
ORIGINAL PAPER

An improved long short-term memory network for streamflow
forecasting in the upper Yangtze River

Shuang Zhu1 • Xiangang Luo1 • Xiaohui Yuan2 • Zhanya Xu1

� Springer-Verlag GmbH Germany, part of Springer Nature 2020

Abstract
Characterized by essential complexity, dynamism, and dynamics, streamflow forecasting presents a great challenge to

hydrologists. Long short-term memory (LSTM) streamflow forecast model has received a lot of attention in recent years

due to its powerful non-linear modeling ability. But probabilistic streamflow forecasting has rarely been addressed by the

LSTM approach. In this study, a probabilistic Long Short-Term Memory network coupled with the Gaussian process (GP)

is proposed to deal with the probabilistic daily streamflow forecasting. Moreover, considering that changing mean and

variance over time exist in the daily streamflow time series, the heteroscedastic Gaussian process regression is adopted to

produce a varying prediction interval. The proposed method encapsulates the inductive biases of the LSTM recurrent

network and retains the non-parametric, probabilistic property of Gaussian processes. The performance of the proposed

model is investigated by predicting the daily streamflow time series collected from the upper Yangtze River and its

tributaries. Artificial neuron network, generalized linear model, heteroscedastic GP, and regular LSTM models are also

developed for comparison. Results indicated that the performance of the proposed model is satisfying. It improves

prediction accuracy as well as provides an adaptive prediction interval, which is of great significance for water resources

management and planning.
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1 Introduction

Streamflow forecasts play an extremely important role in

the optimal management of water conservancy during flood

events as well as in arid regions (Kisi and Cimen 2011).

Hydrological processes are influenced by complex weather

and non-linear infiltration mechanisms, which are difficult

to model (Wang et al. 2009) and thus, reliable forecasting

streamflow remains a challenge.

Streamflow forecasting methods mainly include physi-

cal/conceptual models, time series models and machine

learning models (ML) (Chen et al. 2015). The physi-

cal/conceptual models provide an in-depth investigation of

the behavior of the catchment on the basis of physical laws

that govern water flow or simplified descriptions of

hydrological processes. The disadvantage of the physi-

cal/conceptual models is the time-space complexity and

model biases that cannot be ignored. It is well acknowl-

edged that statistical streamflow prediction is convenient,

effective, and highly accurate (Papacharalampous et al.

2018b). Time series models for streamflow forecasting can

be classified into exponential smoothing, AutoRegressive

Integrated Moving Average (ARIMA), seasonal models,

long-range dependence models (Papacharalampous et al.

2018a, b), etc. Alternatively, machine learning (ML)

algorithms are widely used to learn and model the high

dimensional and non-linear relationships of hydrological

variables (Yuan and Sarma 2010; El-Shafie et al. 2013;

Karimi et al. 2018; Lu et al. 2018). The most popular ML

models are Neural Networks (NN) Yuan et al. (2018b),

Random Forests (RF), and Support Vector Machines

(SVM) (Fu et al. 2019b, a). Researchers conducted large-

scale temperature, precipitation and river discharge
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forecasting by using various stochastic and ML methods,

indicated that both stochastic and ML methods may pro-

duce useful forecasts (Papacharalampous et al.

2018c, 2019). Recently, it was demonstrated that deep

learning techniques have superior performance in numer-

ous applications such as streamflow forecasting (Akram

and El 2016; Shen 2018; Shen et al. 2018; Siqueira et al.

2018; Yaseen et al. 2019; Yuan and Abouelenien 2015).

Recurrent Neural Network (RNN) includes feedback con-

nections in the framework that takes into account the cur-

rent information as well as other adjoining information in

the data. Long Short-Term Memory (LSTM) net-

work (Hochreiter and Schmidhuber 1997; Gers et al. 2002)

overcomes the problem of the traditional RNN of learning

long-term dependencies representing e.g. storage effects

within hydrological catchments, which may play an

important role for hydrological processes (Kratzert et al.

2018). LSTM has no explicit internal representation of the

water balance. However, it might be possible to analyze the

behavior of the cell-states and link them to basic hydro-

logical patterns (Kratzert et al. 2018). Zhang et al. (2018)

developed LSTM to predict water table depth and achieved

higher prediction accuracy when compared with the results

of traditional feed-forward neural network (FFNN), proved

that LSTM model can preserve and learn previous infor-

mation well. Yuan et al. (2018a) investigated the accuracy

of hybrid LSTM and parameter optimizer model in pre-

diction of monthly runoff, indicated that the LSTM model

has higher accuracy than that of other models. The com-

petitive performance and high-stability of LSTM stream-

flow forecasting are demonstrated in these studies.

However, due to the intricacy of water dynamics and the

spatial heterogeneity of the pertinent variables, the hydro-

logical process is plagued by uncertainty, which makes

daily streamflow forecasts in a probabilistic framework an

appealing option (Moradkhani 2015). Modeling the pre-

diction uncertainty across time has rarely been addressed

by the LSTM approach. Most existing studies rely on

ensemble techniques such as bagging and random forest,

which use sampling with replacement to improve consis-

tency. Gaussian process (GP) regression model is a non-

parametric kernel-based probabilistic model (Rasmussen

2004), it was firstly introduced in the hydrology simulation

and forecasting by Sun et al. (2014). GP constructs joint

distribution by assuming that the variables used to model

the sample follow the prior Gaussian distribution. The

increasing popularity is due to the fact that non-linear

problems can be solved in a principled Bayesian frame-

work for learning and uncertainty estimation. With the

convenience properties of GP, it is reasonable to couple GP

with LSTM for probabilistic time series forecast. By

combing LSTM and GP, Wu et al. (2016) achieved wind

power forecasting and acquired prediction interval by

implementing conditional error analysis. Gruet et al.

(2018) used the deterministic results of the LSTM as the

mean function of the GP model to derive the confidence

interval for Dst geomagnetic index. Zhang et al. (2019)

used GP to analyze the LSTM forecast errors of wind

turbine power. Essentially, in these studies, GP is served as

a post-processing analysis technique that is implemented

on the deterministic forecast. Thus, a more direct, reliable

and probabilistic LSTM streamflow forecasting research

needs to be extended. On the other hand, a typical setting in

the standard GP is the assumption of constant variance. As

changing mean and variance over time exist in the hydro-

logical time series, it is highly desirable to consider models

with input-dependent variance (Lázaro-Gredilla and Titsias

2011). This leads to the need to consider the

heteroscedastic Gaussian process regression.

