
Computer Communications 163 (2020) 35–50

C
p
Y
a

T
b

A

K
S
C
S
R
M
L

1

c
e
f
p
s
t
s

m
f
t
r

h
R
A
0

Contents lists available at ScienceDirect

Computer Communications

journal homepage: www.elsevier.com/locate/comcom

ontroller placements for latency minimization of both primary and backup
aths in SDNs
uqi Fan a,∗, Lunfei Wang a, Xiaohui Yuan b

School of Computer Science and Information Engineering, Anhui Province Key Laboratory of Industry Safety and Emergency Technology, Hefei University of
echnology, Hefei, Anhui, 230601, China
Department of Computer Science and Engineering, University of North Texas, Denton, TX, 76203, USA

R T I C L E I N F O

eywords:
DN
ontroller placement
ingle link failure
eliability
ulti-objective optimization

atency

A B S T R A C T

Software-defined networking (SDN) is a revolutionary network architecture that separates the network control
layer from the underlying equipment. Multiple controllers form a logically centralized control layer in large-
scale networks, which raises the controller placement problem. Most of the research on latency-oriented
controller placement optimized the delay between switches and controllers assuming the network is reliable.
However, the network is subject to link failures. In this paper, we formulate a novel multi-objective SDN
controller placement problem with the aim to minimize the switch-to-controller communication delay for
both the cases without link failure and with single-link-failure. We propose an efficient metaheuristic-based
Reliability-Aware and Latency-Oriented controller placement algorithm (RALO) for multi-objective multiple
controller placements. The algorithm constructs an initial feasible solution by a greedy method with network
partition, then repeatedly generates new solutions with variable neighborhood search. Once a new solution
is generated, the algorithm decides whether to accept the new solution as a non-dominated solution to the
problem and performs update operation on the Pareto optimal solution set. Meanwhile, to avoid falling
into the local optimum, the algorithm also performs perturbation and destruction operations on the current
solution. We finally conduct experiments through simulations on 8 real network topologies and two kinds
of generated networks conforming to ER (Erdos–Renyi) random model and small-world model. Experimental
results demonstrate that the proposed algorithm can achieve a competitive performance of switch-to-controller
latencies in both the cases without link failure and with single-link failure, and the accumulated delay of
primary and backup paths between the controllers and the switches. The Pareto optimal solution set provided
by algorithm RALO allows network administrators with flexible choices to strike a trade-off between the
switch-to-controller delay of primary and backup paths.
. Introduction

Software-defined networking (SDN) is a revolutionary network ar-
hitecture that separates the network control layer from underlying
quipment [1]. In SDNs, network switches (nodes) are only responsible
or data forwarding, while controllers determine the path of network
ackets across the switches. Upon the arrival of an unknown flow, the
witch sends a flow set-up request to the controller which responds to
he request with a flow entry to be installed in the flow table of the
witch.

The software platform located in the centralized controller imple-
ents programmable control of the underlying hardware and achieves

lexible on-demand distribution of network resources [2]. However,
he constraints of processors, memory, access bandwidth, and other
esources make it infeasible to implement the logical control layer

∗ Corresponding author.
E-mail addresses: yuqi.fan@hfut.edu.cn (Y. Fan), cxwlf@mail.hfut.edu.cn (L. Wang), xiaohui.yuan@unt.edu (X. Yuan).

with only one controller in large-scale networks. Furthermore, the con-
trol layer with one controller also faces the single-point-failure prob-
lem. To address these issues, multiple-controller architectures, such
as Kandoo [3], HyperFlow [4], Onix [5], have been introduced. The
multiple-controller architecture also raises a new problem, the con-
troller placement problem, which decides the controllers’ positions and
the mapping relationship between the controllers and the nodes, since
random placement is far from optimal [6,7]. The controller placement
decisions have an important impact on the network performance in
terms of delay, reliability, etc.

In addition to the switch-to-controller latency which is critical for
the performance of SDNs, reliability is an important concern for SDNs,
since network failures can cause disconnections between the switches
and the controllers [8], and even incur cascading failures of other
controllers [9]. Upon the link failure, a backup path needs to be set up
ttps://doi.org/10.1016/j.comcom.2020.09.001
eceived 20 February 2020; Received in revised form 2 July 2020; Accepted 1 Sep
vailable online 11 September 2020
140-3664/© 2020 Elsevier B.V. All rights reserved.
tember 2020

https://doi.org/10.1016/j.comcom.2020.09.001
http://www.elsevier.com/locate/comcom
http://www.elsevier.com/locate/comcom
http://crossmark.crossref.org/dialog/?doi=10.1016/j.comcom.2020.09.001&domain=pdf
mailto:yuqi.fan@hfut.edu.cn
mailto:cxwlf@mail.hfut.edu.cn
mailto:xiaohui.yuan@unt.edu
https://doi.org/10.1016/j.comcom.2020.09.001

Y. Fan, L. Wang and X. Yuan Computer Communications 163 (2020) 35–50

m
m
a
t
e
t
c
f
f
a

i
t
n

between the controllers and the switches. Note that the two objectives
of primary path delay and backup path latency are intrinsically con-
flicting with each other [10]. The controllers are prone to be placed
close to the switches to reduce the switch-to-controller latency on the
primary paths assuming the network is ideal. However, the backup path
delay may be high due to long detour paths when a link failure occurs.

Most of the research on latency-oriented controller placement op-
timizes the delay between the switches and the controllers with the
assumption of a reliable network available. In this paper, we tackle the
controller placement problem to minimize the latency of both primary
and backup paths between the controllers and the switches, assuming
that there is at most one link failure in the network [11].

The main contributions of this paper are as follows. We address the
controller placement problem to reduce the latency of the flow set-
up requests with and without single-link-failure. We then formulate a
novel multi-objective SDN controller placement problem to minimize
the switch-to-controller communication delay for both the cases with-
out link failure and with single-link-failure simultaneously. We pro-
pose an efficient metaheuristic-based Reliability-Aware and Latency-
Oriented controller placement algorithm (RALO) for multi-objective
multiple controller placement. The algorithm constructs an initial fea-
sible solution by a greedy method with network partition, then repeat-
edly generates new solutions with variable neighborhood search. Once
a new solution is generated, the algorithm decides whether to accept
the new solution as a non-dominated solution to the problem and
performs update operation on the Pareto optimal solution set. Mean-
while, to avoid falling into the local optimum, the algorithm performs
perturbation and destruction operations on the current solution. The
algorithm obtains a set of non-dominated solutions as the approximate
solutions of the precise Pareto frontier. We finally conduct experiments
through simulations on ATT and Internet2 networks and two kinds of
generated networks conforming to ER (Erdos–Renyi) random model
and small-world model. Experimental results demonstrate that the
proposed algorithm can achieve competitive performance in terms of
the switch-to-controller latencies in both the cases without link failure
and with single-link failure, and the accumulated switch-to-controller
delay of the primary and the backup paths between the controllers and
the switches.

The rest of the paper is organized as follows. Section 2 introduces
the related work. The problem is formulated in Section 3. Section 4
presents the proposed algorithm. The performance evaluation is given
in Section 5, and Section 6 concludes the paper.

2. Related work

The switch-to-controller latency is critical for the performance of
SDNs, and some research has been conducted on the controller place-
ment problem with the objective of minimizing the switch-to-controller
latency. Heller et al. first proposed the controller placement problem
to minimize the communication latency between the switches and the
controllers by deciding the number and locations of controllers [6].
Bari et al. designed a framework to tackle the problem of multiple
controller placements within a WAN; according to the network state,
the framework dynamically adjusts the number of active controllers
and delegates a subset of switches to each controller [12]. Rath et al.
introduced an approach to reducing the communication latency and
increase the utilization of the controllers based on game theory; the ap-
proach decides when to add or shut down controllers dynamically [13].
Tanha et al. formulated the resilient capacitated controller placement
problem which takes both the switch-controller/inter-controller latency
requirements and the capacity of the controllers into account and
proposed two algorithms for the problem [14]. Yao et al. introduced
a latency metric to minimize the total cost of flow-setup request from
the switches to the controllers to deal with the mapping between the
switches and the controllers under dynamic flow variations; the metric

considers the weight of switches and the delay from the switches to

36
the controllers simultaneously, where the weight of a switch is related
to the node degree of the switch and the maximum node degree in
the network [15]. Sallahi et al. proposed a model to simultaneously
determine the optimal number, locations, and type of controller(s)
as well as the interconnections between all the network nodes by
considering the capacity of the controllers and path delay [16]. Huque
et al. proposed a solution to combine a controller placement algorithm
with a dynamic flow management algorithm, where the locations of
controller modules are determined by the switch-to-controller latency
constraint and the number of the controllers at each controller module
is adapted according to the traffic load [17]. Wang et al. designed
a scheme to minimize the maximum latency between the controllers
and the associated switches based on network partition; the scheme
divides the network into multiple subnetworks with an improved 𝑘-

eans algorithm and a controller is deployed in each subnetwork to
inimize the maximum latency between the controller and the associ-

ted switches in the subnetwork [18]. Jia et al. proposed an algorithm
o provide policy-aware unicast request admissions with and without
nd-to-end delay constraints in a software-defined network to minimize
he operational cost of admitting a single request in terms of both
omputing resource consumption and bandwidth resource consumption
or routing its data traffic, or maximizing the network throughput
or a sequence of requests without the knowledge of future request
rrivals [19].

Reliability is also a key problem in controller placements. Hu et al.
ntroduced a metric called expected percentage of control path loss due
o a failed network component to characterize the reliability of SDN
etworks and proposed a heuristic algorithm 𝑙-𝑤-greedy to analyze the

trade-off between reliability and latency; the expected percentage of
control path loss is related to the number of control paths going through
a component and the failure probability of the component [20,21].
Guo et al. studied the impact of controller placement on network re-
silience with interdependence graphs and cascading failure analysis and
proposed a partition and selection approach to controller placements
to improve the resilience [22]. Hock et al. introduced a resilience
framework to cope with the resilience of link outages and proposed
a Pareto-based optimal controller placement method (POCO) to max-
imize node-to-controller latencies and resilience in terms of failure
tolerance and load balancing [23]. Lange et al. extended the POCO
framework with heuristics to support large-scale networks or dynamic
networks with properties changing over time [24]. Müller proposed
a controller placement strategy, Survivor, to explore path diversity to
optimize the survivability of networks to maximize the number of node-
disjoint paths between the switches and the controllers; the strategy
enhances connectivity by explicitly considering path diversity [25].
Dorabella et al. formulated a robust controller placement problem
variant to maximize the network robustness for a given number of
malicious node attacks and proposed an ILP based method to enu-
merate all solutions [26]. Vizarreta et al. proposed two strategies to
improve the reliability by using redundant communication paths and
backup controllers; with the first strategy, the switches are connected
to a controller over two disjoint control paths; the second strategy
makes switches be connected to two different controller replicas over
two disjoint paths [27]. Ros et al. guaranteed the reliability of con-
troller placements by making each switch be connected to multiple
controllers [28]. Huang et al. studied a weighted cost-minimization
problem to reduce the congestion in the neighboring links of the failed
link and control-channel setup cost [29]. Fan et al. proposed a latency-
aware reliable controller placement algorithm LARC by jointly taking
into account both the communication reliability and the communica-
tion latency between the controllers and the switches if any link in the
network fails [30].

