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Abstract
In this work, the problem of input and output strictly passive H∞ control is investigated,
respectively, by proportional plus derivative state feedback (PDSF) and derivative state feed-
back (DSF). First, the concept of quadratically normal and quadratically stable (QNQS) is
extended to switched singular systems. Second, some sufficient conditions are obtained to
guarantee that the closed-loop switched singular systems are QNQS and satisfy H∞ perfor-
mance, and explicit expressions of PDSF and DSF controllers are given. Finally, simulation
examples are given to show the effectiveness of the proposed methods.

Keywords Switched singular systems · Input and output strict passivity · H∞ control ·
Proportional plus derivative state feedback

Mathematics Subject Classification 93-11

1 Introduction

In this work, we aim to study the issue of stabilization and H∞ performance analysis for
continuous switched singular systems. Our motivations mainly come from the following
aspects. (1) State jumps of switched singular systems are almost unavoidable at switching
instants because of incompatible initial conditions. It is difficult to eliminate state jumps using
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simple proportional state feedback (PSF). Many results on stability were achieved under an
assumption that states do not jump at switching instants (see Gao et al. 2015; Yang et al.
2014; Zamani and Shafiee 2014; Zamani et al. 2015). (2) Impulse behavior often occurs in
some singular subsystems, which may cause the whole system to be unstable. Some results
about such systems were obtained under an assumption that each subsystem is regular and
impulse-free see (Lian et al. 2017; Wang et al. 2015; Zamani et al. 2013; Zhou et al. 2013).
How to eliminate impulse behavior and state jumps is a meaningful subject. (3) The passivity
links the Lyapunov stability and the L2 stability well and provides a powerful tool for control
system analysis (Gao et al. 2018), and to the best of the authors’ knowledge, no attempt has
been made to study the problem of H∞ control based on input and output strict passivity for
switched singular systems.

From the above three aspects, it is of great significance to study the issue of input and
output strictly passive H∞ control by using PDSF and DSF. In Zhai et al. (2016), the problem
of robust H∞ control for continuous switched singular systemswith uncertainties in the state,
input, and derivativematriceswas studied by using an improved average dwell time approach.
A delay-dependent linear matrix inequality condition was obtained which can guarantee
that the uncertain singular time-delay systems subject to actuator saturation are robustly
exponential admissible and satisfy H∞ performance in Fu andMa (2016). InMa et al. (2015),
the problemoffinite-time H∞ control for a class of discrete-time switched singular time-delay
with actuator saturation was studied using the average dwell-time approach. The finite-time
H∞ control problem for singular stochastic systemswith actuator saturation and time-varying
state delaywas studied through the sliding-mode approach inMa et al. (2018). The finite-time
H∞ static output-feedback control problem for a class of discrete-time switched singular
time-delay systems subject to actuator saturation was investigated by using the multiple
Lyapunov-like functionmethod and the average dwell-time concept of switching signal inMa
and Fu (2016). The H∞ control problem for a class of uncertain switched nonlinear singular
systems with time delay was studied using a Lyapunov–Metzler inequality approach, and an
observer-based output feedback H∞ controller was given in Zhao et al. (2013). The problem
of H∞ control was studied for switched singular systems using output feedback control in
Shi (2013). The PSF controllers were designed in Fu and Ma (2016), Ma et al. (2015), Wang
et al. (2015), Yang et al. (2014), Zhai et al. (2016) and output feedback controllers were used
inMa and Fu (2016), Shi (2013), Zhao et al. (2013). It is well known that impulse behavior of
some singular subsystems cannot be eliminated only by PSF control. Many studies indicated
that PDSF is an effective way for eliminating impulse behavior of singular systems (see Li
et al. 2017; Moulay and Perruquetti 2005; Duan and Patton 1997). In addition, PDSF may
eliminate state jumps caused mainly by incompatible initial conditions at switching instants
because of the changes in system structure.