In this paper, we propose a novel hybrid model that

integrates the heteroscedastic GP model into the inner

structure of LSTM. The proposed method encapsulates the

inductive biases of LSTM recurrent networks, retains the

non-parametric, probabilistic property of Gaussian pro-

cesses, and naturally produces prediction interval without

any post-processing. The performance of the proposed

model is investigated by predicting the daily streamflow

time series collected from the upper Yangtze River and its

tributaries. To make a comparison, a widely used ANN,

Generalized Linear Model (GLM), heteroscedastic GP

model, and regular LSTM models are also developed to

implement daily streamflow forecasting in this study. The

rest of the article is organized as follows. The study area

and data are detailed in Sect. 2. The modeling framework

and forecasting evaluation indicators are explained in

Sect. 3. Section 4 presents our experimental results and

discussion. Section 5 concludes the paper with a summary.

2 Study area and runoff data

The length of the Yangtze River is 6380 km, and the

watershed area is 1,808,500 km2. The drainage basin is

located between 91�E to 122�E and 25�N to 35�N. Due to

its abundant water resources, the river has been used for

irrigation, industry, power generation, sanitation and

shipping, and plays a vital role in the development of

China’s socio-economic and ecological environment.

We consider daily streamflow forecasting for the upper

Yangtze River. A schematic of the upper Yangtze River,

regional main tributaries, and the gauging stations are

shown in Fig. 1. Yichang is the outlet of the upper reaches

of the Yangtze river basin, with a length of 4504 km and a

drainage area of 1,000,000 km2. The main tributaries from

Pingshan to Yichang include the Min River and the Jialing
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River on the north bank and the Wu River on the south

bank. From the source of the river to Pingshan, it is called

the Jinsha River, which is 3481 km long and has a drop of

about 5100 m, accounting for about 95% of the total

Yangtze river drop. On the left bank of the Jinsha River,

there is a large tributary Yalong River, which has an ele-

vation of over 4000 m above sea level. Runoff of the Jinsha

River is mainly supplemented by snow. Gaochang is the

outlet of the Min River. The total length of the main stream

is 711 km, the drainage area is 135,400 km2, the average

annual flow is 2830 m3/s, and the total drop is 3560 m.

Beibei is the outlet of Jialing River, with a drainage area of

157,900 km2 and a total length of 1571 km. The average

annual flow is 1860 m3/s, with a total drop of 2300 m. The

source areas of the Min River and the Jialing River have a

high terrain, with an altitude of 3000 to 4000 m, and the

terrain near the Sichuan Basin suddenly drops to

200–600 m. In addition to the Jinsha River in the upper

reaches of the Yangtze River, heavy rains frequently

occurred in the rest of the areas. Heavy rains are the main

supply of runoff in the Jialing River and the Min River.

The statistical features, involving catchment area, river

length, mean streamflow and available data of the main-

stream and tributaries were given in Table 1. As the most

important hydrological control site of the upper Yangtze

River, Yichang is included for streamflow forecasts in this

study. Three secondary control sites, Pingshan, Gaochang,

and Beibei are used in our experiments. Daily streamflow

series (2004/1/1-2010/12/31) recorded at Yichang, Ping-

shan, Gaochang, and Beibei is provided and checked by the

Yangtze River Waterway Bureau, China (http://www.cjw.

gov.cn/). Figure 2 is a daily time series plot of Yichang,

Beibei, Gaochang and Pingshan. It is clear that the

streamflow in Beibei, Pingshan, Gaochang and Yichang

stations has consistent annual and interannual trends. Due

to the influence of the subtropical monsoon climate,

streamflow in the upper Yangtze River has an uneven

distribution and severe fluctuations, which makes it diffi-

cult to obtain an accurate runoff forecast.

3 Improved long short-term memory
network

An improved long short-term memory network coupled

with heteroscedastic GP, labeled LSTM-HetGP, is devel-

oped for probabilistic streamflow forecasting in this paper.

The overview streamflow forecasting model and the

architecture of LSTM-HetGP are shown in Fig. 3. It has a

network structure of four types of layers: an input layer,

numbers of recurrent hidden layers, a Gaussian process

Fig. 1 A schematic of upper Yangtze River, main tributaries, and the gauging stations
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layer, and an output layer. In the procedure, input variables

are mapped into a single hidden vector through the recur-

rent hidden layers. Instead of connecting directly to the

output layer, it is projected into a high dimensional feature

space with the kernel function of the heteroscedastic GP,

the prediction interval is derived by the GP posterior dis-

tribution over the target. A semi-stochastic alternating

gradient descent optimization procedure is applied to carry

out weight updates and fully joint training of the hybrid

model. Python programming environment (Guttag 2016),

the packages of Keras (Chollet et al. 2015) and

heteroscedastic Gaussian process regression (Binois et al.

2018) were used to implement the algorithms.

3.1 Long short-term memory network

Long Short-Term Memory network (LSTM) is evolved

from Recurrent Neural Networks (RNN). RNN is a circular

network in which an additional input is added to represent

the state of the neuron in the hidden layer at the previous

time steps (Elman 1990; Ishak et al. 2003). Figure 4 shows

the repeated module in a recurrent network with a single

layer. Given an input sequence X ¼ ðx1; x2; :::; xTÞ, the

state of the neuron at the current time step ht is computed

as follows:

ht ¼ tanhðWxhxt þWhhht�1 þ bhÞ; ð1Þ

where ht, ht�1 represent the hidden neuron states at the time

step t and t � 1 respectively, Wxh and Whh mean weight

Table 1 Sub-basin

characteristics and streamflow

statistics in the upper reaches of

the Yangtze River

Rivers Area (km2) Length (km) Annual streamflow (m3/s) Record length

Yalong River 144,200 1571 1860 1950–2010

Jinsha River 485,099 3481 4750 1950–2010

Min River 135,400 711 2830 1950–2010

Jialing River 157,900 1062 2100 1950–2010

Wu River 87,920 1037 1650 1950–2010

Upper Yangtze River 1,005,501 4504 13,600 1950–2010

Fig. 2 Average daily streamflow series for upper Yangtze River and the tributaries
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matrices of input-hidden neurons and hidden-hidden neu-

rons, respectively; bh is bias term, tanhð�Þ is element-wise

hyperbolic tangent function, xt vector is model input at the

time step t.

In Eq. (1), learning the parameters of the earlier neurons

is difficult because the error of partial derivative accumu-

lates and the gradients can easily become extremely large

or vanish. LSTM is designed to solve this problem by

making the regular RNN out of little modules designed to

remember values for a long time. Therefore, a basic LSTM

consists of an input layer, a hidden layer, and an output

layer, and the hidden layer of LSTM has a different

structure to optionally let information through. Three extra

modules are added to control the preservation, reading, and

modification of the memory cell of the LSTM forecasting

model.