Previous research has shown that both delay and reliability are
important for SDNs. When a link fails in the network, we need to
establish a backup path for the transmission of flow set-up requests
and responses between the controllers and the switches [27]. We use

Y. Fan, L. Wang and X. Yuan Computer Communications 163 (2020) 35–50

w
t
c
n
p
t
m
s
a
t
n

a
p
b

a
t
t
o

𝑦

𝑥

E
o
𝑐
t
p
a

c
c
c
u

t
(
g
n
i
s

m
D
a
s
c
P
s
t

4

n
t

p
c
p

the shortest path which bypasses the failed link [27] to connect the
switch and its associated controller. Note that the two objectives of
the primary path delay and the backup path latency are intrinsically
conflicting with each other [10]. However, most existing research on
latency-oriented controller placement optimizes the delay between the
switches and the controllers with the assumption of a reliable network
available. In this paper, we study the problem of minimizing the latency
in both primary and backup paths between the controllers and the
switches, assuming the single-link failure may happen.

3. Problem formulation

An SDN network topology can be represented as a graph 𝐺 = (𝑉 ,𝐸),
here 𝑉 is the finite set of switches and 𝐸 is the set of links between

he nodes. 𝐾(𝐾 ≤ |𝑉 |) controllers are to be placed in the network. Each
ontroller is co-located with one and only one switch [23], and the total
umber of requests processed by each controller should be within its
rocessing capacity. Each switch is mapped to exactly one controller;
hat is, the requests of a switch cannot be split to be processed by
ultiple controllers. When a switch is mapped to a controller, we

ay the switch and the controller are associated with each other. We
ssume that there is at most one link failure in the network because
he possibility of multi-link failures in the network is low [11]. The
otations used in the paper are listed in Table 1.

The primary path 𝑝𝑖,𝑘 between switch 𝑖 and controller 𝑐𝑘 is the
shortest path between these two nodes. The average latency in all the
primary paths in the network can be calculated via Eq. (1).

𝑙𝑝 =
∑

𝑖∈𝑉
∑

𝑐𝑘∈𝐶
𝑙𝑝𝑖,𝑘∗𝑥𝑖,𝑘

𝑁 . (1)

Upon the failure of link (𝑖′, 𝑗′) on primary path 𝑝𝑖,𝑘, we need to set up
backup path to connect switch 𝑖 and controller 𝑐𝑘. We use the shortest
ath which bypasses the failed link (𝐼 ′, 𝑗′) to rebuild the connection
etween switch 𝑖 and its associated controller 𝑐𝑘. Since every link on

primary path 𝑝(𝑖,𝑘) may fail, we calculate the average backup path
latency between switch 𝑖 and controller 𝑐𝑘 via Eq. (2). Considering all
single link failures in the network, the average latency of all the backup
paths in the network is calculated by Eq. (3).

𝑙𝑏𝑖,𝑘 =
∑

(𝑖′ ,𝑗′)∈𝑝𝑖,𝑘
𝑙𝑏
𝑖,𝑘,𝑖′ ,𝑗′

|𝑝𝑖,𝑘|
. (2)

𝑙𝑏 =
∑

𝑖∈𝑉
∑

𝑐𝑘∈𝐶
𝑙𝑏𝑖,𝑘∗𝑥𝑖,𝑘

𝑁 . (3)

In this paper, we aim to determine where to place each controller
nd the exact association relationship between the controllers and
he switches, to optimize both the average primary path latency and
he average backup path latency. In other words, our optimization
bjective is to minimize

[𝑙𝑝, 𝑙𝑏], (4)

Subject to
𝐾
∑

𝑘=1
𝑥𝑖,𝑘 = 1, ∀𝑖 ∈ 𝑉 , (5)

𝑁
∑

𝑖=1
𝑦𝑖,𝑘 = 1, (6)

𝑖,𝑘 ≤ 𝑥𝑖,𝑘, ∀𝑖 ∈ 𝑉 , (7)
𝑁
∑

𝑖=1
𝑥𝑖,𝑘𝑟𝑖 ≤ 𝑢𝑘, (8)

𝑖,𝑘 ∈ {0, 1}, 𝑦𝑖,𝑘 ∈ {0, 1}. (9)

Eq. (5) ensures that each switch is assigned to exactly one controller.
q. (6) mandates that each controller is co-located with one and only
ne switch. Eq. (7) dictates that switch 𝑖 is mapped to controller
𝑘 if controller 𝑐𝑘 is co-located with switch 𝑖. Eq. (8) signifies that
he number of requests assigned to the controller cannot exceed the
rocessing capacity of the controller. Eq. (9) ensures that 𝑥𝑖,𝑘 and 𝑦𝑖,𝑘
re binary integer variables.
37
4. Controller placement algorithm

It is known that the controller placement problem to minimize
the latency of primary paths is an -complete problem [6]. The
controller placement problem in this paper is -complete too, as the
former is a special case of our problem by ignoring the optimization of
the latency of backup paths.

In this section, we propose an efficient metaheuristic-based
Reliability-Aware and Latency-Oriented controller placement algorithm
(RALO) for the multi-objective controller placement problem. The
algorithm constructs an initial feasible solution by dividing the network
nodes into multiple switch subsets and allocating a controller in each
switch subset according to the switch-to-controller communication
delay and controller processing capacity since it is shown that network
partitioning can help controller placements [18]. The algorithm then
repeatedly generates new solutions with variable neighborhood search
(VNS). Meanwhile, to avoid falling into the local optimum, the algo-
rithm performs perturbation and destruction operations on the current
solution.

For a feasible solution 𝑋′, we decide whether to accept solution 𝑋′

as a non-dominated solution to the problem and performs Update oper-
ation on the Pareto optimal solution set  according to the following
rules:

1. If solution 𝑋′ performs better in both of the goals than any
existing Pareto optimal solution 𝑋′′, Algorithm 1 adds solution
𝑋′ into set  as a Pareto optimal solution, and deletes solution
𝑋′′ from Pareto optimal solution set  .

2. If solution 𝑋′ only performs better in one of the two objectives
than all the existing Pareto optimal solutions, Algorithm 1 adds
solution 𝑋′ as a Pareto optimal solution into set  .

3. If solution 𝑋′ performs worse in both of the two goals than any
existing Pareto optimal solutions, solution 𝑋′ is dropped.

The controller placement algorithm RALO shown in Algorithm 1
onsists of five components: initial solution construction (division and
onstruction), VNS, perturbation, controller relocation, and shake. In each
omponent, once a new solution is generated, the algorithm conducts
pdate operation on the Pareto optimal solution set.

Algorithm 1 starts with the construction of an initial feasible solu-
ion. The construction is divided into two steps: node subset division
step 2) and controller placement in each node subset (step 3). Al-
orithm 1 then generates new solutions and accepts the new feasible
on-dominated solutions to the problem by the operations of perturb-
ng, destroying the current solution, changing controller location, local
earch, etc.

Algorithm 1 proceeds to find new solutions iteratively within a
aximum number of iterations determined by the parameter 𝑟𝑚𝑎𝑥.
uring each iteration, the mapping relationship between the controllers
nd the switches is perturbed (step 6) and the variable neighborhood
earch is performed (step 7), followed by the positions change of the
ontrollers (step 8). If the current solution is worse than all of the found
areto optimal solutions, the current solution is perturbed greatly by
hake operation so that the solution can jump to another solution space
o avoid falling into the local optimum (steps 9–11).

.1. Initial solution construction

The initial feasible solution is carefully constructed with two steps:
ode subset division and controller placement in each subset, as illus-
rated in Algorithm 2 and Algorithm 3, respectively.

Algorithm 2 divides the network nodes into 𝐾 subsets by finding 𝐾
otential controller locations in turn. Assume 𝐶 ′ is the set of potential
ontroller locations. Initially, a random node 𝑖 is chosen as the first
otential controller location, and 𝐶 ′ = {𝑖} (step 1). For each node,

Y. Fan, L. Wang and X. Yuan Computer Communications 163 (2020) 35–50

𝐿
𝑖
n
u

a
n

s
u
t
n
r
i
e
(
c

Table 1
Table of notations.

Notation Definition

𝑁 The number of nodes/switches (𝑁 = |𝑉 |)
𝐶 Controller set
𝐾 The number of controllers (𝐾 ≤ 𝑁)
𝑖, 𝑗 Switches/nodes 𝑖 and 𝑗
(𝑖, 𝑗) The link between nodes 𝑖 and 𝑗
𝑟𝑖 The number of requests from switch 𝑖 (1 ≤ 𝑖 ≤ 𝑁)
𝑐𝑘 Controller 𝑐𝑘
𝑢𝑘 The processing capacity of controller 𝑐𝑘 (1 ≤ 𝑘 ≤ 𝐾)
𝑥𝑖,𝑘 Indicate whether switch 𝑖 is mapped to controller 𝑐𝑘 (= 1) or not (= 0)
𝑦𝑖,𝑘 Denote whether controller 𝑐𝑘 is co-located with switch 𝑖 (= 1) or not (= 0)
𝑝𝑖,𝑘 The primary path between switch 𝑖 and controller 𝑐𝑘
𝑙𝑝𝑖,𝑘 The latency of the primary path between switch 𝑖 and controller 𝑐𝑘
𝑙𝑏𝑖,𝑘,𝑖′ ,𝑗′ The latency of the backup path between switch 𝑖 and controller 𝑐𝑘 under link (𝑖′ , 𝑗′) failure
𝑙𝑏𝑖,𝑘 The average latency of the backup paths between switch 𝑖 and controller 𝑐𝑘
𝑋′ A feasible solution
𝑋′

𝑘 The subset of switches mapped to controller 𝑐𝑘 in feasible solution 𝑋′

𝓁(𝑋′) The set of switches whose delay to the associated controller is the largest in its corresponding switch subset
𝐻 𝑖 The set of switches which can be reached by switch 𝑖 in two hops
 Pareto optimal solution set
Algorithm 1 Controller Placement Algorithm RALO
Input: Network topology 𝐺 = (𝑉 ,𝐸), the number of requests of the switches,

the number of controllers 𝐾, the number of iterations 𝑟𝑚𝑎𝑥,
parameters 𝛼, 𝛽.

Output: Pareto optimal solution set  .
1:  = ∅;
2: 𝑆 = Division(𝐺,𝐾);
3: 𝑋′ = Construction(𝐺,𝑆,𝐾,);
4: 𝑟 = 𝑟𝑚𝑎𝑥;
5: while 𝑟 > 0 do
6: Perturbation (𝑋′, 𝛼);
7: 𝑋′ = VNS(𝑋′, 𝛽,);
8: 𝑋′ = Relocation(𝑋′,);
9: if 𝑋′ is worse than all the solutions in  then

10: 𝑋′ = Shake(𝑋′, 𝜂);
11: end if
12: 𝑟 = 𝑟 − 1;
13: end while
14: return  .
1
1
1
1

1
1
1

we find 𝐿𝑖, i.e., the delay of the node to the closet potential controller
position as follows:

𝐿𝑖 = min
𝑐𝑘∈𝐶′

𝑙𝑝𝑖,𝑘, ∀𝑖 ∈ 𝑉 . (10)

Every time after a potential controller location is found, Algorithm 2
updates 𝐿𝑖 for all the nodes, and then chooses the node with maximum
𝑖 as the next potential controller location; that is, the chosen node

∗ = arg max𝑖∈𝑉 −𝐶′ 𝐿𝑖. Algorithm 3 repeats the process of selecting the
ode with maximum 𝐿𝑖 as a new potential controller location (step 6)
ntil we get all the 𝐾 potential locations. Each of the 𝐾 nodes forms

a subset 𝑆𝑘; that is, subset 𝑆𝑘 contains only one node 𝑘. Algorithm 3
ssigns each node 𝑖 to subset 𝑆𝑘 which causes the minimum cost from
ode 𝑖 to the 𝑘th potential controller location (steps 12–15).

