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A B S T R A C T

The potential of long short-term memory network on ultra-short term wind speed forecast attracted attentions of
researchers in recent years. Extending a probabilistic long short-term memory network model to provide an
uncertainty estimation than to make a point forecast is more valuable in practice. However, due to complex
recurrent structure and feedback algorithm, large scale ensemble forecast based on resampling faces great
challenges in reality. Instead, a reliable forecast method needs to be devised. Gaussian process regression is a
probabilistic regression model based on Gaussian Process prior. It is reasonable to integrate Gaussian process
regression with long short-term memory network for probabilistic wind speed forecast to leverage the superior
fitting ability of the deep learning methods and to maintain the probability characteristics of Gaussian process
regression. Hence, avoid the repeated training and heavy parameter optimization. The method is evaluated for
wind speed forecast using the monitoring dataset provided by the National Wind Energy Technology Center. The
results indicated that the proposed method improves the point forecast accuracy by up to 17.2%, and improves
the interval forecast accuracy by up to 18.5% compared to state-of-the-art models. This study is of great sig-
nificance for improving the accuracy and reliability of wind speed prediction and the sustainable development of
new energy sources.

1. Introduction

Large-scale wind energy development has become one of the im-
portant strategies to solve energy and environmental problems [1].
Physical and statistical models have been used for wind speed predic-
tion [2]. The physical wind speed prediction is to establish a set of real-
time meteorological fluid mechanics and thermodynamic equations [3].
It provides in-depth wind speed investigation within the atmospheric
cycle. The disadvantage is the time-space complexity and model biases
that cannot be ignored. The statistical wind speed prediction includes
multiple linear regression, time series analysis, fuzzy clustering, and
artificial neural networks [4]. It is well acknowledged that statistical
wind speed prediction is convenient, effective, and highly accurate. In
recent years, inspired by the rapid development and successful appli-
cation of deep learning in human perceptions, image classification, and
environmental simulation, researchers have begun to introduce the
various deep network to wind speed prediction. Wang et al. [5] first
used a deep belief network for wind speed prediction using real wind
farm data from China and Australia and obtained competitive

performance. Zhang et al. [6] presented deep Boltzmann machine
technique for short-term and long-term wind speed forecast, proved
neural networks with deep architectures having the competitive cap-
ability to approximate nonlinear and non-smooth wind speed problem.
Yu et al. [7] adopted recurrent neural networks to extract deeper fea-
tures, it is demonstrated that the accuracy of deep learning prediction
outperforms existing methods. Long short-term memory (LSTM) is an
improved recurrent neural network architecture capable of solving the
vanishing gradient problem. Nowadays, a cluster of LSTMs with diverse
input features, hidden layers, and neurons have been introduced to
explore many aspects of wind speed prediction, such as LSTM temporal
feature extraction [8], original and decomposition wind speed sequence
prediction [9], and nonlinear combination of multiple results [10]. The
competitive performance and high-stability of LSTM wind speed fore-
cast are proved in these researches.

However, climate variables, including wind speed, are plagued by
uncertainties [11], thus making probabilistic wind speed prediction an
appealing option. Generalized likelihood uncertainty estimation
(GLUE) [12], bootstrap [13] and multi-objective optimization [14] are
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main techniques for traditional probabilistic prediction. These methods
generate a large number of initial parameter sets by random sampling
algorithm and then construct corresponding models based on different
initializations to obtain predicted intervals [15]. Currently, only very
few studies made probabilistic wind speed forecast within a deep
learning framework. Wang et al. [16] successfully estimated forecast
uncertainty via an ensemble of twenty-four individual deep conven-
tional neural networks (CNNs) that have different numbers of hidden
layers and neurons. To overcome the defects of linear representation of
combined models, Chen et al. [17] used support vector regression
machine to integrate six diverse LSTMs forecasts and obtained a prob-
abilistic interval of wind speed forecasts. Their researches provide a
meaningful reference for probabilistic deep learning wind speed pre-
diction. It is worth mentioning that the ensemble forecast has better
reliability when the number of individuals is large enough, usually,
thousands of times [18]. However, large scale ensemble forecast based
on LSTM individuals is hard, due to the fact that LSTM handles se-
quence dependent through complex recurrent structure and feedback
algorithm, which is complicated and time-consuming. Instead of the

ensemble method, Wu et al. [19] and Zhang et al. [20] provided an-
other solution to obtain probabilistic LSTM wind speed forecast by
analyzing the distribution characteristics of point forecast errors. Es-
sentially, it is a post-processing analysis technique implemented on the
deterministic forecast. Thus, a more direct, reliable and probabilistic
LSTM wind speed prediction research needs to be extended.