Suppose the input at the time step t is xt, the updated

hidden layer of LSTM is calculated as follows:

ft ¼rðWf � ½ht�1; xt� þ bf Þ ð2Þ

it ¼rðWi � ½ht�1; xt� þ biÞ ð3Þ

C
0

t ¼tanhðWC � ½ht�1; xt� þ bCÞ ð4Þ

Ct ¼ftCt�1 þ itC
0

t ð5Þ

Fig. 3 An overview of the streamflow forecasting model and the architecture of LSTM-HetGP

Fig. 4 The repeated module in a

RNN with a single layer
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ot ¼rðWo � ½ht�1; xt� þ boÞ ð6Þ

ht ¼ot � tanhðCtÞ ð7Þ

where rð�Þ is the sigmoid function; Wf , Wi, WC, Wo are

weight matrices; bf , bi, bC, bo are bias vector; ft, it and ot
are the values of forget gate, update gate and output gate.

The output of LSTM is

y ¼ wðWT
hyhtÞ ð8Þ

Where w is fixed element-wise function, Why is weights of

output layer.

3.2 Heteroscedastic Gaussian process regression

Gaussian process regression (GPR) is firstly proposed by

Gibbs (1998) and lately extended by Kersting et al. (2007)

and Tolvanen et al. (2014). Due to the advantage of han-

dling uncertainty, it has begun to be applied for proba-

bilistic streamflow forecasting in the last few years (Sun

et al. 2014; Zhu et al. 2018). A detailed description of GPR

prediction theory can be found in Rasmussen (2003, pp.

8–13). Given an input vector x�, the Gaussian posterior

distribution of the predicted value y� is

pðy�jx�; x; yÞ ¼ N
1

r2
xT�A

�1xy; xT�A
�1x�

� �
ð9Þ

where A ¼ r�2xxT þ
P�1

p ,
P

p is covariance matrix, r is

constant variance.

The predictive distribution is Gaussian, with a mean

given by the posterior mean of the weights 1
r2 A

�1xy mul-

tiplied by the test input xT� . The variance is a quadratic form

of the inputs with the posterior covariance matrix. The

above equation is based on the Bayesian assumption and is

suitable for linear models. A simple idea to overcome this

problem is to first project the inputs into some high

dimensional space using a kernel function. Then apply the

linear model in the high dimensional space instead of

directly on the inputs themselves.

Function / is introduced to project the input x into a

high dimensional feature space to implement polynomial

regression. The Gaussian posterior can be written as

pðy�jx�; x; yÞ ¼ N
1

r2
/ðxT� ÞA�1/ðxÞy;/ðxT� ÞA�1/ðx�Þ

� �

ð10Þ

To simplify the calculation, kernel function Kðx; xÞ is used
to directly obtain the inner product of the complex non-

linear transformation. The probability distribution is

pðy�jx�; x; yÞ ¼NðKðx�; xÞðKðx; xÞ þ r2InÞ�1
y;Kðx�; x�Þ

� Kðx�; xÞðKðx; xÞ þ r2InÞ�1
Kðx; x�ÞÞ

ð11Þ

where A ¼ /TP
p /.

Assume that the training samples follow a normal dis-

tribution with a zero mean, a unique GPR model is

obtained with the kernel function K, that is

f ðxÞ�GPð0;Kf ðx; x�ÞÞ. For a heteroscedastic GP (HetGP)

model, observation noise has a possibly different variance

rðxÞ at each input point x.

f ðxÞ�GPð0;Kf ðx; x�ÞÞ; ��Nð0; rðxÞÞ ð12Þ

The model is fully specified and depends only on the kernel

functions Kf ðx; x�Þ and rðxÞ Lázaro-Gredilla and Titsias

(2011). The predictive distribution of a heteroscedastic GP

is expressed as:

pðy�jx�; x; yÞ ¼NðKðx�; xÞðKðx; xÞ þ RðxÞÞ�1
y;Kðx�; x�Þ

þ Rðx�Þ � Kðx�; xÞðKðx; xÞ þ RðxÞÞ�1
Kðx; x�ÞÞ

ð13Þ

where RðxÞ ¼ diagðrðxÞÞ, and Rðx�Þ ¼ diagðrðx�ÞÞ.

3.3 Probabilistic LSTM coupled
with heteroscedastic GP

To produce a probabilistic LSTM forecasting, a

heteroscedastic GP layer is introduced after the hidden

layer of the LSTM. In this new architecture, input variables

are embedded into a single hidden vector in the hidden

space, H. Then it is transformed into a high dimensional

space with a kernel function. Target distribution is learned

in the GP layer, as shown in Fig. 3. For this hybrid feed-

forward network, Wilson et al. (2016) proposed to use full-

batch algorithms to jointly optimize the hyperparameters of

the kernel function and the network weights. In our case,

the network is recurrent. Stochastic updates should be

considered since it allows for the efficient topology-inde-

pendent implementation of backpropagation. Therefore, a

semi-stochastic alternating gradient descent optimization

procedure proposed by Al-Shedivat et al. (2016) is applied

to carry out weight updates as well as fully joint training of

the LSTM-HetGP hybrid model, by alternately updating

the hyperparameters of GPR on the full training data first

and then updating the weights of LSTM on the mini-batch

data using stochastic steps. Instead of using all training

data items (full-batch) or using a single training item (as in

stochastic training), mini-batch training uses a specified

number of training items to compute gradients to get faster

convergence. The algorithm steps are shown in Fig. 5.
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The parameters of the LSTM-HetGP model include

weight parameters of W and GP hyperparameters h. The
model training procedure is to map the input time series

into a vector in a hidden layer with the w, transfer the

vector into a high dimensional space with the kernel

function and corresponding h, compute the kernel matrix

and then get the Gaussian posterior distribution on target.

The kernel matrix of LSTM-HetGP is computed with an

initial h and full training data set. For a fixed kernel matrix,

update W on a mini-batch using the derivatives of the

negative log marginal likelihood of LSTM-HetGP with

respect to W. Then update the h on the full vectors in the

hidden layer due to the updated W. In this step, h of the

heteroscedastic GP is estimated by the maximum likeli-

hood method and replicates the strategy proposed by

Binois et al. (2018). Repeat the process for the mini-bat-

ches until convergence.

Once the parameters of LSTM-HetGP are known, the

Gaussian posterior distribution of LSTM-HetGP over tar-

get y� is

pðy�jx�; x; yÞ ¼ Nðl�; r�Þ ð14Þ

The expectation is

l� ¼ Kðx0�; x0ÞðKðx0; x0Þ þ Rðx0ÞÞ�1
y ð15Þ

The variance is

r� ¼ Kðx0�; x0�Þ þ Rðx0�Þ � Kðx0�; x0ÞðKðx0; x0Þ þ Rðx0ÞÞ�1
Kðx0; x0�Þ

ð16Þ

where x0 ¼ Wxhx, x0� ¼ Wxhx�, Wxh is weight matrix of

input-hidden neurons. Based on Bayes theorem, the

expectation is used for prediction, and the uncertainty

interval is derived with mean and standard devia-

tion (Tyralis and Koutsoyiannis 2014).

