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a b s t r a c t

Data from many real-world applications can be high dimensional and features of such data are usually
highly redundant. Identifying informative features has become an important step for data mining to not
only circumvent the curse of dimensionality but to reduce the amount of data for processing. In this paper,
we propose a novel feature selection method based on bee colony and gradient boosting decision tree
aiming at addressing problems such as efficiency and informative quality of the selected features. Our
method achieves global optimization of the inputs of the decision tree using the bee colony algorithm to
identify the informative features. The method initializes the feature space spanned by the dataset. Less
relevant features are suppressed according to the information they contribute to the decision making
using an artificial bee colony algorithm. Experiments are conducted with two breast cancer datasets and
six datasets from the public data repository. Experimental results demonstrate that the proposedmethod
effectively reduces the dimensions of the dataset and achieves superior classification accuracy using the
selected features.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

Data from real-world applications can be of high dimensional.
This is particularly true for the applications in the fields ofmedicine
[1–4] and remote sensing [5]. For instance, mass spectrometry
is a promising diagnostic and cancer biomarker discovery tool
for cancers such as prostate, ovarian, breast, and bladder can-
cers [6]. The superior sensitivities and specificities in contrast to
the classical cancer biomarkers attract great attention of medical
professionals. However, thousands of features of mass spectro-
metric data make feature selection a necessary step for effective
processing and analysis in computer-aided diagnosis. Features in
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the mass spectrometric data are usually highly redundant, which
is the cause of the well-known curse of dimensionality problem in
machine learning [7]. Identifying informative features has become
an important step for datamining not only to circumvent the curse
of dimension but to reduce the amount of data for processing. In
general, feature selection reduces the number of features while
keeping the same or even better learning performance [8]. Its
advantages have been demonstrated in various data mining and
machine learning applications [9,10]. When redundant, irrelevant,
noisy features are removed from the training dataset, the efficiency
of the learning process is usually improved as well.

Feature selection is responsible for selecting a subset of fea-
tures, which can be described as a search process in a state space.
There have been many methods developed for feature selection
[11]. Alickovic et al. [3] proposed a decision-making system of
breast cancer diagnosis. In this method, genetic algorithms are
used to remove insignificant features and multiple classifiers are
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employed to classify breast cancer. Zhu et al. [12] proposed an
unsupervised spectral feature selection method to preserve both
the local and global structures of the features when removing
irrelevant ones. Mafarja et al. [13] proposed three improvements
based on Whale Optimization Algorithm (WOA) to optimize fea-
tures in a dataset. When a simple mutation operator is used, the
performance of the algorithm becomes better.Wan et al. [4] evalu-
ated hierarchical feature selection methods for aging-related gene
datasets. Wang et al. [14] construct the primary features of user
comments about items and select features using Gradient Boosting
Decision Tree (GBDT). GBDT [15] was developed to identify the
primary features of users’ comments about items and could be
efficient for feature selection. However, GBDT has a high demand
for initial inputwhen building trees. Redundant initial inputs could
pose a significant challenge to the efficiency in both time and
space. On the other hand, Artificial Bee Colony (ABC) algorithm has
demonstrated great efficiency to convergence, which compliments
the disadvantage of GBDT.

To address the open issues in feature selection of high dimen-
sional data, we propose a method that is based on the coherent
integration of artificial bee colony and gradient boosting decision
tree algorithm (ABCoDT). To improve the feature selection using
GBDT, initial inputs with a high dimensionality is optimized. We
employ the accuracy of classification by GBDT to evaluate the
quality of the inputs, which minimize the potential of ABC be-
ing trapped in a local optimum. Hence, the proposed algorithm
achieves a global optimization and identifies the most informa-
tive features. The general idea is that the method initializes the
feature space spanned by the dataset. Less relevant features are
suppressed according to the information each feature contributes
to the decisionmaking using an artificial bee colony algorithm. Our
method reduces the initial input of a gradient boosted decision tree
algorithm and removes the features with a low correlation.

The main contributions of this paper are two-fold: (1) Feature
selection is closely coupled with the decision process by integrat-
ing the gradient boosting decision tree in the loop, and hence an
end-to-end solution is devised. (2) The combinatorial optimization
problem is addressed via a swarm intelligence method to reach
the global optimum. The idea extends the deep learning theories
by integrating the identification of the informative features of the
learning process in a coherent manner. This provides a framework
to allow the employment of various classification methods for a
deep learning.

