
Journal of Network and Computer Applications 156 (2020) 102565

Contents lists available at ScienceDirect

Journal of Network and Computer Applications

journal homepage: www.elsevier.com/locate/jnca

The path planning scheme for joint charging and data collection in WRSNs:
A multi-objective optimization method

Zhenchun Wei a,b, Chengkai Xia a, Xiaohui Yuan c, Renhao Sun a,∗, Zengwei Lyu a,b,**,
Lei Shi a,b, Jianjun Ji a

a School of Computer Science and Information Engineering, Hefei University of Technology, China
b Engineering Research Center of Safety Critical Industrial Measurement and Control Technology, Ministry of Education, Hefei, 230009, China
c Department of Computer Science and Engineering, University of North Texas, Denton, TX, USA

A R T I C L E I N F O

Keywords:
Wireless rechargeable sensor network
Joint energy replenishment and data collection
Path planning
Multi-objective optimization

A B S T R A C T

Considering the limited energy of the mobile wireless charging equipment (WCE) in wireless rechargeable sensor
networks (WRSNs), strategies for energy replenishment and data collection are proposed. A novel path planning
model for the mobile WCE based on multi-objective optimization is constructed to both replenish energy and
collect data, as well as to maximize the total energy utility of the mobile WCE and minimize the average delay
of data transmission. An algorithm of multi-objective ant colony optimization (ES-MOAC) based on the elitist
strategy is proposed to determine the Pareto set, so that the state transition strategy and the pheromone updating
strategy improve. How the parameter settings of the ant colony algorithm affect the proposed algorithm is
analyzed. The results of 50 groups of numerical simulation experiments show that the average of the Pareto set
of the ES-MOAC algorithm is 27.8% higher than that of the NSGA-II algorithm.

1. Introduction

The data collection is one of the most important tasks in Wireless
Sensor Networks (WSNs) and the related research on energy problem is
a hot topic. Sensor nodes in the traditional WSNs transmit data through
a multi-hop, which often leads to energy shortage (Lian et al., 2006;
Olariu and Stojmenovic, 2006). The longer the distance between the
sensor nodes and the fixed base station is, the more tasks for relaying
data and the higher communication load for the sensor nodes are. Thus,
some sensor nodes will die early because of energy shortage. To solve
this problem, there are three methods. The first attempt is to reduce
consumption. A mobile sink is introduced into the network to collect
data and reduce energy consumption. A second method is to increase
income. Mobile charging equipment is used to replenish energy for sen-
sor nodes. The third is a combination of two previous ideas. Wireless
Charging Equipment (WCE) is not only used to replenish energy for the
sensor nodes but also collects data for them. Mobile WCE performs (Hu
et al., 2016) for sensor nodes in two ways, simultaneously charging the
simple sensor node (Xu et al., 2014) and the multiple sensor nodes (Fu
et al., 2013). In addition, there are many researches on WCE, such as
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the mobility of WCE (Chen et al., 2018) and different types of WCE
based on the underlying terrain (Pang et al., 2014), etc.

To reduce energy consumption, the mobile sink in a WSN traveling
throughout the whole network, both collects data from the nearby sen-
sor nodes and reduces the communication load of the sensor nodes.
Therefore, the lifespan of the network is prolonged. In (Guo et al.,
1953), a data collection strategy based on a mobile sink in WSNs was
proposed to calculate the shortest Hamilton Circuit consisting of all the
collection points traversed by the mobile sink through the Quantum
Genetic Algorithm (QGA). As a result, the load of sensor nodes bal-
anced and the lifespan of the network increased. The same method was
applied to (Lu and Wang, 2014). A mobile sink moves around the whole
network to collect data for a limited time. Chang et al. (Chang and Shen,
2016) proposed a strategy of energy conservation based on the tree to
reduce energy consumption, in which a mobile sink was used to collect
data to balance the network load. Considering the large-scale WSNs in
the wild, Iwata et al. (2017) proposed a data collection strategy for the
mobile sink to reduce energy consumption of the sensor nodes near to
the fixed sink to avoid energy shortage.
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To increase income, the wireless charging technology (Xie et al.,
2013) is applied to WSNs, in which the wireless charging equipment
(WCE) travels around the whole network to replenish energy for sen-
sor nodes. Such a network is Wireless Rechargeable Sensor Network
(WRSN) (Yang and Wang, 2015). Shi et al. (2012) assumed that the
mobile WCE carried infinite energy and demonstrated that the charg-
ing along the Hamilton Circuit perpetually prolonged the lifespan of
the whole network. In (He et al., 2013, 2015), the mobile WCE pro-
vides energy by demand according to the queuing theory. Xu et al.
(2017) proposed a charging strategy based on balancing the remaining
lifespan of sensor nodes in the network, which targets to minimize the
total energy consumption of the mobile WCE and prolong the lifespan
of the whole network through the study on the charging path of the
mobile WCE and the charging time for sensor nodes. Based on (Xu et
al., 2017), a periodic charging strategy of the mobile WCE with the
limited energy was proposed in (Chen et al., 2017), which tended to
maximize the charging cycle and minimize the total energy consump-
tion of the mobile WCE as well. The optimization problem is solved by
the chaotic particle swarm algorithm.

Few researchers try both to reduce consumption and increase
income. Xie et al. (2015) proposed a joint framework of mobile charg-
ing and data collecting, which studies the traveling path of the mobile
WCE for charging and data collecting to improve the network perfor-
mance if the lifespan of the network remained unaffected. Wang et al.
(2016) proposed a dispatching strategy for the mobile WCE and data
collection equipment to balance energy consumption and reduce data
transmission delay. Additionally, Guo et al. (2013) regarded the WCE
as a mobile sink. The mobile WCE travels throughout the whole net-
work to charge and collect data and then returns to the base station
to upload the data collected from sensor nodes. To solve this prob-
lem, a distributed strategy was proposed to optimize the network per-
formance. In (Zhao et al., 2014), Zhao et al. also assumed that the
WCE was equipped with data collection module to avoid imbalanced
energy distribution brought by the fixed base station. Single optimiza-
tion objective has been studied in the literature above-mentioned: some
researches on how to improve the performance of data transmission in
the permanent working network being secured; others focus on how to
prolong the lifespan of the network with the secured performance of
data transmission.

