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Abstract
In the visualization of the node-link graph, it is common to use edge-bundling algorithms to
reduce the visual clutter caused by the increase in nodes and connections while reflecting the
high-level structure of the graph. However, the traditional force-directed edge-bundling
method has unstable gravitation when applied in three dimensions. To address this issue, we
propose an edge-bundling algorithm based on the expectation model, and the edge-bundling
rules can be modularized to support the addition of calculation rules. The stability of the
proposed method is improved. Our experimental results with 2D and 3D scenarios demon-
strate that our algorithm produces superior results that unclutter complex graphs.

Keywords Edge bundling . Force-directed . Expectationmodel

1 Introduction

Interconnection data such as air traffic are usually abstracted with graphs [5]. Data visualiza-
tion has been used as a tool for the analysis of airport construction, traffic optimization, and
regional dependency. A meaningful and concise visualization of massive, complex data allows
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users to derive information that could be obscure. As the volume of data grows, it becomes
challenging to create a visualization that presents a coherent and uncluttered view. In addition,
with an increasing number of nodes, edges, and dimensionality, readability of visualization
could be significantly degraded.

To address the challenges from massive data of high complexity, edge-bundling
algorithms have been developed. Edge-bundling uses a hierarchical structure to combine
spatially adjacent edges [6] and extensions have emerged to accommodate bundling
under various circumstances [3, 7, 8, 18], most of which aim at applications of the
two-dimensional dataset. However, large graphs can be better appreciated when they are
visualized in a three-dimensional (3D) space and displayed with stereo and/or motion-
depth cues to support spatial perception [17]. With the increase of spatial-temporal,
geographical data, methods that take advantage of the 3D visualization space is greatly
beneficial to the end user of such data. For example, a visualization of air traffic in 2D is
unable to visualize altitude differences between domestic and international flight routes.
A projection of 3D routes to a 2D plane results in many crossing edges in a graph;
information such as flight altitude, and route origin and destination can hardly be
attained. 3D edge bundling extends 2D methods to achieve less clutter and greater
differentiation. The force-directed edge bundling algorithm (FDEB) [7] adopts the
simulated electrostatic force, graph bundling by kernel density estimation (KDE) [8].
The 3D mean-shift edge bundling (3DMSEB) [2] extended FDEB by updating the
correlation calculation of compatible edges and the division of control points. However,
methods such as FDEB faces challenges with the increased complexity of graphs [1]. It
is also difficult to determine when the electrostatic and the spring forces change due to
the growth of edges.

The 3D edge bundling algorithm is a method of bundling lines with nearby or content
correlations in three dimensions. This method for solving data (such as flight data, including
longitude, latitude, and altitude) that is covered by terrain and can cause visual clutter when
directly rendering in 3D. One of the challenges of visualizing geographic data in 3D is
extending the 2D edge-bundling algorithms to 3D. While there is a need to improve the
algorithm to show more information in the data, it is also necessary to better combine the data
and geographic information to make the visualization result natural and beautiful.

The force-directed edge bundling algorithm (FDEB) [7] is widely used as a reference
approach because of its flexibility, usability, and extensibility. It adopts the simulated
electrostatic force, graph bundling by kernel density estimation (KDE) [8]. For instance,
3D mean-shift edge bundling (3DMSEB) [2] refers to FDEB in the correlation calcula-
tion of compatible edges and the division of control points. Similarly, we choose to
extend the FDEB algorithm in the process of edge bundling. During bundling, we
experience problems with the length and find that the maximum length of the edge can
reach 102 in 2D space. Therefore, the balance can be maintained by appropriately
adjusting the spring constant k during the bundling process. In addition, a smaller step
size allows control points to move gradually, which prevents long edges from being
moved sufficiently, whereas a large step size causes severe fluctuations and destabiliza-
tion. Moreover, it is difficult to determine the value of k when the electrostatic force and
the spring force change due to the growth of edges. As stated by Bondi [1], FDEB does
not perform well for large-scale graphs.

In this paper, we propose an edge bundling method based on the expectation model to
address the problems from massive data of high complexity. Our method leverages
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expectation modules and addresses the instability of FDEB. A balance is achieved with
an adjustable spring constant during the bundling process. The regulating step size
moves control points gradually and prevents long edges from being moved as well as
fluctuations. In addition, we introduce a constraint to avoid the erroneous visualization
issue such as edge-through-terrain. Our main contribution is a 3D edge-bundling algo-
rithm based on the expectation model for origin-destination (OD) data, which provide the
end users an interactive means to analyze massive, complex data (Fig. 1).