Until now, many research achievements on passivity of switched systems have been
obtained (see Gao et al. 2018; Li and Zhao 2016; Wu et al. 2013a; Zhao and Hill 2006,
2008). In Gao et al. (2018), H∞ control of continuous switched systems was studied based
on input and output strict passivity. In Wu et al. (2013a), H∞ control of continuous switched
systems was studied based on output strict passivity. Due to the complexity of switched sin-
gular system model, a few research achievements on passivity of switched singular systems
have been reported (see Lin et al. 2013; Shi et al. 2015; Wu et al. 2013b; Yang and Chen
2018). In Lin et al. (2013), the problem of reliable dissipative control for a class of discrete-
time switched singular systems with mixed time delays and multiple actuator failures was
studied via the Lyapunov function approach and the average dwell-time scheme. In Shi et al.
(2015), passive control of switched singular systems was studied via static output feedback.
In Wu et al. (2013b), stability, dissipativity, and passivity-based control of a class of hybrid
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impulsive switching systems with singular structures and uncertainties were investigated by
using switching Lyapunov functions. By generalized Lyapunov function and linear matrix
inequality, the issue of robust passive control was studied for uncertain switched singular sys-
tems with multiple time-delays in Yang and Chen (2018). Although some related problems
of passivity of switched singular systems were studied inWu et al. (2013b), Lin et al. (2013),
Shi et al. (2015) and Yang and Chen (2018), state jumps at switching instants and impulsive
behavior were not considered, which may lead to system instability or even collapse.

For the reasons discussed above, the H∞ control problem based on input and output strict
passivity is studied, respectively, for continuous switched singular systems via PDSF and
DSF. The researches in Gao et al. (2018) and Wu et al. (2013a) can be regarded as special
cases of this work. The main contributions are as follows: (i) input and output strict passivity
and PDSF are introduced to study H∞ control of continuous switched singular systems; (ii)
sufficient conditions are obtained such that the closed-loop systems are QNQS and satisfy
a prescribed H∞ norm bound, and PDSF and DSF controllers of singular subsystems with
explicit expressions are designed in different cases, respectively; (iii) under the action of the
designed controllers and switching laws, impulsive behavior can be effectively eliminated,
and state jumps caused by incompatible initial conditions at switching instants can also be
eliminated.

2 Problem formulation

Consider the continuous switched singular system given by{
Eσ(t) ẋ = Aσ(t)x + Bσ(t)uσ(t) + Fσ(t)w,

z = Cσ(t)x + Gσ(t)w,
(1)

where σ(t) : R+ → M = {1, 2, . . . ,m} is the switching signal, and σ(t) = i denotes that
the i th is activated at time t . x ∈ Rn is the state variable, ui ∈ Rp is the control input,w ∈ Rq

is the exogenous disturbance, z ∈ Rq is the controlled output. Ei , Ai , Bi , Fi , Ci and Gi are
known real constant matrices with appropriate dimensions, and rank(Ei ) = ri ≤ n.

Assumption 1 In this work, we assume that rank[Ei Bi ] = n for system (1), ∀i ∈ M.

Definition 1 The system Ei ẋ = Ai x is said to beQNQS (see Li et al. 2017), if Ei is invertible
and there exists a matrix Pi > 0 such that

Pi (E
−1
i Ai ) + (E−1

i Ai )
TPi < 0. (2)

According to Definition 1, we extend the definition of QNQS to switched systems as follows.

Definition 2 The switched singular system

Eσ(t) ẋ = Aσ(t)x (3)

is said to be QNQS if derivative matrix Eσ(t) is invertible and there exists a switching law
generated by σ(t) such that the whole system is asymptotically stable.

Definition 3 System ẋ = f (x, w), z = h(x, w) is said to be input and output strictly passive
(see Jiao and Guan 2008), if there exists continuous differentiable positive semi-definite
function V (x), such that

V̇ (x) ≤ zTw − εwTw − δzTz (4)
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holds, where ε > 0 and δ > 0 are two constants.

The H∞ control problem based on input and output strict passivity of the system in (1)
via PDSF (abbreviated as HCIP) is stated as follows.

Problem HCIP. Establish a sufficient condition such that the following conditions hold:
1. System (1) controlled by

uσ(t) = −Kσ(t)e ẋ + Kσ(t)ax (5)

with w = 0 is QNQS.
2. For any T > 0 and a given γ > 0, when x(0) = 0, the following inequality holds

JT =
∫ T

0
(‖ z ‖22 − γ 2‖ w ‖22)dt < 0. (6)

3 Main results

Initially, we study the problem of H∞ control for system (1) based on input and output strict
passivity when uσ(t) = 0, and give the following result.