Based on the previous studies, this paper examines the path plan-
ning of mobile WCEs with the strategy of joint mobile charging and
data collection strategy based on the multiple objectives to figure out
the traveling path and the charging time for each sensor node. With lim-
ited traveling energy, the mobile WCE charges sensor nodes and collects
data. Thus, the traveling path of the mobile WCE has an effect on not
only the network lifespan but also on the performance of the data trans-
mission. To solve this problem, a multi-objective optimization model is
established to maximize the total energy efficiency of the mobile WCE
and minimize the average delay of data transmission of sensor nodes,
which prolongs the network lifespan and improve the performance of
data transmission. A multi-objective ant colony optimization algorithm
(ES-MOAC) based on the elitist strategy is also proposed to obtain the
Pareto set. Two main contributions of this paper are:

1) To the best of our knowledge, this is the first attempt to establish a
multi-objective optimization model on the basis of a multi-objective
optimization model on the basis of strategies for both mobile charg-
ing and data collection There are two optimization objectivesCto
maximize of the total energy utility of the mobile WCE and to min-
imize the average delay of data transmission. The influence of the
traveling path of the mobile WCE and charging time for each sensor
node on the optimization objectives greatly are studied.

2) An algorithm for multi-objective ant colony optimization algorithm
(ES-MOAC) based on the elitist strategy is proposed. The state tran-
sition strategy and the pheromone updating strategy are modified as
the algorithm for ant colony optimization (ACO) performs.

The rest of this paper is organized as follows. Section 2 discusses
the related work. Section 3 describes the structure of WRSNs and prob-
lem statement. Section 4 demonstrates the multi-objective optimization
model and two objective functions. Section 5 proposes the ES-MOAC
with the modified state transition strategy and pheromone updating
strategy. Section 6 describes the simulation experiments and results,
showing the advantages of the proposed algorithm. Section 7 presents
the conclusion.

2. Related work

The relevant literature in path planning explains two categories of
schemes-separate charging scheme; combinative charging and data col-
lection scheme. Swarm intelligence algorithms for path planning is elab-
orated.

Separate charging scheme. With the development of wireless
rechargeable sensor network technology, the charging scheme has the
hot issue in this research field (Hu et al., 2016). The design of a charging
scheme depends on WCE properties including the number, the charg-
ing range, the charging capacity constraints of and, etc. According to
the size of networks, there are charging schemes based on single-WCE
(Peng et al., 2010; Fu et al., 2016a; Wang et al., 2017); according to
the number of WCE, there are charging schemes based on multi-WCE
(Peng et al., 2012; Zhang et al., 2015). This paper examines a single-
WCE charging scheme working for a small-scale network. According to
charging range of WCE, there are two categories of charging technol-
ogy, namely one to one charging technology (Ren et al., 2014; Dai et
al., 2013) and one to many charging technology (Fu et al., 2013, 2016b;
Tong et al., 2010). Due to the limited charging range of WCE and the
sparse distribution of sensor nodes in our network, this paper claims
one to one charging technology for WCE. In addition, according to the
charging capacity constraints of WCE, there are schemes of charging as
a whole (Shi et al., 2012, 2014) and schemes of charging on demand
(He et al., 2013; Xu et al., 2017; Fu et al., 2016c). On the basis of (Xu
et al., 2017), the charging strategy for balancing lifespan to prolong the
network lifespan is optimized.

Combinative charging and data collection scheme. WCE path plan-
ning for combinative charging and data collection scheme has become
increasingly important to wireless rechargeable sensor networks. WCE
is not only responsible for charging sensor nodes, but also for collect-
ing data generated by sensor nodes. Liu et al. (2019) proposed a novel
dynamic clustering based mobile-to-cluster (M2C) scheme. Given the
random traveling path of WCE, then the energy consumption of being a
cluster head is estimated. The sensor nodes with residual energy close
to the estimation are actively elected as head nodes. Most visited head
nodes are those of residual energy, reducing the travel distance and
increasing energy efficiency of charging. An energy replenishment and
data collection algorithm for WRSNs was proposed in (Han et al., 2018).
The network is divided into multiple clusters based on the K-means
algorithm. The proposed algorithm effectively replenish energy for the
network. Hu et al. (Hu and Wang, 2016) examined the mobile charger
that did not maintain full operation of the WRSN and proposed the
balance flow scheme to maximize the utility of data collection. Most
research concerns charging demand of sensor nodes, which fulfills a
single focused objective. For instance, energy constraints carried by the
WCE and the distance between the nodes and the WCE determine the
traveling path of the WCE. The charging strategy and data collection
strategy of WCE are designed according to the constraints such as the
traveling path, the data flow among the sensor nodes, to maximize the
network energy (Xie et al., 2015; Wang et al., 2016; Guo et al., 2013;
Zhao et al., 2014; Liu et al., 2019; Han et al., 2018; Hu and Wang,
2016). In contrast, this paper discusses both charging and data collec-
tion for path planning of WCE. The detailed explanation is available in
the following sections.

Swarm intelligence algorithms. According to (Xu et al., 2017), WCE
path planning is a combinatorial optimization problem, which is part
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Fig. 1. Diagram of a WRSN with a mobile WCE and a service station.

of NP-hard. Swarm intelligent algorithms are available for natural com-
binatorial optimization. Lyu et al. (2019) proposed a hybrid parti-
cle swarm optimization genetic algorithm to for the periodic charging
planning. Xu et al. (2017) proposed a max-min ant algorithm for the
WCE path planning. Ant colony algorithm is a meta-heuristic optimiza-
tion algorithm simulating the foraging behaviors of ants in nature to
find the optimal path. Compared with particle swarm optimization and
genetic algorithm, it is more effective in the path planning. This paper
presents a novel ant colony optimization algorithm for both charging
and data collection. Integrated with a strategy for leveraging elite ants,
the transition probability and pheromone updates are refined. Simu-
lation experiments are conducted to compare the proposed algorithm
with the classical swarm intelligence algorithm called NSGA-II (Deb et
al., 2002).