Algorithm 3 chooses the location for each controller in each node
ubset obtained by Algorithm 2, and maps each node to a controller
nder the controller processing capacity constraint. It is advantageous
o deploy the controller on a node with a large number of requests from
earby nodes. In Algorithm 3, the node with the maximum number of
equests from the nodes in two hops is chosen as the controller location
n each subset (steps 4–7). The algorithm sorts all the other nodes in
ach subset 𝑆𝑘 by the non-ascending order of the number of requests
step 9) and assigns each node to the controller under the controller
apacity constraint (steps 10–14). For the nodes that cannot be assigned
38
Algorithm 2 Division
Input: Network topology 𝐺 = (𝑉 ,𝐸), the number of controllers 𝐾.
Output: Subset division 𝑆 = {𝑆1, 𝑆2,⋯ , 𝑆𝑘,⋯ , 𝑆𝐾}.
1: Choose 𝑖 ∈ 𝑉 ; 𝐶 ′ = {𝑖}; 𝑘 = 1; 𝑆𝑘 = {𝑖};
2: for each 𝑖 ∈ 𝑉 − 𝐶 ′ do
3: 𝐿𝑖 = 𝑙𝑝𝑖,𝑘, 𝑐𝑘 ∈ 𝐶 ′;
4: end for
5: while |𝐶 ′

| < 𝐾 do
6: 𝑖∗ = arg max

𝑖∈𝑉 −𝐶′
𝐿𝑖;

7: 𝑘 = 𝑘 + 1; 𝑆𝑘 = {𝑖∗}; 𝐶 ′ = 𝐶 ′ ∪ {𝑖∗};
8: for each 𝑖 ∈ 𝑉 − 𝐶 ′ do
9: 𝐿𝑖 = min

𝑐𝑘∈𝐶′
𝑙𝑝𝑖,𝑘;

0: end for
1: end while
2: for each 𝑖 ∈ 𝑉 − 𝐶 ′ do
3: 𝑘 = arg min

𝑘′∈𝐶′
𝑙𝑝𝑖,𝑘′ ;

4: 𝑆𝑘 = 𝑆𝑘 ∪ {𝑖};
5: end for
6: return 𝑆.

Y. Fan, L. Wang and X. Yuan Computer Communications 163 (2020) 35–50


m
t
n
a

a
a
t
c

4

f
s
c
c

𝜋

𝜋

w
c
e
f
t
c
A
a
n
U

4

i
S
n

d
𝑊

p

n
s
W

m
l
a

to a controller, the algorithm maps each of the unassigned nodes to
the closest (least primary paths delay) controller which has enough
processing capacity to serve the requests from the node (steps 16–18).
After finding the new solution, the algorithm performs Update operation
on the Pareto optimal solution set (step 19).

4.2. Variable neighborhood search

VNS shown in Algorithm 4 searches the neighborhood of the current
solution to generate new feasible solutions. We denote 1(𝑋′, 𝛽) and
2(𝑋′, 𝛽) as the set consisting of the nodes whose latencies of the pri-
ary paths and the backup paths to the associated controller are among

he top 𝛽 largest in the corresponding node subset, respectively. For
odes in 𝑠(𝑋′, 𝛽) (𝑠 ∈ {1, 2}), we define two operations: remap(𝑖, 𝑘, 𝑞)
nd swap(𝑖, 𝑗).

Operation remap(𝑖, 𝑘, 𝑞) reassigns switch 𝑖 ∈ 𝑠(𝑋′, 𝛽) (𝑠 ∈ {1, 2})
from the originally assigned controller 𝑐𝑘 to another controller 𝑐𝑞
(𝑘 ≠ 𝑞) to generate a new solution, and the benefit of the remapping
operation is defined by Eqs. (11) and (12).

𝜋1
1 (𝑖, 𝑘, 𝑞) = 𝑙𝑝𝑖,𝑘 − 𝑙𝑝𝑖,𝑞 . (11)

𝜋2
1 (𝑖, 𝑘, 𝑞) = 𝑙𝑏𝑖,𝑘 − 𝑙𝑏𝑖,𝑞 . (12)

where 𝜋1
1 (𝑖, 𝑘, 𝑞) > 0 and 𝜋2

1 (𝑖, 𝑘, 𝑞) > 0 indicate that the delay on the
primary paths and the backup paths will be reduced, respectively, if
switch 𝑖 originally assigned to controller 𝑐𝑘 is remapped to controller
𝑐𝑞 .

Operation swap(𝑖, 𝑗) remaps switch 𝑖 originally assigned to con-
troller 𝑐𝑘 to controller 𝑐𝑞 , and reassigns switch 𝑗 (𝑖 ≠ 𝑗) originally
mapped to controller 𝑐𝑞 to controller 𝑐𝑘 (𝑘 ≠ 𝑞). The benefit of the
swap operation is defined by Eqs. (13) and (14). If 𝜋𝑠

2(𝑖, 𝑗, 𝑘, 𝑞) > 0
(𝑠 ∈ {1, 2}), we can decrease the delay by swapping the mapping
relationship between the switches and the controllers.

𝜋1
2 (𝑖, 𝑗, 𝑘, 𝑞) = (𝑙𝑝𝑖,𝑘 + 𝑙𝑝𝑗,𝑞) − (𝑙𝑝𝑖,𝑞 + 𝑙𝑝𝑗,𝑘). (13)

𝜋2
2 (𝑖, 𝑗, 𝑘, 𝑞) = (𝑙𝑏𝑖,𝑘 + 𝑙𝑏𝑗,𝑞) − (𝑙𝑏𝑖,𝑞 + 𝑙𝑏𝑗,𝑘). (14)

Note that the two neighborhood search operations will be executed
only when 𝜋𝑠

𝑟 (𝑖, 𝑗) > 0 (𝑠, 𝑟 ∈ {1, 2}). Once the neighborhood search
operations are executed, a new solution is generated, and the algorithm
performs update operation on the Pareto solution set  (steps 11 and
19). In step 24, the solution with less average primary path delay is
considered to be a better solution when 𝑠 = 1. Similarly, the solution
achieving less average backup path latency is a better solution when
𝑠 = 2.

4.3. Perturbation

Perturbation reassigns some of the switches to other controllers for
each node subset as shown in Algorithm 5. Perturbation consists of
two phases: destruction and remapping. In the destruction phase, a
percentage 𝛼 (0 < 𝛼 < 1) of the switches will be removed from their
mapped controller for each node subset. Assuming switch 𝑖 is originally
mapped to controller 𝑐𝑘, the association between switch 𝑖 and controller
𝑐𝑘 is removed with the probability of 𝜌𝑖 defined by Eq. (15). The switch
with a large delay to its assigned controller is likely to be unassigned.

𝜌𝑖 =
𝑙𝑝𝑖,𝑘

∑

𝑗∈𝑋′
𝑘
𝑙𝑝𝑗,𝑘

. (15)

The remapping phase first sorts the removed nodes in the non-
scending order of the delay between the nodes and the originally
ssigned controllers and then maps each of the removed nodes to
he closest (least primary paths delay) controller in turn under the
ontroller processing capacity constraint.
 s

39
.4. Controller relocation

Controller relocation attempts to increase the performance of the
easible solutions by moving a controller to a different position in the
ame node subset as illustrated in Algorithm 6. For controller 𝑐𝑘 and
orresponding subset 𝑋′

𝑘 in feasible solution 𝑋′, the benefit of moving
ontroller to node 𝑞 is defined by Eqs. (16) and (17).
1
3 (𝑘, 𝑞) =

∑

𝑖∈𝑋′
𝑘

(𝑙𝑝𝑖,𝑘 − 𝑙𝑝𝑖,𝑞). (16)

2
3 (𝑘, 𝑞) =

∑

𝑖∈𝑋′
𝑘

(𝑙𝑏𝑖,𝑘 − 𝑙𝑏𝑖,𝑞). (17)

here 𝜋𝑠
3(𝑘, 𝑞) > 0 (𝑠 ∈ {1, 2}) indicates that moving the position of

ontroller 𝑐𝑘 to node 𝑞 will reduce the node-to-controller delay. For
ach node subset in the feasible solution, Algorithm 6 attempts to
ind a better solution by checking all the different node positions for
he controller in the corresponding subset. If a better position for the
ontroller is found, the controller is moved to the found place, and
lgorithm 6 reassigns all the switches in the subset to the controller
t the new location. The algorithm then decides whether to accept the
ew solution as a non-dominated solution to the problem and performs
pdate operation on the Pareto frontier.

.5. Shake

Shake shown in Algorithm 7 destroys the current solution signif-
cantly so that the solution can jump to a solution space far away.
hake attempts to find better controllers for the nodes with the largest
ode-to-controller communication delay in each subset. We denote 𝜏𝑖

as the controller to which switch 𝑖 is mapped and 𝓁(𝑋′) as the set of
switches, each having the largest primary path delay to the associated
controller in its corresponding subset. For each switch 𝑖 ∈ 𝓁(𝑋′), Shake
estructs 𝜂 number of the subsets in the current solution. We define
𝑖 = {𝑋′

𝑘1
, 𝑋′

𝑘2
,… , 𝑋′

𝑘𝜂
}, where 𝑋′

𝑘1
, 𝑋′

𝑘2
,… , 𝑋′

𝑘𝜂
are the 𝜂 subsets with

the smallest primary path delay between switch 𝑖 and the corresponding
controllers in the 𝜂 subsets, assuming 𝑘𝑖 is the index of the controller in
subset 𝑋′

𝑘𝑖
. The 𝜂 subsets are sorted, with 𝑋′

𝑘1
as the subset having the

least primary path delay from the subset controller to switch 𝑖 ∈ 𝑊 𝑖.
We create new topology 𝐺′ = {𝑉 ′, 𝐸′,𝑊 ′}, where 𝑉 ′ consists of all
nodes 𝑖 ∈ 𝑊 𝑖 and 𝐸′ = {(𝑖, 𝑗)| every 𝑖, 𝑗 ∈ 𝑉 ′}, 𝑊 ′ = {𝑤𝑖,𝑗 |𝑤𝑖,𝑗 is the
length of path 𝑝𝑖,𝑗 in original topology 𝐺, 𝑖, 𝑗 ∈ 𝑉 ′}. For each switch 𝑖,
if 𝜏𝑖 = 𝑘1, we destroy all the 𝜂 subsets in 𝑊 𝑖, and reassign all the nodes
in 𝑊 𝑖 with the same process in the initial solution construction. The
solution might be destroyed greatly by remapping these nodes.

If there is no node 𝑖′ ∈ 𝓁(𝑋′) mapped to the closest controller
(𝜏𝑖′ = 𝑘1), steps (1–10) do not destroy the current solution. Algorithm 7
then reconstructs all the subsets of the current solution. The reconstruc-
tion method is slightly different from the initial solution construction
process in terms of the selection of the 𝐾 potential controller positions
in the subset partition. We calculate 𝜙(𝑖) for each node 𝑖 ∈ 𝑉 as

𝜙(𝑖) =
∑

𝑖′∈𝐻𝑖 𝑟𝑖′
∑

𝑗∈𝑉 𝑟𝑗
, (18)

where 𝜙(𝑖) is the probability of selecting node 𝑖 as a potential controller
osition.

A large amount of the requests from all the nodes that can reach
ode 𝑖 in two hops results in a greater value of 𝜙(𝑖). Each node is
elected as a potential controller position with probability 𝜙(𝑖) (𝑖 ∈ 𝑉).
e select 𝐾 potential controller positions and form 𝐾 node subsets

with each having only one node, i.e., the node at the selected position.
Algorithm 7 then assigns each node 𝑖 to subset 𝑆𝑘 which incurs the

inimum primary path delay from node 𝑖 to the 𝑘th potential controller
ocation. Note that if the value of 𝜙(𝑖) (∀𝑖 ∈ 𝑉) remains unchanged, the
lgorithm will potentially generate a few same node subset partitions,
ince node 𝑖 with a high value of 𝜙(𝑖) is always likely to be selected

Y. Fan, L. Wang and X. Yuan Computer Communications 163 (2020) 35–50

1
1

1
1
1
1
1
1
1
2

5

t
i

5

t
v
e
v
i
o
t
a
𝜆
l
a
t
d
u
m
t
m
i
a
R
o

Algorithm 3 Construction
Input: Network topology 𝐺 = (𝑉 ,𝐸), Pareto optimal solution set  ,

the number of requests of the switches, the number of controllers 𝐾,
subset division 𝑆′.