Gaussian Process Regression (GPR) [21] is a probabilistic regression
model based on Gaussian Process (GP) prior. A posterior of the pre-
dicted result is derived through the joint conditional probability dis-
tribution of target variables and predictors with historical data. The
kernel function is introduced to solve the covariance matrix required
for the prediction distribution in high-dimensional space and avoid the
complicated computation. With the convenience properties of GPR, it is
reasonable to couple GPR into the internal structure of the LSTM for
probabilistic wind speed forecast. The hybrid model is probabilistic in
nature. It has the strong fitting ability of deep learning, and maintains
the probability characteristics of GPR, and avoids the repeated training
and heavy parameter optimization tasks in ensemble technique. In
addition, since the input variables and training samples have a great

Nomenclature

LSTM long short-term memory network
NWTC national wind energy technology center
GLUE generalized likelihood uncertainty estimation
CNNs conventional neural networks
TDRF top-down relevant feature search
TGPLSTMhybrid model of TDRG, GPR and LSTM
RMSE root mean squared error
RSE relative squared error
SSCRPS forecast skill score based on CRPS
CRPS continuous ranked probability score
T temperature
RH relative humidity
SP station pressure
AP accumulated precipitation

MLP multilayer perceptron
GPR Gaussian process regression
LSTMs long short-term memory networks
GP Gaussian process
MI mutual information
RNN recurrent neural network
ANN artificial neural network
MAE mean absolute error
PIT probability in truth
AWS average wind speed
PWS peak wind speed
DPT dew point temperature
SH specific humidity
SLP sea-level pressure
PCC Pearson correlation coefficient
GLM generalized linear mode

Algorithm1: Boruta algorithm
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influence on the prediction accuracy, the choice of features is another
concerned problem in this paper. Pearson correlation coefficient (PCC),
mutual information (MI) are widely used for feature selection and ex-
traction [9]. PCC is suitable for the linear correlation measurement of
two independent variables with a normal distribution. MI refers to the
amount of information that one random variable contains about the
other. However, the above methods are not able to deal with the issue
of redundant features. To eliminate irrelevant as well as redundant
features, top-down relevant feature search (TDRF), which is a ranking
algorithm based on the random forest to estimate the importance of a
feature, is used to determine the final inputs of the prediction model.
Therefore, the innovations of this paper mainly include the following
two points: 1) an improved deep learning network for directly prob-
abilistic wind speed prediction; 2) seeking an intelligent search strategy
to determine the appropriate input factors for the wind speed prediction
model.

The remainder of this paper is organized as follows. The proposed
model for probabilistic wind speed forecast is explained in Section 2.
The evaluation indicators are presented in Section 3. Section 4 presents
the results and performance analysis. Section 5 concludes the paper
with a summary.

2. Probabilistic long short-term memory network

A probabilistic long short-term memory network for wind speed
forecast is developed in this paper. The top-down relevant feature
search algorithm (TDRF) is applied to determine the model inputs, GPR
is introduced into the internal structure of the LSTM network to con-
struct a hybrid model, a semi-stochastic alternating gradient descent
optimization procedure is applied to carry out weight updates and fully
joint training. Within the proposed strategy, predictor sets are mapped
into a single vector in the hidden space, then continued to be projected
into a high dimensional feature space with the kernel function, the
output layer of the hybrid model naturally produces the posterior dis-
tribution over target. Detailed description of TDRF algorithm, LSTM,
GPR for probabilistic forecast, probabilistic LSTM model and parameter
optimization are introduced.

2.1. Top-down relevant feature selection

Determining appropriate feature factors plays an important role in
training neural network models. In general, the more features select,
the longer it takes to train the model, and the redundancy dependencies
between features can easily lead to a reduction in generalization cap-
abilities. Top-down related feature selection algorithms can be used to
build multiple models with different subsets and identify the attributes
needed to build an accurate prediction model [22]. It is a kind of
ranking algorithm based on the random forest to estimate the im-
portance of the feature. The pseudocode of top-down relevant feature
selection is shown as follows [23].