The rest of this article is organized as follows. Section 2 reviews
the related work of feature selection. Section 3 presents our pro-
posed method in detail and gives a brief review of the artificial
bee colony algorithm. Section 4 discusses the experimental results
from six public datasets. Section 5 concludes this paper with a
summary of our proposed method and findings.

2. Related work

Dash et al. [16] presented a general framework of feature se-
lection that includes four phases: generating a subset of features
according to rules, the candidate subset is evaluated, repeating the
subset generation if the stop rule is not satisfied, validate the final
subset of features. Feature selection methods can be categorized
into three types: filter based methods, wrapper based methods,
and embedded based methods [17]. Filter based methods analyze
the statistical performance of sample data to select features. It
is independent of the classification algorithm. There are many
methods such as Variance Threshold (VT), SelectKBest (SKB) and
information gain. The multivariate methods evaluate the depen-
dencies of features and attempt to minimize the relevance among
features [18]. In general, filter based methods are highly efficient
in selecting features. However, the accuracy of the following clas-
sification process using the selected feature is relatively low.

Wrapper-based methods evaluate attribute sets using a ma-
chine learning method via an iterative search process. The results
of each iteration are used as a heuristic for this search. Exemplar
methods of wrapper based methods include ant colony optimiza-
tion (ACO) [19], genetic algorithm (GA) [20], random mutation
hill-climbing [21], simulated annealing (SA) [22] and ABC [23].
The wrapper based methods leverage the feedback from learning
algorithms and usually outperform the filter based methods in
term of accuracy. On the other hand, the employment of a learning
algorithm in the search process is time-consuming and computa-
tionally expensive, especially for high-dimensional, large datasets.
They also face the risk of overfitting.

Embedded methods attempt to reduce the computation cost
of reclassifying different subsets that are performed in wrapper
methods. The methods integrate feature selection into the process
of building model and are closely coupled with a specific learn-
ing model. The selected features are achieved by optimizing the
learning objective function [8]. Decision trees, such as CART, have
a built-inmechanism to perform variable selection [8]. Bi et al. [24]
use l1-norm SVMs, without iterativemultiplicative updates, which
takes in the context of least-square regression and eliminates
features by setting their weights to zero. The number of variables
can be further reduced by backward elimination.

To enhance search performance, Shunmugapriya et al. [25]
optimize the abandoned solutions of food sources by givingweight
to food sources of employed bees based on ABC. Gu et al. [26]
exploited competitive swarm optimizer (CSO) to optimize large-
scale data. It selects a much smaller number of features. Uzer
et al. [27] optimize feature selection by using ABC and classify
a sample dataset by using Support Vector Machine (SVM). The
method has high accuracy but just reduces fewer features.

To overcome the aforementioned problems and meet the de-
mand for feature selection fromhigh dimensional data, we develop
a novel method that coherently integrates ABC and GBDT algo-
rithms. ABC usually converges to the global optimum efficiently
and consumes less time for feature selection. It provides a reason-
ably good initialization for building trees usingGBDT,which is slow
when data is of high dimension. In contrast, GBDT achieves a high
accuracy and hence a promising method for feature selection.

3. Methodology

3.1. Gradient boosting decision tree

The basic idea of the gradient boosting decision tree is combin-
ing a series of weak base classifiers into a strong one. Different
from the traditional boosting methods that weight positive and
negative samples, GBDTmakes global convergence of algorithm by
following the direction of the negative gradient [14,28].

Let {xi, yi}ni=1 denotes the dataset. Softmax is the loss function.
Gradient descent algorithm is used to ensure the convergence of
the GBDT. The basic learner is h(x), where xi = (x1i, x2i, . . . , xpi). p
is the number of the predicted variables. yi is the predicted label.
The steps of GBDT [29,30] are presented as follows:

Step 1: The initial constant value of the model β is given:

F0(x) = argmin
β

N∑
i=1

L(yi, β) (1)

Step 2: For the number of iterations m = 1 : M (M is the
times of iteration), the gradient direction of residuals are
calculated.

y∗i = −
[

∂L(yi, F (xi))
∂F (xi)

]
F (x)−Fm−1(x)

, i = {1, 2, . . . ,N} (2)
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Step 3: The basic classifiers are used to fit sample data and get
the initial model. According to the least square approach,
parameter am of the model is obtained and the model
h(xi; am) is fitted.

am = argmin
α,β

N∑
i=1

[y∗i − βh(xi; a)]
2 (3)

Step 4: Loss function is minimized. According to Eq. (4), a new
step size of the model, namely the current model weight,
is calculated.

