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Abstract
Restoring image from motion deblur faces great challenges in the estimation of the motion
blur kernel that is the key to recover the latent sharp image. In this paper, we present a
method to iteratively estimate the structural image and account for the textural component.
A scale-aware smoothing operation is developed to remove fine-scale edges with resam-
pling. Our method leverages L0-norm regularization to enforce the sparsity of the motion
blur kernel in both intensity and derivative domains. Experiments are conducted to eval-
uate the performance of our proposed method using two widely accepted public datasets.
We found that our proposed method is insensitive to most hyper-parameters. Both qualita-
tive evaluation and quantitative evaluation confirms that our method effectively restores the
sharp image without introducing artifacts. The minimum improvements in terms of average
PSNR for both datasets are more than 3.13% for all cases and the improvements in terms
of average error rate are 15%. By visually comparing the estimated motion blur kernels, it
is clear that the estimated kernel by our method is the closest to the actual kernel used to
generate the synthesized blurry images.

Keywords Deconvolution · Motion deblurring · Kernel estimation

1 Introduction

Restoring images from motion deblur has been a focus of research in computer vision and
image processing and has a wide range of applications [15, 21, 23]. The goal is to estimate
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Fig. 1 Decomposition of a blurred image

a blur kernel and recover the latent sharp image. A blurry image, denoted with y, can be
represented in a form of motion-blurred sharp image x and additive noise n as follows:

y = x ⊗ k + n (1)

where k is the motion blur kernel and ⊗ denotes the convolution operation.
Studies have shown that structural edges in images are important to the estimation of

blur kernels [10, 18]. Xu et al. [20] concluded that if the scale of an object is smaller than
that of the blur kernel, the edge information could negatively impact the kernel estimation.
Many deblurring methods [9, 10] improve blur kernel estimation by exploring the structural
edges. Sharp structural edge restoration can be achieved either implicitly or explicitly. The
implicit structural edge restoration methods generally employ a statistical prior as a con-
straint to regularize the edge selection [4, 7, 11, 12, 20, 22]. Krishnan et al. [7] proposed a
normalized sparsity prior to restore images from motion blur, which tends to remove detri-
mental edges. Xu et al. [20] proposed a method that preserves the structural edges in the
image by leveraging a L0 regularization strategy.

The explicit structural edge restoration methods rely on the heuristic operations to
recover structural edges for kernel estimation [1, 18]. In [1], bilateral filter and shock filter
are performed to select structural edges, which tends to increase the computational complex-
ity. However, such salient edges could mislead the kernel estimation process. To circumvent
this issue, a two-step kernel estimation method was proposed to assess the usefulness of
image edges [18].

In the aforementioned methods, structural edges are used implicitly or explicitly to
estimate the motion blur kernel. Figure 1 illustrates an image that is decomposed into a
structural image and a textural image. The edges in the structural image are used for kernel
estimation, which uses an objective function in the following form: �xs ⊗ k − �y. This
objective function computes the difference between the structural component of the blurred
image and the observed image, but it neglects the fine textual components (i.e., yt in Fig. 1).

Another issue is that the existence of fine-scale edges.1 The scale of such edges is smaller
than that of the kernel and poses a challenge to kernel estimation (a detailed explanation is
in Section 2). Xu and Jia [18] proposed an edge selection scheme to reduce the suppression
of fine details. The selection scheme tends to remove edges with a small gradient using the
sum of the gradient magnitudes in local windows as the decision criterion. Edges with high-
magnitude gradients are preserved. The magnitude of fine-scale edges tends to suffer from
a significant reduction. If the image structural magnitude greatly changes after the blur, the
corresponding edge information could mislead the kernel estimation.

To address the aforementioned problems, we propose a method to estimate the struc-
tural image. The structural image is used in the objective function. To circumvent the
second problem, a scale-aware smoothing scheme is developed, which removes fine-scale
edges with resampling. The blur kernels are usually sparse in the intensity and derivatives

1The fine-scale edge refers to edges of a short length.
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Fig. 2 Examples of the deblurred image using the derivatives of the blurred image and the derivatives of the
structural component. a blurred image. b deblurred result [18] using the derivatives of the blurred image. c
deblurred result using the derivatives of the structural component

domains. To enforce the sparsity, L0-norm regularization is used in our method. Figure 2
illustrates an example of the motion blur image and the restored images using the method
by Xu and Jia [18] (Fig. 2b) and our proposed method (Fig. 2c). The estimated motion blur
kernels are superimposed on the top right corner of the result images.