2.2. Long short-term memory network

Recurrent neural network (RNN) is a circular artificial neural net-
work (ANN) where additional input is added to represent the updated
state of the hidden neuron [24]. It takes into account the current in-
formation as well as other adjoining information in the data.

Fig. 1 shows the repeated module in a recurrent network with a
single layer. It contains an input of the state of the neuron in the hidden
layer at the previous time steps [24]. The state of the neuron at the
current time step ht is computed as follows:

= +h tanh W h X b( ·[ , ] ),t h t t h1 (1)

where h h,t t 1 represent the hidden neuron states at the time step t and
t 1 respectively, Wh means weights of input and hidden neurons,
tanh (·) is element-wise hyperbolic tangent function.

The RNN model learns the target by using linear parametric maps
followed by nonlinear activations

=y W h( )hy
T

t 1 (2)

where is fixed element-wise function, Why
T is weights of output layer.

In a standard RNN trained on long sequences (e.g. 100 time-steps),
the gradients can easily explode or vanish, since the error of partial
derivative accumulates through time steps. Long short-term memory
(LSTM) has been proposed and refined to solve the vanishing/exploding
gradient problem [25]. The repeating module of LSTM is different from
RNN, it has four neural network layers interacting in a very special way.
With a memory cell and three gates, the LSTM has the ability to update
the information to the cell state based on the new input and forget
irrelevant content. Suppose pt and qt are two control gates, Ct 1 is the
old state of the network, Ct is the updated information of the network,
pt is old messages removed, and qt indicates new messages added. The
neuron state at the current time step ht is updated based on the Eqs.
(3)–(8).

Forget gate

= +p W h X b( ·[ , ] )t f t t f1 (3)

Input gate

= +q W h X b( ·[ , ] )t i t t i1 (4)

Memory cell

= +C tanh W h X b( ·[ , ] )t C t t C1 (5)

= +C p C q C· ·t t t t t1 (6)

Output gate

= +o W h X b( ·[ , ] )t o t t o1 (7)

=h o tanh C( )t t t (8)

where (·) is a element-wise sigmoid function.
LSTM extends RNN by including an oblivion gate to decide if the

Fig. 1. The repeated module in a RNN with a single layer.
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information is consistent and useful. The advantage of exhibiting tem-
poral dynamic behavior is very suitable for drought recurrence mode in
drought-prone areas.

2.3. Gaussian process regression for probabilistic forecast

Gaussian process regression (GPR) is firstly proposed by Gibbs and
Mark [26] and lately extended by Kersting et al. [21] and Tolvanen
et al. [27]. The key idea of GPR is to assume that the learning sample
follows the prior probabilities of the Gaussian process and then calcu-
late the corresponding posterior probability. It is developed based on
the Bayesian regression model. Due to the advantage of handling un-
certainty, it has begun to be applied for probabilistic analysis in the last
few years [28].

Simply, given an input vector X , the Gaussian posterior distribu-
tion of the predicted value y is

=p y X X y N X A Xy X A X( | , , ) 1 ,T T
2

1 1
(9)

where = +A XX ,T
p p

2 1 is the covariance matrix.
Function is introduced to project the input X into a high dimen-

sional feature space to implement polynomial regression. The Gaussian
posterior is as follows:

=p y X X y N X A X y X A X( | , , ) 1 ( ) ( ) , ( ) ( )T T
2

1 1
(10)

where = +A XX ,T
p p

2 1 is covariance matrix.
To make predictions, A matrix needs to be inverted with a kernel

function. The probability distribution is

= + +
p y X X y

N K X X K I y K X X K X X K I K
X X

( | , , )
( ( , )( ) , ( , ) ( , )( )

( , ))
n n

2 1 2 1

(11)

where =A K,T
p is kernel function.

Assume that the training samples follow a normal distribution with
a zero mean, a unique GPR model is obtained with the kernel function
K.