βm = argmin
α,β

N∑
i=1

L(yi, Fm−1(x)+ βh(xi; a)) (4)

Step 5: the model is updated as follows:

Fm(x) = Fm−1(x)+ βmh(xi; a) (5)

However, limited to the dimension and size of the sample
data, information gain of feature branch points are needed to be
calculated multiple times when raw data is input into GBDT to be
analyzed. It leads to an increase of the iteration number and slows
the speed of convergence and update. In this paper, we propose to
optimize initial data which is input into GBDT by using ABC. The
proposed method reduces forcibly the initial feature dimensions
of sample data and generates a decision tree rapidly to obtain the
weight of features while guaranteeing the accuracy and efficiency
of GBDT.

3.2. Artificial bee colony optimization

Artificial bee colony optimization method is inspired by the
behavior of bees gathering nectar [31]. The global optimum is ob-
tained byneighborhood search optimization of each bee [32,33]. To
be self-content, we include themain steps of the ABC optimization
method as follows:

Step 1: Initialize food source. A number of feasible solutions (de-
noted with SN) are randomly generated. According to
Eq. (6), the profit value of the food sources is calculated.

xi,j = xmin,j + rand(0, 1)(xmax,j − xmin,j) (6)

where xi(i = 1, 2, . . . , SN) is D dimensions vector, D is
the number of parameters in the optimization problem.
The profit value is defined as the following:
Definition 1 (The Profit Value of Food Sources). Assume
D dimensions vector xi is an arbitrary food source. D
dimensional vector xcenteroid is the center point of SN food
sources. fit(xi) is the profit value of a food source xi .

fit(xi) =

√ D∑
i=1

(xi − xcentroid)2 (7)

Step 2: Employed bees log itself an optimum value and carry out
searching in the neighborhood of current food sources.
The Eq. of food sources search is given below:

vij = xij + φij(xij − xkj) (8)

Step 3: According to the greedy strategy, employed bees choose
food sources. Theprobability that anonlooker bee chooses
an employed bee is calculated:

pi =
fit(xi)∑SN
n=1 fit(xn)

(9)

where SN is the number of feasible solutions.

Step 4: According topi, onlookers choose food sources. Employed
bees search new food sources by Eq. (8) and calculate the
profit values.

Step 5: When a food source has no improvement after a number
of iterations (denoted with limit), it will be given up
and replaced by a new food source, which is generated
randomly.

Step 6: Record the best result.

Comparing with other biological heuristic algorithms, ABC has
many advantages [23], such as a more simple structure, fewer
control parameters and easy to be realized. Because of its strong
ability and a wide range in search, it had received wide attention
and researched when once proposed. Thus, ABC is chosen to select
features preliminary and preprocess raw dataset. Thereby, the
initial input of GBDT is optimized by greatly reducing dimensions
of features in the raw dataset.

3.3. Structure of solution

AssumeD is the dimensions of the dataset to be optimized, i.e., D
features. Solutions can be defined as follows:

xi = (xi1, xi2, . . . , xiD), i = {1, 2, . . . , SN} (10)

where feasible solutions xij(j ∈ {1, 2, . . . ,D}) correspond to the
features of the raw dataset in the solution space and xi1 is the first
feature in the dataset [34].

Let D be the length of the solution array, which is the number
of dimensions of the dataset to be optimized. Position in the jth
dimension of the ith bee is located in the jth column. Array xij ∈
{0, 1}. After initialization, employed bees search and traverse food
sources from an initial food source. If an employed bee is chosen
by an onlooker bee, then the position of the employed bee in the
array is 1, otherwise, the position is 0. For example, a feasible
solution expresses a candidate features subset, such as xi1 =
(1, 0, 1, 0, 0, 1, 0, 0) represents that the 1th, 3th and 6th features in
the raw dataset are chosen and others are given up.

Considering that the feature optimization problem is discrete
classification and combination problem, this paper chooses the
classification and regression tree as a basic classifier. The coeffi-
cient GINI of the tree is used to determine whether branching [35].
Let k, k = {1, 2, . . . ,D}, represent the class, where D is a total
number of classes in the dataset. The Gini coefficient of a node A
is computed as follows:

Gini(A) = 1−
D∑

k=1

p2k (11)

where pk is the probability that the sample node belongs to the kth
class.

