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A B S T R A C T

Superpixel provides a coherent division of an image that respects the integrity of objects and has been used in
Polarimetric Synthetic Aperture Radar (PolSAR) image analysis. The generation of superpixels is sensitive to
noise and cluttered objects, which is typical in SAR imagery. To address this issue, we proposed a novel
PolSAR Hierarchical Energy Driven (PHED) method to handle PolSAR images. A hierarchical structure is
built and an energy driven hill climbing strategy is employed. In the coarse level superpixel generation,
histogram intersections of coherency matrix are used to divide the image into raw superpixels. In the fine
level superpixel generation, our method evaluates each superpixel using Wishart energy. A boundary term
is included in the pixel-level update to enable boundary choices. Experiments are conducted with UAVSAR,
AIRSAR, and simulated datasets. Our results demonstrate that the proposed PHED outperforms Simple Linear
Iterative Clustering (SLIC), Linear Spectral Clustering (LSC), TurboPixels (TP), and Superpixels Extracted via
Energy-Driven Sampling (SEEDS) in terms of retaining fine boundaries of ground objects and accuracy. The
robustness of PHED is also confirmed.

1. Introduction

Polarimetric Synthetic Aperture Radar (PolSAR) has become a pop-
ular tool to offer a comprehensive understanding of the Earth surface.
However, due to the inner coherent imaging process, PolSAR data
suffers from noise distortion, which limits the performance of further
pixel-based applications such as decomposition and object recogni-
tion (Goodman, 1976; Foucher and Lopez-Martinez, 2014; Lee et al.,
2014). Even though speckle filtering is able to reduce speckles to some
extent. But the influence of speckles still exists in most pixel-based
applications. To address this issue, Superpixel has been adopted in the
process of PolSAR image analysis (Qi et al., 2012; Liu et al., 2013; Feng
et al., 2014; Hou et al., 2016; Zhou et al., 2016; Pan et al., 2019).

Superpixel is a technique that assigns pixels into meaningful groups
(Qin et al., 2015; Yang et al., 2017), it offers a new way to analyze
the imagery. Superpixel generation methods are divided into three cat-
egories: graph-based methods, region growing, and hierarchical edge
refining. A representative method of the graph-based methods is the
Ncuts method (Shi and Malik, 2000). This method considers each pixel
as a node, and the partition is achieved by globally minimizing a
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cost function that measures both the dissimilarity between different
groups as well as the similarity within each group. However, Ncuts is
computationally demanding (Van den Bergh et al., 2015).

The second category is based on region growing such as Water-
sheds (Vincent and Soille, 1991) and Turbopixels (Levinshtein et al.,
2009). A simple and efficient method called Simple Linear Iterative
Clustering (SLIC) was proposed (Achanta et al., 2012), which starts
from a regular grid of centers or segments, and grows the superpixels
by grouping pixels via K-means clustering. This method is easy to
be applied in PolSAR by simply replacing the input channels with
three polarimetric channels from PauliRGB image (Xu et al., 2016).
Alternative distance measures have taken the statistical characteristics
of the image into account. For instance, the revised Wishart distance
was adopted by Qin et al. (2015), which also improved the cluster
center initialization. The pixel intensity ratio was utilized in Xiang
et al. (2013) for clustering, which modified the local similarity to
refine the K-means strategy. Xiang et al. (2017) used polarimetric dis-
tances, textures, and spatial information for the local iterative cluster-
ing. This method is able to determine the trade-off automatically with
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Fig. 1. The flowchart of proposed PHED.

Fig. 2. The construction of hierarchical structure of PHED. The four rectangles,
from left to right, are initial superpixels, second level, third level, and lowest level,
respectively.

heterogeneity. However, SLIC adopts K-means as the clustering algo-
rithm, which is a lack of stability and dependent on initialization.

