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Abstract
A blockchain is resistant to modification based on the consensus of the network majority, which requires a large amount
of communication among distributed nodes. Existing data dissemination protocol solves the wrong block problem also at a
high communication cost. This paper investigates the error-correcting tamper-proofing data storage problem and proposes
a three-layer framework to store the data in the blockchain to achieve data integrity. The data are stored as blocks, and we
design a two-dimension chain data structure consisting of horizontal and vertical chains. This paper proposes a Rotating
multiple random Masters and Error-Correcting data storage framework based on blockchain (RMEC) to strike a trade-off
between system decentralization and the amount of communication. The proposed Rotating Multiple Random Sampling
consensus mechanism (RMRS) randomly selects multiple temporary master nodes to handle each data access request so as
to reduce the communication cost. We also propose two error-correcting mechanisms to validate and correct the wrong data
blocks. Finally, we implement a prototype and conduct analyses on the system performance. The experiments demonstrate
that the framework can achieve data tamper-proof and effectively reduce the communication cost.

Keywords Blockchain · Data integrity · Data storage · Error-correcting

1 Introduction

The traceability and integrity of data are critical for many
data storage systems. Traditional centralized and distributed
storage systems face the problem that the data are prone
to be tampered by outside or internal attackers. Two
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techniques, digital signature and digital watermarking are
currently widely used to protect data integrity. Using the
digital signature, the sender signs the protected data with
the tag of the data, and the tag is the hash value of the
data with the private key of the sender using the public key
cryptographic mechanism. The sender transmits both the
data and the tag to the receiver who verifies the integrity of
the received data. That is, the receiver calculates the hash
value of the received data using the public key of the sender.
If the hash value calculated is the same as that received,
the verification is successful and the data are not modified;
otherwise, the verification failed and the data are modified.
Digital watermarking embeds digital markup information in
a carrier signal, such as digital multimedia data, by means
of signal processing. Such information is usually invisible
and can be extracted only through a dedicated detector or a
reader algorithm. Digital watermarks may be used to verify
the authenticity or integrity of the carrier signal.

However, there are some known attacks to these two tech-
niques of digital signature and digital watermarking, such
as the attack from the internal attackers inside the system
[1–5]. Blockchain has the characteristics of immutability,
decentralization, distributed ledgers, consensus, etc. Com-
pared to the traditional data storage systems, blockchain
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greatly increases the difficulty of tampering the stored data,
and hence blockchain has been applied to data storage to
improve the data security [6–11].

Blockchain platforms use decentralized consensus to
maintain consistency in a distrubted environment, and hence
consensus is the sine qua non of blockchain. The state-of-
art consensus algorithms, e.g. Proof-of-Work (PoW) [12],
Proof-of-Stake (PoS) [13], Delegated PoS (DPoS) [14],
Practical Byzantine Fault Tolerance (PBFT) [15], Algorand
[16], YAC [17], etc., either require coins (stake) and a large
amount of computation or use a centralized point which
is in contradiction with the decentralization rationale of
blockchain.

A wrong block in the blockchain causes data inconsis-
tency [18]. In addition, a wrong block may potentially cause
all the successive blocks to be wrong, which makes the
node useless. Studies have been conducted to detect such
inconsistency [19–21]. The majority rule is often adopted
to obtain the correct data. For example, the Gossip data
dissemination protocol maintains data consistency among
the nodes by transmitting information about consistency
to other nodes [22]. Nevertheless, the transmission cost is
high due to the large and complex structure of Hyperledger
Fabric [23].

In this paper, we achieve data integrity in data storage
applications based on blockchain. The data, the hash value
of the data and other information are stored as blocks in
the blockchain, and the clients can search the data without
storing the data. The contributions of this paper are as
follows:

(1) We investigate the error-correcting and tamper-
proofing data storage problem and propose a Rotat-
ing multiple random Masters and Error-Correcting
data storage framework based on blockchain (RMEC),
where the framework consists of Application Layer,
Processing Layer, and Infrastructure Layer. We also
propose a two-dimension chain data structure to store
the data. The two-dimension chain data structure
divides the blockchain into two parts: horizontal chain
and vertical chain. The horizontal chain is generated to
store the basic information of data, and a block is cre-
ated in the horizontal chain for the data. We maintain
a vertical chain for the data. When data are updated, a
new block is generated to store the updated data in the
vertical chain. All the blocks containing the updated
information of the data form a vertical blockchain.

(2) We propose a Rotating Multiple Random Sampling
(RMRS) consensus mechanism to balance decentral-
ization and communication costs. A portal in the
infrastructure layer receives the client’s requests and
forwards the requests to the servers for data storage
and query. When storing data, the portal randomly

selects K servers as temporary master nodes that own
the right to generate and broadcast the block copy. The
other nodes receive the block copy sent by each tem-
porary master node, compare the K block copies, and
keep the copy with the number of duplicated times no
less than �K

2 �. In the data query process, K servers are
also randomly selected by the portal as the temporary
master nodes. After verifying the queried block, the K

temporary master nodes send the block data copies to
the client. The client accepts the data copy with the
number of duplicated times no less than �K

2 �. Each
node transmits the hash value of the data instead of the
data itself during the consensus.