2.4. Probabilistic long short-term memory network

For the probabilistic long short-term memory network framework,
GPR is embedded as an internal unit of the LSTM network. The input
time series are mapped into a single vector in the recurrently updated
hidden space, H, which is projected into a high dimensional feature
space using the kernel function K and modeled with the GPR layer. The
output layer of LSTM produces the posterior distribution over target.

Combining Eq. (2) and Eq. (11), the Gaussian posterior distribution
of the hybrid model over target becomes

= +
+

p y X X y
N K h X h X K I y K h X h X K h X h X
K I K h X h X

( | , , )
( ( ( ), ( ))( ) , ( ( ), ( )) ( ( ), ( ))

( ) ( ( ), ( )))
n

n

2 1

2 1 (12)

where h is the state of hidden neuron.
In LSTM model, the hidden layer of the deep network is directly

followed by the output layer. In the proposed model, the output of the
hidden layer is used as the input of the GPR layer followed by the
probabilistic kernel function regression prediction.

The expectation is point result and the uncertainty interval is de-
rived with mean and standard deviation.

Point forecast:

= +µ K h X h X K I y( ( ), ( ))( )n
2 1 (13)

95% confidence interval:

= +Range µ z µ z[ , ]/2 /2 (14)

where = = +K h X h X K h X h X K I K
h X h X

0.05, ( ( ), ( )) ( ( ), ( ))( )
( ( ), ( ))

n
2 1 .

The conditional probability distribution function given in Eq. (11) is
the full forecast probability density of the hybrid model. The prob-
ability forecast score and the reliability are calculated according to the
conditional probability distribution function.

2.5. Parameter optimization

The parameters of the hybrid model include weight W of the LSTM

Table 1
The statistics of minute data from April 1 to April 30, 2015.

Variable Mean Min p1 p5 p25 p50 p75 p95 p99 Max

AWS (m/s) 4.04 0.34 0.34 0.78 2.25 3.48 5.17 9.35 12.94 25.03
PWS (m/s) 4.74 0.34 0.34 1.06 2.73 4.11 5.92 10.88 15.25 28.07
T (°C) 8.25 −4.42 −3.98 −0.44 3.43 8.74 12.8 17.49 19.8 22.05
DPT (°C) −1.1 −14.64 −12.37 −8.09 −3.61 −0.72 2.02 4.48 5.91 9.3
RH (%) 58.74 10.24 13.27 17.41 34.2 55.13 85.37 100 100 100
SH (%) 4.42 1.32 1.61 2.37 3.46 4.42 5.41 6.44 7.16 8.94
SP (mBar) 811.31 799.86 802.52 804.06 807.28 811.1 815.01 819.96 822.09 823.14
SLP (mBar) 1015.6 1001.9 1005.1 1006.9 1010.8 1015.4 1020.1 1026 1028.5 1029.8
Prec (mm) 1.45 0 0 0 0 0 0 13.21 25.15 25.65

Algorithm2: Semi-stochastic alternating gradient descent
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structure and the kernel hyperparameters of GPR structure. For the
nested hybrid feed-forward network, the optimization is difficult. A
semi-stochastic alternating gradient descent optimization procedure
proposed by Al-Shedivat et al. [29] is adopted for training, which al-
ternately updates and W on the mini-batch dataset using stochastic
steps. Instead of using all training examples, i.e., full-batch, or a single
training example (as in stochastic training), mini-batch training uses a
subset of training examples to compute gradients, which achieves a
faster convergence [30]. The pseudocode of algorithm is shown below.
The kernel matrix of GPR layer is computed with initial W and
parameters and full training sub-dataset of wind speed forecast. For a
fixed , update W on a mini-batch using the derivatives of the negative
log marginal likelihood with respect to W. Update the and kernel
matrix on changed full vectors in the hidden space due to updatedW.
Repeat the process for the mini-batches until convergence.

Table 2
The statistics of minute data from October 13 to November 13, 2015.