4 Results and discussion

Four sets of historical daily streamflow series (from 1/1/

2004 to 31/12/2010) of the upper Yangtze River and its

tributaries (daily streamflow in the Beibei, Gaochang,

Pingshan, and Yichang gauging stations) were investigated

by the proposed LSTM-HetGP model. In addition,

streamflow forecast model ANN, GLM, heteroscedastic

GP, and regular LSTM models are also included to perform

comprehensive analysis and comparison. The first five-year

data (2004 to 2008) of daily streamflow are used as training

sets and the next two-year data (2009 to 2010) are used for

testing.

4.1 Evaluation metrics

The root mean squared error (RMSE) criterion and the

mean relative error (MRE) are the two criteria most widely

used for calibration and evaluation of streamflow fore-

casting models. While the MRE gives the same weight to

all errors, the RMSE penalizes variance as it gives errors

with larger absolute values more weight than errors with

smaller absolute values (Chai and Draxler 2014). Nash-

Sutcliffe efficiency (NSE) (Gupta et al. 2009) calculates

the proportion of total variation, considering the error in

the variability and dynamics. It varies on the interval [-inf

to 1.0], having an ability to measure the error of process

simulation. The mean squared logarithmic error

(MSLE) (De Vos and Rientjes 2008; Hogue et al. 2000) is

a less used evaluation indicator, it more emphasizes on the

error of low flows due to the logarithmic transformation.

The percentage of coverage (POC) and the average interval

width (AIW) (Lei et al. 2014) are two important attributes

of the probabilistic streamflow forecasting. The POC cal-

culates the percentage of the target points within the range

of prediction intervals at all target points. AIW calculates

the average width of all prediction intervals. Higher POC

means greater probabilities of predictive streamflow range

correctly covering the target. If the POC values are close,

then a better streamflow forecasting is detected with a

lower AIW. The formulas of NSE, RMSE, MRE, M4E,

MSLE, POC and AIW are shown as follows.

NSE ¼1�
PN

i¼1ðQi � Q̂iÞ2PN
i¼1ðQi � �QÞ2

ð17Þ

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

XN

i¼1
ðQi � Q̂iÞ2

r
ð18Þ

Fig. 5 The semi-stochastic alternating gradient optimization proce-

dure of LSTM-HetGP
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MRE ¼ 1

N

XN
i¼1

jQ̂i � Qij
Qi

ð19Þ

MSLE ¼ 1

N

XN
i¼1

ðlnQi � lnQ̂iÞ2 ð20Þ

gi ¼
1; Li �Qi �Ui

0; otherwise

�
ð21Þ

POC ¼ 1

N

XN
i¼1

gi

 !
� 100% ð22Þ

AIW ¼ 1

N

XN
i¼1

ðUi � LiÞ
 !

� 100% ð23Þ

where N is the sample length, Qi is the i-th observed runoff,

Q̂i is the i-th simulated runoff, �Q is the mean of observed

runoff series, Ui and Li are the estimated upper and lower

bounds of the i-th sample,

4.2 Models and candidate predictors

Using the training data, AutoCorrelation Function (ACF)

and Partial AutoCorrelation Function (PACF) were used to

analyze the correlation of streamflow time series. PACF is

a conditional correlation by taking into account the impacts

of some other variables and eliminating their redundancy.

The previous discharge at stations in Beibei, Gaochang,

Pingshan, and Yichang with a lag of 1 to 16 days was taken

as candidate inputs of models. The ACF and PACF

between target streamflow and the antecedent streamflow

are presented in Fig. 6. Taking Beibei as an example, it

shows that the ACF is very high and decreases slowly as

time lag increases, and the PACF absolute value is higher

with lags of one, two, three days, and decreases quickly.

Therefore, streamflow with lags of one, two, three days

were used as predictors. Previous streamflow data at time

steps t-1, t-2 and t-3 were used as predictors for Beibei and

Pingshan. Streamflow data at time steps t-1, t-2, t-3, t-4 and

t-5 were included as predictors for Gaochang and Yichang.

Table 2 lists the stations, models used, input data, and

output in our experiments. Qt�1, Qt�2, Qt�3, Qt�4, Qt�5 are

previous discharge with a lag of 1 to 5 days.

4.3 Daily streamflow forecasting

In the LSTM-HetGP model, the squared exponential kernel

function and tanh activation function are adopted for the

model calibration. Determining the hidden structure

(number of hidden layers and hidden units) is the top pri-

ority of training the LSTM-HetGP model using the semi-

stochastic optimization algorithm. Using the training

dataset, we conducted a number of experiments, by training

the model with one and two hidden layers and 3 to 100

hidden units. To achieve better generalization, cross-vali-

dation was employed in this paper. A compound RMSE,

rather than the simple early stopping method was used as

the objective function in cross-validation. Meanwhile,

dropout is a regularization method that can be used during

training. In the process of feedforward and weight updates,

it probabilistically inactivates the inputs and recursive

connections of LSTM neurons. We used this method to

effectively avoid LSTM overfitting problems and improve

model performance. Figure 7 plots the experiments result

for the case of Yichang streamflow forecasting. The left

chart shows the convergence process on one and two hid-

den layers. An epoch is one forward pass and one backward

pass of all the training examples. After 30 epochs, MSE

values approach stability, one hidden layer is better than

two hidden layers due to smaller MSE. Then the structure

of one hidden layer and 3 to 100 hidden units are tested,

shown in the right chart. MSE gets its minimum when the

number of hidden units is 50, so we determined the

structure of the LSTM-HetGP model with 1 recurrent

hidden layer and 50 hidden units. With the same procedure,

structures and parameters of forecast models for Beibei,

Pingshan, Gaochang and Yichang are optimal.

Figure 8 shows the LSTM-HetGP streamflow forecast-

ing. The yellow line represents the observed value, the

colored dot means predictive mean, the gray band is the

prediction interval with 95% confidence. Figure 8(a) is the

forecasts for Yichang, (b) is for Beibei, (c) is for Gaochang

and (d) is for Pingshan. It can be observed that the pre-

dictive means follow the observed values very well, and

the prediction interval can effectively cover the observa-

tions. Further, in the mainstream and tributaries of the

upper reaches of the Yangtze River, the daily streamflow

forecasts of Pingshan and Yichang are better than Beibei

and Gaochang. For Beibei and Gaochang, the catchment

areas are relatively small, and heavy rain is the main source

of floods. These two characteristics make the seasonal and

annual variations of streamflow greater than Pingshan and

Yichang. As shown in Fig. 8b, c, in the dry season, the

streamflow is very stable and small, while in the rainy

season, the floods in Beibei and Gaochang steeply rise and

fall. It makes forecasting difficult. Therefore, for Beibei

and Gaochang, using more meteorological predictors

improves the accuracy of the forecast.