The rest of this paper is organized as follows. Section 2 reviews work related to edge
bundling. In Section 3, we introduce the construction of the expectation model and transform
the traditional mechanics for it. Section 4 discusses the edge-bundling and enhancement
processes. Then, we present the results on two databases, in 2D and 3D, in Section 5, and
design a user study to get feedback from relevant research scholars. In the last section, we
summarize and discuss the direction of our future work.

2 Related work

2.1 Edge bundling in 2D

The mechanism of bundling edges in a graph can be dramatically different. The force-directed
edge-bundling algorithms simulate physical force. Zhou et al. [18] used Delaunay triangulation
to sample the edges of the graph into segments to obtain control points. This non-uniform
sampling strategy preserves the topological structure of the graph and allows the midpoint of
each sampled segment to be bundled as nodes in the control map. Holten and van Wijk [7]
propose an alternative force-directed edge-bundling algorithm, in which the edge is modeled
as flexible springs and electrostatic forces exist between the edge pairs. The edge compatibility
measures are used to prevent excessive binding. Deformation of edges is calculated iteratively
and smoothing is applied.

A different edge-bundling idea implicitly combines edges by routing them through nearby,
static control points. Geometry-Based Edge Bundling (GBEB) [3] and edge routing with
ordered bundles [14] generate the corresponding mesh geometry by analyzing the structure of
the graph and create static control points according to the mesh geometry. An advantage of

Fig. 1 Results of 3D edge bundling based on the expectation model. a Night view of U.S. airlines; b Night view
of U.S. migration
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such methods is less edge-to-edge comparisons. However, generating an appropriate mesh that
fits the graph is difficult, which is even more challenge in the 3D scenarios.

The visualization of a data set is closely related to the viewing perspective. When the
viewing perspective changes, the 2D edge bundling result has to be regenerated, which is time-
consuming and computationally expensive. To reduce the computation time, GPUs are
leveraged in recent studies [4, 8, 15], which uses parallel processing and hence greatly
improves efficiency. However, extending such methods to 3D scenarios is non-trivial and
could result in ambiguity in visualization. It is hence necessary to devise 3D edge bundling
methods.

2.2 Edge bundling in 3D

Bottger et al. present the 3D mean-shift edge bundling (3DMSEB) method [2] for functional
connectivity graphs in a native 3D brain space, which combines the concept of compatibility
from FDEB with the numerical stability and usability of KDE. This method calculates the
compatibility between edges and guarantees that only compatible edges are bundled. The
method divides edges iteratively and move subdivision points to high-density areas. However,
without a constraint of the terrain surface, artificial occlusions occur in the 3D result when
geographic data is visualized.

Zielasko et al. introduced the 3D force-directed edge bundling (3DFDEB) [19]. This
method is a 3D cluster-based edge-bundling algorithm that extends the FDEB algorithm.
The proposed method enhances the stability of the force system and improves computational
efficiency. It maintains the edge model and supports the rendering of graphics in different
structural styles.

When geographic data are combined with terrain data, the rationality when bundling edges
in 3D needs to be considered. Lambert et al. [9] proposed a 3D edge bundling for geographical
data visualization (3DEBGD) and applied this method to visualize geographic data. The
method extends their previous winding roads (WR) algorithm [10], which transforms the
quadtree and Voronoi diagrams used to generate the grid in WR to the corresponding octree
and 3D Voronoi diagrams. The algorithm uses the OD data of the route by adding two sets of
virtual points to avoid edges passing through the terrain. Although the requirements are met,
the result is more like the operation on a sphere, and the addition of virtual points is limited.

3 Expectation model

Considering that the final reflection of bundling is the change in the position of the control
points, we design a guidance model for control points that modularizes the guidance factor so
that its influence on the movement of the control points tends to be stable.

3.1 The expectation-maximization algorithm

The expectation-maximization algorithm (EM) [12], which is widely used in the machine
learning and data clustering processes of computer vision methods, was proposed by T.K.
Moon in 1996. EM is a method of finding the maximum likelihood estimate of parameters in
the probabilistic model. We apply the core idea of EM to FDEB so that the control points are
fully moved at each iteration, thus eliminating the step-setting problem.
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3.2 Definition of the expectation model

Definition: The expectationW consists of the expectation shift (desired amount of movement)
W. shift and the expectation value (the degree of desire)W. value. The expectation shift is what
the control point wants to reach the end position under the influence of the guidance factor, and
the expectation value indicates the desired intensity. When there are many different guidance
factors affecting the same control point, the one with the largest expectation value has the
strongest influence.