Variable Mean Min p1 p5 p25 p50 p75 p95 p99 Max

AWS (m/s) 4.57 0.31 0.31 0.54 1.86 3.31 5.98 12.47 21.18 31.45
PWS (m/s) 5.43 0.31 0.31 0.73 2.25 3.89 6.93 15.04 25.69 36.45
T(°C) 10.33 −2.09 −1.13 0.79 5.49 10.64 14.65 19.72 23.43 24.46
DPT (°C) −1.71 −12.95 −11.51 −9.37 −5.2 −1.62 1.82 6.09 7.29 8.67
RH (%) 49.65 11.73 13.73 17.17 32.13 43.03 61.44 100 100 100
SH (%) 4.26 1.51 1.74 2.1 3.01 4.08 5.32 7.15 7.78 8.57
SP (mBar) 813.79 803.07 803.56 805.41 809.83 813.52 818.14 821.5 824.98 825.98
SLP (mBar) 1018.58 1005.7 1006.3 1008.5 1013.8 1018.3 1023.8 1027.8 1032 1033.2
Prec (mm) 1.09 0 0 0 0 0 0 12.7 14.99 15.24

Table 3
The original historical features and their feature numbers.

Feature type Historical features Numbers

AWS AWS AWS,t t1 2, AWS AWS, ,t t3 15 1–15
T T T,t t1 2, T T, ,t t3 15 16–30
DPT DPT DPT,t t1 2, DPT DPT, ,t t3 15 31–45
RH (%) RH RH,t t1 2, RH RH, ,t t3 15 46–60
SH (%) SH SH,t t1 2, SH SH, ,t t3 15 61–75
SP SP SP,t t1 2, SP SP, ,t t3 15 76–90
SLP SLP SLP,t t1 2, SLP SLP, ,t t3 15 91–105
AP AP AP,t t1 2, AP AP, ,t t3 15 106–120
PWS PWS PWS,t t1 2, PWS PWS, ,t t3 15 121–135

Fig. 2. The importance of 135 features using PCC and TDRF (the blue bar chart represents the TDRF results, the yellow bar chart represents the PCC results).

Table 4
The thirty most important features.

Methods 1–10 Dimensional
Features

11–20 Dimensional
Features

21–30 Dimensional
Features

TDRF 121, 1, 122, 2, 3 23, 92, 27, 78, 106 91, 60, 72, 74, 28
123 124, 125, 94, 4 24, 41, 80, 25, 126 67,89, 54, 56, 45

PCC 1, 121, 122, 2, 123 126, 6, 127,7, 128 131, 11, 132, 12, 133
3, 124, 4, 125, 5 8, 129, 9, 130, 10 13,105, 90, 89, 104

Table 5
Statistics of the forecast skill involving point forecast and interval forecast,
dataset one.

Station Model RMSE RSE MAE SSCRPS

One step ahead TGPLSTM 0.90 0.24 0.58 0.82
MLP 0.91 0.25 0.57 –
GLM 1.07 0.29 0.63 0.81

Two steps ahead TGPLSTM 1.25 0.58 0.82 0.78
MLP 1.27 0.61 0.86 –
GLM 1.33 0.64 0.91 0.71

Three steps ahead TGPLSTM 1.49 0.95 1.01 0.77
MLP 1.51 1.05 1.07 –
GLM 1.56 1.09 1.12 0.65

Four steps ahead TGPLSTM 1.67 1.36 1.13 0.73
MLP 1.69 1.61 1.22 –
GLM 1.73 1.65 1.26 0.62
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3. Experimental data

This paper implemented ultra-short-term wind speed forecasting for
future one hour with a time resolution of 15min. Available data are
obtained from the National Wind Energy Technology Center (NWTC)
M2 Wind Tower ( https://www.osti.gov/biblio/1052222). The original
sampling step is one minute. Data include average wind speed at 80m
(AWS), peak wind speed at 80m (PWS), temperature at 80m (T), dew
point temperature (DPT), relative humidity (RH), specific humidity
(SH), station pressure (SP), sea-level pressure (SLP), accumulated pre-
cipitation (AP).

Before the experiment, the quality of the original data is carefully

checked. Two different wind farm datasets are extracted for a more
comprehensive assessment. The first dataset is from 0:00 on April 1 to
11:59 on April 30, 2015. In this dataset, the wind speed values are
relatively small, the minute wind speed has a 0.99 quantile of 12.94m/
s. The second dataset is from 0:00 on October 13 to 11:59 on November
12, 2015. The wind speed values are relatively large, and the minute
wind speed has a 0.99 quantile of 21.18m/s, up to the nine Beaufort
wind force scale.