Output: Feasible solution 𝑋′.
1: for 1 ≤ 𝑘 ≤ 𝐾 do
2: 𝑋𝑘 = ∅;
3: end for
4: for 1 ≤ 𝑘 ≤ 𝐾 do
5: 𝑘∗ = argmax

𝑖∈𝑆𝑘

∑

𝑗∈𝐻 𝑖
𝑟𝑗 ;

6: 𝑐𝑘 = 𝑐𝑘∗ ;
7: end for
8: for 1 ≤ 𝑘 ≤ 𝐾 do
9: Sort all the nodes in subset 𝑆𝑘 by the non-ascending order of the total number of requests from the nodes;
0: for each 𝑖 ∈ 𝑆𝑘 do
1: if controller 𝑐𝑘 has enough capacity to serve the requests from node 𝑖 then

12: 𝑋𝑘 = 𝑋𝑘 ∪ {𝑖};
3: end if
4: end for
5: end for
6: if there are unassigned nodes then
7: Assign each of the unassigned nodes to the closest controller with enough capacity to accommodate the requests from the node;
8: end if
9: Update();
0: return 𝑋′.
T
T

t

as a potential controller position. To achieve the diversity of node
subset partitions, each 𝜙(𝑖) is considered as a global variable and it
is initialized by Eq. (18) at the beginning of the proposed algorithm
RALO. The value of 𝜙(𝑖) is decreased by step-length 𝜈, after node 𝑖 is
selected as a potential controller position. 𝜙(𝑖) is restored to its initial
value by Eq. (18), when 𝜙(𝑖) is decreased to a value lower than a
threshold  . In this paper, we set both step-length 𝜈 and threshold 
as 1

2 min𝑖∈𝑉 𝜙(𝑖).

. Performance evaluation

In this section, we evaluate the performance of the proposed con-
roller placement algorithm RALO. We also investigate the impact of
mportant components on the performance of the proposed algorithm.

.1. Simulation setup

We evaluate the performance of the proposed algorithm against
he optimal solution OPT [31], algorithm LARC [30], algorithm Sur-
ivor [25], and algorithm PSA [24]. We obtain the optimal solution on
ach objective in the controller placement problem defined in Section 3
ia CPLEX 12.8.0 by ignoring the other objective. Algorithm LARC
ntroduces the accumulated delay by integrating the two sub-objectives
f the primary path delay and backup path latency into one objective;
hat is, algorithm LARC minimizes the weighted sum of the primary
nd the backup path delay as 𝑙𝑖,𝑗 = 𝜆1𝑙

𝑝
𝑖,𝑗 + 𝜆2𝑙𝑏𝑖,𝑗 (𝜆1 + 𝜆2 = 1, 0 ≤

1, 𝜆1 ≤ 1). Algorithm LARC places each controller by searching the
ocation that incurs the least path cost between each unassigned switch
nd the controller. Algorithm Survivor places the controllers by solving
he linear programming problem to maximize the average number of
isjoint paths between each switch and its controller. Algorithm PSA
sed in extended POCO [24] is a meta-heuristic multi-objective opti-
ization algorithm based on simulated annealing; the algorithm drops

he temperature from an initial value to 1 and searches the solution for
any times at each temperature during the dropping. In this paper, the

nitial temperature and the number of search times at each temperature
re set as 50 and 90 for algorithm PSA, respectively [24]. Algorithm
ALO deals with the multi-objective problem and provides a Pareto

ptimal solution set which allows network administrators with flexible

40
able 2
he parameters of real network topologies.

Alilene Arnes ATT Darkstrand Internet2 Savvis Spiralight Xspedius

 11 34 25 28 34 19 15 34
 14 46 56 31 42 20 16 49
 [3, 8] [8, 13] [6, 11] [7, 12] [9, 14] [4, 9] [4, 9] [8, 13]

Table 3
The parameters of Generated networks I and Generated networks II.

1 2 3 4 5 6 7 8 9 10

I  50 50 50 50 50 50 50 50 50 50

 100 100 150 150 200 200 250 250 300 300

II  50 50 50 50 50 50 50 50 50 50

 2 2 2.5 2.5 3 3 3.5 3.5 4 4

choices of the solutions. For comparison of these two algorithms, we
select one solution from the Pareto optimal solution set obtained by
Algorithm RALO and calculate the accumulated (weighted) delay in the
same way as algorithm LARC.

The network topologies used in the simulations are 8 real network
topologies from Internet topology zoo [32], as well as two kinds of
network topologies (Generated networks I and Generated networks II)
generated by Stanford Network Analysis Platform (SNAP) [33]. The
parameters of the real networks are shown in Table 2, where  is
he range of the number of controllers, i.e. [𝐾𝑚𝑖𝑛, 𝐾𝑚𝑎𝑥], and  and
 denote the number of nodes and edges, respectively. Generated
networks I is a set of network topologies which conform to the ER
(Erdos–Renyi) random model, while Generated networks II is a set of
network topologies which conform to the small-world model. Each kind
of generated networks includes 10 network topologies. The parame-
ters of these generated networks are shown in Table 3, where  is
the average number of the nearest neighbors to which each node is
connected.

All the controllers have identical computing capacity of 1000 kilo-
requests/s, and each switch generates the requests with a rate of
200 kilo-requests/s. We use the geographical distance between two
locations as an approximation of latency [6]. The latency on each edge

Y. Fan, L. Wang and X. Yuan Computer Communications 163 (2020) 35–50

a

Algorithm 4 VNS
Input: Network topology 𝐺 = (𝑉 ,𝐸), Pareto optimal solution set  ,

the number of requests of the switches, the number of controllers 𝐾,
feasible solution 𝑋′ and parameter 𝛽.

Output: New feasible solution 𝑋′′.
1: ℎ = 1;
2: 𝑠 = 1;
3: while 𝑠 ≤ 2 do
4: while ℎ ≤ 2 do
5: 𝑋′′ = 𝑋′;
6: for each 𝑖 ∈ 𝑠(𝑋′′, 𝛽) do
7: if ℎ = 1 then
8: 𝑘∗ = argmax

𝑞
𝜋𝑠
1(𝑖, 𝑘, 𝑞);

9: if 𝜋𝑠
1(𝑖, 𝑘, 𝑘

∗) > 0 & 𝑢∗𝑘 ≥ 𝑟𝑖 then
10: remap(𝑖, 𝑘, 𝑘∗);
11: Update();
12: end if
13: end if
14: if ℎ = 2 then
15: for each 𝑖 ∈ 𝑉 do
16: 𝑗∗ = argmax

𝑗
𝜋𝑠
2(𝑖, 𝑗);

17: if 𝜋𝑠
2(𝑖, 𝑗

∗, 𝑘, 𝑞) > 0 & 𝑢𝑘 + 𝑟𝑖 ≥ 𝑟𝑗∗ & 𝑢𝑞 + 𝑟𝑗∗ ≥ 𝑟𝑖 then
18: swap(𝑖, 𝑗∗);
19: Update();
20: end if
21: end for
22: end if
23: end for
24: if 𝑋′′ is better than 𝑋′ then
25: 𝑋′ = 𝑋′′;
26: ℎ = 1;
27: else
28: ℎ = ℎ + 1;
29: end if
30: end while
31: 𝑠 = 𝑠 + 1;
32: end while
33: return 𝑋′′.
in the generated networks is randomly generated. In the simulations,
the number of iterations, 𝑟𝑚𝑎𝑥, during the algorithm execution is 200,
nd the parameters are set as 𝛼 = 0.3, 𝛽 = 3, 𝜂 = ⌈𝑙𝑛𝐾⌉ + 1. For

generated networks I and generated networks II, we take the average
of the running results on all the network topologies as the simulation
results for each kind of generated networks.

5.2. Performance evaluation of the proposed algorithm

In this section, we define 𝐺𝐴𝑃 via Eq. (19) to indicate the difference
between the result obtained by an algorithm and the optimal solution
OPT.

𝐺𝐴𝑃 = |

𝑅−𝑂𝑃𝑇
𝑂𝑃𝑇 |. (19)

where 𝑅 represents the result obtained by an algorithm. The smaller
the value of 𝐺𝐴𝑃 , the better the result obtained by the algorithm.

5.2.1. Average latency of primary paths
Table 4 lists the average latency of primary paths obtained by

different algorithms of RALO, LARC, Survivor, PSA, and the optimal
solution versus the different number of controllers in the real network
topologies. 𝐾𝑚𝑖𝑛 and 𝐾𝑚𝑎𝑥 in the column of Network represent the range
of the number of controllers in the network. The weights of the primary
and the backup path latencies with algorithm LARC are set as 𝜆1 = 1
and 𝜆 = 0, respectively. That is, algorithm LARC only cares about the
2

41
primary path latency and ignores the backup path delay. In this way,
algorithm LARC can achieve the best primary path delay performance.
The smallest 𝐺𝐴𝑃 obtained by algorithms LARC, RALO, and PSA is 0,
0, and 0.0015, respectively. That is, both RALO and PSA can obtain
the optimal solution at least once. For example, both RALO and PSA
find the optimal result on network Spiralight when the number of
controllers is 9. The largest 𝐺𝐴𝑃 obtained by algorithms LARC, RALO,
PSA, and Survivor is 0.3560, 0.121l, 0.3560, and 6.0447, respectively.
In conclusion, algorithm RALO outperforms algorithms LARC, PSA, and
Survivor in terms of primary paths latency.

Figs. 1(a)–(b) plot the average latency of primary paths with dif-
ferent numbers of controllers for RALO, LARC, PSA, Survivor, and
OPT on generated networks I and generated networks II, respectively.
Algorithm RALO achieves better performance than algorithms LARC,
PSA, and Survivor on all these generated networks. In general, the
primary path latency of all the algorithms decreases as the number of
controllers increases, since each switch can be potentially mapped to a
closer controller with more controllers in the network. Algorithm RALO
outperforms algorithm LARC by up to 2.7% and 3.8% on generated net-
works I and generated networks II, respectively. The average primary
latency obtained by algorithm RALO is better than that obtained by
algorithm PSA by 1.8%–2.7% on generated networks I and 18%–25%
on generated networks II, respectively. Algorithm RALO searches for
a large solution space to find a wide range of good solutions, while
algorithm LARC minimizes the weighted sum of the primary and the

Y. Fan, L. Wang and X. Yuan Computer Communications 163 (2020) 35–50

O

1
1
1
1
1
1

Algorithm 5 Perturbation
Input: Network topology 𝐺 = (𝑉 ,𝐸), the number of requests of the switches,

the number of controllers 𝐾, the controller set 𝐶,
feasible solution 𝑋′ and parameter 𝛼.

utput: New feasible solution 𝑋′′.
1: 𝑋′′ = 𝑋′;
2: for each 𝑐𝑘 ∈ 𝐶 do
3: 𝑊𝑘 = ∅;
4: for each 𝑖 ∈ 𝑋′

𝑘 do

5: calculate 𝜌𝑖 =
𝑙𝑝𝑖,𝑘

∑

𝑗∈𝑋′
𝑘

𝑙𝑝𝑗,𝑘
;

6: end for
7: while |𝑊𝑘|

|𝑋′
𝑘|−1

< 𝛼 do
8: Choose 𝑖 ∈ 𝑋′

𝑘 randomly to be removed using probability 𝜌𝑖;
9: if 𝑖 is chosen to be removed then
0: 𝑊𝑘 = 𝑊𝑘 ∪ {𝑖};
1: end if
2: end while
3: end for
4: 𝑊 = {𝑊1,𝑊2,… ,𝑊𝐾};
5: Sort all the switches in 𝑊 in the non-ascending order of the delay from the switches to the originally mapped controllers;

16: for each 𝑖 ∈ 𝑊 do
17: Map switch 𝑖 to the nearest controller 𝑐𝑘 with sufficient processing capacity;
18: 𝑋′′

𝑘 = 𝑋′′
𝑘 ∪ {𝑖};

19: end for
20: return 𝑋′′.
Algorithm 6 Relocation
Input: Network topology 𝐺 = (𝑉 ,𝐸), Pareto optimal solution set  ,

the number of requests of the switches, the number of controllers 𝐾,
the controller set 𝐶, feasible solution 𝑋′.