Multiple expectations can be merged into one, and the combined operation is referred to as
the Mix. When there are n expectations, i.e., W1, W2, ⋯, Wn, on a certain control point, they
can be fused into

Wmix ¼ Mix W1;W2;⋯;Wnð Þ:
Wmix:shift

¼ ∑n
i¼1 Wi:shift*Wi:valueð Þ

∑n
i¼1Wi:value

Wmix:value ¼ ∑n
i¼1Wi:value

n

Note that the Mix has the following three properties:

– Multiple expectations generated by the same type of guidance factor can be Mix directly.
– Multiple expectations generated by different types of guidance factors need to adjust their

expectation values before Mix.
– The adjustment of the expectation values needs to be performed by measuring the impact

of relevant guidance factors and user demands.

A control point needs toMix all of its expectations into one, and then it should be moved to the
final position following the lead of expectation.

3.3 The expectation model of traditional mechanics

According to the definition of the expectation model, we correct the definitions of these two
expectations and transform the spring and electrostatic force into homologous expectation models.

As shown in Fig. 2, in terms of the expectation model of the spring force, we set Wa0 to
represent the expectation generated by a0 on a1. When other forces are not considered, the
spring force will eventually bring a1 to the position of a0. Thus, we obtain Wa0 :shift ¼ a0−a1
and set the expectation. In the force-directed model, the magnitude of the spring force is

Fig. 2 Sketch map of the force system. Ta, Tb, and Tc are three mutually associative edges. The control point a1 is
affected by the spring force of a0 and a2, and is subjected to the electrostatic forces of b0 ∼ b3 and c0 ∼ c3
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proportional to the distance between the two control points, which is suitable for the definition
of the expectation value. Therefore, we define Wa0 :value ¼ kTa � ja0−a1j, where ∣a0 − a1∣
refers to the Euclidean distance between a1 and a0, and kTa represents the spring constant of
edge Ta. We can obtain the expectation Wa2 generated by a2 on a1 in the same way.
Considering that longer edges can be stretched much farther during bundling, the spring
constant should be inversely related to the length of the edge. Thus, we define
kTa ¼ 1=jTaj, where ∣Ta∣ is the original length of Ta.

For the expectation model of electrostatic force, we also setWb1 to represent the expectation
engendered by b1 on a1. Beyond other forces, the electrostatic force will take a1 to b1.
Similarly, we obtainWb1 :shift ¼ b1−a1. In the traditional force-directed model, the magnitude
of the electrostatic force is inversely proportional to the square of the distance between the

control points. We define Wb1 :value ¼ G Tb; Tað Þ � b1−a1j j−2. Note that G(Tb, Ta) represents
the compatibility between Tb and Ta. Regarding the calculation of the compatibility, the
method used in content-importance-based edge bundling (CIBEB) [11] for graph visualization
is suitable and will be briefly described as follows.

Define T = {Ti} as the set of all edges and X = {Xi} as the set of all points. Ti ¼ XOi ;XDih i
represents an edge with vertices XOi and XDi . If a non-negative integer p is given, the solution
of compatibility is divided into the following four steps:

1) Find p points (not including XOi ) that are closest to XOi and form a set of compatible
points PX XOi ; pð Þ. Then, calculate the maximum distance from the point in PX XOi ; pð Þ to
XOi , denoted as the compatible radius σXOi

of XOi , and calculate PX XDi ; pð Þ and σXDi
in

the same way.
2) Calculate the edge set of Ti according to PX XOi ; pð Þ and PX XDi ; pð Þ, which is a set of all

edges for its two endpoints in two-point sets of Ti:

PX X Ti ; pð Þ ¼
Tm∈T jXm;X n∈ XOm ;XDmf g;Xm≠X n;
Xm∈PX XOi ; pð Þ;X n∈PX XDi ; pð Þ;
Xm∉PX XDi ; pð Þ;X n∉PX XOi ; pð Þ

8<
:

9=
;

3) Use the Gaussian kernel function to calculate the compatibility of the endpoint. For a
given endpoint XOi and its compatible point set PX XOi ; pð Þ, compatibility is calculated as
follows:

G Xm;XOið Þ ¼ 1ffiffiffiffiffiffi
2π

p e
−
d Xm ;XOið Þ2

2σXOi
2

with Xm∈PX XOi ; pð Þ, the compatible radius σXOi
> 0, and the Euclidean distance d Xm;XOið Þ

is between Xm and XOi .