(3) We propose two data tamper-proofing mechanisms
(single-block validation mechanism and periodic
blockchain verification mechanism) to correct the
wrong blocks and ensure data integrity. The single-
block validation mechanism has two main functions:
verifying the integrity of a block in a local server and
correcting the wrong block. With the periodic verifica-
tion mechanism, each server periodically verifies the
correctness and integrity of all blocks in the blockchain
and invokes the single-block validation to correct the
wrong block.

(4) We implement a prototype and conduct analyses on
the system performance. The experiments demonstrate
that the framework can achieve data tamper-proof and
effectively reduce the communication cost.

The rest of the paper is organized as follows. The related
work is introduced in Section 2. The proposed framework
RMEC and the modules are presented in Sections 3 and
4, respectively. The system performance is analyzed and
evaluated in Sections 5. The paper concludes in Section 6.

2 Related work

Two techniques, digital signature and digital watermarking
are currently widely used to achieve data integrity. Using
the digital signature, the sender signs the protected data
with the tag of the data, and the tag is the data hash value
calculated with the private key of the sender using the
public key cryptographic mechanism. The sender transmits
both the data and the tag to the receiver who verifies the
received data integrity. That is, the receiver calculates the
hash value of the received data using the public key of
the sender. If the hash value calculated is the same as that
received, the verification is successful and the data are
not modified; otherwise, the verification fails and the data
are modified. However, the following risks exist using the
digital signature: (1) there exist attack methods to some of
the public key cryptography; for example, it is possible to
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use a brute-force attack to find the private key in practice;
(2) it is difficult to prevent the attack from the internal
attackers inside the system [1].

Digital watermarking embeds digital markup information
in a carrier signal, such as digital multimedia data, by means
of signal processing. Such information is usually invisible
and can be extracted only through a dedicated detector or a
reader algorithm. Digital watermarks may be used to verify
the authenticity or integrity of the carrier signal. However,
there are some concerns with digital watermarking: (1)
the location of the watermark in digital data must be
imperceptible; (2) digital watermarking is easily lost due
to signal distortion incurred by various unintentional or
intentional signal processing; (3) editing information is easy
to affect or even destroy the watermark; (4) there are some
known attacks on digital watermarking, such as stego only
attack, known cover attack, known message attack, and so
on [2].

The blockchain is a new technology that combines
distributed data storage, peer-to-peer (P2P) transmission,
consensus mechanism, encryption algorithms, etc. It is a
new distributed infrastructure and computing paradigm,
which uses the block-chain data structure to store and
verify data, exploit distributed node consensus algorithm to
generate and update data, and apply cryptography to ensure
data transmission and access security. In a narrow sense, the
blockchain is a type of chain data structure that combines
data blocks in chronological order and distributed ledger
using cryptography to guarantee the data integrity [24].
Compared to traditional data storage systems, the nodes in
the blockchain system do not need to trust each other or
any third party [25–28], and hence the blockchain greatly
increases the difficulty of tampering the data stored in the
system. The blockchain achieves data tamper-proof with the
following methods.

(1) The blockchain uses SECP256K1 signature algorithm
to generate public keys for identity authentication
[29]. Unlike a signature algorithm based on the
mathematical problem that a large prime number
product is difficult to decompose, SECP256K1 is
founded on the mathematical problem similar to
the elliptic curve grounded on a discrete logarithm
solution. The mathematical problem cannot be solved
theoretically and it can hardly be solved by brute-force
either, which guarantees an indispensable modification
in the process of information transmission in the
blockchain transaction process.

(2) The blockchain is also a P2P network without a central
node. All the nodes involved in the calculation are
connected in a P2P mode, and each node saves a
copy of the data block. The consistency of the block
replicas can be guaranteed by consensus protocol so

as to achieve the fault-tolerance and security of the
blockchain system.

(3) A block is linked to the previous block via a hash
pointer so that one has to recalculate the hash value of
all the successive blocks if he wants to modify a block,
which increases the computational complexity [24].

The consensus protocol, the core of the blockchain, is a
vital approach to preventing the data tamper. The state-of-
the-art algorithms are PoW, PoS, DPoS, PBFT, Algorand,
YAC, etc. With PoW [12], each block has a corresponding
hash value calculated by the SHA256 algorithm, and the
nodes achieve the consensus by comparing the speed of
the hash value calculation. A node with high computing
power has a good chance of working out the hash value and
thereby has a high probability to obtain the right to generate
the block [30]. Therefore, PoW faces the security risk of
excessive concentration of power. Different from PoW, PoS
determines the next node which can create the next block
via various combinations of random selection and wealth or
age [13]. With DPoS [14], a block is created by a trusted
user node (trustee) elected by the community; the users
vote to elect the trustee, and the users ranked the top 101
in the final vote become the trustee. Algorand has stake-
weighted voting by validators and combines the stake values
with a cryptographic sortition function to choose the voting
committee [16]. In general, PoS, DPoS, and Algorand are
used for financial purposes because of the stake.