3. Network structure and problem statement

3.1. The structure of a WRSN

N sensor nodes, denoted as SN = {s1,… , si,… sN}, i ∈ {1,2,… ,N}.
are deployed over a 2-D monitored area in a WRSN. The positions of
nodes are fixed. In addition, a mobile WCE with data collection mod-
ule and a fixed service station are deployed in the WRSN shown in
Fig. 1. It is assumed that there is no fixed base station in the network.
Instead, the mobile WCE is served as a mobile base station to collect
data. All the sensor nodes are powered by wireless rechargeable bat-
teries which share the same capacity. The capacity of each battery is
denoted as Emax. To keep sensor nodes working properly, the minimum
energy level of each battery is denoted as Emin. In the beginning, the
energy level of the battery is Emax. The energy carried by the mobile
WCE is limited and is divided into two parts: the limited traveling
energy and the charging energy. The initial traveling energy and the
initial charging energy is denoted as Etra

max and Ech
max, respectively. The

mobile WCE sets off from service station S, travels through the network
to replenish energy for sensor nodes, collects data simultaneously and
then returns to service station S to replenish energy for itself when its
traveling energy or charging energy is insufficient. The mobile WCE
stays at service station S for maintenance when it completes all the
tasks.

3.2. Problem statement

All the sensor nodes are homogeneous in the WRSNs, but the con-
sumption power of each sensor node is different due to the rate of data
generated by each sensor node itself and the amount of data forwarded
by each sensor node. Therefore, different sensor nodes typically have
different demands for energy. When the WCE reaches a sensor node,
it charges and collects data for only one sensor node at a time. The
charging time of sensor node si is 𝜏ch

i and the time to collect data is
𝜏cd

i . The charging efficiency of the WCE is much lower than that of

the data collection efficiency. The order of magnitude is not twice, and
the charging time 𝜏ch

i is much longer than the data collection time 𝜏cd
i ,

namely 𝜏ch
i ≫ 𝜏cd

i . Relative to the charging time of each sensor node,
the data collection time is negligible. Therefore, the stay time of the
WCE at each sensor node depends on the charging time. The sequence
of the WCE accessing different sensor nodes affects the delay of data
transmission in the WRSNs.

This paper assumes that the initial traveling energy and the charging
energy carried by the mobile WCE are limited and separated. Therefore,
the following three points should be taken into account.

1) Because of the limited traveling energy and the sparse distribution
of the sensor nodes in the WRSN, the mobile WCE may not have
enough energy to visit all the sensor nodes in one cycle.

2) Because of the limited charging energy, the mobile WCE only tries
its best to replenish energy for the sensor nodes to prolong the lifes-
pan of the network and improve the energy efficiency. In other
words, the mobile WCE may not keep the network working per-
petually.

3) In this study, the mobile WCE not only charges sensor nodes but also
collects data generated by the nodes. Therefore, the path planning
for the mobile WCE with mobile charging and data collecting strat-
egy demonstrates the traveling path and the charging time of each
node. Two optimization objectives, to maximize the total energy
efficiency of the mobile WCE and to minimize the average delay of
data transmission among sensor nodes, are established to prolong
the network lifespan and improve data transmission on the basis
of balancing the rest lifespan of the sensor nodes. In addition, to
describe the problem clearly, two definitions are introduced before
establishing and analyzing the multi-objective optimization.

Definition 1. Working Round
The mobile WCE sets off from service station S, travels to several

sensor nodes only once to charge and collect data, and returns to ser-
vice station S to replenish energy for itself due to the limited traveling
energy and the limited charging energy. This process is defined as a
working round, which is denoted as 𝜏c

r (r = {1,2,… ,R}).

Definition 2. Working Cycle
As shown in Fig. 2, the mobile WCE starts from the service station S,

conducts several working rounds, and returns to service station S, which
is defined as a working cycle that is denoted as T (T ∈ {T1,T2,… ,TZ}).
In a working cycle, each sensor node is visited by the mobile WCE
only once. Because the WCE cannot ensure if the network is perpetually
working. Z is an uncertain positive integer.

The energy replenishment time for the mobile WCE in service station
S can be neglected because the energy replenishment is realized by
replacing batteries quickly between two working rounds. As a result,
the duration of a working cycle only includes several working rounds.

The mobile WCE returns to service station S to have a break after a
working cycle, which is defined as the docking time. The docking time

Fig. 2. Diagram of the traveling path of the mobile WCE during a working cycle.
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is denoted as 𝜏vac. The docking time for the mobile WCE is relatively
longer than a working cycle and different working cycles share the same
docking time.

4. Model construction

4.1. Data flow and energy consumption power

In this paper, the energy model in (Shi et al., 2012) is adopted. It
is assumed that sensor node si (i ∈ 1,2,… ,N) generates data at a con-
stant rate of Ri(bit/s). gij (bit/s) is the rate of data transmission between
sensor node si and sj. giW (bit/s) is the rate of data transmission between
sensor node si and the mobile WCE. From the view of the data flow,
sensor node si must satisfy the following equation.

a≠i∑
a∈N

gai + Ri =
j≠i∑
j∈N

gij + giW (1)

During the working cycle, the energy consumption power of sensor
node si is pi(W) and the receiving data energy consumption rate of each
sensor node is 𝜃(J/bit). The transmitting data energy consumption rate
between sensor node si and sj is denoted as 𝜃ij(J/bit) and the trans-
mitting data energy consumption rate between sensor node si and the
mobile WCE is denoted as 𝜃iW (J/bit). Besides, 𝜃ij = 𝜂1 + 𝜂2D4

ij, of which
Dij is the Euclid distance between sensor node si and sj, 𝜂1 is the con-
stant unrelated to Dij and 𝜂2 is the constant related to Dij. At any time,
the power of sensor node si satisfies Equation (2).

pi = 𝜃

a≠i∑
a∈N

gai +
j≠i∑
j∈N

𝜃ijgij + 𝜃iWgiW (2)

in which 𝜃
∑a≠i

a∈N gai is the energy consumption power of sensor node
si generated by receiving data from other sensor nodes,

∑j≠i
j∈N 𝜃ijgij is

the energy consumption power of sensor node si which is generated
by transmitting data to other sensor nodes, and 𝜃iWgiW is the energy
consumption power of sensor node si which is generated by transmitting
data to the mobile WCE.

It is assumed that the data transmission is completed instantly, so
the transmission time is neglected. In this paper, the static routing pro-
tocol is adopted, so the energy consumption power of a sensor node si
is a constant.