When basic classifiers carry out branching every time, all of the
features are traversed and the gains of the splitting threshold for
each feature are calculated. Themaximumgain of all of feature split
points is chosen as the first split points. Branching until the cali-
bration value of the sample on each leaf satisfies unique or default
termination condition (for example, the number of leaf reaches the
upper limit or information gain after the split is negative).

3.4. Proposed algorithm

Fig. 1 illustrates the flowchart of the proposed method. First,
the initial dataset is optimized by using ABC to reduce irrelevant
features. The optimized dataset is the input of GBDT. Then, the
features of the dataset are further reduced by using GBDT.

The descriptive steps are given as follows:
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Fig. 1. The flowchart of the proposed ABCoDT method.

Step 1: Initialize the colony. SN feasible solutions are generated
randomly in the search space and profit values fit(xi) are
calculated. The greedy strategy is used to select better
solutions.

Step 2: Search food sources. According to Eq. (6), employed bees
carry out a search in their current field of food sources
and determine whether receive new food source based
on Eq. (9).

Step 3: Calculate profit values. Scout bees choose employed bees
by using roulette. According to Eq. (8), feasible values
are searched and profit values are calculated. The greedy
strategy is used to select better solutions.

Step 4: Replace old food source. When a food source has no
improvement after iterations, it is replaced with a new
food source generated randomly using Eq. (6).

Step 5: Obtain feature subset θ . Steps 2 to 5 are repeated. When
reaching maximum phylogeny number, the preliminary
feature subset θ is obtained.

Step 6: Initial GBDT model. Initial value F0(X) = 0 is given.
Classification And Regression Trees (CART) is chosen as
a basic classifier and the objective function softmax is loss
function.

Step 7: Fit the model. For the number of iterations m = 1 : M
(M is the number of iteration), the gradient direction of
residuals y∗i are calculated by Eq. (2). The basic classifiers
are used to fit the new decision model.

Step 8: Compute new step size βm . According to Eq. (4), the new
step size βm of the model is obtained.

Step 9: Build a regression tree model. Step 7 to Step 8 are re-
peated and the complete gradient progressive regression
tree model is built in M iterations.

Step 10: Compute maximum feature subset. The average values
ave of branch points gain are calculated and the branch
points, of which the gain value is more than ave are
selected to construct final solution space. Thereby, the
maximum feature subset is obtained.

We take the Glass dataset as an example. The dataset contains
eight features, including refractive index (RI), Sodium (Na), Mag-
nesium (Mg), Aluminum (Al), Silicon (Si), Potassium (K), Calcium
(Ca), Bavium (Ba), Iron (Fe). After preliminary feature selection by
ABC, four irrelevant features are removed and features RI, Al, K, Ba

are left. Let the optimized subset be the input of GBDT, the final
feature subset is obtained. The diagram is shown in Fig. 2.

ABCoDT is an integration algorithm based on decision trees.
The model is trained to get the degree of importance of features
used in the model and distinguish those features which have an
effect to results of themodel. In GBDT, Friedman proposed a global
important degree of the feature j, which ismeasured by the average
importance degree in a single tree:

J2j =
1
M

M∑
m=1

J2j (Tm) (12)

where M is the number of trees. Assume that each tree is binary.
The importance degree of a feature J in a single tree is computed
as follows

J2j (T ) =
L−1∑
t=1

i2j 1(vt = j) (13)

where L is the number of leaf nodes, L−1 is the number of the non-
leaf node, vt is the feature associated with the node t . i2t is a loss of
square after splitting node t .

The importance degree of features is available formeasuring the
weight of an optimized feature set. Let εj be the weight of feature
j. It is calculated as the average loss of square error:

εj =
1
M

M∑
m=1

i2j (Tm) (14)

where M is the number of features of network-wide behaviors.
The weight of features will be changed with the change of feature
combinations. Algorithm1 shows the pseudo-code of the proposed
approach.

4. Experimental results

4.1. Experimental datasets and settings

As shown in Table 1, we select eight UCI datasets [36] as an ex-
perimental set, includingWDBC (Wisconsin Diagnostic Breast Can-
cer), Habeman (Habeman’s Survival), Wine, Contraceptive, Glass,
ULC (Urban Land Cover). The selected UCI datasets have nomissing
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Fig. 2. Example of feature selection for the Glass dataset.