Output: New feasible solution 𝑋′′.
1: 𝑋′′ = 𝑋′, 𝑠 = 1;
2: while 𝑠 ≤ 2 do
3: for each 𝑐𝑘 ∈ 𝐶 do
4: for each 𝑞 ∈ 𝑋′′

𝑘 do
5: if 𝜋𝑠

3(𝑘, 𝑞) > 0 then
6: Move controller 𝑐𝑘 to node 𝑞;
7: Update();
8: end if
9: end for

10: end for
11: 𝑠 = 𝑠 + 1;
12: end while
13: return 𝑋′′.
backup path delay. The worst average primary latency performance is
obtained by algorithm Survivor. Survivor aims to maximize the number
of disjoint paths between the switches and the associated controllers,
and Survivor ignores the latency during controller placements.

5.2.2. Average latency of backup paths
Table 5 shows the average latency of backup paths obtained by

the algorithms and the optimal solution with a different number of
controllers in the real network topologies. The weights of the primary
and the backup path latencies with algorithm LARC are set as 𝜆1 = 0
and 𝜆2 = 1, respectively. That is, algorithm LARC only optimizes the
backup path latency by ignoring the primary path delay. In this way,
algorithm LARC can achieve the best backup path delay performance
within the capability of LARC. The 𝐺𝐴𝑃 obtained by RALO, PSA, LARC,
and Survivor varies from 0 to 0.5143, from 0 to 0.986, from 0.0008 to
3.4644, and from 0.2875 to 7.4776, respectively. In general, algorithm
RALO performs better than algorithms PSA, LARC, and Survivor in
terms of backup path latency.
42
Figs. 2(a)–(b) demonstrate the average latency of backup paths
with algorithms RALO, LARC, PSA, Survivor, and the optimal solution
with different numbers of controllers in generated networks I and
generated networks II, respectively. In general, the average backup
path latency decreases with the increase of the number of controllers.
More controllers enable wider controller distribution in the network
so that the backup latency is reduced. Algorithm RALO always obtains
better performance than algorithms LARC, PSA, and Survivor on all
the generated networks, since algorithm RALO finds the controller
positions after traversing a large solution space. Particularly, the per-
formance improvement of algorithm RALO over algorithms LARC, PSA,
and Survivor reaches up to 12.9%, 8.1%, and 36.1%, respectively, in
generated networks I.

5.2.3. Average accumulated latency with different numbers of controllers
In this section, we evaluate the performance of the algorithms in

terms of average accumulated latency. The accumulated latency is the

Y. Fan, L. Wang and X. Yuan Computer Communications 163 (2020) 35–50

O

Algorithm 7 Shake
Input: Network topology 𝐺 = (𝑉 ,𝐸), the number of requests of the switches,

the number of controllers 𝐾, feasible solution 𝑋′ and parameter 𝜂.
utput: New feasible solution 𝑋′′.

1: for all 𝑖 ∈ 𝓁(𝑋′) do
2: Calculate 𝑊 𝑖;
3: Create 𝐺′;
4: if 𝑘1 = 𝜏𝑖 then
5: 𝑋′ = 𝑋′ ⧵𝑊 𝑖;
6: 𝑆′ = Division(𝐺′, 𝜂);
7: 𝑋′′ = Construction(𝐺′, 𝑆′, 𝜂);
8: 𝑋′′ = 𝑋′ ∪𝑋′′;
9: end if

10: end for
11: if there is no 𝑘1 = 𝜏𝑖′ for all 𝑖′ ∈ 𝓁(𝑋′) then
12: 𝐶 ′ = ∅;
13: while |𝐶 ′

| < 𝐾 do

14: Choose 𝑖 ∈ 𝑉 using probability 𝜙(𝑖) =

∑

𝑖′∈𝐻𝑖
𝑟𝑖′

∑

𝑗∈𝑉
𝑟𝑗

;

15: 𝐶 ′ = 𝐶 ′ ∪ {𝑖};
16: 𝜙(𝑖) = 𝜙(𝑖) − 𝜈;
17: if 𝜙(𝑖) <  then

18: 𝜙(𝑖) =

∑

𝑖′∈𝐻𝑖
𝑟𝑖′

∑

𝑗∈𝑉
𝑟𝑗

;

19: end if
20: end while
21: for 1 ≤ 𝑘 ≤ 𝐾 do
22: 𝑆𝑘 = ∅;
23: end for
24: for 𝑖 ∈ 𝑉 do
25: 𝑘 = argmin

𝑘′∈𝐶
𝑙𝑝𝑖,𝑘′ ;

26: 𝑆𝑘 = 𝑆𝑘 ∪ {𝑖};
27: end for
28: 𝑋′′ = Construction(𝐺, 𝑆, 𝐾);
29: end if
30: return 𝑋′′.
Fig. 1. The average latency of primary paths on generated networks.
weighted sum of primary and back path latency, and the weights of the
primary and the backup path latency are set as 𝜆1 = 0.8 and 𝜆2 = 0.2,
respectively.

Table 6 lists the accumulated latency obtained by all the algorithms
and the optimal solution with different numbers of controllers in the
real network topologies. The average 𝐺𝐴𝑃 obtained by algorithms
RALO, LARC, PSA, and Survivor is 0.0201, 0.0916, 0.0872, and 1.3218,
43
respectively. The average 𝐺𝐴𝑃 of algorithm RALO is the smallest among
the four algorithms; that is, the accumulated latency obtained by
algorithm RALO is smaller than that obtained by algorithms LARC, PSA,
and Survivor.

Figs. 3(a)–(b) illustrate the average accumulated latency by varying
the number of controllers in the networks of generated networks I
and generated networks II, respectively. In general, the accumulated

Y. Fan, L. Wang and X. Yuan Computer Communications 163 (2020) 35–50
Table 4
The average latency (km) of primary paths on real network topologies.

Network Algorithm 𝐾𝑚𝑖𝑛 𝐾𝑚𝑖𝑛 + 1 𝐾𝑚𝑖𝑛 + 2 𝐾𝑚𝑖𝑛 + 3 𝐾𝑚𝑖𝑛 + 4 𝐾𝑚𝑎𝑥 Best 𝐺𝐴𝑃 Worst 𝐺𝐴𝑃

Abilene
(𝐾𝑚𝑖𝑛 = 3)
(𝐾𝑚𝑎𝑥 = 8)

LARC 682.14 469.20 390.06 243.40 166.15 116.44 0.0256 0.1749
RALO 662.55 441.46 332.00 228.45 162.00 99.50 0.0000 0.1211
PSA 701.81 441.45 346.63 228.45 162.00 99.50 0.0000 0.1875
Survivor 1281.46 850.00 1191.09 539.55 619.36 294.18 0.9274 2.8232
OPT 591.00 441.00 332.00 228.00 162.00 99.50

Arnes
(𝐾𝑚𝑖𝑛 = 8)
(𝐾𝑚𝑎𝑥 = 13)

LARC 18.19 14.73 13.54 12.14 11.55 10.34 0.0412 0.1192
RALO 17.47 13.85 12.70 11.47 10.32 9.44 0.0000 0.0160
PSA 19.47 15.64 13.44 12.70 11.58 10.14 0.0742 0.1292
Survivor 48.82 38.88 40.29 35.29 41.29 39.50 1.7947 3.1843
OPT 17.47 13.85 12.50 11.47 10.32 9.44

ATT
(𝐾𝑚𝑖𝑛 = 6)
(𝐾𝑚𝑎𝑥 = 11)

LARC 511.92 393.30 280.16 237.08 214.31 193.41 0.0135 0.3497
RALO 379.28 308.20 259.76 233.92 210.04 186.96 0.0000 0.0001
PSA 442.92 402.04 327.20 297.20 263.16 216.12 0.1560 0.3045
Survivor 1322.48 1227.6 1225.96 1277.28 961.8 595.68 2.1861 4.4603
OPT 379.28 308.20 259.76 233.92 210.01 186.96

Darkstrand
(𝐾𝑚𝑖𝑛 = 7)
(𝐾𝑚𝑎𝑥 = 12)

LARC 396.21 348.16 272.36 258.76 238.04 220.31 0.0187 0.1358
RALO 362.07 306.53 267.57 243.57 223.07 202.75 0.0000 0.0008
PSA 449.03 377.64 316.60 271.25 241.60 232.64 0.0831 0.2402
Survivor 1409.04 1651.07 1161.61 1202.50 1149.82 1028.29 2.8916 4.3863
OPT 362.07 306.53 267.35 243.57 223.07 202.75

Internet2
(𝐾𝑚𝑖𝑛 = 9)
(𝐾𝑚𝑎𝑥 = 14)

LARC 330.85 291.38 252.92 234.77 215.40 200.60 0.0070 0.0581
RALO 312.67 278.58 251.17 231.82 214.58 195.26 0.0000 0.0279
PSA 386.47 345.00 293.05 267.17 245.79 220.79 0.1525 0.2384
Survivor 1347.41 1218.65 970.82 1063.21 1204.97 1038.47 2.8652 4.7720
OPT 312.67 278.58 251.17 231.82 208.76 190.11

Savvis
(𝐾𝑚𝑖𝑛 = 4)
(𝐾𝑚𝑎𝑥 = 9)

LARC 493.12 376.89 272.73 216.29 195.89 167.01 0.0015 0.1338
RALO 465.78 332.42 272.31 215.94 185.73 154.31 0.0000 0.0066
PSA 564.89 354.42 292.68 222.73 186.52 154.31 0.0000 0.2128
Survivor 1404.68 1385.16 1311.95 965.84 1299.90 1015.74 2.0158 6.0447
OPT 465.78 332.42 272.31 215.94 184.52 154.31

Spiralight
(𝐾𝑚𝑖𝑛 = 4)
(𝐾𝑚𝑎𝑥 = 9)

LARC 57.25 57.35 34.74 34.17 20.75 16.79 0.0079 0.3560
RALO 56.80 43.80 34.46 25.20 19.46 15.93 0.0000 0.0304
PSA 56.80 44.93 34.46 25.20 19.46 15.93 0.0000 0.0304
Survivor 182.13 191.47 157.73 164.33 94.53 43.47 1.8116 5.5212
OPT 56.80 43.80 34.46 25.20 19.46 15.46

Xspedius
(𝐾𝑚𝑖𝑛 = 8)
(𝐾𝑚𝑎𝑥 = 13)

LARC 395.39 321.42 256.12 235.46 224.45 193.98 0.0210 0.1931
RALO 331.41 286.55 250.85 223.29 202.00 180.73 0.0000 0.0000
PSA 432.64 326.08 281.73 279.61 238.79 217.32 0.1231 0.3055
Survivor 997.09 1030.03 959.82 800.41 877.94 772.79 2.0086 3.3462
OPT 331.41 286.55 250.85 223.29 202.00 180.73
Fig. 2. The average latency of backup paths on generated networks.
latency resulted from all the algorithms decreases with the increase of
the number of controllers, since the switches can be mapped to closer
controllers with more controllers available in the network. Algorithm
RALO achieves better performance than algorithms LARC, PSA, and
Survivor on all the generated networks, since algorithm RALO obtains
better results than algorithms LARC and PSA in both primary and
44
backup path delay, and algorithm RALO can provide multiple solutions

for the multi-objective problem. Particularly, the performance improve-

ment of algorithm RALO on algorithms LARC and PSA reaches up to

4.3% and 16.3%, respectively, in generated networks II. Algorithm

Survivor has the worst performance among all the algorithms because

Y. Fan, L. Wang and X. Yuan Computer Communications 163 (2020) 35–50
Table 5
The average latency (km) of backup paths on real network topologies.