Moreover, it can be observed that the width of the

prediction interval varies with the predictive mean. For

small streamflow value, the corresponding 95% confidence

interval is narrower, and vice versa. The varying prediction

interval based on the heteroskedastic Gaussian process

regression has a good practical value.
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Fig. 6 ACF and PACF statistics for Beibei, Gaochang, Pingshan and Yichang streamflow

Table 2 Models, input data, and

output used in our experiments
Station Model Inputs Output

Beibei, Pingshan GLM Qt�1, Qt�2, Qt�3 Qt

ANN Qt�1, Qt�2, Qt�3 Qt

LSTM Qt�1, Qt�2, Qt�3 Qt

HetGP Qt�1, Qt�2, Qt�3 Qt

LSTM-HetGP Qt�1, Qt�2, Qt�3 Qt

Gaochang, Yichang GLM Qt�1, Qt�2, Qt�3, Qt�4, Qt�5 Qt

ANN Qt�1, Qt�2, Qt�3, Qt�4, Qt�5 Qt

LSTM Qt�1, Qt�2, Qt�3, Qt�4, Qt�5 Qt

HetGP Qt�1, Qt�2, Qt�3, Qt�4, Qt�5 Qt

LSTM-HetGP Qt�1, Qt�2, Qt�3, Qt�4, Qt�5 Qt
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4.4 Prediction interval analysis

The proposed method gives a variable prediction interval

by combining the heteroscedastic Gaussian process

regression algorithm, which greatly expands the reliability

of the forecast. To evaluate LSTM-HetGP in case of

changing mean and variance over time of hydrologic time

series, we adopted the extra segment strategy (described in

the follows) and one-parameter Box-Cox data transforma-

tion (Zhu et al. 2018) to normalize the daily streamflow

time series and combined LSTM with a traditional

homoscedastic Gaussian process regression (HomGP).

Fig. 7 MSE versus epoch number for one to two hidden layer and the number of hidden units per layer

Fig. 8 LSTM-HetGP streamflow forecasting value and observed value; the yellow line represents the observed value, the colored dot means

predictive mean, the gray band is the prediction interval with 95% confidence
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Here we take Yichang as an example to investigate their

different predictive uncertainty.

For segment strategy, we divided a year into four peri-

ods (March to May, June to September, October to

November, December to next year February), and in each

segment, daily streamflow series has a normal distribution.

The forecasting range within 95% confidence interval is

presented in Fig. 9. The yellow solid line represents the

true value, the purple dot represents the predicted value,

and the gray band represents the confidence interval. Fig-

ure 9a–d are the daily streamflow prediction interval from

March to May, June to August, September to November,

and December to February of the next year in the testing

period. In Fig. 9a, the time-axis sequentially includes

March-2009, April-2009, May-2009, March-2010, April-

2010, May-2010, total 184 days. The streamflow values on

May 31, 2009, and 1 March 2010 vary greatly and there-

fore produce an abrupt falling of the line chart (time axis

92). The 95% confidence interval in the figure can perfectly

cover the true value of the streamflow, the width of the

forecast interval is constant and symmetrical towards pre-

dicted value. But during the flood season, specific from

June to August in the Yangtze River region, the forecast

interval cannot cover individual extreme floods, shown in

Fig. 9b, it is caused by the constant mean variance of the

GP model in each segment. The high flow events are rel-

atively rare and flow values are very unstable, what lead to

accurate intervals difficult, even though, prediction inter-

vals can still provide much more information than single-

point forecast.

We also used a one-parameter Box-Cox data transfor-

mation to normalize the daily streamflow time series. The

maximum likelihood method is used to estimate conversion

parameters using the training dataset. Then test dataset is

transformed with the estimated parameters (Papachar-

alampous et al. 2018b). Figure 10a plots the entire fore-

casting interval in the testing period. It can be observed that

the forecast interval is asymmetrical and the coverage

width varies, the reason is due to the non-linear transform

of Box-Cox and its inverse. The confidence interval can

perfectly cover the real value, even the extreme flood

event, but there is still a disadvantage that the confidence

interval at a low flow period has a risk of nearly missing the

true runoff for the same reason, as shown in Fig. 10b. It

plots the forecasting interval at the low flow period (2009/

11/15 to 2010/4/15), the interval fails to cover the true

value, especially near 2010/2/15.

Fig. 9 Daily streamflow forecast interval using segment strategy (the yellow solid line represents the true value, the purple dot represents the

predicted value, and the gray block represents the forecast interval)
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The performance of methods of constructing variable

prediction interval is evaluated with the POC and the AIW.

Better probabilistic forecasts are detected with a higher

POC and a lower AIW. The POC and AIW values of

HetGP, HomGP with segment strategy and HomGP with

Box-Cox transformation are shown in Table 3. POC and

AIW of LSTM-HetGP are 0.94 and 5615 m3=s, respec-

tively. The POC of LSTM-HetGP is comparable to that of

Box-Cox transformation, and AIW is much lower than

segment strategy and Box-Cox transformation. Therefore,

aggregating LSTM with HetGP for streamflow interval

forecasts is convenient and useful.

4.5 Comparison study

Figure 11 shows the streamflow forecasting error statistics

of LSTM-HetGP, ensemble ANN, HetGP, GLM and reg-

ular LSTM with a radar chart. Each row of graphs

sequentially represents the error statistics for Beibei,

Gaochang, Pingshan and Yichang. Each column sequen-

tially represents the values of RMSE, MRE, MSLE, NSE

and POC. ANN and GLM are benchmark models for see-

ing the improvement of the proposed model over the tra-

ditional model. HetGP and LSTM are developed to

investigate the real benefit of the hybrid model. The

ensemble technique is adopted for probabilistic ANN

forecasting Yuan et al. (2018b). HetGP is within the

Bayesian framework and has probabilistic property. GLM

is specified by univariate independent response variables

and the canonical link function. The confidence interval is

derived based on the asymptotic variance of the maximum

likelihood estimate. Therefore, LSTM-HetGP, ensemble

ANN, HetGP, GLM can provide prediction interval and

regular LSTM has only point forecast. The statistical

indicators RMSE, MRE, NSE, MSLE are used to evaluate

point forecasting and POC is used to evaluate interval

forecasting. A model shows satisfying results with low

RMSE, MRE, MSLE values, and high NSE and POC

values. For Beibei, RMSE, MRE, MSLE values of LSTM-

HetGP are lowest and NSE value is highest in all devel-

oped models. POC of LSTM-HetGP is as high as that of

HetGP. Therefore, the prediction accuracy of LSTM-

HetGP is better than other models, and the prediction

interval is comparable to HetGP. For Gaochang, Pingshan

and Yichang streamflow forecasting, MRE, NSE, MSLE

values are much better than LSTM, ANN, GLM and

HetGP. The accuracy of LSTM-HetGP is demonstrated

well. Moreover, it is more valuable than LSTM because it

has a reliable prediction interval. Tyralis and Koutsoyian-

nis (2014) and Tyralis and Koutsoyiannis (2011) proved

that predictive uncertainties are higher when the degree of

modeled autocorrelation increases. Special LSTM structure

brings in the advantages of solving the gradient explosion

problem as well as decreasing uncertainties by reducing

long-term sequence dependence. The aggregation of the

GP model provides LSTM-HetGP additional interval

information. Results indicate that the performance of

LSTM-HetGP is satisfying, it improves the accuracy of

simple benchmark models due to the advanced LSTM

structure and also maintains the superior prediction interval

of GPR.