With PBFT [15], the nodes are sequentially ordered with
one node being the master and others referred to as backup
nodes. PBFT consensus rounds are called views. The nodes
that have the right to generate the blocks are determined by
PBFT’s view rotation mechanism and Moore’s calculation
formula. All nodes in the system communicate with one
another with the goal being that all honest nodes will come
to an agreement of the system state using a majority rule.
Therefore, PBFT requires a huge communication cost.

The basic process of YAC [17] is as follows: (1)
after generating and signing a transaction, the client sends
the transaction to a peer; (2) the peer performs stateless
validation of the transaction, and relays the transaction
to the ordering service; (3) the ordering service generates
a proposal containing an ordered list of transactions and
sends the proposal to the peers; (4) a supermajority of
peers determine whether a block can be generated, where
the supermajority is defined to be a number greater
than two-thirds of all peers in the network; (5) the peer
commits the block to its local block store. YAC reduces
the communication cost by using the centralized ordering
service which is responsible for creating block proposals.
However, YAC has the following concerns: (1) the proposal
is generated and broadcast by the ordering service which is a
centralized point with a strong assumption that the ordering
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service is safe and honest; (2) when a user sends a signed
transaction to a peer, it is not randomly selected, which
increases the possibility of system being compromised.

Some studies apply the blockchain to data storage. A
blockchain-based data storage framework was built using
Ethereum [31]. To cope with the problem of the slow
speed of generating blocks in Ethereum, the system adds
a centralized point to convert the data into transactions
for packaged storage, while extra processor overhead is
demanded and the new centralized point is prone to be
attacked. A decentralized data storage model suitable for
storing metadata was proposed to improve the security of
cloud storage [6]. A decentralized privacy data management
method was proposed, which uses the blockchain to control
access rights and effectively protects the private data
[7]. A secure P2P-type storage scheme was proposed to
use the secret sharing and the blockchain; user data are
divided into different parts, assigned to different nodes,
and the node attacking the other nodes can be identified
if the nodes supervise each other [8]. A blockchain-based
access control system for cloud storage was proposed;
the intelligent contract implemented with Ethereum stores
all the information related to security operations in the
blockchain, and the access control scheme is based on
attribute encryption [9]. A blockchain-based data sharing
verification scheme uses the blockchain to record the hash
value and other necessary information of data sharing by
other people and guarantee that the data that the user
receives from a third-party source is the originally uploaded
data by comparing the hash value of the corresponding
data [10]. A consortium blockchain made of different
autonomous vehicle manufacturers was proposed to ensure
the authenticity and integrity of firmware updates, without
using the centralized third parties to distribute the new
firmware updates [32]. A decentralized ride-sharing service

system based on the public blockchain was proposed to
preserve the anonymity and privacy of the users and the data
[33]. A decentralized charging coordination mechanism
based on the blockchain was built to avoid a centralized
charging coordinator and provide privacy protection [34].
A distributed privacy-preserving smart parking system
was proposed to use a consortium blockchain created
by different parking lot owners, and the system stores
the parking offers on the blockchain to ensure security,
transparency, and availability [35].

3 Rotatingmultiple randommasters and
error-correcting data storage framework

Our proposed Rotating multiple random Masters and
Error-Correcting (RMEC) data storage framework based
on blockchain adopts a three-layer hierarchical structure
consisting of Application Layer, Processing Layer, and
Infrastructure Layer, as shown in Fig. 1. The infrastructure
layer includes a portal and N servers interconnected via
P2P networks. The portal receives the data access requests
and forwards the requests to the servers for processing.
Each server establishes and maintains a blockchain for
storing data. Each block in the blockchain includes data, the
hash of the data, timestamp, user information, other data-
related information, and the hash of the previous block. The
processing layer consists of four modules, e.g. data upload,
single-block validation, periodic blockchain verification,
and data query, which realize the functions of data storage,
data search, and data verification.

The data upload module is responsible for appending the
data submitted by the application layer to the blockchain
in each server at the infrastructure layer. The single-
block validation module is responsible for verifying the

Fig. 1 System architecture
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information of a specific block maintained in the blockchain
in each server and correcting the data in the block if it is
wrong. The periodic blockchain verification module verifies
the correctness of the blockchain maintained by each server
on a periodic basis. The data query module receives the
data search request from the application layer, searches
the corresponding block and the data in the blockchain,
and returns the query result. Example 1 illustrates how the
system is used to achieve data integrity for food production,
distribution, and sale.