The statistical characteristics of the two datasets are shown in
Tables. 1 and 2. 1 and 2 list the mean, minimum, 1% quantile, 5%
quantile, 25% quantile, 50% quantile, 75% quantile, 95% quantile,
99% quantile and maximum values. The statistical results show that the
data quality is acceptable, and there are no outlier values and invalid
values. In addition, the magnitudes of different types of feature factors
vary widely, and SLP and SH are even 1000 times different in magni-
tude. Therefore, data are normalized before the training in this paper.
Data of 15min are calculated, the obtained total data length is 2880
and 2976, respectively. According to the chronological order, the first
2500 samples are selected as the training set, and the remaining sam-
ples are used as the testing set.

4. Results

This section starts with an evaluation of feature importance, based
on which a subset is selected. Using the selected features, the forecast
performance is evaluated with a validation data set. In addition, pre-
diction interval analysis and probabilistic forecast error analysis are
performed.

Table 6
Statistics of the forecast skill involving point forecast and interval forecast,
dataset two.

Station Model RMSE RSE MAE SSCRPS

One step ahead TGPLSTM 1.33 0.05 0.84 0.82
MLP 1.43 0.06 0.88 –
GLM 1.54 0.06 0.93 0.80

Two steps ahead TGPLSTM 2.27 0.19 1.34 0.77
MLP 2.14 0.15 1.32 –
GLM 2.46 0.21 1.42 0.71

Three steps ahead TGPLSTM 2.46 0.22 1.58 0.74
MLP 2.50 0.21 1.57 –
GLM 2.62 0.28 1.63 0.65

Four steps ahead TGPLSTM 2.68 0.28 1.73 0.69
MLP 2.95 0.42 1.84 –
GLM 3.23 0.65 1.99 0.59

Fig. 3. The TGPLSTM forecast and observed value with 95% confidence intervals for one, two, three and four steps ahead forecast (the dark blue line is observed
value, the yellow line is forecast, the blue band is 95% confidence interval).
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4.1. Feature importance and selection

Nine types of features with fifteen historical time lags are included
as the initial feature set. The dimension of features is 135, which are
shown in Table 3.

TDRF algorithm is used to calculate the importance of 135 features.
The Pearson correlation coefficients (PCC) is also computed. Fig. 2
shows the importance from TDRF and PCC. The yellow bar plot presents
the PCC results, and the blue bar plot presents the TDRF results. The
PCC importance of the same type of features are very similar. For ex-
ample, the features of dimensions 1–15 are average wind speeds with
1–15 lag times and their PCC importance decreases slowly as the time
lag increases. Whereas the TDRF importance of the same types of fea-
tures vary greatly. Therefore, if the PCC method is adopted for feature
selection, a series of factors in the same type is included, which could
increase the redundancy. It is demonstrated that TDRF automatically
eliminates the redundancy.

Table 4 shows the dimensions of the thirty most important features.

4.2. Forecast and validation

To forecast wind speed at future one hour with a time resolution of
15min, multi-step ahead TGPLSTM forecast is developed. The ten most
important features selected by TDFR are included as the input, and the
output is the average wind speed in the future at 15min, 30min, 45min
and 60min. The prediction step is 15min. Multilayer perceptron (MLP)
model and generalized linear regression (GLM) model are also devel-
oped to make a comparison. The input and output sets of MLP and GLM
are the same as TGPLSTM. Standard MLP is a point forecast model

without probability information. GLM is specified by univariate in-
dependent response variables and the canonical link function. The ex-
pected value is linked to a linear predictor by a known monotone
function. It provides the interval forecast based on the asymptotic
variance of the maximum likelihood estimate. Using the first 2500
samples as a training set, and the remaining samples as the testing set.
The prediction performances of TGPLSTM, MLP, and GLM are eval-
uated.