Table 1
Properties of the datasets used in our experiments.
Dataset # of examples # of features Classes

WDBC 569 30 2
Haberman 306 3 2
Glass 214 9 7
Contraceptive 1,473 9 3
Wine 178 13 3
ULC 675 148 9
p53 16,772 5,408 2
Arcene 900 10,000 2

in property values. When testing the algorithm, the number of
classes is not considered.

The proposed method is implemented with Python 3.5 and the
experiments are conducted on a computer with Intel Core i5-4590
CPU at 3.30 GHz and 16G of memory using 64 bitWindows 7 oper-
ating system. The parameter settings used in our experiments are
listed in Table 2. In our evaluation, six iteration numbers are used
to gain an understanding of the optimization results using different
numbers of repetitions. To deal with multiple classifications, the
loss function is chosen as the objective function.

In this paper, sklearn class library is used to carry out the
algorithm experiment. The parameters of the VT algorithm are
as follows: threshold of variance is 0. The parameters of the SKB
method are: calculating correlation coefficient function is chi-
square, step length is 1, optimal display. The basemodel is a logistic
regression with L1 and L2 penalty terms, and the threshold value
of the weight coefficient is 0.5.

4.2. Feature reduction

Table 3 shows the number of features retained by our proposed
ABCoDT method. The reduction ratio of selected features is com-
puted as ( n−v

n ) × 100%. The minimum percentage of reduction
ratio is 66.7% and the maximum reduction ratio is 96.6%. Although
the amount of reduction varies, it is clear that the ratio of feature
reduction is more than 60%. When the number of original features

Table 3
Results of feature selection.
Dataset # of the original # of the selected Reduction rate (%)

WDBC 30 2 93.3
Haberman 3 1 66.7
Glass 9 1 88.9
Contraceptive 9 2 77.8
Wine 13 1 92.3
ULC 147 5 96.6
p53 5,408 565 89.5
Arcene 10,000 2103 80.0

is greater than 10 and lower than 150, the reduction of retained
features is more than 90%. When the number of original features
is oversize, the reduction of retained features decline. It can be
seen that our method could remove the majority of the irrelevant
information in different datasets, of which the number of original
features keeps within a certain range while keeping the same or
even better learning performance.

Fig. 3 depicts the weights of the selected features for all the test
cases. The comparisons between the weight of original features
and selected features of the eight datasets are shown. The weight
of original features is marked in purple color and the weight of
selected features using ABC is marked in red color. The figures
show that the weight of important features are increased and
weight of redundant features are reduced to zero after using ABC.
For example, in Fig. 3(a), there are three features in the original
dataset Haberman and two features in the optimized dataset. In
other figures, it can be seen that the number of features in the
optimized dataset is less than the original dataset. The features
selected by ABC aremore informative; yet, most of the information
of the datasets is reserved.

4.3. Classification accuracy and comparison study

We combine xgboost [30] with 10-fold cross-validation to eval-
uate the accuracy of classification with feature selections. Table 4

Table 2
Experimental parameters and settings.
Method Parameter Setting

ABC
The number of nectar sources Depending on the dataset dimension
The maximum phylogeny number MEN 1000
Limit [50, 100, 200, 400,800, 1000]

GBDT

Limit of Iteration times 50, 100, 200, 500,800, 1000
Loss function Softmax
Tree depth 12
The sampling ratio of samples 0.7
Regularization parameter 2
The sampling ratio of features 1
Zoom factor 0.1
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Algorithm 1: ABCoDT Algorithm.

1: Input: {xi, yi}ni=1
2: Output: θ

3: Initialize:
4: xi, i = {1, . . . , SN} following xij = xmin,j +

rand (0, 1)
(
xmax,j − xmin,j

)
5: Compute fit(xi) following fit(xi) =

√
D∑

j=1

(
xij − xcentroid

)2
6: FES = SN
7: Employed Bee:
8: for i=1 to SN do:
9: vij ← xij + ϕik

(
xij − xkj

)
10: fit(vij) =

√
D∑

j=1

(
xij − xcentroid

)2,FES=FES+1
11: if fit(vij) < fit(xi)
12: xi ← vij, triali = 1
13: else
14: triali = triali + 1
15: pi ←

fit(xi)∑SN
n=1 fit(xn)