The third category is the hierarchical edge refining. Superpixels
Extracted via Energy-Driven Sampling (SEEDS) constructs a hierar-
chical structure to represent an image (Van den Bergh et al., 2015;
Stutz et al., 2018). This method adjusts boundary blocks or pixels
based on an energy function following a hill-climbing strategy. SEEDS
exhibited superior performance in comparison to the state-of-the-art
methods (Van den Bergh et al., 2015). It is straightforward to apply
SEEDS with PauliRGB images to obtain superpixels in PolSAR. How-
ever, SEEDS adopts histogram intersection to calculate the energy,
which is not a good choice in pixel-level for PolSAR data due to the
presence of speckles. Besides, SEEDS using PauliRGB includes only
partially discrete information, which is a partial representation of the
PolSAR data.

This paper proposes a novel Polarimetric Hierarchical Energy Driven
(PHED) superpixel generation method. A hierarchical structure is built
based on the desired number of superpixels. The structure is divided
into two parts: the block-level and the pixel-level. For the block-
level part, histogram intersection is adopted to adjust the boundary to
form a preliminary skeleton segmentation. For each level, assign the
boundary sub-level blocks due to the energy maximization, and go to
the lower level iteration until the job is complete. At the pixel-level,
all the boundary pixels are evaluated as edge refining candidates via a
Wishart energy metric combined with boundary term to take both the
polarimetric and the spatial information into accounts.

The remainder of this paper is organized as follows. Section 2 gives
the background and description of the proposed method in detail.
Section 3 discusses our experimental results using simulated and real
PolSAR imagery. Section 4 concludes this paper with a summary.

2. PolSAR Hierarchical Energy Driven method

For a reciprocal object illuminated by a monostatic, fully polari-
metric SAR system, the polarimetric scattering information is described
with a 2 × 2 complex scattering matrix 𝑺 (Lee and Pottier, 2009):

𝑺 =
[

𝑺𝐻𝐻 𝑺𝐻𝑉
𝑺𝐻𝑉 𝑺𝑉 𝑉

]

, (1)

where each element denotes a complex scattering coefficient. Sub-
scripts 𝐻 and 𝑉 denote the horizontal and vertical polarization di-
rections, respectively. In this case, the scattering matrix is symmetric
and can be mapped to a 3-D single-look scattering vector based on the
complex Pauli spin matrix basis set:

𝒌 = 1
√

2
[𝑺𝐻𝐻 + 𝑺𝑉 𝑉 𝑺𝐻𝐻 − 𝑺𝑉 𝑉 2𝑺𝐻𝑉 ]𝑇 . (2)

For multi-look PolSAR data, the polarimetric information is further
represented by an average coherence matrix as follows, which is called
Sample Covariance Matrix estimation (SCM):

𝑇 = 1
𝐿

𝐿
∑

𝑖=1
𝒌𝑖𝒌𝐻𝑖 , (3)

where 𝒌𝐻𝑖 is the conjugate transpose of 𝒌𝑖, and 𝐿 is the number of looks.
The main problem exists in the PolSAR data is the severe influence

caused by speckle noises. By grouping homogeneous pixels together
into a local region, superpixel generation offers a promising way to
eliminate the influence of speckles to some extent. However, the cur-
rent superpixels generation methods still face some problems. Fig. 1
illustrates the flowchart of our proposed PHED method, which includes
three steps: a pre-process that suppresses noise, a block-level update
that generates a skeleton segmentation, and a pixel-level update that
produces the superpixels.

2.1. Superpixel generation as an energy maximization

Any superpixel result can be considered as a solution to over-
segment the image. In most superpixel generation methods, the algo-
rithm starts with an initial cut and then modify it through a metric
evaluation. Following this idea, we consider the superpixel segmenta-
tion as an energy maximization problem, which is easy to obtain the
results via the hill-climbing method.

We represent an image partitioning by referring to the set of pixels
in a superpixel, denoted as 𝐴𝑘:

𝐴𝑘 =
{

𝑝1, 𝑝2,… , 𝑝𝑛
}

, (4)

where 𝑝𝑖 represents pixel which belongs to superpixel 𝑘. In this case, the
whole partitioning of an image is represented with a set of superpixels,
denoted with 𝑠, 𝑠 = {𝐴1, 𝐴2,… , 𝐴𝑀}. Due to the fact that a pixel can
only be assigned to a unique superpixel, all sets 𝐴𝑘 are restricted to be
disjoint, and thus, the intersection between any pair of superpixels is
always the empty set.