Example 1 Assume a canning factory uses the proposed
framework to store the information of the produced cans.
After producing a can, the cannery assigns the can an ID,
which is uploaded with the other related information, such
as cannery, production date, expiration date, etc., through
the application layer of the system. The application layer
passes the data storage request to the processing layer,
which uses the data upload module to send the data to the
infrastructure layer. Every sever in the infrastructure layer
generates a block to store the data and appends the block
to the blockchain maintained by the server. The can goes
through some steps during the logistics and distribution
process, and the information about each step is uploaded to
the system where a new block is created for the uploaded
information. Any modification to the information of the
can will create a new block, and the blocks before the
modification are kept in the system without being changed.
The consumers use the can ID to search the relevant
information of the can, such as the manufacturer, production
date, expiration date, etc., through the data search function
provided by the application layer, which gets the query

results from the blockchain maintained by the servers and
returns the results to the application layer.

The two-dimension chain data structure shown in Fig. 2
is designed to accelerate the data storage and search. The
blockchain is divided into two parts: the horizontal chain
and the vertical chain. The horizontal chain is generated
from the basic information of the data. When a data is
added in the blockchain, we create a new block and append
the block to the horizontal chain. Each data has its own
vertical chain. When the data is updated, we append a new
block containing the updated data to the vertical chain. All
the blocks containing the updated information of a data
form a vertical blockchain. During the data search, instead
of traversing the blocks one after another along with the
blockchain, we first find the block for the data on the
horizontal chain, and then search the specific data update on
the vertical chain. Therefore, the number of blocks traversed
can be reduced during the data query.

We propose a Rotating Multiple Random Sampling
(RMRS) consensus to randomly select multiple temporary
master nodes to handle each data access request so as
to reduce the communication cost. K temporary master
nodes are randomly selected upon the arrival of each client
request. When storing data, the portal randomly selects K

servers as temporary master nodes that own the right to
generate and broadcast the block copy. The other nodes
receive the block copy sent by each temporary master node,
compare the K block copies, and keep the copy with the
number of duplicated times no less than �K

2 �. In the data
query process, K servers are also randomly selected by
the portal as the temporary master nodes. After verifying

Fig. 2 Two-dimension chain data structure

1490 Peer-to-Peer Netw. Appl.  (2020) 13:1486–1504



the queried block, the K temporary master nodes send
the block data copies to the client. The client accepts
the data copy with the number of duplicated times no
less than �K

2 �. The communication during the consensus
process is encrypted using the combination of AES and
ECC encryption schemes. The RMRS consensus process is
shown in Fig. 3.

Step 1. The user sends a data access request to the portal.
Step 2. The portal randomly selects K temporary master

nodes from all the N nodes in the network and
sends the addresses of the K temporary master
nodes to the user.

Step 3. The user sends specific data access requests to the
K temporary master nodes.

Step 4. Each temporary master node broadcasts the data
or the requests sent by the client to the other N−1
nodes in the network.

Step 5. After receiving K data copies, each node keeps
the copy with the most repetitions and sends a
response to the K temporary master nodes.

Step 6. Each of the K primary nodes receives N − 1
responses, takes the data with the most repetitions
as the result, and sends a response to the user.

4 Frameworkmodules

The processing layer, the core of framework RMEC,
includes the data upload module, the data query module, the
single-block validation module, and the periodic blockchain
verification module.

4.1 Data uploadmodule

The data upload module receives the data storage request
from the application layer, creates a block for the data,
and stores the block in the blockchain in each server. After
receiving the data storage request, the portal randomly
selects K(K ≥ 3) servers as the temporary master nodes
for the request and returns the addresses of the selected
K servers to the client. The client uploads the data to the

Fig. 3 The process of RMRS
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K servers which receive the data, generate blocks, and
broadcast the hash of the generated block copies to the
remaining N − 1 servers in the network. Each server in
the network accepts the hash value with the number of
duplicated times no less than �K

2 �. The server then requests
the generated block from one of the servers whose generated
block has the same hash value as the accepted one. After
verifying the received block and the last block in the local
blockchain, the server appends the block to the blockchain
the server maintains. The process of data uploading is
depicted in Fig. 4.

Step 1. The data upload module sends the client’s data stor-
age request to the portal in the infrastructure layer.

Step 2. The portal receives the data storage request,
randomly selects K servers in the network as the
temporary master nodes, and sends the addresses
of the K servers to the client.

Step 3. The client uploads the data to the K selected
servers after necessary processing. According to

different application requirements, the client’s
processing of the data may include encryption,
generating digital watermarks, etc.

Step 4. A new block is generated for the uploaded data by
each of the K selected servers, and the hash of the
block is broadcast to the remaining N−1 servers.

Step 5. Each server accepts the hash value with the
number of duplicated times no less than �K

2 �.
Step 6. Each server keeps requesting the generated block

from one of the servers whose generated block has
the same hash value as the accepted one, and calcu-
lating the hash value of the received block until it
is the same as the previously received hash value.

Step 7. Each server calculates the hash value of the last
block in the local blockchain and compares the
hash value with the previous hash value in the
received block. If they are the same, Step 8 is
performed; otherwise, the single-block validation
module of the processing layer is executed to
correct the last block on the local blockchain.