4.2. The traveling path and time of the mobile WCE

The mobile WCE sets off from service station S, replenishes energy
for sensor nodes and collects data, and then returns to service station S
to be maintained. After R (R ∈ ℤ) working rounds, all the sensor nodes
in the network have been replenished with energy and the data have
been collected only once. The traveling path of the mobile WCE in a
working cycle T is Q. According to Definition 1, traveling path Qr in a
working round is

Qr = (𝜋0, 𝜋1,… , 𝜋m, 𝜋0) (3)

where 𝜋0 is service station S and 𝜋i (1 ≤ i ≤ m) is the ith sensor node
in the traveling path. The traveling distance of the mobile WCE in a
working round satisfies

Dr
Q =

m−1∑
i=0

d𝜋i,𝜋i+1
+ d𝜋m,𝜋0

(4)

where d𝜋i,𝜋j
(m) is the distance between the neighbor sensor nodes or

between the sensor node and service station S. A working cycle consists
of R working rounds, so the traveling distance DQ in a working cycle
satisfies Equation (5).

DQ =
R∑

r=1
Dr

Q (5)

The mobile WCE starts from service station S and then moves in
the traveling path Q at the speed v(m) with traveling energy consump-
tion power ptra(W). The charging time for sensor node si is denoted
as 𝜏 i(s). It is assumed that the data transmission from sensor node si
to the mobile WCE is completed instantly, so the transmission time is
neglected. That is to say, the charging time equals to the duration when
the mobile WCE stays at sensor node si. Thus, the duration of a working
round denoted as 𝜏c

r , satisfies Equation (6).

𝜏c
r =

m−1∑
i=0

𝜏𝜋i,𝜋i+1
+ 𝜏𝜋m,𝜋0

+
m∑

i=1
𝜏i

=
m−1∑
i=0

d𝜋i ,𝜋i+1

v
+

d𝜋m,𝜋0

v
+

m∑
i=1

𝜏i

=
Dr

Q
v

+
m∑

i=1
𝜏i

(6)

𝜏𝜋i,𝜋j
(s) is the traveling time of the mobile WCE traveling between two

neighboring sensor nodes or between a sensor node and service sta-
tion S. According to Definition 2, a working cycle that is denoted as T,
satisfies Equation (7).

T =
R∑

r=1
𝜏c

r (7)

In addition, a working cycle T also equals the sum of the total trav-
eling time of the mobile WCE and the total charging time. Specifically,
the total traveling time is DQ∕v in a working cycle and the charging time
for all the sensor nodes is

∑N
i=1 𝜏i. Therefore, T also satisfies Equation

(8).

T =
DQ
v

+
N∑

i=1
𝜏i (8)

4.3. The charging strategy for the mobile WCE

In order to prolong the lifespan of the network, a charging strat-
egy based on the energy balancing is proposed. Specifically, the mobile
WCE chooses the suitable sensor node to charge to balance the rest lifes-
pan of all the sensor nodes to minimize the variance. The rest energy
of sensor node si at any time t is denoted as ei (t)(J) which satisfies
Equation (9).

Emin < ei(t) < Emax (9)

Therefore, the rest lifespan of sensor node si at time t is denoted as
Ti

life (t), which satisfies Equation (10).

Ti
life (t) =

ei (t) − Emin
pi

(10)

It is assumed that the mobile WCE arrives at sensor node si at time
t, and the charging power is denoted as U (W) and the charging time
is denoted as 𝜏 i. After sensor node si is charged, its rest lifespan should
be denoted as Ti

life (ti + 𝜏i) as its rest lifespan, which satisfies Equation
(11).

Ti
life (ti + 𝜏i) =

ei (ti + 𝜏i) − Emin
pi

= U𝜏i + ei (ti) − pi𝜏i − Emin
pi

(11)

According to (10) and (11), the average rest lifespan of all the sensor
nodes in WRSNs can be calculated according to Equation (12).

TN
life (ti + 𝜏i) =

[
Ti

life (ti + 𝜏i) +
j≠i∑
j∈N

Tj
life (ti + 𝜏i)

]
∕N (12)
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Moreover, the variance of rest lifespan of all the sensor nodes
S2

life (ti + 𝜏i) is shown as follows.

S2
life (ti + 𝜏i) =

1
N

{[
𝜏 i

life (ti + 𝜏i) − 𝜏N
life (ti + 𝜏i)

]2

+
j≠i∑
j∈N

[
𝜏

j
life (ti + 𝜏i) − 𝜏N

life (ti + 𝜏i)
]2
}

(13)

However, the variance only reflects the fluctuation of the rest lifes-
pan of all the sensor nodes and fails to indicate their average rest lifes-
pan. Though the variance is low, the average rest lifespan of all the sen-
sor nodes may decrease continuously, which is dangerous to the whole
network. Therefore, the rest lifespan of all the sensor nodes before and
after replenishment for the sensor nodes by the mobile WCE should
satisfy Equation (14).

TN
life (ti + 𝜏i) − TN

life (t) ≥ 0 (14)

According to (13), the variance S2
life (ti + 𝜏i) is a quadratic function,

including only one independent variable 𝜏 i. The charging time 𝜏 i can be
calculated by minimizing the variance. The introduction of constraint
(14) adjusts the rest lifespan of the network to avoid the decrease of the
total energy described above. However, if 𝜏 i is unsolved by minimiz-
ing the variance, the sensor node is charged to Emax and the charging
time of the WCE at sensor node si satisfies 𝜏i = (Emax − ei (ti)) ∕ (U − pi).
When the mobile WCE sets off from service station S, its initial travel-
ing energy and initial charging energy are denoted as Etra

max and Ech
max,

respectively. It tends to realize the balanced rest lifespan of all the
sensor nodes to prolong the lifespan of the whole network, maximiz-
ing the energy efficiency of the mobile. Total energy efficiency Φ is
defined as the ratio of the energy consumption in a working cycle
and total energy. Additionally, the energy consumption in a working
round denoted as Er

consume, consists of two parts– the traveling energy
ptra ·

(∑m−1
i=0 𝜏𝜋i𝜋i+1

+ 𝜏𝜋m𝜋0

)
and the charging energy U ·∑m

i=0 𝜏i. Thus,

Er
consume in a working round satisfies the following energy constraint.

Er
consume = ptra ·

(m−1∑
i=0

𝜏𝜋i𝜋i+1
+ 𝜏𝜋m𝜋0

)
+ U ·

m∑
i=0

𝜏i (15)

Moreover, total energy efficiency Φ of the mobile WCE is shown in
Equation (16).

Φ =
∑R

r=1 Er
consume

R
(
Etra

max + Ech
max

) (16)

During a working cycle, one of the optimization objectives is to max-
imize total energy efficiency Φ of the mobile WCE, denoted as min 1

Φ ,
which is greatly related to the traveling path and the charging time of
the mobile WCE in every working round.