Each solution can be evaluated by a so-called energy function,
hence, the superpixel task is transformed into finding a solution to
maximize the energy function, i.e.,

𝑠∗ = argmax𝐸(𝑠), (5)

where 𝑠∗ denotes the optimized solution and 𝐸(𝑠) is the energy function
of solution 𝑠.
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Fig. 3. Initialization, block-level, and pixel-level updates.

2.2. Hierarchical structure

To perform optimization effectively, hill-climbing (Russell and Pe-
ter, 2016) is adopted. Hill-climbing is a well-known algorithm that
iteratively updates the solution by proposing small local changes at
each iteration. Once the energy increases, the proposed partitioning is
adopted to replace the current one. The whole optimization is achieved
when all the energies from randomly proposed solution are less than
the current one or meet the maximum iterations.

However, a potential matter is that a locally optimal solution may
be obtained as a local region is used in the traditional hill-climbing
algorithm. To avoid such a problem, a hierarchical structure is in-
corporated, which is also able to enhance efficiency. To build such
hierarchical structure, the PolSAR image is divided into small pieces
to form the lowest level, which is in size of 𝑚 × 𝑛, (𝑚, 𝑛 ∈ {2, 3, 4}).
This level is considered as the smallest blocks level in the hierarchical
structure, then the higher level is built by concatenating lower level
blocks in a 2 × 2 fashion. The largest blocks are concatenated 2 × 2 to
create the initial superpixels, as shown in Fig. 2. The desired number of
superpixels is obtained by choosing the initial block size and number
of block levels accordingly.

With the help of this hierarchical structure, optimization performs
efficiently. It starts with the highest block update, which is a quarter of
the target superpixel size. The algorithm moves to the lower level and
performs the iterations. The lowest level is the pixel level.

Based on the hierarchical structure, the assignments are divided
into two parts: the block-level and pixel-level updates. A diagram
of hierarchical structure based superpixel generation is illustrated in
Fig. 3. Fig. 3(a) depicts the grid initialization of the input image. The
block-level update enables a large amount of pixels assignment during
each iteration, and helps to build a skeleton for the superpixels as
shown in Fig. 3(b). The algorithm keeps going down and performing
updates until the smallest block-level update is done, as depicted in
Fig. 3(c)–(e). The pixel-level update is performed to fit boundaries, as
shown in Fig. 3(f).

2.2.1. Block-level update
The main objective of the block-level update is to form a valid and

close to boundary solution rapidly, which means accuracy is the second
priority comparing to the speed for the block-level. There are two major

concerns regarding the block-update: the input feature extraction and
the corresponding energy function.

For a nine-channel (six real and three imagery parts) polarimetric
coherency matrix, 𝑙 channels (0 < 𝑙 ⩽ 9) are extracted and normalized
as the input of the block-level update. Each channel is scaled as
follows

𝑏𝑛 = 10 log10 𝑻 𝑖, (6)

where 𝑛 denotes the index of the block-level input channels (𝑛 ∈
{1,… , 9}) and 𝑖 denotes the index of polarimetric coherency matrix
channels. It is straightforward that less channels will speed up the
algorithm yet more channels result in fine performance. When 𝑙 is nine,
all the information contained in the PolSAR data are utilized. When 𝑙
is three and 𝑖 = {1, 6, 9}, the input is equivalent to PauliRGB of the
Polarimetric SAR data except that the latter is discrete.

Another issue is to determine the energy function for the block-level
update. The essence of the energy function is to score the current solu-
tion, which means it should be able to represent all the pixels included
in the selected blocks and be sensitive to smaller block movements. We
denote the energy function in the block-level update as

𝐸(𝑠) = 𝐻(𝑠), (7)

where 𝐻(𝑠) denotes the similarity between two blocks. A simple and
efficient approach is histogram intersection, denoted as H:

H(𝑐𝐴𝑎
, 𝑐𝐴𝑏

) =
∑

𝑗
min{𝑐𝐴𝑎

(𝑗), 𝑐𝐴𝑏
(𝑗)}, (8)

where 𝑐(⋅) denotes the histogram of a group of pixels.
Given the similarity measure, it is easy to evaluate the current

assignment by validating if 𝐻(𝑠)+𝜏 > 𝐻(𝑠𝑡). The 𝜏 is tolerance to reduce
the influence of speckles. We have