Fig. 4 Data upload module
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Step 8. Each server appends the received block to the local
blockchain.

4.2 Data querymodule

After receiving the data search request at the application
layer, RMEC calls the data query module to complete the
data search. Upon receiving the data search request, the
portal randomly selects K(K ≥ 3) servers from N servers
as the temporary master nodes. Each of the K servers finds
the queried block in the server’s local blockchain. After
verifying the block, each server sends the hash of the block
to the client. The client accepts the hash value with the
number of duplicated times no less than �K

2 � and requests
the block from one of the servers whose queried block has
the same hash value as the accepted one. The data in the
received block is accepted as the query result. The operation
of the data query module is illustrated in Fig. 5.

Step 1. The data query module sends the data search
request to the portal.

Step 2. The portal randomly selects K servers from N

servers as the temporary master nodes and returns
the addresses of the K servers to the client.

Step 3. The client sends the search requests to each of the
K servers.

Step 4. Each of the K servers finds the block correspond-
ing to the search request and calls the single-block
validation module to verify the block.

Step 5. Each of the K servers sends the hash of the
corresponding block after verifying the block.
According to different application requirements,
the processing of data may include encryption,
generating digital watermarks, etc.

Step 6. The client accepts the hash value with the number
of duplicated times no less than �K

2 � as the query
result.

Fig. 5 Data query module
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Step 7. The client keeps requesting the block from one of
the servers whose block has the same hash value as
the accepted one, and calculating the hash value of
the received block until the calculated hash value
is the same as the previously received one.

4.3 Single-block validationmodule

The single-block validation module performs the integrity
verification of the block in the server and corrects the wrong
block. After receiving the call for the single-block validation
module, the server sends a request to obtain the hash value
of the corresponding block copy from each of the remaining
N −1 servers and accepts the hash value with the number
of repetition times no less than �N

2 �. If the accepted hash
is different from the hash of the corresponding block in the
local server, the server requests the block from one of the
servers whose block has the same hash value as the accepted
one. The received block is used to update the corresponding
local block. The operation of the single-block validation
module is shown in Fig. 6.

Step 1. Upon receiving a block validation request for a
specific block, the server finds the corresponding
block in the local blockchain the server maintains.

Step 2. The server broadcasts the block validation request
for the specific block to the remaining N − 1
servers.

Step 3. The server receiving the block validation request
returns the hash of the corresponding block in the
blockchain maintained by the server.

Step 4. The server sending the validation request accepts
the hash value with the number of repetition times
no less than �N

2 �.
Step 5. The server checks whether the accepted hash is the

same as the hash of the corresponding local block.
If yes, the validation is successful; otherwise, the
validation fails, and Step 6 is performed.

Step 6. The server keeps requesting the block from one of
the servers whose block has the same hash value as
the accepted one, and calculating the hash value of
the received block until the calculated hash value
is the same as the previously accepted one. The
server updates the block in the local blockchain as
the received block.

4.4 Periodic blockchain verificationmodule

Each server in the infrastructure layer periodically verifies
the integrity of all the blocks in the local blockchain,

Fig. 6 Single-block validation
module
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Fig. 7 Periodic blockchain
verification module

starting from the first block. The operation of the periodic
blockchain verification module is shown in Fig. 7.

Step 1. The blocks the server maintains are numbered in
sequence, starting from 1; denote the last block as
the n-th block; initialize m = 1.

Step 2. Calculate the hash value of the m-th block as
h1, and compare h1 with the previous block hash
value, h2, stored in the (m+1)-th block; if they are
the same, the m-th block is correct; otherwise, the
m-th block is wrong and Step 4 is performed.

Step 3. m = m + 1; if m > n − 1, the verification is
completed; otherwise, return to Step 2.

Step 4. Invoke the single-block validation module to
correct the m-th block, and return to Step 2.

5 Performance analysis and evaluation

5.1 Prototype implementation

We implement a prototype of the proposed framework
RMEC as shown in Fig. 8. We use laptops and desktops in
LAN to simulate the blockchain servers and the portal in
the infrastructure layer. The processing layer is developed
based on the combination B/S and C/S modes. In the
application layer, we use Java Web to implement the front-
end pages. The two-dimension blockchain on each node is
implemented via a two-dimension link list. Each block in
the horizontal link list maintains the initial main information
of a data, and the blocks in the vertical link list contain
the subsequent update of the corresponding data. The block
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Fig. 8 A prototype of the proposed framework RMEC
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Table 1 Block information

Attributes Description

Data ID ID of the data

Data Data Content

Timestamp Update time

User ID ID of the user updating the data

Data hash Hash of the data

Previous block hash Hash of the previous block

information includes data ID, timestamp, user ID, the hash
of the data, and previous block hash, etc., as depicted in
Table 1. The client can upload or update the data through
a simple webpage as shown in Fig. 9, which requires little
computation and storage capability.