Theorem 1 Consider system (1) with ui = 0, and assume that Ei is invertible, if there exist
matrices Pi > 0 and scalars λi j < 0, (i, j ∈ M, i �= j ), such that[

�i11 Pi E
−1
i Fi − 0.5CT

i + δiCT
i Gi

∗ εi I + δi GT
i Gi − 0.5Gi − 0.5GT

i

]
< 0, (7)

where �i11 = Pi E
−1
i Ai + AT

i E
−T
i Pi + δiCT

i Ci + ∑m
j=1 λi j (Pj − Pi ).

The switching law is designed as

σ(t) = min{arg max
i∈M xTPi x}. (8)

Then system (1) is QNQS and satisfies H∞ performance γ = maxi∈M
√|1 − 2δiεi |/δi .

Proof When ui = 0 and Ei is invertible, system (1) can be transformed into a switched
normal system as {

ẋ = E−1
σ(t)Aσ(t)x + E−1

σ(t)Fσ(t)w,

z = Cσ(t)x + Gσ(t)w.
(9)

Choose multiple Lyapunov functions expressed by Vσ(t)(x) = xTPσ(t)x .
According to the switching law in (8), we define

�i = {x ∈ Rn \ {0} | xT(Pj − Pi )x ≤ 0,∀ j ∈ M}. (10)

From (10), let

�̄1 = �1, . . . , �̄i = �i − ⋃i−1
j=1 � j , . . . , �̄m = �m − ⋃m−1

j=1 � j , (11)

obviously,
⋃m

i=1�i = Rn\{0},
m⋃
j=1

�̄ j = Rn\{0}, and �̄i ∩ �̄ j = φ, (i �= j).

When x ∈ �̄i , the i th subsystem of system (9) is activated, and the time-derivative of
Vi (x) along the solution of system (9) gives

V̇i (x) = xT(Pi E
−1
i Ai + AT

i E
−T
i Pi )x + xTPi E

−1
i Fiw + wTFT

i E−T
i Pi x . (12)
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From (7) and (12), we can obtain

V̇i (x) < xT[−δiC
T
i Ci − ∑m

j=1 λi j (Pj − Pi )]x + xTPi E
−1
i Fiw + wTFT

i E−T
i Pi x . (13)

When w = 0, from (8) and (13), we can get V̇i (x) < −δi xTCT
i Ci x ≤ 0. According to

the multiple Lyapunov functions theory and Definition 2, we have thus proved that system
(1) with ui = 0 is QNQS.

From (7)–(9) and (12), we have

V̇i (x) < zTw − εiw
Tw − δi z

Tz. (14)

The following inequality always holds Cao et al. (1998):

zTw ≤ 1

2δi
‖ w ‖22 + δi

2
‖ z ‖22. (15)

From (14) and (15), we have

‖ z ‖22 < γ 2‖ w ‖22 − 2

δi
V̇i (x), (16)

where γ = maxi∈M
√|1 − 2δiεi |/δi .

Suppose

{(tk, ik)| ik ∈ M; k = 0, 1, 2, . . . , s; 0 = t0 ≤ t1 ≤ t2 ≤ · · · ≤ ts = T } (17)

is a switching sequence generated by (8) on the interval [0, T ].
When t ∈ [tk, tk+1), (k = 0, 1, 2, . . . , s − 1), the ik th subsystem of system (9) is

activated, from (16), we get

∫ T

0
‖ z ‖22dt <

∫ T

0
γ 2‖ w ‖22dt −

s−1∑
k=0

2

δik

∫ tk+1

tk
V̇ik (x)dt

≤
∫ T

0
γ 2‖ w ‖22dt + 2

δ
Vi0(x(0)) − 2

δ
Vis (x(T )), (18)

where δ = mini∈M{δi }. When x(0) = 0, Vi0(0) = 0. Furthermore, inequality (6) can be
established from (18). This completes the proof of Theorem 1. �

Remark 1 It is clear that each subsystem exhibits input and output strict passivity in the
activation interval, and not in the whole time domain. H∞ performance is related to εi and
δi , which are the input and output strictly passive indices of each subsystem.