Network Algorithm 𝐾𝑚𝑖𝑛 𝐾𝑚𝑖𝑛 + 1 𝐾𝑚𝑖𝑛 + 2 𝐾𝑚𝑖𝑛 + 2 𝐾𝑚𝑖𝑛 + 3 𝐾𝑚𝑎𝑥 Best 𝐺𝐴𝑃 Worst 𝐺𝐴𝑃

Abilene
(𝐾𝑚𝑖𝑛 = 3)
(𝐾𝑚𝑎𝑥 = 8)

LARC 1803.38 1514.50 1227.05 1004.38 692.62 519.14 0.0008 0.1093
RALO 1756.82 1444.36 1145.82 905.45 692.09 494.72 0.0000 0.0327
PSA 1736.27 1428.82 1145.82 932.45 692.09 494.72 0.0000 0.0298
Survivor 2251.43 1907.55 1752.99 1165.73 1071.73 721.64 0.2875 0.5485
OPT 1736.27 1398.63 1145.81 905.45 692.09 494.72

Arnes
(𝐾𝑚𝑖𝑛 = 8)
(𝐾𝑚𝑎𝑥 = 13)

LARC 52.49 58.62 47.91 43.23 41.34 35.17 0.4416 0.9686
RALO 45.09 37.60 32.40 30.58 28.74 24.80 0.1944 0.3686
PSA 45.53 39.01 34.90 30.83 28.42 22.88 0.2392 0.3533
Survivor 88.16 86.42 81.18 78.76 80.53 65.17 1.4213 2.8347
OPT 36.41 31.48 27.00 23.95 21.00 18.24

ATT
(𝐾𝑚𝑖𝑛 = 6)
(𝐾𝑚𝑎𝑥 = 11)

LARC 758.54 675.79 634.44 557.37 515.42 450.86 0.0341 0.2026
RALO 733.56 654.64 592.16 531.56 478.08 428.60 0.0000 0.1154
PSA 769.46 697.08 613.20 567.28 500.00 441.16 0.0489 0.1866
Survivor 1497.78 1375.32 1381.88 1357.59 1124.46 727.84 0.8921 1.8397
OPT 733.56 592.16 531.56 478.08 428.60 384.68

Darkstrand
(𝐾𝑚𝑖𝑛 = 7)
(𝐾𝑚𝑎𝑥 = 12)

LARC 1831.90 1669.37 1543.34 1445.88 1327.90 1214.90 0.0266 0.0500
RALO 1797.23 1651.15 1551.76 1439.26 1329.01 1211.10 0.0234 0.0336
PSA 1798.04 1680.02 1564.51 1440.91 1334.04 1218.23 0.0294 0.0430
Survivor 2651.29 2809.00 2463.57 2160.75 2386.47 2199.24 0.5196 0.8584
OPT 1744.72 1610.73 1501.26 1394.15 1288.07 1183.43

Internet2
(𝐾𝑚𝑖𝑛 = 9)
(𝐾𝑚𝑎𝑥 = 14)

LARC 1258.47 1170.27 1105.92 990.49 890.07 831.31 0.6289 0.7031
RALO 1041.27 824.06 774.77 688.55 622.41 580.24 0.1502 0.3477
PSA 1048.12 830.59 783.85 690.07 629.94 582.82 0.1580 0.3566
Survivor 2073.02 1913.66 1692.98 1701.36 1763.95 1651.11 1.5930 2.3827
OPT 772.61 711.61 652.91 595.94 541.12 488.11

Savvis
(𝐾𝑚𝑖𝑛 = 4)
(𝐾𝑚𝑎𝑥 = 9)

LARC 2104.69 2059.94 1822.42 1674.15 1487.17 1299.85 0.8424 3.4644
RALO 1214.16 945.68 757.42 616.73 440.89 440.89 0.0000 0.5143
PSA 1316.84 958.63 772.10 616.73 454.89 440.89 0.0230 0.5143
Survivor 3686.80 3311.53 3099.17 2668.16 2580.70 2468.35 2.2274 7.4776
OPT 1142.36 930.57 754.73 590.84 440.89 291.16

Spiralight
(𝐾𝑚𝑖𝑛 = 4)
(𝐾𝑚𝑎𝑥 = 9)

LARC 314.68 277.37 235.30 199.02 161.62 124.32 0.0088 0.0330
RALO 329.03 280.36 236.30 200.10 163.50 129.20 0.0228 0.0665
PSA 332.46 285.26 238.46 200.60 165.86 128.40 0.0322 0.0777
Survivor 441.07 363.33 414.80 253.67 298.13 194.67 0.3105 0.8874
OPT 308.50 268.50 231.03 193.56 157.96 123.23

Xspedius
(𝐾𝑚𝑖𝑛 = 8)
(𝐾𝑚𝑎𝑥 = 13)

LARC 976.37 874.66 801.62 740.75 684.99 632.74 0.3158 0.3488
RALO 801.96 700.98 673.01 602.50 567.31 516.52 0.0545 0.1102
PSA 834.27 757.01 678.28 627.31 574.89 515.04 0.0954 0.1525
Survivor 1422.19 1462.13 1278.64 1183.30 1288.68 1065.51 0.9647 1.5196
OPT 723.88 664.73 606.23 556.85 511.47 470.17
w

𝑑

a

Survivor performs poorly on both primary path delay and backup path
latency.

5.2.4. Average accumulated latency with different backup path latency
weights

Figs. 4(a)–(d) show the average accumulated latency of RALO,
LARC, PSA, Survivor, and OPT by varying 𝜆2, the weight of backup
path latency, given the numbers of controllers are 7, 10, 13, and 13
in ATT, Internet2, generated networks I, and generated networks II,
respectively.

Algorithm RALO always achieves better results than algorithm
LARC with different backup path latency weights on all the four
kinds of networks. The average accumulated latency increases with
the growth of the weights of backup path latency since the backup
path latency is larger than the primary path latency. The average
accumulated latency obtained by algorithm RALO is better than that
obtained by algorithm LARC by 0.4%–2.4% in generated networks
I and by 0.3%–3.8% for Generated networks II, respectively. The
performance improvement of algorithm Algorithm RALO on algorithm
LARC reaches up to 6% for network ATT and 12% for network In-
ternet2. Algorithm RALO outperforms algorithm PSA by up to 18.5%,
7.6%, 8.2%, and 17.3% on the networks of ATT, Internet2, generated
networks I and generated networks II, respectively. The accumulated
latency of algorithm Survivor is worse than that of algorithms RALO,
LARC, and PSA. The results obtained by algorithm RALO are worse than
OPT from 0 to 12.5% on all the four kinds of networks.
45
Hereinabove, we analyze the primary path latency, the backup path
latency, and the accumulated path latency with different numbers of
controllers, and study the accumulated path latency by varying the
weights of backup path latency. The simulation results show that the
proposed algorithm RALO achieves better performance than algorithms
LARC, PSA, and Survivor in all cases.

5.2.5. Uniformity and spread performance of Pareto optimal solutions
We analyze the uniformity and spread performance of the obtained

Pareto optimal solutions. We only compare RALO with PSA, since
only these two algorithms produce Pareto optimal solution sets. We
introduce two performance metrics for measuring the performance of
the algorithms, i.e. Spacing [34] and Maximum Spread [35]. Spacing
metric 𝑆𝑃 evaluates the uniformity of the obtained solutions, and 𝑆𝑃
is defined as

𝑆𝑃 =

√

∑

𝑋∈

(

𝑑−𝑑𝑋
)2

||−1
(20)

here

𝑋 = min
𝑋′∈ ,𝑋′≠𝑋

{ 𝑀
∑

𝑔=1

|

|

|

𝑓𝑔 (𝑋) − 𝑓𝑔
(

𝑋′)|
|

|

}

(21)

nd

𝑑 =
∑

𝑋∈ 𝑑𝑋
||

(22)

In Eqs. (20)–(22), 𝑀 is the number of optimized objectives, and
𝑓 𝑋 represents the value of solution 𝑋 on objective 𝑔. The smaller
𝑔 ()

Y. Fan, L. Wang and X. Yuan Computer Communications 163 (2020) 35–50

t
m
a

𝑀

Table 6
The accumulated latency (km) on real network topologies.

Network Algorithm 𝐾𝑚𝑖𝑛 𝐾𝑚𝑖𝑛 + 1 𝐾𝑚𝑖𝑛 + 2 𝐾𝑚𝑖𝑛 + 3 𝐾𝑚𝑖𝑛 + 4 𝐾𝑚𝑎𝑥 Best 𝐺𝐴𝑃 Worst 𝐺𝐴𝑃

Abilene
(𝐾𝑚𝑖𝑛 = 3)
(𝐾𝑚𝑎𝑥 = 8)

LARC 1004.48 796.73 691.38 494.48 372.11 257.55 0.0008 0.0903
RALO 978.56 794.16 634.14 494.09 354.80 249.65 0.0000 0.0234
PSA 1032.68 811.67 651.16 494.09 388.94 257.30 0.0000 0.0962
Survivor 1475.45 1061.51 1303.47 664.78 709.84 379.67 0.3366 1.0555
OPT 956.20 794.16 634.14 494.09 354.80 249.65

Arnes
(𝐾𝑚𝑖𝑛 = 8)
(𝐾𝑚𝑎𝑥 = 13)

LARC 31.35 28.69 25.87 23.60 21.46 20.01 0.0885 0.1743
RALO 28.97 26.98 24.02 21.84 20.44 18.14 0.0059 0.0702
PSA 31.64 27.46 25.48 23.40 20.86 19.76 0.0627 0.1596
Survivor 56.69 48.39 48.47 43.99 49.14 44.63 0.8727 1.6193
OPT 28.80 25.84 23.57 21.31 19.10 17.04

ATT
(𝐾𝑚𝑖𝑛 = 6)
(𝐾𝑚𝑎𝑥 = 11)

LARC 617.82 451.15 376.26 337.19 301.49 265.49 0.0116 0.2811
RALO 482.24 425.85 371.96 332.38 293.35 262.36 0.0000 0.0138
PSA 517.32 465.60 428.89 370.71 332.36 298.60 0.0727 0.1531
Survivor 1357.54 1257.14 1257.14 1293.34 994.33 622.11 1.3712 2.9258
OPT 482.24 420.07 371.96 329.45 293.35 262.36

Darkstrand
(𝐾𝑚𝑖𝑛 = 7)
(𝐾𝑚𝑎𝑥 = 12)

LARC 889.99 825.86 716.89 665.56 614.11 571.51 0.0012 0.0618
RALO 843.01 781.42 723.59 673.86 624.52 571.05 0.0016 0.0182
PSA 921.16 823.76 762.66 703.48 637.59 601.14 0.0395 0.0944
Survivor 1 1657.49 1882.66 1422.00 1394.15 1397.15 1262.48 0.9692 1.4206
OPT 841.70 777.77 716.04 664.65 613.36 563.49

Internet2
(𝐾𝑚𝑖𝑛 = 9)
(𝐾𝑚𝑎𝑥 = 14)