The rest of this article is organized as follows. Section 2 presents our proposed method
with a detailed discussion on structural image estimation and motion blur kernel generation.
Section 3 discusses our experimental results using two popular image sets, which includes
an ablation evaluation of the key parameters and a comparison with state-of-the-art methods.
Section 4 concludes this paper with a summary.

2 Method

Our algorithm estimates the convolution kernel in a coarse-to-fine manner and refines the
sharp image iteratively. Figure 3 illustrates the flowchart of our proposed method. Our

Fig. 3 The flowchart of our proposed method
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Fig. 4 An illustration (recreated based on [18]) of the effect of structural edges to the estimation of kernels

method derives a sharp structural image (depicted as an intermediate image on the left),
which is used for kernel estimation. Using the estimated kernel, the deblurred result is
achieved by deconvolution.

Following the discussion in [18], the importance of structural image to kernel estimation
is illustrated using one-dimensional step signals as shown in Fig. 4. The solid curves in
Fig. 4a and b depict step signals in different scales (width). Using the same Gaussian kernel,
the motion blurred results are shown with dashed curves in light blue. Because the scale
of the left step signal is smaller than that of the Gaussian kernel, the signal magnitude is
significantly reduced, which induces ambiguity in signal restoration. The existing methods
recover a step signal with a lower magnitude depicted with a dashed curve in red. Hence, the
magnitude of image structure significantly reduced by motion blur lead to imprecise kernel
estimation. In comparison, the larger-scale step signal in Fig. 4b results in a precise kernel
estimation.

2.1 Structural image estimation

Because the fine-scale structures (smaller than the scale of the motion blur kernel) could
mislead the kernel estimation, the sum of the gradient magnitudes in a local window is
used as a criterion to reduce the fine-scale edges. These schemes that only rely on gradient
remove edges with a fine-scale and low-magnitude gradient as well as edges with coarse-
scales and low-magnitude gradient; whereas edges with fine-scale and high-magnitude
gradient tend to be preserved.

Our method uses a resampling strategy to remove fine-scale edges, which includes a
down-sampling process followed by an up-sampling process. The edges with scales smaller
than the down-sampling factor are removed, while the coarse-scale (long) edges are recov-
ered by the up-sampling process. This operation is equivalent to performing a morphological
opening operation in the scale space. That is, the down-sampling performs an erosion oper-
ation to eliminate the small-scale object and the up-sampling performs a dilation operation
to recover the large-scale object. Figure 5 illustrates an example of this resampling process.
The fine-scale structures are shown as rectangles in light gray. By down-sampling, the fine
details are eliminated. The image in the middle shows the result of down-sampling. An up-
sampling process recovers the image without fine-scaled structures, as shown on the right
panel of Fig. 5.

The structural image contains coarse-scale edge features. In our method, we use a
binary mask to pin-point pixels that correspond to structural features. In such a mask, pix-
els corresponding to coarse-scale structural edges are 1s. This binary mask (denoted with
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Fig. 5 Resampling operation suppresses fine-scale structures

M) consists of two components that are integrated using component-wise multiplication:
M = M1 � M2, where � denotes component-wise multiplication.

Binary mask M1: M1 aims at preserving the coarse-scale structural edges. The structural
similarity (SSIM) of the resampled image and the input image is computed to distinguish the
fine- and large- scale structures from the input image. We have the following three cases: (1)
SSIM is very low (close to 0) at the fine-scale texture regions. This is because the small-scale
textures are removed or suppressed in the resampled image. (2) SSIM is close to 1 because
there is little changes in the area. (3) SSIM is in-between in the boundaries of large objects,
which expresses the similarity between the clear boundary and the corresponding blurred
boundary. M1 is obtained by thresholding the SSIM map. Smooth regions and coarse-scale
edges are set to 1; the rest pixels receive a value of 0. The threshold is proportional to the
scaling factor of the down-sampling operator. In this paper, the threshold is 0.1 with the
scaling factor at 0.25.

Binary mask M2: In the derivatives domain, binary mask M2 is obtained by thresholding
the convolution result of the intermediate image with the corresponding Gaussian kernel.
The element are 1 for the regions corresponding to large-gradient edges and 0 for the rest.
The intermediate sharp image is the result of L0 regularization, in which edges with small
gradients are removed. In the smooth regions of an image, the pixel value varies slightly.
Our choice of the threshold considers the slight differences of pixel values and the threshold
for M2 is 0.001.