4) For the compatible edge Tm of Ti, the compatibility between Tm and Ti is calculated as
follows:

G Tm; Tið Þ ¼ G XDm ;XDið ÞG XOm ;XOið Þ;XDm∈PX XDi ; pð Þ
G XOm ;XDið ÞG XDm ;XOið Þ;XDm∈PX XOi ; pð Þ

� �

Note that XDm may be the compatible endpoint of XDi or XOi and that the compatibility
calculation should be differentiated. In addition, the compatible radius of the endpoint at each
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edge may be different; thus, two edges that are mutually compatible may also have different
compatibility.

In terms of the electrostatic force, when the control points on the two edges are close, the force
becomes infinite. In the force-directed model, when the mutual force between two control points
is almost infinite, other forces will be ignored, and the two compatible edges will no longer be
affected by other edges; thus, we will obtain erroneous results, as shown in Fig. 3.

If the distance between the two control points is enough small, they should keep this
distance during the subsequent iterative process and respond to the forces produced by other
points at the same time. The electrostatic force between those two control points only shows
the role of keeping them apart, which has no effect on the total environment. To fix this
problem, we set the expectation to 0. Therefore, we make the following amendments to Wb1 :

Wb1 :value ¼ 0; jb1−a1j < minDist
G Ta; Tbð Þ � b1−a1j j−2; otherwise

�

Our setting for minDist depends on the length of the longest edge; assuming it is n × 10x with
n ∈ (0, 10), x ∈N, and then minDist = 10x/3.

Fig. 3 Diagram of the electrostatic force problem. a Original node-link; b Incorrect bundling; c Expected result

Fig. 4 The effects of centrifugal expectation and spring expectation. a Untreated pair of edges; b After treatment
with two expectations

35105Multimedia Tools and Applications (2019) 78:35099–35118



3.4 Custom expectation model

In the process of route data processing, if different airlines can be used to influence bundling,
we can obtain an “Airline force distribution map”, and if the type of aircraft is relevant, we will
also obtain an “Aircraft trend chart”, etc. The user only needs to build a new expectation model
that can show the corresponding high-level structure of the diagram.

When geographic information data are visualized in 3D, it is necessary to eliminate the
visual clutter to enhance the high-level structure. In particular, if the terrain is incorporated, the
edges must avoid being occluded by the terrain or the surface. To meet this requirement, we
consider customizing a centrifugal expectation Wf that keeps the control point away from the
center of the earth.

Considering that longer edges should float higher, and the control point is farther away
from the target height should have a greater centrifugal expectation, our algorithm defines the
maximum height H and the centrifugal expectation Wf for the control point a on edge T(R is
the radius of the Earth):

H ¼ 0:1 2R−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4R2−4jT jR

q� �

W f :shift
¼ a=jaj � H þ Rð Þ−a W f :value ¼ Rþ H−jaj

Combining the centrifugal expectation and the spring expectation, a better result is shown in
Fig. 4.

3.5 Expectation value adjustments and Mix

The expectation value adjustment is normalized. Since the magnitude of different forces varies
significantly, such adjustment is needed to prepare for the next Mix. After testing, we get a
satisfactory result ifWs. value =Ws. value × 102 andWe. value =We. value × 1012 while keeping
Wf unchanged.

Fig. 5 Edge-bundling process. The compatibility of each point is calculated and then progressively moved and
rendered
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Depending on the definition of the expectation, we make adjustments via experimentation.
It is difficult to Mix multiple expectations at once; thus, we achieve the goal by using a
recursive approach: Mix two different types of expectations first, then Mix the result with one
of the remaining expectations, and repeat until complete.

4 Edge bundling based on the expectation model

4.1 Edge-bundling process

A control point may be affected by many expectations simultaneously, and those expec-
tations are constantly changing during the calculation. Thus, the final position cannot be
certain at the beginning and needs to be calculated iteratively. The edge-bundling process
is shown in Fig. 5.