, t = 0, i = 1

16: Scout Bee:
17: while t ≤ SN
18: if rand (0, 1) < pt
19: xi = vij, triali = 1
20: else
21: triali = triali + 1
22: t = t + 1
23: else
24: i = i+ 1
25: if i = SN ,i=1
26: Onlooker :
27: ifmax(triali) > lim it
28: xij = xmin,j + rand (0, 1)

(
xmax,j − xmin,j

)
29: if FES >= MEN
30: Return θ.append(vi)
31: else
32: Go to Employed Bee
33: Fm (x) = 0,i=1,N
34: for m =1 to M do:

35: F0 (x) = argminβ

N∑
i=1

L (yi, β)

36: for i =1 to N do:
37: y∗i = −

[
∂L(yi,F(xi))

∂F(xi)

]
F(x)=Fm−1(x)

, i = 1, 2, n,N

38: am = argmina,β

N∑
i=1

[
y∗i − βh (xi; a)

]2
39: βm = argmina,β

N∑
i=1

L (yi, Fm−1 (xi)+ βh (xi; am))

40: end for
41: end for
42: return θ

lists the classification accuracy with and without feature selec-
tion. Both maximum accuracy and average accuracy of the cross-
validation are reported. Themaximumclassification accuracy from
original dataset are 95.1%, 84.2%, 74.1%, 62.3%, 95.5%, 88.8%, 74.8,
and 89.1 for the eight datasets. The maximum classification accu-
racy from features subset are 97.9%, 85.5%, 75.9%, 62%, 97.7%, 89.9%,
78.1%, and 87.2% for the eight datasets. After selecting features
using ABCoDT, the number of features of five out of six datasets
is reduced and the classification accuracy is improved. Although
the classification accuracy of the dataset Contraceptive is lower

Table 4
Classification Accuracy (%) of ABCoDT using the original dataset and the selected
features.

Accuracy Improvement

Original Selected Rate

Dataset Max Ave. Max Ave. Max Ave.

WDBC 95.1 93.7 97.9 92.8 2.8 −0.9
Haberman 84.2 73 85.5 74.3 1.3 1.3
Glass 74.1 62.6 75.9 58. 3 1.8 −4.3
Contraceptive 62.3 55.5 62 56.3 −0.3 0.8
Wine 95.5 92.0 97.7 93.6 2.2 1.6
ULC 88.8 83.5 89.9 83.2 1.1 −0.3
p53 74.8 76.2 78.1 76.5 3.3 0.3
Arcene 89.1 83.5 87.2 85.6 −1.9 2.1

Table 5
Number of selected features of ABCoDT versus six state-of-the-art methods.
Dataset ABCoDT GBDT VT SKB RFE L12 PCA

Haberman 1 2 3 1 3 1 1
WDBC 2 8 15 1 4 20 7
Glass 1 4 9 4 4 1 4
Contraceptive 2 2 9 4 4 9 3
Wine 1 3 13 4 4 13 3
ULC 5 45 147 1 4 147 10
p53 565 843 1216 753 4 565 874
Arcene 2103 3240 8102 41 4 2213 3380

after feature selection, the efficiency of the classifier is greatly
improved as shown in Table 7. The comparison results show that
features subset selected by our method could save most of the
effective information of original datasets and our method is useful
for improving learning performance.

We analyze the optimization results and classification accuracy
of five feature selectionmethods. Fig. 3 shows that ABCoDT reduces
more feature dimensions than GBDT, VT, RFE, and L12. The features
reduction ratio of ABCoDT is much higher than that of GBDT.
Besides, the classification accuracy of ABCoDT is greater than SKB
while they have similar feature selections ratio.

We also compare our proposed ABCoDTmethodwith GBDT and
five feature selection methods including VT, SKB, RFE, L12, and
PCA on the eight datasets by combining xgboost and 10-fold cross-
validation. The feature retention results and the best classification
accuracy are reported in Tables 5 and 6. The best results for each
dataset are highlighted with boldface font. Classification accuracy
of ABCoDT are 85.52%, 97.18%, 70.37%, 56.52%, 90.91%, 80.47%,
73.51%, 80.2%, respectively. Comparing to GBDT, VT, RFE, L12 and
PCA, our method reduces more features than other feature selec-
tion algorithms and results in the six smallest subsets of selected
features among the eight datasets. In the other two cases, the
number of retained features is close to the best performers. When
the number of original features in cases is within a certain range,
the accuracy of our method is also superior to that of the other
methods. When the number of features is oversize, the accuracy of
classification is decreased but still higher than most of the other
methods. In comparison to the second best cases, our method
improves the accuracy of Haberman dataset after feature selection
to 3.9%. The minimum improvement is about 1%.