Table 5 presents forecast evaluation on dataset one. It involves point
forecast metrics RMSE RSE MAE, , , and interval forecast metrics SSCRPS.
For RMSE RSE MAE, , , a better forecast is detected with lower
RMSE RSE MAE, , . For one step ahead forecast, the RMSE RSE MAE, , of
TGPLSTM are 0.90, 0.24 and 0.58, respectively. The values of MLP are
0.91, 0.25 and 0.57, of GLM are 1.07, 0.29, 0.63. The RMSE RSE MAE, ,
values of TGPLSTM are low. TGPLSTM improves the forecast accuracy
by 15.9%, 17.2%, 7.9% compared to GLM. For two steps ahead forecast,
TGPLSTM increases forecast accuracy by 1.6%, 4.9%, 4.6% compared
to MLP, 6%, 9.4%, 9.9% compared to GLM. For three steps ahead
forecast, TGPLSTM increases forecast accuracy by 1.3 %, 9.5%, 5.6%
compared to MLP, 4.5%, 12.8%, 9.8% compared to GLM. For four steps
ahead forecast, TGPLSTM increases forecast accuracy by 1.3 %, 15.5%,
7.4% compared to MLP, 3.5%, 11.5%, 10.3% compared to GLM.
Probabilistic forecast results are evaluated by SSCRPS, a higher SSCRPS
value represents a better uncertainty forecast. Here TGPLSTM and GLM
are capable of providing probabilistic results. For one step ahead
forecast, SSCRPS of TGPLSTM and GLM are 0.82 and 0.81, the values are
closing. However, for two steps ahead forecast, SSCRPS of TGPLSTM is
0.78, of GLM is 0.71. TGPLSTM increases the accuracy of probabilistic
forecast by 9.8%. Consistently, TGPLSTM improves the performance of

Fig. 4. The TGPLSTM forecast shown according to the the rank of actual wind speed value (the blue scatter represents the data pair of forecast mean and observed
value, the grey bar is the related forecast interval).
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three steps ahead and four steps ahead interval forecast by 18.5% and
17.7%, respectively. It can be concluded that the proposed TGPLSTM
shows significantly improved forecast skills compared with state-of-the-
art models, and also provides satisfactory prediction interval.

Table 6 presents the results of the dataset two forecast. For one step
ahead forecast, the RMSE, RSE, MAE of TGPLSTM are 1.33, 0.05, 0.84,
respectively. The values of MLP are 1.43, 0.06 and 0.88, of GLM are
1.54, 0.06, 0.93. TGPLSTM improves the forecast accuracy by 13.6%,
16.7%, 9.7% compared to GLM. For two, three and four steps ahead
forecast, TGPLSTM has also improved forecast accuracy through the
same analysis. For the evaluation of probabilistic forecast, SSCRPS of
TGPLSTM is higher than that of GLM for all steps ahead forecast. Thus,
the probabilistic forecast of TGPLSTM is better than GLM. Consistently,
TGPLSTM improves the prediction performance of higher wind speeds.

4.3. Prediction interval analysis

Fig. 3(a), (b), (c), (d) depict the details of TGPLSTM forecast for one,
two, three, and four steps ahead, respectively. Each figure illustrates the
actual wind speed record vs. the predicted wind speed. It can be seen
that the deterministic prediction and 95% confidence range keeps up
with the fluctuation of the actual values. It can be seen that the 95%
interval width varies with the wind speed. Generally speaking, the
higher the wind speed, the wider the interval width, and vice versa.
This is consistent with the actual situation that the greater wind speed
leads to the greater forecast error and sample variance, so the un-
certainty interval increases. Moreover, the prediction interval is
asymmetrical to the forecast mean. The Gaussian process regression
provides a target variable satisfying conditional normal distribution.

Therefore, the forecast means and 5%, 95% quantile values should be
symmetrical. However, to generate the variables conforming to the
normal distribution to satisfy the basic assumptions of incorporating
GPR model, Box-Cox transformation [31] is adopted to normalize wind
speed series. Since the Box-Cox transformation is a non-linear trans-
formation, 5%, and 95% quantiles become asymmetrical after the in-
verse transformation.

Fig. 4 shows the prediction plots with the order of true wind speeds,
rather than sample order. The blue points are predicted mean and the
grey bars are prediction interval. The Fig. 4(a) shows more clearly that
more points of the one-step-ahead prediction are gathered on the y-x
line. As the steps increase, the distribution of points is looser. The
heteroscedastic property is apparent and the uncertainty interval is
small when the actual wind speed is small, and vice versa.