Assume a data has an error in a node in the system, the
proposed error-correcting mechanisms can find and correct
the error. For example, the data with ID 1 on node 2 has an
error and the data is different from the other nodes as shown
in Fig. 10. When the user submits a data query request for
the data, the data query module in the processing layer will
call the single-block validation module to correct the error,
and hence the data can be corrected and the client can get
the correct data as shown in Fig. 11.

5.2 Data tamper proof performance

The combination of distributed data storage, encryption
algorithms, and consensus mechanism technologies makes
the data in the blockchain computationally hard to tamper.
The proposed data storage framework RMEC provides

Fig. 9 Data upload or update webpage

tamper-proof during the processes of data uploading, query,
and storage.

(1) Data tamper-proof during uploading

Assuming the client sends a data storage request, the
portal receives the data storage request and randomly selects
K(K ≥ 3) servers as the temporary master nodes for the
request. The data are uploaded to the K servers. The data
are not uploaded through the portal, and hence the attacker
cannot acquire or modify the data by attacking the portal.
The attacker cannot know the specific servers that need to be
attacked in advance since the servers are randomly selected
by the portal upon each data storage request. The K servers
receive the data, generate blocks, and broadcast the hash of
the generated block copies to the remaining N −1 servers
in the network. If there is a hash value with the number of
duplicated times no less than �K

2 �, each server accepts the
copy and keeps requesting the generated block from one of
the servers whose created block has the same hash value
as the accepted one, and calculating the hash value of the
received block, until the calculated hash is the same as the
previously received one.

(2) Data tamper-proof during query

During data query, K(K ≥ 3) servers are randomly
selected as the temporary master nodes, each performing
the single-block validation to check the corresponding
block and correct it if necessary. In addition, the data are
transmitted to the client by the K servers directly without
going through the portal, and hence the attacker cannot
modify the data by attacking the portal. Before transmitting
the data to the client, each of the K temporary master nodes
may perform necessary processing, such as encryption,
generating a digital signature or digital watermark, etc. At
the same time, in the data query module, there is a step
of calling the single-block validation module to correct the
queried block, so the destroyed or falsified data does not
affect the correctness of the information obtained by the
user. If and only if at least �K

2 � nodes in the master nodes
are maliciously controlled, the user will get the wrong data.

(3) Data tamper-proof during storage

The data tamper-proof during storage is guaranteed
by the characteristics of the blockchain. That is, once a
block is generated and added to the blockchain, no block
modification or deletion is allowed. Each block in the
blockchain is linked to the previous block via the hash.
Therefore, if there is any modification on the m-th block,
the hash value of the m-th block will be different from the
previous hash value stored in the (m+1)-th block.

When the client uploads data, each server calculates the
last block hash value and compares it with the hash value of
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Fig. 10 An error of Data 1 on node 2

the previous block stored in the accepted block. If the two
hash values are the same, the last block in the blockchain
is correct; otherwise, the server performs the single-block
validation to correct the wrong block.

Assuming that a server node has not successfully stored data
or its data has something wrong, the node will synchronize
or correct the data via periodic blockchain verification.
Assuming that there are N servers in the system and the
periodic time interval is T if the number of compromised

servers is less than �N
2 �−1, the error can be corrected by

calling the single-block validation module within time T .
Suppose the probability of each server being compro-

mised is p(p � 1), and there are N servers in the system
within which there are K temporary master nodes. Assume
the total number of compromised nodes is X which follows
a binomial distribution, and the number of compromised
nodes in the K master nodes is Y . The possibility that the
total number of compromised nodes in the current system

Fig. 11 The error is corrected upon receiving data query request
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is x can be calculated by Eq. (1) and the possibility that
the current number of malicious nodes in the K temporary
master nodes is y can be computed by Eq. (2).

P(X = x) = Cx
N(1 − p)N−xpx . (1)

P(Y = y) = C
y
x ×C

K−y
N−x

CK
N

. (2)

Assume the nodes are compromised randomly, with each
occurrence being independent of the others and following
the same distribution. Only when there are at least �K

2 �
compromised nodes in the selectedK master nodes, an error
occurs in the system. The probability of system security
can be calculated by Eq. (3). We can guarantee the system
security when K ≥ 2pN . When K < 2pN , it is more
difficult for the attacker to control at least half of the
temporary master nodes with a larger K , and hence a larger
K leads to a more secure system than a smaller K .

P(Y ≥ �K
2 �) =

� K
2 �∑

i=0

Ci
p×N×CK−i

(1−p)×N

CK
N

. (3)

5.3 Error-correctingmechanisms

Two data error-correcting mechanisms to ensure the
integrity of data blocks are proposed: single-block valida-
tion and periodic blockchain verification. The single-block
validation module is used in several scenarios, where the
module detects and corrects the error. During data upload-
ing, each server verifies the last block and correct it if it
is wrong. Therefore, the last block is validated each time a
new data is stored in the framework so that the correctness
of the blockchain is achieved. During the data query, the

temporary master nodes perform the single-block validation
to check the corresponding block and correct it.