Next, we design the PDSF controller in (5), under the action of the controller, system (1)
can be transformed into {

Êσ(t) ẋ = Âσ(t)x + Fσ(t)w,

z = Cσ(t)x + Gσ(t)w,
(19)

where Êσ(t) = Eσ(t) + Bσ(t)Kσ(t)e, Âσ(t) = Aσ(t) + Bσ(t)Kσ(t)a .

Assumption 1 shows that there exists Kie such that Ei + Bi Kie is invertible. Next, we
will give a way to construct Kie.

From rank(Ei ) = ri ≤ n, there exist two nonsingular matrices Mi and Ni , such that

Mi Ei Ni =
[
Iri 0
0 0

]
, Mi Bi =

[
Bi1
Bi2

]
, (20)
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where Bi1 ∈ Rri×p , Bi2 ∈ R(n−ri )×p , and rank(Bi2) = n − ri .
The gain Kie can be constructed as follows

Kie = [
0 BT

i2

]
N−1
i . (21)

Obviously, Ei + Bi Kie is invertible.
From (19) and (21), we can obtain{

ẋ = Ê−1
σ(t) Âσ(t)x + Ê−1

σ(t)Fσ(t)w,

z = Cσ(t)x + Gσ(t)w.
(22)

Theorem 2 Consider system (1) and Assumption 1, if there exist matrices Xi > 0, Wi and
scalars λi j < 0, (i, j ∈ M, i �= j ), such that⎡

⎣�i11 Ê−1
i Fi − 0.5XiCT

i + δi XiCT
i Gi δi XiCT

i∗ εi I + δi GT
i Gi − 0.5Gi − 0.5GT

i 0
∗ ∗ −δi I

⎤
⎦ < 0, (23)

where �i11 = Ê−1
i Ai Xi + Ê−1

i BiWi + (Ê−1
i Ai Xi + Ê−1

i BiWi )
T + ∑m

j=1 λi j (Xi − X j ),

Kie is given by (21), and Kia = Wi X
−1
i .

The switching law is designed as

σ(t) = min{arg max
i∈M xTX−1

i x}. (24)

Then system (1) controlled by (5) is QNQS and satisfies H∞ performance γ =
maxi∈M

√|1 − 2δiεi |/δi .

Proof According to Schur complement lemma (see Yu 2002), from (23), we have[
�

′
i11 Ê−1

i Fi − 0.5XiCT
i + δi XiCT

i Gi

∗ εi I + δi GT
i Gi − 0.5Gi − 0.5GT

i

]
< 0, (25)

where �
′
i11 = Ê−1

i Ai Xi + Ê−1
i BiWi + (Ê−1

i Ai Xi + Ê−1
i BiWi )

T + δi XiCT
i Ci Xi +∑m

j=1 λi j (Xi − X j ).

Substituting Wi = Kia Xi into inequality (25), pre- and post-multiplying the left-hand-
side matrix of (25) by diag{X−1

i , I } and its transpose, respectively, and letting Pi = X−1
i ,

we can obtain [
�

′′
i11 Pi Ê

−1
i Fi − 0.5CT

i + δiCT
i Gi

∗ εi I + δi GT
i Gi − 0.5Gi − 0.5GT

i

]
< 0, (26)

where�
′′
i11 = Pi Ê

−1
i (Ai +Bi Kia)+(Ai +Bi Kia)

T Ê−T
i Pi +δiCT

i Ci +∑m
j=1 λi j Pi (P

−1
i −

P−1
j )Pi .
Since Pi > 0, we get

(Pi − Pj )P
−1
j (Pi − Pj ) ≥ 0. (27)

From (27) and λi j < 0, we have

m∑
j=1

λi j Pi (P
−1
i − P−1

j )Pi ≥
m∑
j=1

λi j (Pj − Pi ). (28)
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From (26) and (28), we have[
�

′′′
i11 Pi Ê

−1
i Fi − 0.5CT

i + δiCT
i Gi

∗ εi I + δi GT
i Gi − 0.5Gi − 0.5GT

i

]
< 0. (29)

where�
′′′
i11 = Pi Ê

−1
i (Ai +Bi Kia)+(Ai +Bi Kia)

T Ê−T
i Pi +δiCT

i Ci +∑m
j=1 λi j (Pj − Pi ).