4.4. Probabilistic forecast errors analysis

Probability in truth (PIT) of each sample is calculated to measure
the probabilistic errors. PIT refers to the statistical consistency of
forecasts and observations. It is the probability of the observed wind
speed value in the predicted distribution. If the PIT is around 0.5, the
forecast and observation are close. If the PIT is closer to 0 or 1, the
forecast and observation are very different. Fig. 5 depict the PIT value
of one, two, three and four steps ahead forecast. The grey circles re-
present PIT values of GLM forecast, and red circles represent PIT values
of TGPLSTM forecast. It can be seen that most PIT circles of TGPLSTM
forecast are distributed between 0.3 and 0.7 horizontal lines, the
probabilistic forecast errors are acceptable. Whereas more PIT circles of
GLM forecast are closer to 0 and 1. Therefore, from the probabilistic

Fig. 5. PIT plots of TGPLSTM and GLM forecasts, measuring the probabilistic errors (The grey circles represent PIT values of GLM forecast, and red circles represent
PIT values of TGPLSTM forecast).
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forecast errors analysis, TGPLSTM forecast is better than GLM. As the
forecast step size increases, it is found that the PIT circles shift to 0.5
horizontal line. It is known in the previous section that as the forecast
step increases, the predicted probability distribution has a larger var-
iance and a flatter distribution shape. Even if the predicted value and
the observed value are far apart, the corresponding probability does not
change much. Moreover, the probability prediction can be better.

4.5. Reliability of the forecast

Fig. 6 shows the PIT uniform probability plots for one, two, three
and four steps ahead forecasts for the analysis of the reliability of the
TGPLSTM wind speed forecast. The PIT sequences are simulated by the
uniform probability distribution. The Q-Q maps of standard uniform
distribution and sampled quantile are drawn, and the 5% Kolmogorov
significance bands [32] are added to the graph to check whether it
passes the test. Fig. 6 shows that the sampled quantiles are close to the
diagonal line and within the significance bands. It implies that the
distribution of PIT values is uniform. Hence, it is concluded that the
predicted probability distribution is appropriate, generally unbiased,
and has the appropriate bandwidth.

5. Discussion and conclusion

Long short-term memory (LSTM) wind speed forecast model has
received a lot of attention in recent years due to its powerful fitting
ability. But the probabilistic wind speed forecast based on LSTM is still
insufficient as large scale ensemble technique based on resampling is
difficult to implement. This paper proposed a more direct and reliable
probabilistic wind speed forecast model TGPLSTM by coupling
Gaussian process regression (GPR) to the internal structure of LSTM and
using an intelligent inputs screening of top-down relevant feature

search algorithm (TDRF).
Two datasets of different seasons are extracted to verify the model’s

predictability at different wind speed levels. The TDRF effectively
eliminates irrelevant and redundant features. A probabilistic wind
speed forecast is implemented using the most important features. The
proposed TGPLSTM shows significantly improved forecast skills com-
pared with state-of-the-art models, meanwhile, a satisfying interval is
provided along with the point forecast. The accuracy of one step ahead
prediction is best. As the forecast step increases, the accuracy of the
forecast decreases.

Probability in truth (PIT) is used to measure the probabilistic errors.
More PIT circles of TGPLSTM forecast are distributed nearby 0.5 hor-
izontal lines than that of GLM. It is concluded that the probabilistic
forecast error of TGPLSTM is lower than GLM. PIT uniform probability
plots are made to examine the reliability of the TGPLSTM wind speed
forecast. It indicated that the distribution of PIT values is very uniform.
The predicted probability distribution of TGPLSTM is appropriate,
generally unbiased and has the appropriate bandwidth.

Comprehensive experiments using practical wind farm data of dif-
ferent seasons have demonstrated the highly satisfactory results. The
proposed TGPLSTM approach maintains the advanced prediction
ability of deep learning and provides a direct confidence interval of
prediction. It enriches the information content of wind speed prediction
and makes the short-term wind speed prediction result more mean-
ingful. Moreover, the TGPLSTM approach is a generalized framework
for probabilistic forecasting of wind speed, and can provide an efficient
support for power system applications such as probabilistic reserve
determination, generation dispatch, wind farm control, electricity
market trading, etc.

Fig. 6. PIT uniform probability plots for one, two, three and four steps ahead forecasts (the scatter represents the sampled quantile vs. uniform distribution quantile,
the dotted lines are the 5% Kolmogorov significance bands).
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