Decide empirically: The initial values of the parameters are X = 5, N0 = 1, and I0 = 10. After
each iteration, the number of control points N is doubled, and the number of calculations of
each iteration I is reduced by 1/3.

The complexity of our algorithm is the same as that of FDEB in each iteration.
However, in the compatibility calculations, we get an overall complexity of O(nm log
m), where m is the number of endpoints; the complexity is O(n2) for FDEB. When there is
a large amount of data or many edges have a common endpoint, i.e., m ≪ n, our algorithm
performs better.

Algorithm 1: Edge Bundling based on Expectation

Init ,N I ;

for 0n to X do
for 0i to I do

for each control point t do

calculate eW , sW , fW ;

adjust .eW value , .sW value , .fW value ;

,t e sW Mix W W ;

,t t fW Mix W W ;

. .tt Wposition shift ;

end
Change ,N I ;

end
end
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4.2 Smooth and enhancement

We perform Gaussian smoothing for curved edges, which enhances the visual effects. Trans-
parency is used for the edge so that the clusters will have different depths of color. We also set
a parameter minDist through a global calculation to determine the number of control points k
within the distance minDist of each edge, and we set the edge width according to k. Let maxk
be the largest of all k values; then, the width tw of an edge is:

tw ¼
ffiffiffiffiffiffiffiffiffiffiffi
k

maxk

r
� 2þ 1

5 Results

All experiments are performed on a computer with an Intel Core i7-3770 3.9 GHz quad-core
processor running Windows 10 with 8 GB RAM and a GeForce GTX 660 graphics card. For
full code please visit our GitHub (URL: https://github.com/SpaceMiao/Expectation-Based-3D-
Edge-Bundling).

5.1 3D results

In the experiment, we adopt the OpenFlights Database [16] to evaluate accuracy. The dataset
contains 59,036 routes between 3209 airports on 531 airlines spanning the globe. Each entry
contains the 3-letter (IATA) codes of the source and the destination airports. We extract the OD
data of the route and bundle it, and we combined this dataset with NASA’s open-source 3D
GIS platform WorldWind [13] to demonstrate the results.

We use the latitude and longitude data to draw all points on the sphere. Then, the first
iteration determines the latitude, longitude, and height of all control points of the edge and
draw lines between control points. Through continuous iteration, the number of control points
on the edge is increased, and the points are moved to the new position and re-rendered. The
result is shown in Fig. 6.

The results indicate that our algorithm effectively reduces the visual clutter of the graph,
and it is realistic to cluster and bundle important edges. By adding the centrifugal expectation,
the edges become suspended on the surface, which correctly shows the results of edge
bundling. Since the different lengths of the edges have different heights and colors, the
advanced structure of the graph is better displayed. Finally, we show the results from different
views. The oblique view (as shown in Fig. 6e) indicates that the edges have a clear tendency to
gather after bundling. In night view (as shown in Fig. 6c), we combine the bundling result with
the geographic information resources (including geographical texture, city name and other
information) loaded online by the WorldWind platform to render and obtained a strong result,
from which we can determine the relationship between the distribution and tendency of
aviation and cities around the world.

5.2 2D results

To evaluate our proposed algorithm, we also conducted experiments to have 2D visual-
ization using the U.S. airlines and migration datasets, which have been used in the
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evaluation of visualization methods [4, 7, 8, 11, 15, 18]. The U.S. airlines dataset
contains 275 vertices and 1925 edges, and the migration dataset contains 1702 vertices
and 9780 edges. Using only the spring expectation and the electrostatic expectation, the
two methods are evaluated with the same number of iterations, and the results are shown
in Fig. 7.

FIg. 6 The results of the OpenFlights Database. a and b are global overviews from two different perspectives, c
is the night view, d is the specific detail of the European part, and e is the oblique view of the European part
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Both methods suppress visual clutter, and the sub-clusters are mostly the same. Therefore,
the expectation model is also applicable to FDEB. Additionally, the expectation model requires
only approximately 30% of the calculations of FDEB to achieve the same result.

5.3 Evaluation

Visualization not only presents information but also provides a means of intuitive analysis for
users. The user survey evaluations are designed to prove the effectiveness and superiority of
our algorithm. We collected and analyzed the user’s judgment and ratings.