H(𝑐𝐴𝑎
, 𝑐𝐴𝑙

𝑏
) ⩾ H(𝑐𝐴𝑏

⧵ 𝑐𝐴𝑙
𝑏
, 𝑐𝐴𝑙

𝑏
) ⇔ 𝐻(𝑠) + 𝜏 ⩾ 𝐻(𝑠𝑡), (9)

where 𝐴𝑙
𝑏 is the set of pixels that are candidates to be assigned from

the superpixel 𝐴𝑏 to 𝐴𝑎.
During each iteration, a boundary block is picked as candidate 𝐴𝑙

𝑏,
and the energy is calculated. We search the adjacent superpixels of the
block candidate to find a potential solution. For each new solution, the
energy is calculated and compared with the current one. If the energy
increases, the proposed solution replaces the current one. A tolerance
is added to the energy to reduce errors caused by speckle noises.
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Fig. 4. Simulated PolSAR data #1. (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)

2.2.2. Pixel-level update
After block-level update, only boundary pixel movements are re-

quired from the block-level result. The energy function used in pixel-
level update is as follows:

𝐸(𝑠) = (1 − 𝛾)𝐸𝑊 (𝑠) + 𝛾𝐸𝐵(𝑠), (10)

where 𝐸𝑊 (𝑠) represents the polarimetric term and 𝐸𝐵(𝑠) denotes the
boundary term, 𝛾 is weight parameter. The range of 𝐸𝐵(𝑠) and 𝐸𝑊 (𝑠)
is [0, 1].

The boundary term 𝐸𝐵 evaluates the shape of a superpixel, which
penalizes local irregularity. It can be replaced with other metrics to fa-
vor either compactness or other specific shapes. We denote the bound-
ary term as follows:

𝐸𝐵 =

√

(𝑑𝑥2 + 𝑑𝑦2)

𝑁𝐵
. (11)

Note that 𝑑𝑥 and 𝑑𝑦 are the horizontal and vertical distances be-
tween a superpixel and the candidate pixel, respectively. 𝑁𝐵 is the
normalization term used to scale the boundary term to the range of
[0, 1].

The choices of 𝐸𝑊 is plentiful, any metric that reflects the similarity
between two coherency matrices is feasible, for instance, the polarimet-
ric similarity parameter (An et al., 2009) and polarimetric distribution
distances (Lee and Pottier, 2009). We adopt a metric derived from
symmetric revised Wishart distance 𝐷𝑆𝑅𝑊 (Anfinsen et al., 2007):

𝐷𝑆𝑅𝑊 = 1
2
(𝑇 𝑟(𝑻̄ −1

𝑗 𝑻̄ 𝑖) + 𝑇 𝑟(𝑻̄ −1
𝑖 𝑻̄ 𝑗 )) − 𝑑. (12)

Note that 𝑇𝑖 and 𝑇𝑗 are two coherency/covariance matrices, 𝑑 is the
dimension of coherency matrix, i.e., 3 for monostatic case and 4 for
bistatic case. This non-negative distance equals to 0 when 𝑇𝑖 and 𝑇𝑗
are identical. Higher value of 𝐷𝑆𝑅𝑊 indicates less similarity between
𝑇𝑖 and 𝑇𝑗 . Hence, the polarimetric similarity term is computed as
follows:

𝐸𝑊 =
arctan(𝐷𝑆𝑅𝑊 )

𝜋∕2
. (13)

2.3. Post-processing

Due to the mechanism of the hierarchical structure, the numbers of
superpixels remains the same after the pixel-level update. This fact may
cause some problems, for instance, very small superpixels. To avoid
such problems, our method includes an additional reassignment of
small superpixels. The idea is to identify the superpixels that are smaller
than a given threshold and calculate the energy between these small

superpixels and their adjacent superpixels. The merge of superpixels
is performed to the ones with the highest energy. The threshold is
calculated as follows:

𝑇ℎ = 𝜆
𝑁𝑖𝑚𝑎𝑔𝑒

𝑁𝑠𝑝
, (14)

where 𝑁𝑖𝑚𝑎𝑔𝑒 and 𝑁𝑠𝑝 are numbers of image pixels and superpixels,
respectively. 𝜆 is the weight, which is adjustable and set to 0.1 in our
experiments.

