend 
satisfies stopping criterion. f(t) is expressed as follows: 

f (t) =
∑N

j=1
IMFj(t) + rN(t) (8)  

where N is the number of IMFs and rN(t) is the final residue. All extracted 
IMFs obey two properties: (a) the number of local minima and maxima 
differs at most by one, and (b) the mean value of IMF is zero. 

EEMD (Wu and Huang, 2009), a known enhanced version of the 
standard EMD, was proposed to overcome the shortcoming of sensitivity 
of the original EMD respect to noise. In EEMD, the IMFs are obtained 
from the average of corresponding IMFs estimated by original EMD from 
an ensemble of the signal plus independent white noise. Unlike Fourier 
or wavelet transform, the EMD/EEMD decomposition is completely 
data-driven without any pre-set basis functions, and it is widely applied 
in nonlinear and non-stationary signal analysis. 

Fig. 3. A real-life ictal EEG recording contaminated with muscle artifacts. The 
horizontal axis represents time with unit second. 
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Fig. 4. Example of 19-channel semi-simulation EEG. (a) Real clean EEG, (b) semi-simulation EEG (SNR = 0.5), (c) channel C4 and comparison of the results of four 
methods. The black lines are the reconstructed signals, and the red ones are clean EEG of channel C4. 

Fig. 5. Example of 5-channel semi-simulation EEG. the signal is composed of 5 channels randomly selected from the signal shown in Fig. 4. (a) Real clean EEG, (b) 
semi-simulation EEG, (c) channel P7 and comparison of the results of four methods. The black lines are results and red ones are clean EEG. 
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3.3.2. ICA for multichannel EEG 
The ICA approaches assume that the observed multi-channel signals 

are a linear combination of multiple mutual-independent sources, in the 
form of X =AS, and attempt to make the estimated sources as inde
pendent as possible with higher order statistics (HOS) (Albera et al., 
2012). In EEG measurement, it can be considered that the EEG com
ponents and the EMG artifacts are independent, so that the signal and 
artifact components can be separated by ICA, and the pure EEG can be 
obtained by removing the artifact components. 

3.3.3. EEMD-CCA approach 
The recently proposed EEMD-CCA approach also belongs to the 

framework of combining single-channel decomposition and multi
channel BSS as described above. The difference between EEMD-CCA and 
VMD-CCA is that EEMD is utilized to decompose each EEG channel. It is 
shown that the EEMD-CCA outperforms ICA, CCA and EEMD-ICA in 
muscle artifact cancelation (Chen et al., 2019). 

3.3.4. EEMD-ICA approach 
The EEMD-ICA approach proposed earlier uses EEMD to decompose 

each channel of EEG, but then uses ICA to separate EEG and muscle 
artifacts (Zeng et al., 2016). 

3.3.5. VMD-ICA approach 
Although (De Clercq et al., 2006; Chen et al., 2019) show that CCA is 

superior to ICA in terms of muscle artifact removing, this is not 
conclusive. So we also use ICA instead CCA in the framework, i.e. 
VMD-ICA, as a comparison. 

3.4. Results 

3.4.1. Semi-simulation data 
As mentioned in Section 3.1.1, synthesized EEG signals with complex 

muscle artifact sources were generated, where 19 EMG sources were 
mapped to 19-channel clean EEG with a given SNR. The signal shown in 
Fig. 4b is reconstructed by four methods, and the results of channel C4 
are shown in Fig. 4c. The closer the reconstructed result is to the real 
clean EEG, the better the reconstruction effect. It can be seen that the 
results of the four methods are basically the same in the signal segment 
with small artifacts (4–10 s). But in the signal segment with strong ar
tifacts (the first 4 s), the result of VMD-CCA is closer to the original 
signal. 

In order to evaluate the performance of the proposed VMD-CCA al
gorithm in discarding muscle artifacts under different number of EEG 
channels, random combination of each 19-channel semi-simulation EEG 

Fig. 6. The semi-simulated study: performance comparison of EEMD-ICA, EEMD-CCA, VMD-ICA and VMD-CCA at various SNR values in terms of RRMSE. C channels 
randomly chosen, (a) C = 1, (b) C = 3, (c) C = 5, (d) C = 7, (e) C = 9, (f) C = 11, (g) C = 13, (h) C = 15, (i) C = 17, (j) C = 19. 
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data set is performed. That is, C channel signal is randomly selected 5 
times from each 19-channel semi-simulation data Xi to form a new data 
set Xi(C) (C = 1, 3, 5, …, 15, 17, 19). An example of Xi(5) is shown in 
Fig. 5. 