According to Theorem 1, it can be seen from (24) and (29) that system (1) controlled by
(5) is QNQS and satisfies H∞ performance γ = maxi∈M

√|1 − 2δiεi |/δi . This completes
the proof of Theorem 2. �


Remark 2 From the above analysis, it can be seen that the derivative gains of PDSF controllers
are designed in advance. Although the step-by-step design brings some conservatism, it
greatly reduces the design difficulty of PDSF controllers. In addition, the results of this work
are also valid for switched normal systems.Obviously, if the derivativematrices are invertible,
the use of PDSF controllers can also promote the system performance.

Next, we study the issue of H∞ control for system (1) by designing DSF controllers.

uσ(t) = −Kσ(t)e ẋ . (30)

Assumption 1 shows that there exists Kσ(t)e such that Eσ(t) + Bσ(t)Kσ(t)e is invertible.
Under the action of (30), system (1) can be transformed into{

ẋ = Ē−1
σ(t)Aσ(t)x + Ē−1

σ(t)Fσ(t)w,

z = Cσ(t)x + Gσ(t)w,
(31)

where Ēσ(t) = Eσ(t) + Bσ(t)Kσ(t)e.

Theorem 3 Consider system (1) and Assumption 1, if there exist matrices Xi > 0, Wi and
scalars λi j < 0, (i, j ∈ M, i �= j ), such that⎡

⎢⎢⎣

i111 + 
i112 
i12 
i13 
i14

∗ 
i22 0 0
∗ ∗ −δi I 0
∗ ∗ ∗ (

∑m
j=1 λi j )Xi

⎤
⎥⎥⎦ < 0, (32)

where Kie = Wi X
−1
i , 
i22 = εi I + δi GT

i Gi − 0.5Gi − 0.5GT
i ,


i111 = Ai Xi E
T
i + Ei Xi A

T
i + AiW

T
i BT

i + BiWi A
T
i ,


i112 = (
∑m

j=1 λi j )(Ei Xi + BiWi + Xi ET
i + WT

i BT
i ) − ∑m

j=1 λi j X j ,


i12 = Fi + (Ei Xi + BiWi )(−0.5CT
i + δiC

T
i Gi ),


i13 = δi Ei XiC
T
i + δi BiWiC

T
i ,


i14 = (
∑m

j=1 λi j )(Ei Xi + BiWi ).

The switching law is designed as

σ(t) = min{arg max
i∈M xTX−1

i x}. (33)

Then system (1) controlled by (30) is QNQS and satisfies H∞ performance γ =
maxi∈M

√|1 − 2δiεi |/δi .

123



328 Page 8 of 16 X. Wu et al.

Proof Replacing E−1
i in Theorem 3.1 by (Ei + Bi Kie)

−1 gives[
�i11 Pi (Ei + Bi Kie)

−1Fi − 0.5CT
i + δiCT

i Gi

∗ εi I + δi GT
i Gi − 0.5Gi − 0.5GT

i

]
< 0, (34)

where�i11 = Pi (Ei +Bi Kie)
−1Ai + AT

i (Ei +Bi Kie)
−TPi +δiCT

i Ci +∑m
j=1 λi j (Pj −Pi ).

Pre- and post-multiplying the left-hand-side matrix of (34) by diag{(Ei + Bi Kie)P
−1
i , I }

and its transpose, respectively, letting P−1
i = Xi ,Wi = KieXi , and applying Schur comple-

ment lemma Yu (2002), we have⎡
⎢⎢⎢⎢⎣

�
′
i11 
i12 
i13 
i14

∗ 
i22 0 0
∗ ∗ −δi I 0

∗ ∗ ∗ (
m∑
j=1

λi j )Xi

⎤
⎥⎥⎥⎥⎦ < 0, (35)

where �
′
i11 = 
i11 + ∑m

j=1 λi j (Ei Xi + BiWi )X
−1
j (Ei Xi + BiWi )

T.
Since Xi > 0, the following inequality always holds.

[(Ei Xi + BiWi ) − X j ]X−1
j [(Ei Xi + BiWi )

T − X j ] ≥ 0. (36)

From (36) and λi j < 0, we have

m∑
j=1

λi j (Ei Xi + BiWi )X
−1
j (Ei Xi + BiWi )

T ≤ 
i112. (37)

It is easily seen from (37) that inequality (34) can be deduced from (32). According to
Theorem 1, Theorem 3 can guarantee that system (1) controlled by (30) is QNQS and satisfies
H∞ performance γ = maxi∈M

√|1 − 2δiεi |/δi . This completes the proof of Theorem 3. �

Remark 3 It is worth pointing out that the design of DSF controllers is much easier than
that of PDSF controllers for actual control systems (Ren and Zhang 2010), and the costs of
designing and maintaining for DSF controllers are smaller. Therefore, the control strategy
should be based on the actual situation to achieve a better control effect.