4.4. Efficiency

Besides classification accuracy, execution time is another im-
portant indicator of the algorithm performance. Table 7 lists the
running time (in seconds) of our method and six state-of-the-
art feature selection methods, which are evaluated with different
datasets. It is evident that our method used much less time on
average in comparison to the other methods. This is even clearly
demonstrated when the size of the dataset becomes larger (as
shown for the datasets p53 and Arcene).
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Fig. 3. Weights of features in the experimental datasets.

5. Conclusion

Data from real-world applications can be high dimensional and
features of such data are usually highly redundant. Identifying
informative features has become an important step for data min-
ing to not only circumvent the curse of dimensionality but to
reduce the amount of data for processing. To reduce the prob-
lem of high dimensionality, we propose a novel feature selection

method based on bee colony and gradient boosting decision tree.
The method initializes the feature space spanned by the dataset.
Less relevant features are suppressed according to the information
each feature contributes to the decision making using an artificial
bee colony algorithm. Our method reduces the initial input of a
gradient boosted decision tree algorithm and removes the features
with a low correlation.
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Table 6
The best accuracy of ABCoDT versus six state-of-the-art methods.
Dataset ABCoDT GBDT VT SKB RFE L12 PCA

Haberman 85.52 73.68 72.37 71.05 72.37 82.34 75.64
WDBC 97.18 96.48 93.66 71.83 88.03 90.85 91.34
Glass 70.37 68.51 59.26 37.37 14.81 20.37 65.3
Contraceptive 56.52 54.35 54.61 39.67 47.01 54.61 55.79
Wine 90.91 93.18 90.91 72.51 43.18 90.91 91.23
ULC 80.47 77.51 79.29 15.38 1.77 79.29 78.38
p53 73.51 73.56 68.15 73.21 69.38 75.10 77.28
Arcene 80.20 84.31 79.34 58.25 60.32 84.31 67.34

Table 7
Running time of feature selection algorithms (in second).
Dataset ABCoDT GBDT VT SKB RFE L12 PCA

Haberman 0.1401 0.4060 0.1860 0.2780 0.3620 0.3821 0.1245
WDBC 0.3020 0.1740 0.2810 0.1370 0.4510 0.2350 0.2987
Glass 0.1850 0.3560 0.3160 0.2470 0.2860 0.1960 0.2640
Contraceptive 0.2250 0.4190 0.3720 0.9481 0.2870 0.4040 0.3076
Wine 0.1360 0.1990 0.1710 0.1850 0.1990 0.9120 0.1290
ULC 0.3930 0.7370 1.2681 0.2900 5.0983 1.8641 1.3498
p53 14.3478 27.1368 15.2540 56.3870 18.3654 27.8420 24.5024
Arcene 23.6870 36.8810 84.2570 113.5642 28.6472 94.2360 45.0981

Experiments are conductedwith twobreast cancer datasets and
six datasets from the public data repository. The feature reduction
ratio of our proposed method is more than 60% for all cases.
By applying our proposed ABCoDT method to the datasets, it is
demonstrated that the number of features is successfully reduced
without sacrificing the classification accuracy. In comparison to
the state-of-the-art methods, ABCoDT improves the accuracy by
up to 3.9% with respect to the second best cases. The minimum
improvement is about 1%. Among the six datasets, our method
results in the four smallest subsets of selected features. In the
other two cases, the number of retained features is close to the
best performers. In the evaluation of the efficiency, the proposed
method outperformed the other methods in most cases. With a
selected subset of data, the efficiency is much improved.

The success of ABCoDT provides a framework to integrate a
classificationmethodwith a feature selection process. In our future
work, we plan to explore the learning theories that are different
fromwhat is employed by decision trees. For axis-parallel decision
trees, features are evaluated one by one in the tree construction
process, which makes the evaluation of a natural consequence.
If such an integrated system can be adopted by other learning
algorithms requires further investigation.
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