4.4. The data collecting strategy of the mobile WCE

The mobile WCE not only charges sensor nodes but also collects
data generated by sensor nodes when visiting all the sensor nodes in
networks. Therefore, the reduction in the delay of the data transmission
among sensor nodes should be considered to improve data transmission.

Because the docking time for the mobile WCE at a service station
is relatively long, it is possible for the mobile WCE to receive requests
to upload data from all the sensor nodes. The request sequence of all
the sensor node is denoted as

{
t1q , t

2
q ,… , tiq,… , tNq

}
, of which trq is the

request time of sensor node si. This paper assumes that the data trans-
mission delay is allowed in the network, so the mobile WCE is used
to travel throughout the network to collect data. Using the single-hop,
data transmission from sensor node si to the mobile WCE is assumed to
be completed instantly, so the transmission time is neglected when the

Fig. 3. Time axis of the working flow for the mobile WCE.

mobile WCE arrives at sensor node si at time ti, denoted as Equation
(17).

Δ𝜏i = ti − tiq (17)

Δ𝜏 i is the delay of data transmission that equals to the duration between
the request time from sensor node si and the time when the mobile WCE
receives data from sensor node si. Δ𝜏 i is related to the traveling path
of the mobile WCE before its arrival at sensor node si and the charging
time for the previous sensor nodes.

Δ𝜏 = 1
N

N∑
i=1

(
ti − tiq

)
(18)

According to (18), the average delay of the data transmission among
all the sensor nodes is denoted as Δ𝜏, which is related to the traveling
path of the mobile WCE and the charging time for sensor nodes in a
working round.

4.5. Multi-objective optimization model

According to the above description, the time axis of the whole work-
ing flow for the mobile WCE is shown in Fig. 3.

The mobile WCE not only charges sensor nodes but also collects
data. Therefore, the traveling path of the mobile WCE and the charging
time of the sensor nodes affects not only the rest lifespan of the sensor
nodes but also data transmission. In the view of energy, it is necessary
to maintain a balance of the rest lifespan of the sensor nodes, and then
to prolong the lifespan of the network by maximizing the total energy
efficiency of the mobile WCE. On the other hand, reducing the average
delay, data transmission better performs. Multi-objective optimization
is demonstrated by the traveling path and the charging time to secure
the maximum energy efficiency and the minimum average transmission
delay, which is shown as follows.

Obj ∶ arg min
Q,𝜏i

F =
{ 1
Φ ,Δ𝜏

}
s.t. ∶ (4), (6), (8) ∼ (10), (13) ∼ (16), (18)

4.6. Problem hardness

To prove the NP-completeness of the multi-objective optimization
of path planning, this paper discusses the traveling salesman prob-
lem(TSP). The decision version of the path planning and the TSP is
stated as follows.

The decision Version of the multi-objective optimization problem of
path planning is that given a set of sensor nodes SN deployed in a 2-D
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plane, each node si ∈ SN(i ∈ 1,2,… ,N) is of battery capacity Emax.
The consumed power of each node si is Pi, and the constant energy
consumption rate of each node si is Ri. The WCE traverses each node
once from the service station S in multiple work rounds in a working
cycle. Is there a path to keep all the sensor nodes alive in a working
cycle, which keeps the total energy utilization of the WCE high and the
average delay of data transmission small?

Theorem. The Decision Version of the multi-objective optimization
problem of Path Planning is NP-Complete.

Proof. Given a path Q = {S, 𝜋1,… , 𝜋i, S,… , 𝜋N , S}, the working
cycle is of R working rounds. The stay time of the WCE at each sen-
sor node si is 𝜏 i. The stay time of the WCE at service station S is zero.
Therefore, the moment ti when the WCE arrives at sensor node si is
calculated. So is the energy consumption of each node and the energy
to be charged in a working cycle. After the energy of each node can-
cels out, the remaining energy is not lower than Emin. O(N + R) is the
time complexity to verify whether the path planning route meets the
conditions, therefore, the multi-objective optimization problem of path
planning is an NP problem.

Reduction from the TSP in polynomial time is conducted. Any
instance of the TSP is denoted as (G′ = (V′,E′),D); any instance of the
multi-objective optimization problem of path planning is denoted as
(G = (V,E), S,R, 𝜏(·),U, ptra, v,Etra

max,E
ch
max , t

q
i ) 𝜏(·) is a group of the stay

time when the WCE arrives at each sensor node and service station S.
The instance of the multi-objective optimization of path planning from
the instance of the TSP is constructed. G = G′, R = 1, V = V′ ∪ S,
𝜏(·) = 1, U = 1, ptra = 1, v = 1, Etra

max = 1, Ech
max = 1, and tqi = 0.

If Q′ = (S, 𝜋′
1,… , 𝜋′

i ,… , 𝜋′
N , S) is a tour of TSP, which covers all the

nodes in V′ and has a maximum length D. A path of the WCE is
Q = (S, 𝜋1,… , 𝜋i,… , 𝜋N , S) = (S, 𝜋′

1,… , 𝜋′
i ,… , 𝜋′

N , S) = Q′. The fol-
lowing equations demonstrate the above description.

D =
N−1∑
i=1

(
d
𝜋′i ,𝜋

′
i+1

v
) +

dS,𝜋′1
v

+
d
𝜋′N ,S

v

DQ =
N−1∑
i=1

(
d𝜋i,𝜋i+1

v
) +

dS,𝜋1

v
+

d𝜋N ,S

v

Er
consune = D + ||V′|| + 1 = D + |V|

Φ =
∑R

r=1 Er
cormuse

R(Etra
max + Ech

max)
= D + |V|

2

The delay of data transmission is Δ𝜏 i = ti, which denotes the time
when the WCE arrives at sensor node si. Given the travel route of the
WCE and the stay time, the arrival time can be easily calculated in
polynomial time. The time complexity to compute the average delay
Δ𝜏 of data transmission is O(D + |V|). TSP is an NP-complete problem,
therefore the multi-objective optimization problem of path planning is
also an NP-complete problem.

5. ES-MOAC algorithm

The multi-objective optimization problem of path planning is an
NP-complete problem. Generally speaking, the swarm intelligence algo-
rithm is used to solve this kind of problems, which includes ant colony
optimization algorithm (ACO), particle swarm optimization (PSO),
genetic algorithm (GA), etc. Ant colony optimization algorithm is an
algorithm that simulates the foraging behavior of ants to find the opti-
mal path.