Remark 4 When εi = 0, Theorems 1, 2 and 3 become the solvable conditions of the H∞
control problem for switched singular systems based on output strict passivity, and the H∞
performance indexes can be rewritten as γ = maxi∈M{1/δi }.

4 Numerical examples

In this section, we give the following three examples to show the effectiveness of the proposed
methods in this work. The comparison between PDSF and DSF is given in Examples 1 and
2, and the comparison between PDSF and PSF is shown in Example 3.

Example 1 Consider a switched singular system in (1) with two subsystems.

E1 =
⎡
⎣ 1 0 0
0 1 0
0 0 0

⎤
⎦ , A1 =

⎡
⎣−1 1 4

2 −5 3
1 −3 6

⎤
⎦ , B1 =

⎡
⎣ 0.5

−1
1

⎤
⎦ , F1 =

⎡
⎣ 0.2
0.3
0.1

⎤
⎦ ,
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0

0.2

0.4

0.6

t / s

x(
t)

0 0.5 1 1.5 2
0

1

2

3

 t / s

σ(
t)

Fig. 1 State trajectory of the closed-loop system and the switching law based on PDSF

E2 =
⎡
⎣ 1 0 0
0 1 0
0 0 0

⎤
⎦ , A2 =

⎡
⎣ 2 1 5

0 −3 4
−1 2 −5

⎤
⎦ , B2 =

⎡
⎣ 1

1
−0.5

⎤
⎦ , F2 =

⎡
⎣ 0.15

0.3
−0.2

⎤
⎦ ,

C1 = [
1 0.5 −1

]
, G1 = 0.3, C2 = [

1 −1 2
]
, G2 = 0.5.

Obviously, rank[Ei Bi ] = 3 = n, ∀i ∈ {1, 2}. From (21), we can obtain that K1e =[
0 0 1

]
, K2e = [

0 0 −0.5
]
.

Letting λ12 = λ21 = −0.5, δ1 = 0.8, ε1 = 0.1, δ2 = 0.4 and ε2 = 0.2, we get
γ = 2.2913. Furthermore, solving inequality (23) in Theorem 2 and from Kia = Wi X

−1
i ,

i ∈ {1, 2}, we get
K1a = [−5.9540 −6.8035 −9.4099

]
,

K2a = [−4.5339 −4.0009 −1.9349
]
.

Under the initial condition x(0) = [
0.5 0.2 0.3

]T
, when w = 0, system (1) controlled

by (5) and (24) is QNQS. The state trajectory and the switching law are depicted in Fig. 1.
We construct a function

F(z, w) = zTz − γ 2wTw (38)

and it is a piecewise function because of σ(t). When x(0) = [
0 0 0

]T
and w(t) =

e−0.6t sin(3t + 1), the curve of F(z, w) is depicted in Fig. 2. Fig. 2 shows that F(z, w) ≤ 0
and F(z, w) �≡ 0. According to the properties of definite integral, JT < 0 in (6) holds.

Solving inequality (32) in Theorem 3 using the above parameters, we find that the fea-
sible solutions do not exist. We give the following example to analyze the advantages and
disadvantages for PDSF and DSF.
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Fig. 2 The curve of F(z, w) and the switching law based on PDSF

Example 2 Consider a switched singular system in (1) with two subsystem.