We divide an image into textural (representing the fine-scale components) and structural
(representing the coarse-scale components) components. The derivatives of the blurry image
are computed as a summation of the gradient of structural component ys and the gradient of
textural component yt :

∑

d∈{h,v}
(fd ⊗ ys + fd ⊗ yt ) =

∑

d∈{h,v}
(fd ⊗ xs ⊗ k + fd ⊗ xt ⊗ k) (2)

where fd consists of a horizontal gradient operator fh and a vertical gradient operator fv ,
xs and xt are the structural and textural components of the clear image. The blur kernel is
estimated using the coarse-scale structural component �ys :

�ys =
∑

d∈{h,v}
fd ⊗ xs ⊗ k (3)
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Following the L0 regularization, textural components in the intermediate sharp image are
greatly suppressed. Therefore, image x is a plausible approximation of the structural image
xs . Accordingly, ys and �ys are approximated with M � y and M � (fd ⊗ y), respectively.

2.2 Kernel estimation

Provided with the motion blur kernel k, we minimize the following function to estimate the
clear image x:

x = argmin
x

||x ⊗ k − y||22 + α||fh ⊗ x + fv ⊗ x||0 (4)

where fh is the first derivative in the horizontal direction of the image and fv is the first
derivative of in the vertical direction of the image, α is a scalar weight factor and function
|| · ||0 computes the number of non-zero values.

The kernel k is estimated by minimizing the following objective function:

k = argmin
k

||�x ⊗ k − M � �y||22 + λ(σ ||k||0 + ||C(k)||0) (5)

where

�x = (fh ⊗ x, fv ⊗ x)T ,

�y = (fh ⊗ y, fv ⊗ y)T ,

C(k) = |fh ⊗ k| + |fv ⊗ k|,
and � denotes component-wise multiplication. M is a binary mask, in which 0 and 1
represent the texture and structure components, respectively.

To minimize (5), our method follows the half-quadratic splitting method [10] and the
objective function is rewritten as follows:

k = arg min
k,u,g

||�x⊗k−M��y||22+β||k−u||22+μ||�k−g||22+λ(σ ||u||0+||C(g)||0) (6)

where β and μ are self-adapt in the optimization process and the values vary in the range
of [4 256] (refer to [10, 16, 19] for a detailed explanation of the self-adapting process). The
process consists of the following two iterative steps:

Step 1: Calculate k while fixing u and g. The objective function is rewritten as follows:

||�x ⊗ k − M � �y||22 + β||k − u||22 + μ||�k − g||22 (7)

Since this objective function is quadratic, we derive the closed-form solution using
Fourier transform as follows:

k = F−1

(∑
d∈{h,v}(Fx×y + μFf ×g) + βF(u)
∑

d∈{h,v}(Fx×y + μFf ×f ) + β

)
(8)

where

Fx×y = FH (fd ⊗ x)F(M � (fd ⊗ y)),

Fx×x = FH (fd ⊗ x)F(fd ⊗ y),

Ff ×g = FH (fd)F(gd),

Ff ×f = FH (fd)F(fd),

F denotes Fourier transform and FH denotes the conjugate Fourier transform.
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Step 2: Calculate u and g while fixing k.

u =
{

k, |k|2 ≥ λσ
β

0, Otherwise
(9)

g =
{
�k, |�k|2 ≥ λ

μ

0, Otherwise
(10)

3 Experimental results and discussion

3.1 Datasets and settings

To evaluate the performance of our proposed method, we adopt the two sets of
images and the motion blur kernels: image set 1 by Sun et al. [14] and image set
2 by Köhler et al. [6]. The image and motion blur kernels can be accessed at http://
cs.brown.edu/∼lbsun/deblur2013/deblur2013iccp.html and http://webdav.is.mpg.de/pixel/
benchmark4camerashake/. In our experiments, the scaling factor is 0.25 for the scale-
aware filtering. The threshold to generate the binary masks M1 and M2 are 0.1 and 0.001,
respectively.

3.2 Ablation experiment

Our objective function includes three regularization terms: L0 regularization term α, kernel
sparse regularization term, and kernel gradient sparse regularization term. In this section,
we evaluate each by varying the value of one term while fixing the others. In the evaluation
of α, we change the value of α in the range of 0 to 0.002 while keeping the other terms
constant. Figure 6 shows the deblurred results and the corresponding PSNR is reported in
Table 1. In general, as α increases PSNR reduces, and our method achieves the best PSNR
at α = 10−4. In our experiments, however, the value of α was not fixed. At the beginning
of the iteration, we used a large α to smooth the image and suppress the errors and ringing
artifacts. As the optimization process continues, the blurry kernel gets more accurate, which
requires a smaller α to preserve structural information. Hence, the value for α decreases
gradually. In our experiments, α decreases from 10−3 to 10−4.