Fig. 6 shows the average and standard deviation of RRMSE as func
tions of SNR with VMD-CCA and comparison approaches, EEMD-ICA, 
EEMD-CCA and VMD-ICA, in removing muscle artifacts. Fig. 6a, b, …, 
i respectively show to the analysis results of Xi(1), Xi(3), …, Xi(17), and 
Fig. 6j shows the results of Xi(19), that is X. 

As the SNR increases, the mean and standard variation (STD) of 
RRMSE of all algorithms decrease, indicating that the de-artifact ability 
and stability of all the algorithms increase with the increase of SNR, 
regardless of the EEG channel number of data set. 

For the data sets with the same number of EEG channels, the aver
aged RRMSE of VMD-CCA is less than that of EEMD-CCA and EEMD-ICA. 
This shows that since VMD can effectively separate EEG and muscle 
artifacts, the proposed VMD-CCA approach is good at dealing with 
minor or severe muscle artifacts in EEG regardless of the channel 
number. In addition, VMD-CCA performs slightly better than VMD-ICA, 
and EEMD-CCA outperforms EEMD-ICA (Chen et al., 2019), indicating 

that CCA may be more suitable for dealing with muscle artifact. 
We grouped the results by SNR, as shown in Fig. 7. It can be seen that 

at different SNRs (from 0.5 to 4.5), the mean value of RRMSE for all the 
approaches have no significant change with respect to the number of 
EEG channel C, while the STD of RRMSE decreases as the C increases, 
especially between 1 and 5. This interesting result can be explained from 
the following aspects. Firstly, the VMD-CCA and its comparison ap
proaches showed no significant correlation between the mean RRMSE 
and the C, while VMD-CCA/VMD-ICA consistently outperformed EEMD- 
CCA/EEMD-ICA, which indicates that the difference of mean RRMSE 
value is caused by the difference in the first step in the framework, 
namely the single-channel decomposition algorithm. As previously 
analyzed, VMD’s ability to separate EEG and artifacts is stronger than 
EEMD. Secondly, the STD of RRMSE varies with C, but the difference in 
STD of RRMSE between different approaches is not obvious under the 
same C and the same SNR. Due to the volume conduction effect of the 
head, theoretically all EEG sources and muscle artifact sources project 
on all electrodes, but their effects decay with the distance from the 
source to the electrodes. Therefore, signals collected on electrodes that 
are closer together may be more relevant, and vice versa. In the semi- 

Fig. 7. The semi-simulated study: performance comparison of EEMD-ICA, EEMD-CCA, VMD-ICA and VMD-CCA at various number of selected channel in terms of 
RRMSE. (a) SNR = 0.5, (b) SNR = 1.5, (c) SNR = 2.5, (d) SNR = 3.5, (e) SNR = 4.5. 

Q. Chen et al.                                                                                                                                                                                                                                    



Journal of Neuroscience Methods 353 (2021) 109104

8

simulation experiment, there is certainly no inter-channel information 
in the single-channel data set (C = 1), which limits the effect of algo
rithms. When the C is small, for example 3, there is a high probability of 
randomly selected channels weakly related to each other. In this case, 
the subsequent multichannel BSS process has almost no more available 
inter-channel information, and which is essentially equivalent to pro
cessing each single-channel signal separately. Conversely, if the 
randomly selected channels are more relevant, the advantages of sub
sequent CCA or ICA can be exploited, and the effect of artifact removing 
may be better. This can explain the large STD value of RRMSE under 
small C. 

3.4.2. Real data 
The real EEG example and the electrodes position are shown in 

Figs. 3 and 9b. The results obtained by the four algorithms are not 
significantly different overall. For example, as shown in Fig. 8a, the 
channel T2 processing results obtained by the four algorithms are almost 
the same. But the results of some channels are slightly different. As 
shown in Fig. 8b, under the same threshold setting, the processing re
sults of VMD-ICA/VMD-CCA have the similar rhythm in 0–3 s as in 
3–10 s, while the processing results of EEMD-ICA/EEMD-CCA have more 
high frequency components in 0–3 s than in 3–10 s. 