E1 =
⎡
⎣ 1 1 0
1 −1 1
2 0 1

⎤
⎦ , A1 =

⎡
⎣−0.8 −0.4 1.3

0 −1.6 −0.5
0.3 0 −1

⎤
⎦ , B1 =

⎡
⎣ 0.3

−1
0.7

⎤
⎦ , F1 =

⎡
⎣ 0.2
0.3
0.1

⎤
⎦ ,

E2 =
⎡
⎣ 1 1 0
0 1 1
1 2 1

⎤
⎦ , A2 =

⎡
⎣−1.5 0.5 −0.8

1 1 0.5
0.7 0 −1.5

⎤
⎦ , B2 =

⎡
⎣ 0.1
0.5
−1

⎤
⎦ , F2 =

⎡
⎣ 0.15

0.3
−0.2

⎤
⎦ ,

C1 = [
0.2 0.5 0

]
, G1 = 0.3, C2 = [−0.4 0 0.2

]
, G2 = 0.5.

Obviously, rank[Ei Bi ] = 3 = n, ∀i ∈ {1, 2}.
Letting λ12 = λ21 = −0.5, δ1 = 0.8, ε1 = 0.1, δ2 = 0.4 and ε2 = 0.2, we can obtain

γ = 2.2913. Furthermore, solving inequality (32) in Theorem 3 and from Kie = Wi X
−1
i ,

i ∈ {1, 2}, we get
K1e = [−0.7342 −2.1290 0.2807

]
,

K2e = [−1.2563 −4.8410 −1.7511
]
.

Choose

M1 =
⎡
⎣ 1 0 0

1 1 0
−1 −1 1

⎤
⎦ , N1 =

⎡
⎣ 1 0 −1

0 0 1
−2 1 2

⎤
⎦ , M2 =

⎡
⎣ 1 0 0

1 1 0
−1 −1 1

⎤
⎦ , N2 =

⎡
⎣ 1 0 −1

0 0 1
−1 1 −1

⎤
⎦ .

From (21), we can obtain that K1e = [
0 1.4 0

]
, K2e = [

0 − 1.6 0
]
. Furthermore,

solving inequality (23) in Theorem 2 and from Kia = Wi X
−1
i , i ∈ {1, 2}, we get

K1a = [−2.6598 −7.6163 0.0806
]
,

K2a = [
1.6104 1.9677 −1.1685

]
.
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Fig. 3 State trajectories of the closed-loop system based on PDSF and DSF
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Fig. 4 Switching laws based on PDSF and DSF

Under the initial condition x(0) = [−0.5 0.3 − 0.2
]T
, when w = 0, system (1) con-

trolled by PDSF andDSF, respectively, is QNQS. The stability comparison of the closed-loop
systems under these two strategies is shown in Fig. 3, and the comparison of switching laws
is shown in Fig. 4.

When w(t) = e−0.6t sin(3t + 1), under the zero initial condition, the curves of F(z, w)

for system (1) controlled by PDSF and DSF, respectively, is depicted in Fig. 5. It can be
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Fig. 5 The curves of F(z, w) based on PDSF and DSF

seen from Fig. 5 that F(z, w) ≤ 0 and F(z, w) �≡ 0. According to the properties of definite
integral, JT < 0 in (6) holds.

It can be seen from Fig. 3 that both PDSF and DSF control strategies can stabilize system
(1). Through the comparison of these two control strategies, it is obvious that PDSF control
makes the response faster, the settling time shorter and the dynamic process more stable.
Therefore, from the perspective of stability, the effect of PDSF control is better than that of
DSF control. It is clear from Fig. 5 that the curves of F(z, w) based on PDSF control andDSF
control are almost the same, which shows that the control effect of these two strategies is very
close from the perspective of H∞ performance. Therefore, the choice of control strategies
should be based on the actual situation.

Example 3 In this example, we introduce a PWMdriven boost convertermodel (see, Example
2 in Zhang et al. (2011)) to show that the proposed methods of this work are also valid for
switched normal systems. The boost converter is shown in Fig. 6.

By applying the Kirchhoff laws, we establish the mathematical model of the boost con-
verter as follows: {

u̇C (t) = − 1
RC uC (t) + (1 − s(t)) 1

C iL(t),

i̇L(t) = −(1 − s(t)) 1
L uC (t) + s(t) 1

L us(t),

which can be further expressed by

Ei ẋ(t) = Ai x(t), i ∈ {1, 2},
where E1 = E2 = diag{1, 1, 1},

x =
⎡
⎣ x1
x2
x3

⎤
⎦ =

⎡
⎣ uC

iL
us

⎤
⎦ , A1 =

⎡
⎣− 1

RC
1
C 0

− 1
L 0 0
0 0 0

⎤
⎦ , A2 =

⎡
⎣− 1

RC 0 0
0 0 1

L
0 0 0

⎤
⎦ .
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Fig. 6 Boost converter