3. Experiments and discussion

We use several polarimetric datasets to validate the performance of
the proposed method including UAVSAR, AIRSAR, and two simulated
datasets. Four popular superpixel generation methods, SLIC, LSC(Linear
Spectral Clustering) (Li and Chen, 2015), TP(TurboPixels) (Levinshtein
et al., 2009), and SEEDS are used for comparison. All data used in
this section are pre-processed via ACoME(Adaptive Coherency Matrix
Estimation) to suppress speckles (Yang et al., 2016).

To evaluate the results quantitatively, we adopt two metrics com-
monly used for evaluating the quality of superpixels. We use 𝑔 =
{𝑔1, 𝑔2,… , 𝑔𝑖} to denote a ground truth segmentation with 𝑖 segments,
𝑠 = {𝑠1, 𝑠2,… , 𝑠𝑗} to represent corresponding superpixels with 𝑗 seg-
ments, and | ⋅ | denotes the segment size.

The first metric is Achievable Segmentation Accuracy (ASA), which
is a performance upper bound measure. ASA offers an achievable high-
est accuracy when taking superpixels as units for object segmentation.
All the superpixels are labeled with the label of ground truth segment
that has the largest overlap. The fraction of correctly labeled pixels out
of the whole image is the computed ASA, as shown in Eq. (15). A higher
ASA indicates better performance.

𝐴𝑆𝐴(𝑠) =
∑

𝑗 max𝑖 |𝑠𝑗 ∩ 𝑔𝑖|
∑

𝑖 |𝑔𝑖|
. (15)

In addition to accuracy, the adherence of boundaries is also a valu-
able way to evaluate the results quantitatively. The Boundary Recall
(BR) is formulated as

𝐵𝑅(𝑠) =

∑

𝑝∈B𝑔
I[(min𝑞∈B𝑠

‖𝑝 − 𝑞‖) < 𝜖]

|B𝑔|
, (16)

where B𝑔 and B𝑠 are union sets of ground truth boundaries and the
computed superpixels boundaries, respectively. The indicator function
I[⋅] checks if a boundary pixel of superpixel is within a tolerance
distance, 𝜖, of the ground truth boundaries. Higher BR indicates better
boundary adherence.

Besides quantitative metrics, we also use the boundary map and
mean image map to evaluate the superpixel generation qualitatively.
Boundary map is to mark boundaries of superpixels in red color based
on original PauliRGB data, which is an intuitive way to show the
results. The mean image map is calculated based on the averaged color
of each superpixel of PauliRGB data. All superpixels are colored with
averaged colors instead of original ones. Hence the difference between
PauliRGB data and mean image can be used to evaluate the quality of
superpixel intuitively.

3.1. Evaluation of wishart energy

We simulated a PolSAR data (note as simulated data #1) of a size
of 515 × 728 (Lee et al., 1994). The image consists of four types
of ground objects: pond (black), vegetation (dark green), forest (light
green), and buildings (white), as shown in Fig. 4(a). The pond is
simulated with Wishart distribution, while the others are simulated
with K distribution. The structure of the simulated data is meticulously
designed to contain different shapes including rectangle, circle, thin
bar, sawtooth, and ellipse. Hence, it is explicit to evaluate the ability
to preserve boundaries of superpixel generation methods using this
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Fig. 5. Simulated data #2 PauliRGB image and superpixel results of different methods.

Table 1
Wishart energy between pixels and superpixels from different ground categories.

𝑠𝑝1 𝑠𝑝2 𝑠𝑝3 𝑠𝑝4 Diff

𝑝1 0.9474 0.0060 0.0548 0.0704 0.8770
𝑝2 0.0051 0.9655 0.0006 0.0497 0.9158
𝑝3 0.0594 0.0007 0.9276 0.0061 0.8682
𝑝4 0.0661 0.0593 0.0060 0.9677 0.9084

dataset, especially the ability to handle different kinds of shapes of
ground objects.