In this study, the solution to the above multi-objective optimization
problem is to figure out the path planning for the mobile WCE. In other
words, the traveling path and the charging time of each sensor node are
to be determined. Therefore, the ES-MOAC algorithm is proposed.

The key point of the ES-MOAC algorithm is to design the state
transition strategy of ants and the pheromone updating strategy. The

state transition strategy of ants depends on the pheromone concentra-
tion, the distance between two sensor nodes and the rest lifespan of
the sensor nodes in specific conditions. Otherwise, a sensor node that
has not been visited is randomly chosen, so that partial optimal solu-
tions are evitable. When it comes to the pheromone updating strat-
egy, the pheromone updating in a working round depends on the rest
pheromone from the previous working rounds after volatilization and
the pheromone generated by the elitist ants corresponding to the Pareto
set. This pheromone updating strategy is a revised elitist strategy, which
contributes to obtain the optimal Pareto set.

5.1. The state transition strategy of ants

Corresponding to the ES-MOAC algorithm, ants can be viewed as
the mobile WCE. The total number of ants is denoted as A. Ant
k (k = 1,2,… ,A) sets off from the service station and chooses differ-
ent traveling paths at the initial moment. After visiting sensor node si,
ant k choose a second sensor node sj to visit. Under the constraints of
the limited rest traveling energy and the limited charging energy, the
following conditions also should be considered to make decisions.

1) The higher the pheromone concentration along the path between
sensor node si and a second sensor node sj is, the more likely ant k
is to choose a sensor node sj to visit.

2) The shorter the distance between sensor node si and the next sensor
node sj is, the more likely the ant k is to choose a sensor node sj to
visit.

3) The shorter the rest lifespan of a second sensor node sj is, the more
likely ant k is to choose a sensor node sj to visit.

In summary, the specific state transition strategy for ant k moving
from sensor node si to sensor node sj is shown as follows,

j =
⎧⎪⎨⎪⎩

arg maxj∈adk

{[
𝜎ij (t)

]𝛼[
𝜂ij (t)

]𝛽 [
𝜑ij (t)

]𝛾}
, if q ≤ q0

j ∈ adk, else
(19)

𝛼, 𝛽, 𝜆 are the weight coefficients; q0 (q0 ∈ (0,1)) is a constant;
q (q ∈ (0,1)) is a random number; adk represents the set of sensor nodes
that ant k has not been to, and 𝜎ij (k) is the pheromone concentra-
tion on the path between sensor node si and a second sensor node
sj. 𝜂ij (t) = 1∕dij𝜂ij (t), of which dij is the Euclid distance between sen-
sor node si and a second sensor node j. 𝜑ij (t) = 1∕𝜏 ij

life (t), of which

𝜏
ij
life (t) is the rest lifespan of sensor node j when the ant just arrives

at sensor node j after visiting sensor node i. Specifically, 𝜏
ij
life (t) =(

ej (ti + 𝜏i) − pj · dij∕V − Emin
)
∕pj j ∈ adk, which means random choice

of sensor node sj from adk.

5.2. The pheromone updating strategy

To avoid diluting the inspiration information with too much rest
pheromone, the rest pheromone updates in round (t + 1) after all
the ants have been to all the sensor nodes in round t. Therefore, the
pheromone concentration on the path between sensor node si and a
second sensor node sj in round (t + 1) is updated by Equation (20).

𝜎ij (t + 1) = (1 − 𝜌)𝜎ij (t) +
∑

k∈UBP(t)

Δ𝜎k
ij (t) (20)

𝜌 (𝜌 ∈ (0,1)) is a volatility coefficient and BP is the Pareto set con-
cluded by comparing the total energy efficiency and the average delay
of data transmission after all the ants visited all the sensor nodes. UBP(t)
is the set of elitist ant corresponding to the Pareto in tth working round.

The pheromone updating in a working round depends not only on
the unvolatilized pheromone in the previous rounds but also on the
pheromone generated by the elitist ants corresponding to the Pareto
set. Therefore, the following three points matter.
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1) The higher the energy efficiency Φk
ij is, the higher the pheromone

concentration is. The lower Δ𝜏k is, the higher the pheromone con-
centration is.

2) The less the elitist ant k returns to service station S is, the higher the
pheromone concentration in a working round is. Rk indicates how
many times the elitist ant k travels in a working round.

3) The shorter the traveling path in a working cycle is, the higher the
pheromone concentration is.

To sum up, the pheromone generated by the elitist ant k in path
(si, sj) is shown in Equation (21),

Δ𝜎k
ij (t) =

⎧⎪⎨⎪⎩
𝜉 · Φk

Δ𝜏k · Rk · Dk
Q

, if the kth ant pass the path (si, sJ)

0, (else)

(21)

of which Q is a regulator.

5.3. Algorithm statement

Based on the above state transition strategy of ants and pheromone
updating strategy, traveling paths and the charging time can be deter-
mined according to the proposed ES-MOAC algorithm. In accordance
with the ES-MOAC algorithm, the Pareto set turns out in a working
cycle, and the steps are as follows (see Algorithm 1).

Algorithm 1 ES-MOAC algorithm

Input: Partial parameters of the network, charging system, and
ant colony system.
Output: A Pareto set including two target values, the
corresponding charging path and charging time.
1: Initialization: BP is empty, the maximum round of
iterations is M, the number of ants is A, the iteration t = 1,
initial pheromone 𝜎ij (0) = 0 and the other related parameters.
2: while t ≤ M do
3: for k ← 1 to n do
4: Calculate and obtain a traveling path for ant k
according to formula (19).
5: Calculate and obtain a charging path for ant k:
according to the traveling path of ant k, Etra

max ≥
(
Dij + Djs

)
· ptra

and Ech
max ≥ 𝜏i · U should be satisfied when ant k will transfer

sensor node sj at sensor node si, otherwise, a service station
should be set between sensor node si and sensor node sj.
6: Calculate two target values corresponding ant k.
7: Update the Pareto set BP by comparing the solution of
ant k and the previous Pareto solution.
8: end for
9: Update Pareto set BP (t) in the tth working round:
compare two objective values generated by all the ants in the
tth working round.
10: Updated the pheromone concentration according to
formula (20) and formula (21).
11: t = t + 1
12: end while
13: Obtain the Pareto set BP and the corresponding charging
path Q and charging time 𝜏 i.