For the above switched system, we directly use the parameters in Zhang et al. (2011) as
follows:

A1 =
⎡
⎣−1 1 0

−1 0 0
0 0 0

⎤
⎦ , A2 =

⎡
⎣−1 0 0

0 0 1
0 0 0

⎤
⎦ ,

and suppose other system matrices to be

B1 =
⎡
⎣ 1

−0.3
1

⎤
⎦ , B2 =

⎡
⎣ 0.6

1
−0.5

⎤
⎦ , F1 =

⎡
⎣ 0.2
0.3
0.1

⎤
⎦ , F2 =

⎡
⎣ 0.5

0.3
−0.2

⎤
⎦ ,

C1 = [−1 0.5 − 1
]
, C2 = [

1 − 1 2
]
, G1 = 0.3, G2 = 0.5.

We choose K1e = [
0 − 2 1

]
and K2e = [

0 2 − 1
]
. Letting δ1 = 0.8, δ2 = 0.4,

ε1 = 0.2, ε2 = 0.1, and λ12 = λ21 = −3, we get γ = 2.3979. Furthermore, solving
inequality (23) in Theorem 2 and from Kia = Wi X

−1
i , i ∈ {1, 2}, we get

K1a = [−70.7821 34.7573 − 71.6148
]
,

K2a = [
148.0341 − 148.3729 296.0110

]
.

Moreover, if we choose K1e = [
0 0 0

]
and K2e = [

0 0 0
]
. Using the above parame-

ters to solve inequality (23) in Theorem 2 and from Kia = Wi X
−1
i , we get

K1a = [−3.9810 1.0859 − 3.5208
]
,

K2a = [
3.6223 − 4.6014 8.5106

]
.

Under the initial condition x(0) = [−0.3 0.4 0
]T
, when w = 0, system (1) controlled

by PDSF and PSF, respectively, is asymptotically stable. The stability comparison of the
closed-loop systems under these two strategies is shown in Fig. 7, and the comparison of
switching laws can be seen in Fig. 8.

When w(t) = e−0.6t sin(3t + 1), under the zero intial condition, the curves of F(z, w)

for system (1) controlled by PDSF and PSF, respectively, is depicted in Fig. 9. It can be
seen from Fig. 9 that F(z, w) ≤ 0 and F(z, w) �≡ 0. According to the properties of definite
integral, JT < 0 in (6) holds.

It can be seen from Fig. 7 that both PDSF and PSF control strategies can stabilize the
system. Through the comparison of these two control strategies, it is obvious that the PDSF
controlmakes the response faster and the settling time shorter. Therefore, from the perspective
of stability, the effect of PDSF control is better than that of PSF control. This shows that the
proposed methods of this work are also valid for switched normal systems. Moreover, it can
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Fig. 7 State trajectories of boost converter based on PDSF and PSF

0 5 10 15
0

1

2

3

σ(
t)

0 5 10 15
0

1

2

3

 t / s

σ(
t)

with derivative controller

without derivative controlle

Fig. 8 Switching laws of boost converter based on PDSF and PSF

be also seen from Fig. 8 that the control effect of PDSF is better than that of PSF. It is clear
from Fig. 9 that the curves of F(z, w) based on PDSF control and PSF control are almost
the same, which shows that the control effect of these two strategies is very close from the
perspective of H∞ performance. From the above analysis, we conclude that PDSF can be
also valid for switched normal systems, and the control effect is related to the selection of
derivative gains.
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Fig. 9 The curves of F(z, w) based on PDSF and PSF

5 Conclusion

In this work, the issue of H∞ control based on input and output strict passivity for contin-
uous switched singular systems is studied via PDSF and DSF. The definition of QNQS is
extended to switched singular systems. Some sufficient conditions are deduced to guarantee
the existence of a solution to the H∞ control problem. The controller of each subsystem with
explicit expression is designed. The results of this work can be easily extended to switched
singular systems with time-delays and uncertainties. The derivative gains of PDSF designed
in advance may bring some conservatism. How to design the gains of PDSF controllers
synchronously is one of our next work.
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