Recall that high energy implies a high similarity, which shows a
better solution to be updated. We choose 10,000 pixels for each of
the four categories from the simulated data #1 as the superpixels
(𝑠𝑝𝑖, 𝑖 ∈ {1, 2, 3, 4}), and pick one pixel randomly (𝑝𝑗 , 𝑗 ∈ {1, 2, 3, 4})
as the candidate and calculate the Wishart energy. The four categories
represent forests, pond, buildings, and grassland. The Wishart energy
is shown in Table 1, which presents the average of 1000 repetitions.
The term in row 𝑗, column 𝑖 represents the mean energy between 𝑝𝑗
and 𝑠𝑝𝑖, where 𝑖, 𝑗 are the category indices. As shown in this table, only
when 𝑖 = 𝑗, i.e., self-energy, high energy is achieved (in bold font). This
indicates that Wishart energy characterizes the similarity very well.
The difference between the self-energy and the second highest term
(underlined) is significant, which indicates that Wishart energy is able
to differentiate categories with success.

3.2. Evaluation with simulated data

PolSAR data simulation is a good way to evaluate the methods with
known parameters, i.e., the accurate boundary in our case. To better
compare the superpixel generation methods, a simulated dataset #2 of
800 × 800 is generated, which contains more complicated types and

shapes. In general, eight different classes, including road, water body,
grass-land, different types of crops, bushland, forest, and urban areas
are simulated based on real-world data. Waterbody was generated by
the Wishart distribution and the others were by the K distribution, as
shown in Fig. 5(a).

Fig. 5(b)–(f) list the superpixel results of SLIC, LSC, TP, SEEDS,
and PHED. All five methods obtained fine results in general, but the
details still need further investigation. Fig. 6 shows the zoom-in view
comparison. In the first two rows, all the five methods recognize the
black road in the lower-left corner, but only PHED can adhere to
the boundaries of gray crops. The last two rows of Fig. 6 show the
comparison of urban areas, LSC, SEEDS, and PHED obtained the fine
structure of roads, which proves their efficiency of preserving the linear
structure. The blue box in Fig depicts a confusing area consist of two
types of crops, it is clear that only PHED can differentiate these two
types, the other four methods failed in the area due to the lack of
polarimetric information usage.

Due to the serve influence by speckle noise, the threshold of BR
is raised to offer a loose comparison (thresholds are to 3 and 4) in
Table 2. It is obvious that TP, SEEDS, and PHED obtained accuracy
higher than 95%, which shows their advantages in segmentation accu-
racy. However, the boundary recall of TP and SEEDS decrease rapidly
due to the lack of polarimetric information usage. PHED achieved
the best performance in terms of segmentation overlap and boundary
adherence.

3.3. Evaluation with real-world data

The first real-world dataset we used is single look L-band ESAR
data of Oberpfaffenhofen, Germany with a spatial resolution of 1.5 m
× 0.89 m (range × azimuth), as shown in Fig. 7(a), the size of the
image is 800 × 800. The number of superpixels is 1600. Fig. 7(b)–(f)
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Fig. 6. Detailed comparison of Simulated data #2.

Table 2
Quantitative comparison results of the simulated data #2 using different methods.

SLIC LSC TP SEEDS PHED

ASA 93.284% 87.635% 95.111% 96.586% 97.540%
BR3 80.465% 60.095% 86.718% 92.260% 98.929%
BR4 85.689% 70.973% 90.481% 94.434% 99.027%

demonstrate the superpixel results generated via SLIC, LSC, TP, SEEDS,
and PHED. It is clear that all the methods are able to obtain rational
superpixel results, which are close to the boundaries.

Fig. 8 illustrates the zoom-in views of two characteristic targets:
buildings surrounding by grassland and farmland. All five methods are
able to identify the shape of buildings. However, SLIC, LSC, and TP
failed to adhere the boundaries, while SEEDS and PHED obtained fine
results, except the bottom part of SEEDS, as demonstrated in the blue
box in Fig. 8(d). In the second row of Fig. 8. The right pink object is
diffused with the surroundings on the left boundary of the river for
SLIC, LSC, TP, and SEEDS. The most integrate results are obtained by
PHED.