A. AVisual Comparison with 3DEBGD

To obtain feedback, we used the U.S. airlines data (as shown in Figs. 8, 9 and 10) and
migration data (as shown in Figs. 11, 12 and 13) to compare with the rendering under
3DEBGD.
B. User Study

We invited 30 participants (5 female, 25 male), 21 to 27 years old, all with normal or corrected-
to-normal vision and without any color vision impairment. The participants included

Fig. 7 Comparison of the expectation model and the force-directed model in 2D. The left figure uses FDEB, and
the right figure is the result of our algorithm

Fig. 8 The effect of airlines raw data with the addition of height
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undergraduates and postgraduates; 7 participants understood graph visualization, 10 partici-
pants knew the concept of visualization, and the rest did not have visual background
knowledge. Twenty-two percent of them have participated in the design and development of
GIS systems, and 42% have used GIS systems.

The entire survey process included information presentation and a questionnaire. At the
start of the survey, we briefly introduced our research project and explained the datasets used
in the visualization. Each participant interacted with the visualization of the datasets in a 27 in.
LED screen using a 3D GIS platform. This platform allows users to roam the visualization
with a mouse. Participants allowed to interact with the system freely at their own pace until
they became ready to respond to the questions. We limited the duration of the interaction of a
participant to 10 min. Then each participant completed the assessment of the problem on the
questionnaire.

We used the 5-level Likert scale for evaluation. Users were asked to rate the questions
on the questionnaire using 1–5 points to indicate their satisfaction, where 5 is excellent, 4
is good, 3 is fair, 2 is poor, and 1 is very poor. The questions of the survey are as
follows:

Fig. 9 Top view of two methods in the airlines data, where a is our method and b is 3DEBGD
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Q1: How clear and aesthetic is the view?
Q2: How easy is it to access the information from the view?
Q3: How easy is it to identify the longest connection from the view?
Q4: How easy is it for you to compare connections of airports using the view?
Q5: How easy is it to identify airports using the view?
Q6: How helpful is the view?

After all, participants completed the questionnaire, we calculated the scores and average the
scores of the three views separately.

C. Results

Figure 14 shows the average ratings of 30 participants based on the five questions. The
average rating of the visualizations using our proposed method is 4.4, whereas the average
rating using the 3DEBGD is 3.6. The responses to the question 2 imply that both methods
significantly reduce visual clutters. The most significant differences between the 3DEBGD

Fig. 10 Oblique view of two methods in the airlines data, where a is our method and b is 3DEBGD
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Fig. 12 Top view of two methods in the migration data, where a is our method and b is 3DEBGD

Fig. 11 The effect of migration raw data with the addition of height

35113Multimedia Tools and Applications (2019) 78:35099–35118



method and the proposed one lie in the responses to questions 3, 4 and 5, which focus on
the derived information of the visualization. The airline dataset, there are a large number of
short-distance flights. The color used in our visualization is proportional to the elevation,
which makes it easy to identify the origin and destination of frequent regional flights. In
addition, the oblique view of the 3D visualization allows users to perceive the airport with

Fig. 13 Oblique view of two methods in the migration data, where a is our method and b is 3DEBGD

Fig. 14 The questionnaire results of our method and 3DEBGD
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ease. In contrast, the added virtual points in the visualization of the 3DEBGD method are
rendered on the surface along with the endpoints, which clutters the visualization and
makes it difficult to distinguish flight routes and airport. The twisted routes to long
connections from multiple bundles make it difficult to see prominent trends. Positive
responses to question 6 of our method confirms that the 3D arching routes make the
visualization more realistic and close to human preference.

6 Conclusions

In this paper, we propose an edge-bundling algorithm based on the expectation model that
eliminates the use of the step parameter in the iterative calculation, transforms the spring force
and electrostatic force into corresponding expectation models and successfully completes 3D
edge bundling with the combination of 3D GIS datasets by adding the centrifugal expectation.
Using flight data, we evaluate the algorithm in 3D. The experimental results show that our 3D
edge-bundling algorithm is suitable for general node-link diagrams and produces better results
than another method. This algorithm enhances the display of high-level edge patterns while
reducing visual clutter. Most importantly, it allows for customization through the addition of
rules to reflect different priorities.

In our future work, we plan to improve from the following three aspects:

1) Optimize the bundling process of the algorithm to speed up the processing and find the
best choice of parameters and their transformations.

2) Add more interactions so that relevant researchers can get the information easily.
3) Add more information and design a more aesthetic visualization without compromising

the authenticity of the data.
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