The main function of the periodic blockchain verification
module is to periodically detect errors. If there is an error,
the server calls the single block verification to fix it.
Each server conducts the periodic blockchain verification to
validate all the blocks in the local blockchain. When errors
are detected, the server performs the single-block validation
to correct the block. The periodic block verification enables
the data storage framework to have the self-correcting
capability and requires no communication overhead during
the check, but only needs to calculate and compare the hash
values of the local data.

If a node has not successfully stored the data or its
data contain an error, the node invokes periodic blockchain
verification. Assuming the periodic time interval is T

and there are N servers in the system if the number of
compromised servers is less than �N

2 �−1, the error can be
corrected within time T .

5.4 Performance of consensus mechanism

5.4.1 Performance of system security

Figure 12 shows the performance of system security under
a different number of temporary master nodes and network
nodes when p = 0.1, which means that the probability of
each node to be compromised is 10%. The system security
probability is the probability of the state that the system
remains uncompromised. It can be observed that the security
of the data storage system increases with the increase in
the number of temporary master nodes. A big K indicates
that it will be difficult for an attacker to control more than
half of the temporary master nodes. When K ≥ 2pN , the
system can achieve 100% security. The probability of the
data storage system being compromised is almost 0 when

Fig. 12 System security
probability w.r.t different
number of temporary master
nodes for various number of
nodes
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K = 7 for all N in Fig. 12, which shows that we need
only a few numbers of temporary master nodes to ensure
the security of the system. A small number of total network
nodes also lead to good system security performance. Given
p, a smallN leads to a small number of compromised nodes,
and hence it is difficult to control half of the K randomly
selected temporary master nodes.

Figure 13 illustrates the performance of system security
in terms of security probability with respect to the number
of temporary master nodes and various p (probability of
each server being compromised) assuming the number of
nodes is 50. In general, a smaller p outperforms a bigger
p. A small p indicates that each node in the system is hard
to compromise, and hence the system can be more securely
protected from the attack. When p = 0.05, five random
temporary master nodes lead to almost zero probability of
the system being compromised. Since p � 1 in practice,
we can achieve system security with a small number of
temporary master nodes.

5.4.2 Communication overhead

The proposed framework achieves a good tradeoff between
system decentralization and the amount of communication.
The data tamper-proof is achieved via the decentralization
of blockchain.

In the proposed framework RMEC, we introduce a portal
to receive the data access requests from the clients. The
portal finds the servers to accommodate the data requests.
K temporary master nodes are randomly selected upon each
data access request, so there is more than one master node
in the system to increase the decentralization performance.

The K temporary master nodes are responsible for storing
the uploaded data in the blockchains and returning the query
data by searching and validating the corresponding block.
The data are transmitted from the client to the servers
without being forwarded by the portal during the data
storage process. The data are sent from the servers to the
client without the portal being an intermediate node during
the data query process. That is, the data are not handled
by the portal. Therefore, by randomly selecting multiple
temporary master nodes, we avoid having a node or some
specific nodes which have all the rights to operate the data,
such as block query and block broadcasting.

We evaluate the proposed consensus RMRS in terms of
communication overhead against the state-of-art consensus
algorithms of PBFT and YAC. PBFT requires heavy
network communication during the pre-prepare, prepare and
commit phases since all nodes in the system communicate
with one another to achieve system security. (1) Pre-
prepare process: Each node broadcasts the data to the entire
network. The current master node broadcasts the data to all
the nodes. Assume the size of the data is s KB, and the
size of the communication overhead, including feedback,
signature, timestamp, address and other information, is q

KB. The communication cost of the pre-preparing process
is (N − 1)(s + q) KB. (2) Prepare process: After each node
receives the data, the hash of the new block is calculated and
broadcast to the entire network. The broadcast of the block
hash value consumes less overhead than the broadcast of
the block itself. The communication cost of the preparation
process is q(N − 1)2 KB. (3) Commit process: Each node
broadcasts a commit message to the whole network after
receiving more than 2f same data copies, where f is a

Fig. 13 System security
probability w.r.t. different
number of temporary master
nodes for various p
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tolerable Byzantine node number. The communication cost
of the commit process is q(N − 1)2 KB too. Therefore, the
total communication overhead of PBFT is (N −1)(s +q)+
q(N −1)2+q(N −1)2 = 2q(N −1)2+(N −1)(s+q) KB.

During the consensus of YAC, the communication cost
that the user sends the generated transaction to a peer is s+q

KB. The peer consumes s + q KB communication cost to
send the transaction to the ordering service. It takesN(s+q)

KB communication cost for the ordering service to send
the proposal to the peers. The communication consumption
of voting across the network and the commit message

broadcast is 2Nq KB. Therefore, the total communication
overhead of YAC is 2(s + q) + N(s + q) + 2Nq = (N +
2)s + (3N + 2)q KB.