LARC 628.08 584.99 550.25 495.53 463.02 442.08 0.0779 0.1192
RALO 609.61 569.55 525.59 486.53 455.59 425.41 0.0583 0.0800
PSA 628.70 581.52 531.52 501.07 461.68 425.63 0.0727 0.1069
Survivor 1492.53 1357.65 1115.26 1190.84 1316.77 1161.00 1.2684 2.0817
OPT 567.98 527.36 491.64 459.72 427.29 396.77

Savvis
(𝐾𝑚𝑖𝑛 = 4)
(𝐾𝑚𝑎𝑥 = 9)

LARC 1084.46 922.22 831.68 739.85 668.25 569.99 0.2419 0.3714
RALO 844.54 742.58 673.41 585.62 501.47 432.29 0.0000 0.0477
PSA 1052.68 869.42 742.61 644.72 585.53 451.43 0.0742 0.2465
Survivor 1861.11 1770.43 1669.39 1306.31 1556.06 1306.26 1.2037 2.1934
OPT 844.54 742.58 649.41 558.97 487.27 420.24

Spiralight
(𝐾𝑚𝑖𝑛 = 4)
(𝐾𝑚𝑎𝑥 = 9)

LARC 152.85 127.34 108.73 91.96 76.45 58.93 0.0058 0.0558
RALO 148.21 127.82 108.13 89.93 72.98 56.90 0.0000 0.0117
PSA 148.45 128.93 109.69 90.10 73.02 57.46 0.0071 0.0220
Survivor 233.92 225.84 209.15 182.20 135.25 73.71 0.2954 1.0497
OPT 147.41 126.61 107.33 88.89 72.41 56.90

Xspedius
(𝐾𝑚𝑖𝑛 = 8)
(𝐾𝑚𝑎𝑥 = 13)

LARC 563.75 492.59 436.90 406.59 369.70 346.66 0.0099 0.0969
RALO 516.54 463.76 425.97 395.75 367.07 341.28 0.0014 0.0088
PSA 586.60 493.35 467.23 452.79 404.74 359.98 0.0641 0.1457
Survivor 1082.11 1116.45 1023.59 876.99 960.08916 831.33768 1.1054 1.6226
OPT 513.97 462.67 424.88 395.20 366.08 338.31
Fig. 3. The accumulated latency on Generated networks.
T
s

R

he value of 𝑆𝑃 , the better uniformity of the solution set. Metric 𝑀𝑆
easures the spread performance of the solution set, and 𝑀𝑆 is defined

s

𝑆 =

√

√

√

√

√

𝑀
∑

(

max
𝑋∈

𝑓𝑔 (𝑋) − min
𝑋∈

𝑓𝑔 (𝑋)
)2

(23)

𝑔=1 b

46
he larger the value of 𝑀𝑆, the better spread performance of the
olution set.

Fig. 5 illustrates the Pareto optimal solutions obtained by algorithms
ALO and PSA on 8 real network topologies with 7 controllers. To
etter evaluate the performance of the proposed algorithm, the 𝑆𝑃 and

Y. Fan, L. Wang and X. Yuan Computer Communications 163 (2020) 35–50
Fig. 4. The average accumulated latency by varying the latency weights of backup paths.
𝑀𝑆 values of the Pareto optimal solution sets obtained by algorithms
RALO and PSA are listed in Table 7.

For the metric of spacing, the 𝑆𝑃 of algorithm RALO is 20.6%–
83.3% smaller than that of algorithm PSA. For the metric of maximum
spread, the 𝑀𝑆 of algorithm RALO is 0%-74.3% larger than that of
algorithm PSA. Algorithm RALO is better than algorithm PSA in both
uniformity and spread performance on all the real networks. It can
be observed that the obtained Pareto optimal solutions are sufficient
and uniformly and widely spread, so the decision-makers can choose
proper feasible solutions from the obtained Pareto optimal solution set
according to the practical needs.

5.2.6. Running time of the proposed algorithm
We compare the running time of algorithm RALO with algorithm

PSA since only these two algorithms are multi-objective optimization
algorithms and algorithm PSA performs better than algorithms LARC
and Survivor. Algorithm RALO and PSA are implemented in C++ and
run on a platform with Intel(R) Core(TM) 5-9300H 2.40 GHz CPU, 8
GB RAM, and 64-bit version of Windows 10. We execute algorithms
RALO and PSA on all the real network topologies with 10 controllers.
The average running time of the algorithms on each network topology
is shown in Table 8.

The average running time of algorithms RALO and PSA on all the
network topologies is 6.559 s and 2.35 s respectively. The running
time of algorithm RALO is more than that of algorithm PSA since
algorithm RALO searches a wider solution space than PSA. However,

it can be seen that in all the network topologies, the running time of

47
both algorithms RALO and PSA is within 20 s. In practice, the running
time of algorithm RALO is acceptable.

5.2.7. Impact of the important components of the proposed algorithm
We assess the impact of important components of the proposed

algorithm RALO. We disable some components at a time and run
the algorithm. We investigate four cases: (a) RALO with perturbation
missing; (b) RALO with shake disabled; (c) RALO without perturbation
and shake; (d) RALO with all the components available.

Figs. 6(a)–(d) depict the average accumulated latency with different
number of controllers for algorithm RALO on ATT, Internet2, generated
networks I and generated networks II, respectively. It can be observed
that algorithm RALO results in the worst performance among all the
cases when both the operations of shake and perturbation are missing in
the algorithm. The results of this case are worse than those obtained by
the algorithm when all the components are available 16.5%–62.2% on
all the four kinds of networks. Therefore, the operations of shake and
perturbation are important for the algorithm to jump out of the local
optimal solution. On the four kinds of networks, the results achieved by
the case without operation perturbation are better than those obtained
by the algorithm without operation shake 2.8%–27.2%, which shows
that operation shake plays a more important role in avoiding falling
in local optimum than operation perturbation. The algorithm achieves
the best performance among all the cases when all the components
are available, while the case without component perturbation obtains
better performance than the other two cases. The case with all the
components available outperforms the case without component pertur-

bation by up to 2.1%, 3.3%, 2.0%, and 1.6% for the networks of ATT,

Y. Fan, L. Wang and X. Yuan Computer Communications 163 (2020) 35–50

Fig. 5. Pareto frontier corresponding to real network topologies.

Fig. 6. The average accumulated latency with different components available in the algorithm.

48

Y. Fan, L. Wang and X. Yuan Computer Communications 163 (2020) 35–50
Table 7
𝑆𝑃 and 𝑀𝑆 values of the Pareto optimal solution sets.

Metric Method Alilene Arnes ATT Darkstrand Internet2 Savvis Spiralight Xspedius

𝑆𝑃
RALO 18.1 1.7 11.7 19.1 26.4 74.3 3.0 14.7
PSA 22.8 3.5 25.7 66.2 70.6 322.8 12.8 88.5

𝑀𝑆
RALO 724.0 53.2 292.3 1521.7 1531.7 2547.3 188.3 665.0
PSA 724.0 50.4 167.7 1262.2 1039.3 2524.4 172.2 594.9
Table 8
The average running time (s) of the algorithms on different network topologies.

Algorithm Network

Abilene Arnes ATT Darkstrand Internet2 Savvis Spiralight Xspedius ER SW

RALO 0.29 6.94 2.41 6.41 9.58 1.01 3.07 7.92 16.59 11.37
PSA 1.01 2.38 1.52 1.91 2.49 1.13 1.05 2.46 4.84 4.71
network Internet2, generated networks I, and generated networks II,
respectively.

6. Conclusions

In this paper, we formulated a novel multi-objective SDN controller
placement problem to minimize the switch-to-controller communica-
tion delay for both the cases without link failure and with single-
link-failure. We proposed an efficient metaheuristic-based Reliability-
Aware and Latency-Oriented controller placement algorithm (RALO)
for multi-objective multiple controller placement. The algorithm con-
structs an initial feasible solution by a greedy method with network
partition, then repeatedly generates new solutions with variable neigh-
borhood search. Once a new solution is generated, the algorithm de-
cides whether to accept the new solution as a non-dominated solution
to the problem and performs update operation on the Pareto optimal
solution set. To avoid falling into the local optimum, the algorithm also
performs perturbation and destruction operations on the current solu-
tion. We conducted simulations on eight real networks from Internet
topology zoo and two kinds of generated networks conforming to ER
(Erdos–Renyi) random model and small-world model. The simulations
results demonstrated that the proposed algorithm could achieve a com-
petitive performance of switch-to-controller latencies in both the cases
without link failure and with single-link failure, and the accumulated
delay of primary and backup paths between the controllers and the
switches. The widely-spread Pareto optimal solution set provided by
algorithm RALO allows network administrators with flexible choices to
achieve a balance between the switch-to-controller delay of primary
and backup paths.

CRediT authorship contribution statement

Yuqi Fan: Conceptualization, Methodology, Writing. Lunfei Wang:
Methodology, Simulations, Validation. Xiaohui Yuan: Validation,
Writing - review & editing.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Acknowledgment

This work was partly supported by the National Natural Science

Foundation of China (U1836102).

49
References

[1] B.A.A. Nunes, M. Mendonca, X.-N. Nguyen, K. Obraczka, T. Turletti, A survey
of software-defined networking: Past, present, and future of programmable
networks, IEEE Commun. Surv. Tutor. 16 (3) (2014) 1617–1634.

[2] D. Kreutz, F.M.V. Ramos, P.E. Veríssimo, C.E. Rothenberg, S. Azodolmolky, S.
Uhlig, Software-defined networking: A comprehensive survey, Proc. IEEE 103 (1)
(2015) 14–76.

[3] S.H. Yeganeh, Y. Ganjali, Kandoo: a framework for efficient and scalable
offloading of control applications, in: Proceedings of the First Workshop on Hot
Topics in Software Defined Networks, HotSDN’12, Helsinki, Finland, 2012, pp.
19–24.

[4] A. Tootoonchian, Y. Ganjali, HyperFlow: A distributed control plane for open-
flow, in: 2010 Internet Network Management Conference on Research on
Enterprise Networking, INM/WREN’10, San Jose, CA, 2010.

[5] T. Koponen, M. Casado, N. Gude, J. Stribling, L. Poutievski, M. Zhu, R.
Ramanathan, Y. Iwata, H. Inoue, T. Hama, S. Shenker, Onix: A distributed
control platform for large-scale production networks, in: Proceedings of the 9th
USENIX Conference on Operating Systems Design and Implementation, Berkeley,
CA, 2010, pp. 351–364.

[6] B. Heller, R. Sherwood, N. McKeown, The controller placement problem, in:
Proceedings of the First Workshop on Hot Topics in Software Defined Networks,
HotSDN’12, Helsinki, Finland, 2012, pp. 7–12.

[7] Y. Zhang, L. Cui, W. Wang, Y. Zhang, A survey on software defined networking
with multiple controllers, J. Netw. Comput. Appl. 103 (2018) 101–118.

[8] Y. Zhang, N. Beheshti, M. Tatipamula, On resilience of split-architecture net-
works, in: 2011 IEEE Global Telecommunications Conference, GLOBECOM,
Kathmandu, Nepal, 2011, pp. 1–6.

[9] G. Yao, J. Bi, Y. Li, L. Guo, On the capacitated controller placement problem in
software defined networks, IEEE Commun. Lett. 18 (8) (2014) 1339–1342.

[10] Y. Fan, T. Ouyang, Reliability-aware controller placements in software defined
networks, in: The 21st IEEE International Conference on High Performance
Computing and Communications, HPCC 2019, Zhangjiajie, China, 2019.

[11] A. Markopoulou, G. Iannaccone, S. Bhattacharyya, C.-N. Chuah, Y. Ganjali, C.
Diot, Characterization of failures in an IP backbone, in: 2004 IEEE International
Conference on Computer Communications, INFOCOM, Vol. 4, Hong Kong, China,
2004, pp. 2307–2317.