For the kernel sparse regularization term λσ , it changes in the range of 10−5 and 10−2.
Following the same scheme, we got the following PSNRs for various λσ . Table 1 list the
average PSNR for various λσ values. The difference is small and at λσ = 10−4 the best
PSNR was achieved. Hence, in the rest of our experiments, λσ was set to 10−4.

For kernel gradient sparse regularization term λ, we change its value in the range of
[0.1 50] and the results are in the following table. The difference between PSNRs is small.
Based on these results, the choice for λ is 1.

To understand the progressive improvement of our method, we visualize the intermediate
structural image and the motion blur kernel of some iterations in Fig. 7. From left to right,
the panels show the intermediate results as the iteration number increases. At an early stage
(left panels), the intermediate images contains strong artifacts. As the optimization contin-
ues, such artifacts are greatly suppressed and the structural information is recovered (right
panels). The progressive improvement is also evident in the estimated motion blur kernel as
shown on the top left corner of each image.
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Fig. 6 The deblurred results using different α values

3.3 Qualitative evaluation

Figure 8 presents a visual comparison of the deblurred results of the Clock image in dataset
2 [6] using five state-of-the-art methods and our proposed method. Figure 8a and e show
the sharp image and the synthesized motion blurred image. The zoom-in views of regions
enclosed by two boxes are shown at the bottom of each panel. The one on top left corner
depicts a high-contrast region; the one on the right margin shows a low-contrast feature.
Except for Fig. 8b, the restored images by the other methods appear to be clear and sharp.
However, when we look into the details of the deblurred results, the blurry marks are notice-
able in the zoom-in views of Fig. 8c, d, f, and g: the two bright stripes near number six
and the fuzzy appearance of number 52. The proposed method exhibits a much superior
result, as shown in Fig. 8h. In comparison with state-of-the-art methods, it is evident that
our algorithm performs well on the recovery of details while suppressing ringing artifacts.

Table 1 PSNR of regularization terms

α 0 10−4 5 × 10−4 10−3 1.5 × 10−3 2 × 10−3

PSNR 23.83 27.21 26.61 26.15 20.19 18.57

λσ 0 10−5 10−4 10−3 5 × 10−3

PSNR 27.41 28.05 28.22 28.03 27.45

λ 0 10−5 10−4 10−3 5 × 10−3

PSNR 28.12 28.33 28.58 28.42 28.25

Multimedia Tools and Applications (2020) 79: –218872187321880

Author's personal copy



Fig. 7 The structural image and the motion blur kernel (top-left of each panel) of each iteration

Figure 9 depicts the deblurred result using five state-of-the-art methods and ours using an
image from dataset 1 [14]. Figure 9a and (e) illustrate the sharp image and the synthesized
motion-blur image. The kernel used to generate Fig. 9e is shown on the top right corner of
Fig. 9a. Zoom-in views of two regions (marked with a red and a blue box) are depicted at
the bottom of each panel. It is clear that the results are shown in Fig. 9b and f suffer from
severe aliasing effects. The results of Levin et al. [9] and Sun et al. [14] (as shown in Fig. 9c
and d) achieve better results. Although the spatial details still show ringing artifacts (see the
zoom-in views), such artifacts are mitigated in Fig. 9c, d and g. In contrast, the result of
our proposed method demonstrates a much clear reconstruction with great details and fewer
artifacts. By visually comparing the estimated motion blur kernels shown on the top left
corner of each panel, it is clear that the estimation produced by our proposed method is the
closest to the actual kernel used to generate the synthesized blurry images shown in Fig. 9e.

3.4 Quantitative evaluation

Our quantitative evaluation adopts the Peak Signal Noise Ratio (PSNR) and Error Ratio
(Er):

PSNR(x, xd) = 10 log10(max(x)2/MSE(x, xd)), (11)

Er(x, xg, xd) = MSE(xg, x)

MSE(xd, x)
, (12)

where xd and xg are deblurred image and the ground-truth image, respectively. MSE com-
putes the mean square error: MSE(a, b) = 1

MN

∑
i,j (a(i, j) − b(i, j))2, where M and N

Fig. 8 Deblurred results of an exemplar image in dataset 2 [6]
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Fig. 9 Deblurred results of an exemplary image in dataset 1 [14]

are the number of rows and columns of the image, i and j are the pixel indices. The minimum
error ration is one and a large error ratio implies poor image quality.