Fig. 10 Daily streamflow forecast interval using Box-Cox transformation (the yellow solid line represents the true value, the red dot represents

the predicted value, and the gray block represents the forecast interval)

Table 3 The performance of constructing prediction interval by using

HetGP, HomGP with segment strategy and HomGP with Box-Cox

transformation

Method POC AIW (m3=s)

HetGP 0.94 5615

HomGP with segment strategy 0.86 6686

HomGP with Box-Cox transformation 0.95 7159
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4.6 High flow forecasting

High flow forecasting is a difficult issue in streamflow

forecasting due to complex uncertainty and randomness.

Previous analysis on streamflow series shows that maxi-

mum daily streamflow occurs mainly in July, August, and

September. To further evaluate the performance of the

proposed model during high flow seasons, here we

extracted forecasting error series (July 15 to September 15,

2009; July 15 to September 15, 2010), the boxplots of

forecast errors produced by LSTM-HetGP, ensemble ANN,

HetGP, GLM and regular LSTM are illustrated in Fig. 12.

Figure 12(a) is for Yichang, (b) is for Beibei, (c) is for

Gaochang and (d) is for Pingshan. The green block repre-

sents 0.25 and 0.75 quantiles of the error distribution.

Black dots represent the error extremes. Figure 12 shows

Fig. 11 Streamflow forecast error using LSTM-HetGP, ANN, HetGP, GLM and regular LSTM, error indicators include RMSE (m3=s), MRE,

MSLE, NSE, and POC
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that, generally, the ranges of forecast errors of LSTM-

HetGP are narrower than the others, the forecast errors of

ANN is the most decentralized. In Fig. 12a, d, the error

ranges of 0.25 and 0.75 quantiles produced by LSTM-

HetGP are similar to other models, but extreme errors

produced by LSTM-HetGP is fewer. From the above

analysis, the performance of LSTM-HetGP for high flow is

accepted for the cases in the upper Yangtze River.

4.7 Discussion

A comparison of LSTM-HetGP and ANN, HetGP, GLM,

regular LSTM streamflow forecasts were provided in the

above analysis. Compared with the traditional ANN mod-

els, the stochastic models and the linear models, the results

show that the deep learning models demonstrate excellent

streamflow prediction ability. This attribute makes deep

learning have great potential in hydrological prediction and

analysis. The hydrological process is featured with great

randomness and uncertainty. The LSTM-HetGP model

proposed in this paper combines the advantages of deep

learning and traditional stochastic models, has a fairly high

prediction accuracy, and also provides a reliable prediction

interval. Additionally, results indicate that using multiple

metrics to assess forecast performance is important. Rely-

ing on a single metric for evaluating forecast performance

can lead to sub-optimal conclusions. For example, if one

considers the RMSE metric alone, the LSTM model yields

the almost best performance. Note that the RMSE penalizes

variance as it gives errors with larger absolute values more

weight than errors with smaller absolute values (Chai and

Draxler 2014), it reflects the prediction accuracy of high

flow. While the performance metrics based on the RMSE,

MRE, NSE, and MSLE comprehensively reflect a combi-

nation of reliability, sharpness, and bias characteristics of

the forecasts. The computation time metric needed to

optimize the model is not considered here, but it is espe-

cially significant for the case that multiple time series

should be forecasted (Papacharalampous et al. 2018c).

These findings highlight the value of multiple independent

performance metrics (Clark et al. 2012). When demon-

strating an operational forecast model for locations with

streamflow regimes diverse and variable, it is essential to

thoroughly evaluate multiple modeling methods over

multiple locations to ensure the findings are sufficiently

robust and general (Charles et al. 2018). We considered the

mainstream and tributaries of the Yangtze River in this

study. This set-up yields valuable insights into spatial

Fig. 12 The boxplots of forecast errors produced by LSTM-HetGP, ANN, HetGP, GLM and regular LSTM
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patterns in the forecast performance of the proposed model.

It is found that streamflow forecasting models perform

relatively well in catchments in the Jinsha River, and rel-

atively worse in Min River and Jialing River. The evalu-

ation over a larger number of catchments in different

hydro-climatic regions is clearly beneficial to establish the

robustness of streamflow forecasting methods. Papachar-

alampous et al. (2018a) and Papacharalampous et al.

(2019) conducted larger scale studies, using thousands of

time series, multistep ahead forecasting and numerous

statistical and machine learning models. Therefore, with

sufficient data support, systematic experiments in different

hydro-climatic regions in the Yangtze River Basin could be

investigated in the future. The results clearly show that

LSTM-HetGP improves forecast precision while main-

taining forecast accuracy and reliability. This improvement

in forecast quality offers an opportunity to improve oper-

ational planning and management of water resources,

which requires an understanding of the current and future

availability of water. There are several opportunities to

further improve the daily streamflow forecasting model. In

this study, the parameters are estimated using a training

data set of five years, and hence could be subject to the

overfitting problem. To achieve better generalization,

cross-validation was employed in this paper. A compound

RMSE, rather than the simple early stopping method was

used as the objective function in cross-validation. Mean-

while, the dropout regularization method was used during

training. The impact of default values of the hyperparam-

eters on the case studies needs more attention. As many

sites of potential application may lack the data length

available in this work, the sensitivity of forecast perfor-

mance to the length of the calibration period warrants

further investigation. The use of ‘‘pre-trained LSTM’’ is a

promising way to reduce the large data-demand for an

individual basin.

5 Conclusion

Daily streamflow forecasting plays an extremely important

role in the optimal management of water resources, par-

ticularly for operational hydrology purposes. Long short-

term memory (LSTM) streamflow forecast model has

received a lot of attention in recent years due to its pow-

erful non-linear simulation ability. But the probabilistic

streamflow forecasting based on LSTM is still insufficient

as large scale ensemble technique based on resampling is

difficult to implement. This paper proposed a more direct

and reliable probabilistic streamflow forecast model LSTM

by coupling Gaussian process regression (GPR) to the

internal structure of LSTM. Importantly, considering that

changing mean and variance over time exist in the daily

streamflow time series, and the distribution of streamflow

tends to be skewed, the heteroscedastic GPR (HetGP) was

adopted to produce a varying predictive streamflow inter-

val. As HetGP acted as an internal unit of the LSTM net-

work, the proposed models would maintain the advanced

prediction ability of deep learning and provide a direct

confidence interval of prediction. It enriches the informa-

tion content of streamflow prediction and makes the daily

streamflow prediction result more meaningful.