6. Experimental results

6.1. Experimental settings

Twenty sensor nodes are randomly deployed over a
1000 m × 1000 m square area, in which a service station is
located at (0 m,0 m). According to (Shi et al., 2012) and (Xu et al.,

2017), simulation parameters are shown as follows. Emax = 10.8 KJ,
Emin = 540J, Etra = 20 KJ, Ech = 20 KJ, V = 8 m∕s, U = 10W
and ptra = 100W. The energy consumption power pi (W) is a random
number from 0.1 to 1. The simulation platform is MATLAB R2016a.

What to analyze includes effects of the iterations, the num-
ber of ants A, adjustment factors q0 in accordance with the State
Transition Strategy of Ants and the pheromone volatilization coeffi-
cient 𝜌 in accordance with the pheromone updating strategy derived
from the ES-MOAC algorithm of certain fixed system parameters
and comparison of ES-MOAC algorithm and NSGA-II (Deb et al.,
2002).

In this section, we compare the proposed ES-MOAC with a state-
of-the-art multi-objective method, namely NSGA-II algorithm. NSGA-
II algorithm is one of the most popular multi-objective algorithms,
which reduces the complexity of non-inferior ranking genetic algo-
rithms and has the advantages of fast operation speed and good con-
vergence of solution set. Furthermore, NSGA-II algorithm has become
the benchmark for the performance of other multi-objective opti-
mization algorithms. NSGA-II algorithm is improved based on non-
dominated sorting genetic algorithm. These four new innovations are
as follows– a fast non-dominated sorting procedure, a fast-crowded
distance estimation procedure, a simple crowded comparison oper-
ator, and an elitist-preserving approach. The procedure of NSGA-II
algorithm can be summarized as follows. Firstly, a combined popula-
tion Rt = Pt ∪ Qt is formed. Population Rt is of size 2H. Then, pop-
ulation Rt is sorted according to non-domination, which generates a
series of non-dominated sets Zi and the crowded degree is calculated.
Since both the offspring and the parent individuals are contained in
population Rt , after the non-dominated sorting, the individuals con-
tained in non-dominated set Z1 are the best in population Rt . There-
fore, the individuals of non-dominated set Z1 are firstly put in a new
parent population Pt+1. If the size of Pt+1 is less than H, population
Pt+1 is filled with the individuals of the next-level non-dominated set
Z2. The size of the population does not exceed H until the individu-
als of Z3 is added. The crowded comparison operator is used for the
individuals in set Z3, which make the individual number of the pop-
ulation Pt+1 add up to H. Then, a new offspring population Qt+1 is
generated by genetic operators, namely selection, crossover, mutation,
etc.

6.2. Analysis of simulation

6.2.1. The influence of the parameters in the ant system of the ES-MOAC
algorithm

According to Fig. 4, 𝛼 = 1, 𝛽 = 5 and 𝛾 = 4. The Maximum
iterations M is 150, and 50 groups of contrastive experiments are con-
ducted. 10 ants, 15 ants, 20 ants and 25 ants are involved, respectively.
As a result, the average number of the Pareto optimal solutions varies
as the 50 groups of contrastive experiments iterate. The average num-
ber of the Pareto optimal solutions approaches to a specific constant
value if the algorithm iterations are more than 120. If the number of
ants is not less than 15, the number of ants rarely affects this algo-
rithm.

According to the above experiments, as shown in Fig. 5, the max-
imum iteration M is 150, the number of ants A is 20, q0 varies from
0 to 1, and the other ant system parameters remain unchanged. The
curve of the average number of Pareto optimal solutions in 50 groups
of contrastive experiments changes in accordance with the change of
q0. If q0 is between 0.6 and 0.9, the algorithmic results are ideal. Simi-
larly, the maximum iteration M is 150, the number of ants A is 20, q0 is
0.8, volatility coefficient 𝜌 varies from 0 to 1 (see Fig. 6), and the other
ant system parameters remained unchanged. The curve of the average
number of Pareto optimal solutions in 50 groups of contrastive experi-
ments changes in accordance with the change of 𝜌. If 𝜌 is set between
0.2 and 0.5, the algorithmic results are ideal.
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Fig. 4. Influence of iteration towards the number of Pareto optimal solution of
the algorithm with different numbers of ants.

Fig. 5. Influence of adjustment factors q0 on the algorithm.

6.2.2. Analysis of the results of ES-MOAC
According to the experiments above, the parameters of the algo-

rithm are as follows: the maximum iteration M is 150, the number of
ants A is 20, the adjusting factor q0 in accordance with ant state trans-
fer strategy is 0.8, and the volatilization coefficient of pheromone 𝜌 in
accordance with pheromone updating strategy is 0.4. In this section,
the specific position coordinates of 20 sensor nodes in the network are
shown in Table 1. The other network parameters are the same as those
of the previous experimental settings. Then, shown in Fig. 7, the ES-
MOAC algorithm is adopted to solve the Pareto frontier of the problem
under different iterations. Rarely change under 120 iterations. On the
other hand, the total energy efficiency of the mobile WCE and the aver-
age delay of data transmission in different conditions can be calculated.

All the red circles in Fig. 7 form the Pareto optimal solutions set.
Decision-makers can choose a solution in the Pareto optimal solutions
set to solve particular problems. If less delay in data transmission is
required, decision-makers should choose the solutions formed by red
circles in the lower right corner of Fig. 7. If the higher total energy
utilization of the WCE is required, decision-makers should choose the
solutions formed by red circles in the top left corner of Fig. 7. If a
balance of the previous two is required, decision-makers should choose
the solutions formed by red circles in the middle of Fig. 7. In addition,

Fig. 6. Influence of pheromone volatilization coefficient 𝜌 on the algorithm.

Table 1
Position coordinates of 20 sensor nodes in the network.

Node No. Coordinate/m Node No. Coordinate/m

1 (342,112) 11 (609,579)
2 (198,192) 12 (827,504)
3 (758,119) 13 (757,734)
4 (921,320) 14 (287,643)
5 (946,742) 15 (253,922)
6 (854,847) 16 (103,777)
7 (680,979) 17 (559,490)
8 (656,769) 18 (277,396)
9 (128,490) 19 (54,489)
10 (486,813) 20 (465,280)

the energy consumption of the mobile WCE in a working cycle with
the highest total energy efficiency of the mobile WCE and the lowest
average delay of data transmission in the network is shown in Table 2
and Table 3. Comparing Table 2 with Table 3, the number of working
rounds corresponding to the lowest average delay of data transmission
in a network within a working cycle is less than that of the solution
with the highest total energy efficiency of the mobile WCE. Therefore,
the mobile WCE spends less time in the path. The average delay of data
transmission in the network is relatively low. The solution with the
highest total energy efficiency of the mobile WCE has conducted more

Fig. 7. Pareto frontiers under different iterations by using ES-MOAC.
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Table 2
Energy consumption during a working cycle for the mobile WCE (highest
total energy efficiency).