Using the 80 sharp images in dataset 1 [14], we synthesized 640 motion-blurred images
using eight motion blur kernels. In addition, Gaussian noise is introduced into the blurred
image and the variance of the Gaussian function is set to 0.01. The results of PSNRs and
error rates are reported in Table 2. Using the four sharp images in dataset 2 [6], 48 blurry
images were synthesized using 12 blur kernels. The results are reported in Table 3.

Table 2 reports the average PSNRs and error rates of the restored image from the 640
cases. The first column presents the PSNR and error ratio of the deblurred results using the
motion blur kernel that was used to generate the blurry images. This is the best possible
result achievable if the exact motion blur kernel is recovered. By comparing the results of all
the methods, it is clear that our method yielded the greatest PSNR (31.53) and the smallest
error rate (1.69), which is closest to the values in the first column. Compared to the second-
best PSNR produced by [8], our method achieved an improvement of 6.5%. In contrast to
the second-best error ratio produced by [14], our method exhibited an improvement of 15%.
It is evident that the kernels estimated by our proposed method are much more accurate than
the state-of-the-art methods.

Table 2 Average PSNR and error ratio of our proposed method and the state-of-the-art methods using
dataset 1 [14]. Ref. is the deblurred result using the actual motion blur kernel

Ref. [1] [2] [7] [9] [18] [14] [8] Ours

PSNR 32.46 26.24 20.17 23.22 24.94 28.31 29.56 29.61 31.53

Er 1.00 4.19 18.14 8.37 5.65 2.60 1.95 2.07 1.69
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Table 3 Average PSNR of the restored images of our proposed method and the state-of-the-art methods
using dataset 2 [6]

Images [17] [5] [13] [3] [7] [1] [18] [24] Ours

Church 27.55 26.72 26.43 22.78 26.87 28.91 29.41 30.13 31.73

Clock 22.87 22.59 20.60 14.94 21.76 24.27 25.48 25.47 25.22

Backyard 28.61 26.42 25.88 22.97 26.64 29.20 29.30 30.18 31.46

Roof 24.71 23.54 22.40 22.97 22.87 26.61 26.76 26.77 27.60

Mean 25.93 24.82 23.82 18.90 24.53 27.25 27.74 28.12 29.00

Table 3 presents the average PSNRs for each image in dataset 2 [6] given 12 motion blur
kernels. Each row lists the average PSNRs of the synthesized blurry variants of one sharp
image. We highlight the best results in bold font. Out of four cases, our method achieved
the best performance in three and the maximum improvement rate compared to the second-
best is 5.31%. There is one case, in which the method by Xu and Jia [18] resulted in the
greatest PSNR. However, the difference to our method is within 1%. The last row of this
table reports the mean of all cases. The mean PSNR of our method is 29 and the second best
is 28.12 (achieved by Yue et al. [24], which is an improvement of 3.13%.

Note that these two datasets account for a variety of motion blur. The improvements in
terms of PSNR for the experiments with the two datasets are mostly consistent. It is hence
evident that the proposed method effectively restores the sharp image without introducing
many artifacts.

4 Conclusion

Restoring images from motion deblur has a wide range of computer vision applications.
The key is estimating a motion blur kernel to recover the latent sharp image. In this paper,
we present a method to estimate the structural image and use it in our objective function. A
scale-aware smoothing operation is developed to remove fine-scale edges with resampling.
Our method leverages L0-norm regularization to enforce the sparsity of the motion blur
kernel in both intensity and derivative domains. Experiments are conducted to evaluate the
performance of our proposed method using two widely accepted public datasets.

By conducting ablation experiments, we found that our proposed method is insensitive to
most hyper-parameters. In particular, the PSNR varies in a small range for different values
of λ and λσ (two key parameters in our method). In addition, to accelerate the optimization
speed, our method gradually reduces the value of α to ensure the suppression of artifacts
and preservation of structural information.

By visualizing the results of our proposed method and the state-of-the-art, our method
resulted in much clearer reconstructions with great details and fewer artifacts. By visually
comparing the estimated motion blur kernels, it is clear that the estimated kernel by our
method is the closest to the actual kernel used to generate the synthesized blurry images.
Using PSNR and error rate, we also quantitatively compared our method with the state-of-
the-art. The minimum improvements in terms of average PSNR for both datasets are more
than 3.13% and the improvements in terms of average error rate are 15%. Given that the
two datasets account for a variety of motion blur, our method effectively restores the sharp
image without introducing artifacts.
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