[12] M.F. Bari, A.R. Roy, S.R. Chowdhury, Q. Zhang, M.F. Zhani, R. Ahmed,
R. Boutaba, Dynamic controller provisioning in software defined networks,
in: Proceedings of the 9th International Conference on Network and Service
Management, CNSM 2013, Zurich, Switzerland, 2013, pp. 18–25.

[13] H.K. Rath, V. Revoori, S.M. Nadaf, A. Simha, Optimal controller placement in
software defined networks (SDN) using a non-zero-sum game, in: 2014 IEEE
15th International Symposium on World of Wireless, Mobile and Multimedia
Networks, WoWMoM, Sydney, NSW, Australia, 2014, pp. 1–6.

[14] M. Tanha, D. Sajjadi, R. Ruby, J. Pan, Capacity-aware and delay-guaranteed
resilient controller placement for software-defined WANs, IEEE Trans. Netw.
Serv. Manag. 15 (3) (2018) 991–1005.

[15] L. Yao, P. Hong, W. Zhang, J. Li, D. Ni, Controller placement and flow
based dynamic management problem towards SDN, in: 2015 IEEE Interna-
tional Conference on Communication Workshop, ICCW, London, UK, 2015, pp.
363–368.

[16] A. Sallahi, M. St-Hilaire, Optimal model for the controller placement problem in
software defined networks, IEEE Commun. Lett. 19 (1) (2015) 30–33.

[17] M.T.I. ul Huque, G. Jourjon, V. Gramoli, Revisiting the controller placement
problem, in: 2015 IEEE 40th Conference on Local Computer Networks, LCN,
Clearwater Beach, FL, 2015, pp. 450–453.

[18] G. Wang, Y. Zhao, J. Huang, Q. Duan, J. Li, A K-means-based network partition
algorithm for controller placement in software defined network, in: 2016 IEEE
International Conference on Communications, ICC, Kuala Lumpur, Malaysia,
2016, pp. 1–6.

http://refhub.elsevier.com/S0140-3664(20)31915-0/sb1
http://refhub.elsevier.com/S0140-3664(20)31915-0/sb1
http://refhub.elsevier.com/S0140-3664(20)31915-0/sb1
http://refhub.elsevier.com/S0140-3664(20)31915-0/sb1
http://refhub.elsevier.com/S0140-3664(20)31915-0/sb1
http://refhub.elsevier.com/S0140-3664(20)31915-0/sb2
http://refhub.elsevier.com/S0140-3664(20)31915-0/sb2
http://refhub.elsevier.com/S0140-3664(20)31915-0/sb2
http://refhub.elsevier.com/S0140-3664(20)31915-0/sb2
http://refhub.elsevier.com/S0140-3664(20)31915-0/sb2
http://refhub.elsevier.com/S0140-3664(20)31915-0/sb7
http://refhub.elsevier.com/S0140-3664(20)31915-0/sb7
http://refhub.elsevier.com/S0140-3664(20)31915-0/sb7
http://refhub.elsevier.com/S0140-3664(20)31915-0/sb9
http://refhub.elsevier.com/S0140-3664(20)31915-0/sb9
http://refhub.elsevier.com/S0140-3664(20)31915-0/sb9
http://refhub.elsevier.com/S0140-3664(20)31915-0/sb14
http://refhub.elsevier.com/S0140-3664(20)31915-0/sb14
http://refhub.elsevier.com/S0140-3664(20)31915-0/sb14
http://refhub.elsevier.com/S0140-3664(20)31915-0/sb14
http://refhub.elsevier.com/S0140-3664(20)31915-0/sb14
http://refhub.elsevier.com/S0140-3664(20)31915-0/sb16
http://refhub.elsevier.com/S0140-3664(20)31915-0/sb16
http://refhub.elsevier.com/S0140-3664(20)31915-0/sb16

Y. Fan, L. Wang and X. Yuan Computer Communications 163 (2020) 35–50
[19] M. Jia, W. Liang, M. Huang, Z. Xu, Y. Ma, Routing cost minimization
and throughput maximization of NFV-enabled unicasting in software-defined
networks, IEEE Trans. Netw. Serv. Manag. 15 (2) (2018) 732–745.

[20] Y. Hu, W. Wendong, X. Gong, X. Que, C. Shiduan, Reliability-aware controller
placement for software-defined networks, in: 2013 IFIP/IEEE International Sym-
posium on Integrated Network Management, IM 2013, Ghent, Belgium, 2013,
pp. 672–675.

[21] Y. Hu, W. Wang, X. Gong, X. Que, S. Cheng, On reliability-optimized controller
placement for software-defined networks, China Commun. 11 (2) (2014) 38–54.

[22] M. Guo, P. Bhattacharya, Controller placement for improving resilience
of software-defined networks, in: 2013 Fourth International Conference on
Networking and Distributed Computing, Los Angeles, CA, 2013, pp. 23–27.

[23] D. Hock, M. Hartmann, S. Gebert, M. Jarschel, T. Zinner, P. Tran-Gia,
Pareto-optimal resilient controller placement in SDN-based core networks, in:
Proceedings of the 2013 25th International Teletraffic Congress, ITC, Shanghai,
China, 2013, pp. 1–9.

[24] S. Lange, S. Gebert, T. Zinner, P. Tran-Gia, D. Hock, M. Jarschel, M. Hoffmann,
Heuristic approaches to the controller placement problem in large scale SDN
networks, IEEE Trans. Netw. Serv. Manag. 12 (1) (2015) 4–17.

[25] L. Müller, R.R. Oliveira, M.C. Luizelli, L.P. Gaspary, M.P. Barcellos, Survivor:
an enhanced controller placement strategy for improving SDN survivability, in:
2014 IEEE Global Communications Conference, GLOBECOM, Austin, TX, 2014,
pp. 1909–1915.
50
[26] D. Santos, A. de Sousa, C.M. Machuca, Robust SDN controller placement to
malicious node attacks, in: 2018 21st Conference on Innovation in Clouds,
Internet and Networks and Workshops, ICIN, IEEE, IEEE Commun Soc, DNAC,
ACM, Sigmobile, Gandi, Nokia, Orange, 2018, 21st International Conference
on Innovation in Clouds, Internet and Networks and Workshops (ICIN), Paris,
FRANCE, FEB 19-22, 2018.

[27] P. Vizarreta, C.M. Machuca, W. Kellerer, Controller placement strategies for a
resilient SDN control plane, in: 2016 8th International Workshop on Resilient
Networks Design and Modeling, RNDM, Halmstad, Sweden, 2016, pp. 253–259.

[28] F.J. Ros, P.M. Ruiz, On reliable controller placements in software-defined
networks, Comput. Commun. 77 (2016) 41–51.

[29] H. Huang, S. Guo, W. Liang, K. Li, B. Ye, W. Zhuang, Near-optimal routing
protection for in-band software-defined heterogeneous networks, IEEE J. Sel.
Areas Commun. 34 (11) (2016) 2918–2934.

[30] Y. Fan, Y. Xia, W. Liang, X. Zhang, Latency-aware reliable controller place-
ments in SDNs, in: 11th EAI International Conference on Communications and
Networking in China, CHINACOM 2016, Chongqing, China, 2016.

[31] IBM, CPLEX optimizer, URL http://https://www.ibm.com/analytics/cplex-
optimizer, (Accessed on: 28 Feb 2020).

[32] The internet topology zoo, http://www.topology-zoo.org.
[33] Stanford network analysis project, http://snap.stanford.edu.
[34] J.R. Schott, Fault Tolerant Design Using Single and Multicriteria Genetic Algo-

rithm Optimization, Tech. Rep., Air force inst of tech Wright-Patterson afb OH,
1995.

[35] E. Zitzler, K. Deb, L. Thiele, Comparison of multiobjective evolutionary
algorithms: empirical results, Evol. Comput. 8 (2) (2000) 173–195.

http://refhub.elsevier.com/S0140-3664(20)31915-0/sb19
http://refhub.elsevier.com/S0140-3664(20)31915-0/sb19
http://refhub.elsevier.com/S0140-3664(20)31915-0/sb19
http://refhub.elsevier.com/S0140-3664(20)31915-0/sb19
http://refhub.elsevier.com/S0140-3664(20)31915-0/sb19
http://refhub.elsevier.com/S0140-3664(20)31915-0/sb21
http://refhub.elsevier.com/S0140-3664(20)31915-0/sb21
http://refhub.elsevier.com/S0140-3664(20)31915-0/sb21
http://refhub.elsevier.com/S0140-3664(20)31915-0/sb24
http://refhub.elsevier.com/S0140-3664(20)31915-0/sb24
http://refhub.elsevier.com/S0140-3664(20)31915-0/sb24
http://refhub.elsevier.com/S0140-3664(20)31915-0/sb24
http://refhub.elsevier.com/S0140-3664(20)31915-0/sb24
http://refhub.elsevier.com/S0140-3664(20)31915-0/sb26
http://refhub.elsevier.com/S0140-3664(20)31915-0/sb26
http://refhub.elsevier.com/S0140-3664(20)31915-0/sb26
http://refhub.elsevier.com/S0140-3664(20)31915-0/sb26
http://refhub.elsevier.com/S0140-3664(20)31915-0/sb26
http://refhub.elsevier.com/S0140-3664(20)31915-0/sb26
http://refhub.elsevier.com/S0140-3664(20)31915-0/sb26
http://refhub.elsevier.com/S0140-3664(20)31915-0/sb26
http://refhub.elsevier.com/S0140-3664(20)31915-0/sb26
http://refhub.elsevier.com/S0140-3664(20)31915-0/sb26
http://refhub.elsevier.com/S0140-3664(20)31915-0/sb26
http://refhub.elsevier.com/S0140-3664(20)31915-0/sb28
http://refhub.elsevier.com/S0140-3664(20)31915-0/sb28
http://refhub.elsevier.com/S0140-3664(20)31915-0/sb28
http://refhub.elsevier.com/S0140-3664(20)31915-0/sb29
http://refhub.elsevier.com/S0140-3664(20)31915-0/sb29
http://refhub.elsevier.com/S0140-3664(20)31915-0/sb29
http://refhub.elsevier.com/S0140-3664(20)31915-0/sb29
http://refhub.elsevier.com/S0140-3664(20)31915-0/sb29
http://https://www.ibm.com/analytics/cplex-optimizer
http://https://www.ibm.com/analytics/cplex-optimizer
http://https://www.ibm.com/analytics/cplex-optimizer
http://www.topology-zoo.org
http://snap.stanford.edu
http://refhub.elsevier.com/S0140-3664(20)31915-0/sb34
http://refhub.elsevier.com/S0140-3664(20)31915-0/sb34
http://refhub.elsevier.com/S0140-3664(20)31915-0/sb34
http://refhub.elsevier.com/S0140-3664(20)31915-0/sb34
http://refhub.elsevier.com/S0140-3664(20)31915-0/sb34
http://refhub.elsevier.com/S0140-3664(20)31915-0/sb35
http://refhub.elsevier.com/S0140-3664(20)31915-0/sb35
http://refhub.elsevier.com/S0140-3664(20)31915-0/sb35

	Controller placements for latency minimization of both primary and backup paths in SDNs
	Introduction
	Related work
	Problem formulation
	Controller placement algorithm
	Initial solution construction
	Variable neighborhood search
	Perturbation
	Controller relocation
	Shake

	Performance evaluation
	Simulation setup
	Performance evaluation of the proposed algorithm
	Average latency of primary paths
	Average latency of backup paths
	Average accumulated latency with different numbers of controllers
	Average accumulated latency with different backup path latency weights
	Uniformity and spread performance of Pareto optimal solutions
	Running time of the proposed algorithm
	Impact of the important components of the proposed algorithm

	Conclusions
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgment
	References