With the proposed consensus algorithm RMRS,K nodes,
instead of all the N servers, are randomly selected to
participate in the consensus process. Only the hash value of
the block is transmitted in the network during the consensus
for data uploading, search, and validation. Therefore, the
amount of communication is reduced. The communication
overhead between the user and the portal is 2q KB.
The K temporary master nodes receive K(s + q) KB

Fig. 14 Communication overhead under different number of temporary master nodes
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Fig. 15 Communication
overhead under a various
number of network nodes with a
different number of temporary
master nodes

data and broadcast the hash of the data with the size of
Kq(N − 1) KB. In the process of requesting the block, the
communication cost is (s + q)(N − K) KB. Therefore, the
total communication overhead of RMRS is 2q +K(s +q)+
Kq(N − 1) + (s + q)(N − K) KB.

For example, if N = 5, K = 3, s = 2KB, and q = 1KB,
the communication overhead of PBFT, YAC, and RMRS is
44 KB, 31 KB, and 29 KB, respectively.

Figure 14 depicts the communication overhead of
PBFT, YAC, and RMRS, under different numbers of
temporary master nodes with various numbers of network
nodes, assuming s=10KB and q=1KB. In general, the
communication overhead of RMRS increases as the number
of temporary master nodes increases. More temporary
master nodes result in more broadcast information in the
network, which increases the communication overhead. The
communication overhead of PBFT and YAC keeps stable
with the change in the number of temporary master nodes.
PBFT always consumes more communication overhead
than RMRS. All the nodes participate in the broadcast
process with PBFT, and hence a big number of network
nodes result in large communication overhead. When K =
1, that is, when both RMRS and YAC has only one
master node, RMRS outperforms YAC. In most cases when
K ≥ 3, YAC performs better than RMRS since YAC uses
one ordering service entity to reduce the communication
cost, while RMRS depends on K random master nodes
to achieve consensus. However, it is hard to guarantee the
security and honesty of the centralized ordering service,
and the centralized point is in contradiction with the
decentralization rationale of blockchain.

Figure 15 illustrates the communication overhead of
PBFT, YAC, and RMRS, under various numbers of
network nodes with different numbers of temporary
master nodes, assuming s=10KB and q=1KB. In general,

the communication overhead of all the three consensus
algorithms increases as the number of network nodes
increases, since the three consensus mechanisms require
more broadcast communication to enable all the nodes
to receive the same data with more network nodes.
The communication overhead of the proposed consensus
algorithm RMRS increases slowly with the increasing
network size, which shows that RMRS is scalable. RMRS
achieves much better performance than PBFT, since only
part of the network nodes broadcast the data in the
network, while all the nodes participate in the broadcast
process with PBFT. It can also be observed that we need
more communication with more temporary master nodes
in RMRS since the communication overhead is closely
related to the number of temporary master nodes. In most
cases when K ≥ 3, YAC performs better than RMRS.
However, when there is only one temporary master node in
the network, which is the same as the assumption of YAC
having the centralized ordering service, RMRS outperforms
YAC. Note that even when K = 1, the temporary master
node is chosen randomly, while the ordering service entity
in YAC is fixed in the network.

6 Conclusions and discussion

In this paper, we proposed a three-layer framework to store
data in the blockchain and a two-dimensional chain data
structure that consists of horizontal and vertical chains. The
horizontal chain stores the basic information of the data and
maintains a vertical chain for the data. When the data are
updated, a new block is generated to store the updated data
in the vertical chain. All the blocks containing the updated
information of the data form a vertical blockchain. A Rotat-
ing Multiple Random Sampling consensus mechanism was
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devised to balance decentralization and the computation
and communication cost. Two error-correcting mechanisms
(single-block validation and periodic blockchain verifica-
tion) were developed to correct the wrong blocks and
ensure data integrity. Our experiments demonstrated that the
framework could achieve data tamper-proof and effectively
reduce the communication cost.

The framework proposed in this paper can ensure the
system security with a few numbers of temporary master
nodes, assuming that all the nodes have the same probability
of being compromised. Note that the number of temporary
master nodes depends on both the number of network
nodes and the probability of each node being compromised
when the probabilities of the nodes to be compromised
are different. In the future, we will optimize the number
of temporary master nodes and develop a mechanism to
adaptively adjust the number of temporary master nodes
in different application scenarios to achieve data tamper-
proof and efficient system costs. Traditionally, the blocks
are generated sequentially due to the consensus process and
distributed ledger. The sequential block generation limits
the blockchain throughput since all system participants have
to wait for the current consensus process to finish so as
to start a new consensus for a new block. The proposed
consensus mechanism allows different multiple temporary
master nodes of different consensus processes to exist
simultaneously, and the portal can select the temporary
master nodes for multiple concurrent consensus processes.
The blocks generated for different vertical chains do not
interfere with each other using the proposed two-dimension
blockchain structure. Therefore, the proposed consensus
mechanism and blockchain structure in the paper make it
possible to generate multiple blocks simultaneously, which
can increase the system throughput. In our future work, we
will discuss how to select the temporary master nodes to
enable simultaneous block generation without degrading the
system security and data consistency.
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