Table 3 lists ASA and BR results of the five methods. For accuracy,
PHED achieves the best performance, which is 3.04%, 8.07%, 3.22%, and
1.15% higher compared with SLIC, LSC, TP, and SEEDS, respectively.
As for the boundary recall, PHED achieves 92.465%, which outperforms
the rest four methods when tolerance is 2, where the LSC only obtains
61.797%. When we set the tolerance factor to 3, the recall is improved.
PHED consistently achieves the best result.

Scattering information is important in PolSAR data representation,
the ESAR experiments reconfirm the efficiency of PHED’s utilization of
scattering information. However, it is valuable to discuss the perfor-
mance of PHED regarding weak contrast condition of scattering char-
acteristics, i.e., using another dataset with similar scattering. Another

Table 3
Quantitative comparison results of ESAR data using different methods.

SLIC LSC TP SEEDS PHED

ASA 86.318% 82.297% 86.168% 87.928% 88.940%
BR2 69.769% 61.797% 67.683% 82.648% 83.515%
BR3 81.583% 75.675% 80.547% 91.340% 92.465%

Table 4
Quantitative comparison results of AIRSAR data using different methods.

SLIC LSC TP SEEDS PHED

ASA 93.548% 89.908% 92.657% 94.572% 95.703%
BR2 79.072% 72.618% 73.659% 88.159% 90.430%
BR3 93.378% 92.136% 93.034% 96.031% 98.290%

experiment is carried out with L-band AIRSAR data over Flevoland,
The Netherlands in August 1989. The size of this data is 380 × 424
pixels with a resolution of 8 m × 8 m (range × azimuth). The number
of superpixels is 1000. The image and corresponding superpixel results
are demonstrated in Fig. 9. The whole image consists of several types
of crops, which means most of the image is dominated by surface
scattering. It is clear that all the methods are able to generate fine
superpixels, which indicates that they are all able to identify the scatter-
ing characteristics with success. Fig. 10 shows a detailed comparison of
five methods. There is a T-shaped dark object in the area, it is obvious
that PHED obtained the most integrate results compared to the rest four
methods.

Table 4 lists the accuracy and boundary recall rate comparison
results. PHED resulted in the highest ASA as well as the highest BR,
which reconfirms the proficiency. The accuracy of the rest shows that
these methods are able to obtain superpixels with fine results, but all
of them are lack of the ability to handle the boundaries with success.
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Fig. 7. ESAR PauliRGB image and superpixel results of different methods.

Fig. 8. Detailed comparison of ESAR data.

3.4. Sensitivity and uncertainty

This section evaluates the proposed method via time efficiency and
sensitivity. Table 5 lists the running time comparison of ESAR data. All
the methods were implemented using C++, and run on a laptop with a
64-bit Windows 10 operating system, a quad-core Intel Core i5 8250U
CPU, 1.60 GHz and 16 GB memory. It is straightforward that LSC is the
fastest method compared to others. TP, SEEDS, and SLIC are the second,
third, and fourth place, respectively. PHED run for 115.67 s with ESAR

data, which is the slowest method in this experiment since it contains
the computation of Wishart energy. However, LSC, TP, and SLIC have
disadvantages regarding boundary adherence and overlap accuracy. At
this point, accuracy is the priority when compares to time efficiency.
SEEDS performs better than PHED in running time. However, SEEDS is
inferior to PHED in superpixel segmentation. PHED achieved the best
performance in two minutes, which is competitive in terms of time
complexity. In addition, computational time can be reduced via parallel
computing.
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Fig. 9. AIRSAR PauliRGB image and superpixel results of different methods.

Fig. 10. Detailed comparison of AIRSAR data.

Table 5
Running time comparison of superpixels.

SLIC LSC TP SEEDS PHED

Mean 93.67 s 4.33 s 25.33 s 54.67 s 115.67 s
Std 5.51 s 1.53 s 2.52 s 2.08 s 1.53 s

As a parameter based method, it is necessary to discuss the influence
of changing parameters on the superpixel generation. In this section,
several important parameters of PHED, including the desired number
of superpixels, the boundary factor 𝛾, and the minimum confidence 𝜏
used for block updates based on simulated PolSAR data #1.