Note that there is no ground truth in the real data set. But it can be 
seen from Fig. 3 that the rhythm of the less-contaminated channels, such 
as Fz, Cz, Pz and T2, are not changed significantly during the 10 s, so we 
can reasonably conclude that the rhythm of the contaminated channels 
should also be roughly constant. Therefore, the results of VMD-ICA/ 
VMD-CCA may be slightly better than those of EEMD-ICA/EEMD-CCA. 

As in the previous semi-simulation data study, we also compared the 
results of different algorithms with only a few channels selected. For 
example, we select two 3-electrodes sets, the first one including T5 and 
its adjacent electrodes T3 and C3, the second including T5 and two far 
apart electrodes F4 and O2, as shown in Fig. 9b. The signal of the T5 
channel has obvious muscle artifacts at 0–4 s. The signal obtained from 
set 1 is denoted as Xnear, the signal from set 2 as Xfar. The channel T5 
recovered from the Xnear and Xfar using the four algorithms are shown in 
Fig. 9d and e respectively. Fig. 9f–i show the spectral contrast of the 
results. 

It can be seen from Fig. 9d and e that for both the Xnear and Xfar, the 
signal obtained by EEMD-ICA/EEMD-CCA contain obvious muscle arti
facts, while the muscle artifacts are not obvious in the results by VMD- 
CCA. This result is similar to the results of the previous simulation study. 

It is worth noting that in the Xnear, the artifact intensity in T3 and C3 
significantly exceeds the artifact intensity of F4 and O2 in Xfar. However, 

comparing the T5 recovered from Xnear and Xfar by EEMD-ICA, VMD-ICA 
and VMD-CCA, the muscle artifacts contained in T5 recovered from Xfar 
are more obvious. It can also be seen from the spectrum comparison that 
the signal recovered from Xfar are significantly more high-frequency in 
the spectrum range of EEG (10–30 Hz). 

It can be clearly seen from the waveforms of Xnear and Xfar that the 
muscle artifacts in T5, T3 and C3 are synchronic, suggesting that they 
come from same artifact source, while the source of the muscle artifacts 
in T5, F4 and O2 are different. When dealing with the Xnear dataset, it 
may be that the information provided by the association between the 
channels improves the effect of artifact canceling. 

Although the proposed VMD-CCA has advantages over EEMD-CCA in 
muscle artifacts discarding, the limitation of this method is the pro
cessing speed. The mean time costs for EMD-CCA, VMD-ICA and VMD- 
CCA over 10-s 19-channel EEG were 5.52 s, 13.63 s and 13.19 s 
respectively. The test was done in MATLAB (MathWorks Inc. Novi, MI, 
USA) under Microsoft Windows 10 x64 OS on a notebook computer with 
Intel(R) Core(TM) i7-6500U 2.50GHz CPU and 8.00 GB RAM. The al
gorithm needs further optimization to achieve the effect of real-time 
processing. 

4. Conclusion 

Here we proposed a hybrid approach based on VMD and CCA to 
suppress muscle artifacts in EEG. We utilize VMD to decompose each 
channel of EEG signal into multiple IMFs, then use the autocorrelation 
value as a criterion to select the IMFs suspected of muscle artifacts, and 
then combine these IMFs as a new data set, using CCA decompose it into 
several uncorrelated components and the autocorrelation values 
decrease in turn, so that some EEG components can be retrieved. By 
setting the component determined to be artifacts to zero, the clean EEG 
can be reconstructed. 

Semi-simulation data sets from real EEG and real EMG are used to 
evaluate the VMD-CCA algorithm. The results show that the proposed 
VMD-CCA algorithm outperforms the EEMD-ICA and EEMD-CCA in 
different SNR and a different number of EEG channels. From the simu
lation study, we also found that under the “single-channel decomposi
tion + multichannel BSS” framework, such as EEMD-ICA, EEMD-CCA 
and our proposed VMD-CCA, the mean value of de-artification effect 
measured by RRMSE is almost independent of the number of channels, 
but the variance of the RRMSE increases as the number of channels 
decrease. The reason may be that the correlation of signals from adjacent 
electrodes is beneficial to recover some EEG components in BSS step. 
The real contaminated EEG signal analysis also made this suggestion. 

Fig. 8. A real data demo: result comparison of the same channel. (a) T2, (b) T4. The horizontal axis represents time with unit second.  
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This implies that if the electrode position is set well, less number of 
electrodes may obtain good de-artification effect. 
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