The performance of the LSTM-HetGP model was

demonstrated by studying the daily streamflow forecasting

in the mainstream and tributaries of the upper Yangtze

River; Beibei, Gaochang, Pingshan, and Yichang. Pingshan

is located in the outlet of the Jinsha River, which has a high

altitude and dry climate. Snow is the main supplement of

streamflow. In addition to the Jinsha River in the upper

reaches of the Yangtze River, heavy rains frequently

occurred in the rest of the areas. Heavy rains are the main

supply of runoff in the Jialing River and the Min River.

The proposed model is compared with ensemble ANN,

HetGP, GLM, and regular LSTM.

The main findings are as follows:

1. The streamflow forecasting results of the Pingshan are

the best among the four selected stations. The forecast

results of Gaochang and Beibei are relatively poor. The

analysis is that the floods caused by heavy rains in

Beibei and Gaochang steeply rise and fall, it makes

forecasting difficult. Using more meteorological pre-

dictors can improve the accuracy of the forecast.

2. The statistical indicators for deterministic streamflow

forecasting and associated prediction interval estima-

tion were used to evaluate the performance of LSTM-

HetGP, ensemble ANN, HetGP, GLM for comparison.

For the streamflow forecasting in the upper Yangtze

River, it was found that the performance of LSTM-

HetGP is satisfying, it improves the accuracy of simple

benchmark models due to the advanced LSTM struc-

ture and also maintains the superior prediction interval

of GPR. High flow forecasting is a difficult issue in

streamflow forecasting due to complex uncertainty and

randomness. The performance of LSTM-HetGP is also

accepted for the high flow forecasting in the upper

Yangtze River.

3. The important advantage of the proposed LSTM-

HetGP lies in the adaptive prediction interval, which is

greatly significant for water resources decision making.

To demonstrate the benefit of the HetGP for construct-

ing interval range, traditional segment strategy, and

Box-Cox data transformation were also studied. POC

and AIW analysis show that aggregating LSTM with

HetGP for streamflow interval forecasts is convenient

and useful.
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LSTM will always strongly rely on the available data for

calibration. For the usage within a single basin with limited

data, the selection of a training data set is crucial for LSTM

or any other data-driven model. Reliance on just one split

sample of the training set may not yield a parameter set

with good generalization capability. To achieve better

generalization, cross-validation and dropout regularization

were used during the training period to effectively avoid

overfitting problems and improve model performance.

However, there are still limitations to this study. The

computation time needed to optimize the model could be

considered. The impact of default values of the hyperpa-

rameters on the case studies also needs more attention. The

forecasting approaches developed in this work can support

improved water management in the drainage system con-

sidered. It becomes possible to produce streamflow fore-

casts with high reliability and reduced bias, and provide

useful probabilistic streamflow in the next day.

Acknowledgements This work is supported by the National Natural

Science Foundation of China (51809242), the Fundamental Research

Funds for the Central Universities, China University of Geosciences

(Wuhan) (G1323541875, G1323519436)

Compliance with ethical standards

Conflict of interest The authors declare that they have no conflict of

interest.

References

Akram M, El C (2016) Sequence to sequence weather forecasting

with long short-term memory recurrent neural networks. Int J

Comput Appl 143(11):7–11

Al-Shedivat M, Wilson AG, Saatchi Y, Hu Z, Xing EP (2016)

Learning scalable deep kernels with recurrent structure. arXiv

preprint arXiv:161008936

Binois M, Gramacy RB, Ludkovski M (2018) Practical heteroscedas-

tic gaussian process modeling for large simulation experiments.

J Comput Graph Stat 27(4):808–821

Chai T, Draxler RR (2014) Root mean square error (RMSE) or mean

absolute error (MAE)? Arguments against avoiding rmse in the

literature. Geosci Model Dev 7(3):1247–1250

Charles SP, Wang QJ, Ahmad MUD, Hashmi D, Schepen A, Podger

G, Robertson DE (2018) Seasonal streamflow forecasting in the

upper indus basin of pakistan: an assessment of methods. Hydrol

Earth Syst Sci 22(6):3533–3549

Chen L, Singh VP, Guo S, Zhou J, Zhang J (2015) Copula-based

method for multisite monthly and daily streamflow simulation.

J Hydrol 528:369–384

Chollet F et al (2015) Keras

Clark MP, Kavetski D, Fenicia F (2012) Reply to comment by K.

J. Beven et al. on pursuing the method of multiple working

hypotheses for hydrological modeling. Water Resour Res

48(11):802–808

De Vos NJ, Rientjes THM (2008) Multiobjective training of artificial

neural networks for rainfall runoff modeling. Water Resour Res

44(8):134–143

El-Shafie A, Alsulami HM, Jahanbani H, Najah A (2013) Multi-lead

ahead prediction model of reference evapotranspiration utilizing

ann with ensemble procedure. Stoch Environ Res Risk Assess

27(6):1423–1440

Elman JL (1990) Finding structure in time. Cogn Sci 14(2):179–211

Fu W, Wang K, Li C, Tan J (2019a) Multi-step short-term wind speed

forecasting approach based on multi-scale dominant ingredient

chaotic analysis, improved hybrid GWO-SCA optimization and

ELM. Energy Convers Manag 187:356–377

Fu W, Wang K, Zhang C, Tan J (2019b) A hybrid approach for

measuring the vibrational trend of hydroelectric unit with

enhanced multi-scale chaotic series analysis and optimized least

squares support vector machine. Trans Inst Meas Control

41(15):4436–4449

Gers FA, Schmidhuber JA, Cummins FA (2002) Learning to forget:

continual prediction with LSTM. In: Artificial neural networks,

1999. ICANN 99. Ninth international conference on, p 2451

Gibbs MN (1998) Bayesian gaussian processes for regression and

classification. Ph.D. thesis, Citeseer

Gruet MA, Chandorkar M, Sicard A, Camporeale E (2018) Multiple-

hour-ahead forecast of the dst index using a combination of long

short-term memory neural network and gaussian process. Space

Weather 16(11):1882–1896

Gupta HV, Kling H, Yilmaz KK, Martinez GF (2009) Decomposition

of the mean squared error and nse performance criteria:

implications for improving hydrological modelling. J Hydrol

377(1):80–91

Guttag J (2016) Introduction to computation and programming using

python: with application to understanding data. MIT Press,

Cambridge

Hochreiter S, Schmidhuber J (1997) Long short-term memory. Neural

Comput 9(8):1735–1780

Hogue TS, Sorooshian S, Gupta H, Holz A, Braatz D (2000) A

multistep automatic calibration scheme for river forecasting

models. J Hydrometeorol 1(6):524–542

Ishak S, Kotha P, Alecsandru C, Student G (2003) Optimization of

dynamic neural network performance for short-term traffic

prediction. Transp Res Rec 1836(1):27–31

Karimi S, Shiri J, Kisi O, Xu T (2018) Forecasting daily streamflow

values: assessing heuristic models. Hydrol Res 49(3):658–669

Kersting K, Plagemann C, Pfaff P, Burgard W (2007) Most likely

heteroscedastic gaussian process regression. In: Proceedings of

the 24th international conference on Machine learning, ACM,

pp 393–400

Kisi O, Cimen M (2011) A wavelet-support vector machine

conjunction model for monthly streamflow forecasting. J Hydrol

399(1):132–140

Kratzert F, Klotz D, Brenner C, Schulz K, Herrnegger M (2018)