Additional to Fig. 4, We modified the numbers of superpixels for
all three methods to figure out the robustness. Recall that 1000 was

adopted for the simulated data. We set numbers of superpixels as
100, 50, and 20, which are extremely low choices, and repeat this
experiment. The results are shown in Fig. 11. The SLIC failed to retain
boundaries of circles and thin bar object in all three cases, while
the building with sawtooth is well retained. SEEDS is able to obtain
accurate results, but when the number decreases, it also failed to retain
boundaries of circles and thin bar. PHED obtains the finest results
among the three methods. All the boundaries are well retained except
the right part of the white building, as shown in Fig. 11(c). Hence it is
clear that PHED can handle extreme cases with low desired numbers of
superpixels with success.

However, the performances with different desired numbers is still a
remaining question. Fig. 12 depicts the ASA and BR of three methods
with the desired numbers of superpixels ranging from 100 to 1500. It is
clear that higher accuracy is achieved when the number of superpixels
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Fig. 11. Experimental results using the simulated data with low numbers of superpixels.

Fig. 12. The ASA and BR of the three methods with respect to the number of superpixels.

increases for both SLIC and SEEDS. Nevertheless, the accuracy of PHED
remains high regardless of the number of superpixels. For traditional
PolSAR superpixel generation methods, the accuracy is severely influ-
enced by the desired numbers of superpixels. PHED outperforms the
other two methods especially for the low number of superpixels. It is
evident that PHED is a better method that ensures accuracy, robustness,
and adaptability. Results of BR (𝜖 = 1) as shown in Fig. 12(b) reconfirms
this conclusion.

Fig. 13 demonstrates the influence of boundary factor and minimum
confidence on PHED. It is clear that the impact of boundary factor is
low for both the accuracy and boundary recall. As for the minimum
confidence, results of Fig. 13(c) indicates that ASA is also stable when
changing the minimum confidence. However, a relatively low BR is
achieved when the minimum confidence is 0.3. The decrease of BR
reveals less effective of PHED when we set high minimum confidence.

Nevertheless, it still achieves a BR higher than 97.5%, which is a fine
result. Based on our experimental results, we conclude that PHED is a
robust superpixel generation method.

4. Conclusion

Superpixel has been applied in many fields in PolSAR data pro-
cessing, and the accurate extraction of superpixel has drawn lots of
attention of researchers. The inner speckles severely influence the
superpixel generation, which makes it still a challenging task. In this
paper, we raised a PolSAR Hierarchical Energy Driven method inspired
by the Superpixels Extracted via Energy-Driven Sampling, which fully
utilizes all the information included in the PolSAR data. This method
applies histogram intersections during the block-level update and in-
troduces a novel Wishart energy as the main metric for the pixel-level
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Fig. 13. Comparisons of PHED with different boundary factor and minimum confidence. (a) The ASA of PHED with respect to boundary factor; (b) The BR of PHED with respect
to boundary factor; (c) The ASA of PHED with respect to minimum confidence; (d) The BR of PHED with respect to minimum confidence.

update. The optimization is achieved by a hill-climbing procedure,
which maximizes the energy. The potential local optimization is also
effectively avoided by the hierarchical structure.

The Wishart energy characterizes the similarity of ground objects
and able to differentiate categories with success. Further experiments
are carried out with simulated data, ESAR, and AIRSAR data. The
comparison confirms the effectiveness of PHED when compared to
SLIC, LSC, TP, and SEEDS. The robustness of PHED is also confirmed
by the success of handling an extremely low number of superpixels.

The sensitivity and uncertainty are evaluated and PHED exhibits
less sensitivity to noise and shape of the ground objects compared
to SLIC, LSC, TP, and SEEDS. It is clear that the impact of boundary
factor is low for both the accuracy and boundary recall. The algorithm
offers a flexible framework that is easy to enforce constraints such as
compactness and smoothness. The polarimetric term can be replaced
with another distance based energy or matrix similarity.
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