Traveling path in a round Traveling energy/J Charging energy/J

0-1-13-4-12-0 18098.38 13574.76
0-2-20-17-11-8-0 18469.46 15462.04
0-18-16-10-7-0 18783.94 16601.46
0-3-6-5-0 17503.66 16945.39
0-19-9-14-15-0 17462.01 17492.82

Table 3
Energy consumption during a working cycle for the mobile WCE (lowest
average delay of data transmission).

Traveling path in a round Traveling energy/J Charging energy/J

0-19-9-16-15-10-14-18-2-0 19982.67 5487.37
0-1-20-17-11-8-7-0 19540.78 5647.44
0-3-4-12-5-6-13-0 19734.08 5555.05

working rounds, in which the energy cost is high and the time spent in
a working cycle is long. To balance the rest energy of the sensor nodes
in the network, the cost of charging energy is high and so is the total
energy efficiency. Thus, the lifespan of the whole network is prolonged.

In (Shi et al., 2012), the battery energy of each sensor node is
charged to Emax. The charging strategy is localized in the proposed
algorithm called ES-MOAC. 50 experiments are conducted, following
the proposed charging strategy in (Shi et al., 2012). In Fig. 8, y1 and
y2 represent the number of the Pareto solutions calculated according to
the charging strategies. The number of Pareto solutions obtained by this
proposed scheme is much higher, compared to those obtained by the
charging strategy in (Shi et al., 2012). The number of Pareto solutions
obtained by this proposed scheme is much more than those obtained
by the charging strategy in (Shi et al., 2012). The battery energy of
each sensor node is charged to Emax, which makes it difficult to keep
the other sensor nodes alive in the network. The proposed scheme is
to minimize the variance of the remaining life of all the sensor nodes,
which ensures that the remaining energy of all the sensor nodes is bal-
anced and the network lifespan is prolonged.

Comparison of the Pareto frontiers by using the charging strategy in
our paper and literature (Shi et al., 2012) is shown in Fig. 9. The figures
show that the solutions obtained by the proposed scheme are more than
those in accordance with the charging strategy in (Shi et al., 2012) to

Fig. 8. The number of Pareto solutions obtained in each experiment under the
two schemes and the average value.

Fig. 9. Comparison of the Pareto frontiers by using the charging strategy in our
paper and in literature (Shi et al., 2012).

Fig. 10. Comparison of the Pareto frontiers by using ES-MOAC and NSGA-II.

be provided for the decision-makers. Decision-makers have options to
better solve practical problems.

6.2.3. Comparisons of ES-MOAC and NSGA-II
According to the experiments mentioned above, the parameters of

the algorithm can be set as follows: the maximum iteration M is 150,
the number of ants A is 20, the adjusting factor q0 in accordance with
ant state transfer strategy is 0.8, and the volatilization coefficient of
pheromone 𝜌 in accordance with pheromone updating strategy is 0.4.
Applying ES-MOAC and NSGA-II, 50 groups of experiments are con-
ducted to compare. As shown in Fig. 10, the Pareto frontier gener-
ated by ES-MOAC is better than that generated by NSGA-II.As shown
in Table 4, Φ is the total energy efficiency and Δ𝜏 is the average delay
of data transmission. Φ and Δ𝜏 are the two optimization objectives in
this study. RN is the number of Pareto optimal solutions. SP indicates
the distribution range of Pareto optimal solutions in the objective space.
M∗

3 measures the distribution range of Pareto optimal solutions around
its frontier. According to the statistic of comparative tests, ES-MOAC
algorithm is better than NSGA-II, of which the total energy efficiency
is up to 86.19%. Furthermore, the delay of data transmission obtained
by the ES-MOAC algorithm is shortened by 11.67% when compared
with NSGA-II. As shown in Fig. 11 and Table 4, the distribution of solu-
tions obtained by ES-MOAC is more concentrated and the number of
solutions is more than that obtained by NSGA-II. The average of RN in
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Table 4
Comparison of the solutions obtained by ES-MOAC and NSGA-II.

Index Statistic

Best value Worst Value Average Median

Φ/% ES-MOAC 86.19 56.02 71.28 71.43
NSGA-II 85.42 52.21 68.19 67.28

Δ𝜏/s ES-MOAC 1380.42 8971.85 4404.85 4411.43
NSGA-II 1541.12 9341.52 4642.56 4566.49

RN ES-MOAC 49 25 36 35
NSGA-II 34 15 26 26

SP ES-MOAC 2416.57 25.41 765.86 487.96
NSGA-II 2845.11 60.43 1025.25 833.30

M∗
3 ES-MOAC 5655.37 8.98 382.88 121.83

NSGA-II 6520.66 9.82 539.42 129.01

Fig. 11. Comparison of box plots of indexes obtained by ES-MOAC with NSGA-II.

accordance with the ES-MOAC is 27.8% more than with NSGA-II.

7. Conclusion

Considering the limited traveling energy and the charging energy,
a multi-objective path planning model is proposed to both charge and
collect data. As the balanced energy of the network is secured, there
are the rules of charging path for the mobile WCE to maximize the total

energy efficiency of the mobile WCE and minimize the average data
transmission delay. Consequently, data transmission improves in the
network and the network lifespan extends. This paper proposes a multi-
objective ant colony algorithm based on the elitist strategy. The ant
colony transition strategy and pheromone updating strategy of the ES-
MOAC algorithm are designed, and the Pareto set of the multi-objective
optimization is derived, which provides decision-makers with different
solutions. This study tests parameters including the maximum iterations
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in the ant system, the number of ants, the adjustment factors in the
ant state transition strategy and pheromone volatilization coefficient in
accordance with pheromone updating strategy. The paper examines the
algorithmic results of the ES-MOAC applied to a specific network, and
verifies the model. 50 groups of experiments of the appropriate parame-
ters are conducted in the same circumstance to compare the algorithms
of ES-MOAC and NSGA-II. The simulation results demonstrate that the
ES-MOAC algorithm is more effective than the other.
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