Rainfall-runoff modelling using long short-term memory

(LSTM) networks. Hydrol Earth Syst Sci 22(11):6005–6022

Lázaro-Gredilla M, Titsias MK (2011) Variational heteroscedastic

gaussian process regression. In: ICML, pp 841–848

Lei Y, Zhou J, Zeng X, Guo J, Zhang X (2014) Multi-objective

optimization for construction of prediction interval of hydrolog-

ical models based on ensemble simulations. J Hydrol

519:925–933

Lu X, Wang X, Zhang L, Zhang T, Yang C, Song X, Yang Q (2018)

Improving forecasting accuracy of river flow using gene

expression programming based on wavelet decomposition and

de-noising. Hydrol Res 49(3):711–723

Moradkhani H (2015) Statistical-dynamical drought forecast within

bayesian networks and data assimilation: how to quantify

drought recovery. In: EGU general assembly conference

abstracts, vol 17

Stochastic Environmental Research and Risk Assessment

123

Author's personal copy

http://arxiv.org/abs/161008936


Papacharalampous G, Tyralis H, Koutsoyiannis D (2018a) One-step

ahead forecasting of geophysical processes within a purely

statistical framework. Geosci Lett 5(1):12

Papacharalampous G, Tyralis H, Koutsoyiannis D (2018b) Pre-

dictability of monthly temperature and precipitation using

automatic time series forecasting methods. Acta Geophys

66(4):807–831

Papacharalampous G, Tyralis H, Koutsoyiannis D (2018c) Univariate

time series forecasting of temperature and precipitation with a

focus on machine learning algorithms: a multiple-case study

from greece. Water Resour Manag 32(15):5207–5239

Papacharalampous G, Tyralis H, Koutsoyiannis D (2019) Comparison

of stochastic and machine learning methods for multi-step ahead

forecasting of hydrological processes. Stoch Environ Res Risk

Assess 33(2):1–34

Rasmussen CE (2003) Gaussian processes in machine learning. In:

Summer school on machine learning, Springer, Berlin, pp 63–71

Rasmussen CE (2004) Gaussian processes in machine learning. In:

Advanced lectures on machine learning, Springer, Berlin,

pp 63–71

Shen C (2018) A transdisciplinary review of deep learning research

and its relevance for water resources scientists. Water Resour

Res 54(11):8558–8593

Shen C, Laloy E, Elshorbagy A, Albert A, Bales J, Chang FJ, Ganguly

S, Hsu KL, Kifer D, Fang Z, Fang K, Li D, Li X, Tsai WP (2018)

Hess opinions: incubating deep-learning-powered hydrologic

science advancesas a community. Hydrol Earth Syst Sci

22(11):5639–5656

Siqueira H, Boccato L, Luna I, Attux R, Lyra C (2018) Performance

analysis of unorganized machines in streamflow forecasting of

brazilian plants. Appl Soft Comput 68:494–506

Sun AY, Wang D, Xu X (2014) Monthly streamflow forecasting using

gaussian process regression. J Hydrol 511:72–81

Tolvanen V, Jylänki P, Vehtari A (2014) Expectation propagation for

nonstationary heteroscedastic gaussian process regression. In:

Machine learning for signal processing (MLSP), 2014 IEEE

international workshop on, IEEE, pp 1–6

Tyralis H, Koutsoyiannis D (2011) Simultaneous estimation of the

parameters of the Hurst–Kolmogorov stochastic process. Stoch

Environ Res Risk Assess 25(1):21–33

Tyralis H, Koutsoyiannis D (2014) A bayesian statistical model for

deriving the predictive distribution of hydroclimatic variables.

Clim Dyn 42(11–12):2867–2883

Wang W, Jin J, Li Y (2009) Prediction of inflow at three gorges dam

in Yangtze River with wavelet network model. Water Resour

Manag 23(13):2791–2803

Wilson AG, Hu Z, Salakhutdinov R, Xing EP (2016) Deep kernel

learning. In: Artificial intelligence and statistics, pp 370–378

Wu W, Chen K, Qiao Y, Lu Z (2016) Probabilistic short-term wind

power forecasting based on deep neural networks. In: 2016

International conference on probabilistic methods applied to

power systems (PMAPS), IEEE, pp 1–8

Yaseen ZM, Sulaiman SO, Deo RC, Chau KW (2019) An enhanced

extreme learning machine model for river flow forecasting: state-

of-the-art, practical applications in water resource engineering

area and future research direction. J Hydrol 569:387–408

Yuan X, Abouelenien M (2015) A multi-class boosting method for

learning from imbalanced data. Int J Granul Comput Rough Sets

Intell Syst 4(1):13

Yuan X, Sarma V (2010) Automatic urban water-body detection and

segmentation from sparse alsm data via spatially constrained

model-driven clustering. IEEE Geosci Remote Sens Lett

8(1):73–77

Yuan X, Chen C, Lei X, Yuan Y, Adnan RM (2018a) Monthly runoff

forecasting based on lstm-alo model. Stoch Environ Res Risk

Assess 32(8):2199–2212

Yuan X, Xie L, Abouelenien M (2018b) A regularized ensemble

framework of deep learning for cancer detection from multi-

class, imbalanced training data. Pattern Recognit 77:160–172

Zhang J, Zhu Y, Zhang X, Ye M, Yang J (2018) Developing a long

short-term memory (LSTM) based model for predicting water

table depth in agricultural areas. J Hydrol 561:918–929

Zhang J, Yan J, Infield D, Liu Y, Lien F (2019) Short-term forecasting

and uncertainty analysis of wind turbine power based on long

short-term memory network and Gaussian mixture model. Appl

Energy 241:229–244

Zhu S, Luo X, Xu Z, Ye L (2018) Seasonal streamflow forecasts using

mixture-kernel GPR and advanced methods of input variable

selection. Hydrol Res 50(1):200–214

Publisher’s Note Springer Nature remains neutral with regard to

jurisdictional claims in published maps and institutional affiliations.

Stochastic Environmental Research and Risk Assessment

123

Author's personal copy




