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A B S T R A C T

Monthly streamflow time series are highly non-linear. How to improve forecast accuracy is a great challenge in
hydrological studies. A lot of research has been conducted to address the streamflow forecasting problem,
however, few methods are developed to make a systematic research. The objective of this study is to understand
the underlying trend of streamflow so that a regression model can be developed to forecast the flow volume. In
this paper, a hybrid streamflow forecast framework is proposed that integrates factor analysis, time series de-
composition, data regression, and error suppression. Correlation coefficients between the current streamflow
and the streamflow with lags are analyzed using autocorrelation function (ACF), partial autocorrelation function
(PACF), and grey correlation analysis (GCA). Support vector regression (SVR) and generalized regression neural
network (GRNN) models are integrated with seasonal and trend decomposition to make monthly streamflow
forecast. Auto-regression and multi-model combination error correction methods are used to ensure the accu-
racy. In our experiments, the proposed method is compared with a stochastic autoregressive integrated moving
average (ARIMA) streamflow forecast model. Fourteen models are developed, and the monthly streamflow data
of Shigu and Xiangjiaba, China from 1961 to 2009 are used to evaluate our proposed method. Our results
demonstrate that the integrated model of grey correlation analysis, Seasonal-Trend Decomposition Procedure
Based on Loess (STL), Support Vector Regression (GCA-STL-SVR) exhibits an improved performance for monthly
streamflow forecast. The average error of the proposed model is reduced to less than one-tenth in contrast to the
state-of-the-art method and the standard deviation is also reduced by more than 30%, which implies a greater
consistency.

1. Introduction

Accurate streamflow forecasting is of significant importance for
planning and management of water resources, as well as early warning
and mitigation of natural disasters such as droughts and floods (Yu
et al., 2018). Nevertheless, affected by complex factors including pre-
cipitation, evaporation, runoff yield and confluence, topography and
human activities, it is still challenging to achieve accurate streamflow
forecasting (Senthil Kumar et al., 2013).

Until now, a large variety of streamflow forecast models have been
proposed, mainly classified as physical and data-driven models.
Physical models are good at providing insight into catchment processes,
while they have been criticized for being difficult to implement. In
contrast, data-driven models have minimum information requirements
and rapid development times. Data-driven stochastic models have been
used for streamflow forecasting. Autoregressive integrated moving
average models (ARIMA) and its variants are widely used

(Papacharalampous et al., 2018). While stochastic models are often
limited by assumptions of normality, linearity and variable in-
dependence (Chen et al., 2018; Chen and Singh, 2018), the second data-
driven type, machine learning shows a strong deep learning ability and
extremely suitable for simulating the complex process. Over the past
50 years, research on machine learning has evolved from the efforts of a
handful of computer engineers (Mitchell, 2006; Yuan and Abouelenien,
2015; Yuan et al., 2018). Artificial Neural Network (ANN) is a widely
used method for long-term simulation and forecast (Aksoy and
Dahamsheh, 2009; Moeeni and Bonakdari, 2016; Wu and Chau, 2010;
Wu et al., 2009). But ANN still has some intrinsic disadvantages, such as
slow convergence speed, less generalizing performance, arriving at a
local minimum and over-fitting problems. Support vector machine
(SVM) is based on the VC-dimension theory and structural risk mini-
mization of statistical learning (Cortes and Vapnik, 1995). It transforms
the problem into a quadratic optimization problem, theoretically,
which can get the globally optimal solution, and solve the practical
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problems such as small sample, nonlinear, high dimension and local
minimum (Smola and Lkopf, 2004; Vapnik, 2010). Maity et al. (2010)
pointed out that SVR machine learning approaches were more popular
due to their inherent advantages over traditional modeling techniques.
Kalteh (2015) employed genetic algorithm-support vector regression
(GA-SVR) models for forecasting monthly flow on two rivers and ob-
tained good performance. Papacharalampous et al. (2017) conducted
large-scale computational experiments to compare stochastic and ML
methods regarding their multi-step ahead forecasting properties and
suggested that the ML methods exhibit a good performance. An im-
portant step of ANN and SVR models is to determine the significant
input variables (Bowden et al., 2005a,b), some of which are correlated,
noisy, and some input variables are less informative (Bowden et al.,
2005a; Chen et al., 2013). Grey correlation analysis (GCA) evaluates the
complex phenomena affected by many factors and a good metric to
quantify the degree of association between the forecasting factors and
the streamflow.

However, in any streamflow forecast model, there are three types of
uncertainty caused by a number of factors: input uncertainty, model
structure uncertainty and parameter uncertainty (Liu and Gupta, 2007).
In order to reduce uncertainty and improve accuracy, a proven method,
time series decomposition has been employed in lots of researches.
Time series decomposition has the ability to analyze streamflow tem-
poral and spatial variation and extracting useful information as much as
possible (Kisi, 2011). Wavelet analysis (Mallat, 1989) is developed on
the basis of Fourier analysis. It is a local transformation of space and
frequency. By stretching and translating, the signal can be multi-scale
analyzed, therefore, it is suitable for the analysis of non-stationary
hydrological time series (Guo et al., 2011; Kisi, 2011; Liu et al., 2014).
Seasonal and trend decomposition using loess (STL) uses a locally
weighted regression that enables processing of any type of seasonal
variation data (Cleveland and Cleveland, 1990). Rojo et al. (2017)
predicted airborne pollen series based on the seasonal and residual
(stochastic) components of data series decomposed by using STL. Lafare
et al. (2016) used STL to understand groundwater behavior in the
Permo-Triassic Sandstone aquifer.

Different from time series decomposition, real-time error correction
is a post-process method to reduce uncertainty and improving accuracy.
The Kalman filter updating method can reflect various hydrological and
hydraulic flow-fields by updating model input or parameters, but it
tends to require a long computational time (Wu et al., 2012). Wu et al.
(2012) tested the Kalman filter with simple neural networks and au-
toregressive models and pointed out that the results are similar. In
addition, the multi-model combination approach advocates the syn-
chronous use of the simulated discharges of a number of models to
produce an overall integrated result which can be used as an alternative
to that produced by a single model (Chen et al., 2015). Shamseldin et al.
(1997) first introduced the multi-model combination concept into the
hydrologic field. Since then there have been several more studies which
have dealt with a multi-modal combination of hydrological models
(Coulibaly et al., 2005; Wu et al., 2015; Xiong et al., 2001). Wu et al.
(2015) proposed three coupling forecast methods which included real-
time correction-combination forecast method, combination forecast
real-time correction method for the purpose of improving the precision
of flood forecasting.

Many studies have been done to improve streamflow forecast ac-
curacy. As described above, there exist comparative studies. For ex-
ample, comparison of driving models (Kalteh, 2015; Moeeni and
Bonakdari, 2016), predicting factor screening methods (Chen et al.,
2013), multiple sequence decomposition (Guo et al., 2011; Kisi and
Cimen, 2011; Liu et al., 2014) and multiple error correction methods
(Chen et al., 2015; Wu et al., 2015).

A model requires a systematic integration of many components in-
cluding factor analysis, time series decomposition, data regression, and
error suppression, which enables accurate modeling of a hydro-system.
In this paper, ANN and Support Vector Regression (SVR) are employed

as regression models. SVR is more accurate but less efficient than the
least squares support vector machine LSSVR (Suykens et al., 2002)
because SVR solves a convex quadratic programming (CQP) problem to
determine the regression and LSSVR just solves a set of reformulated
linear equations. Generalized regression neural network is relatively
simple in structure and training of network, there is no need to estimate
the number of hidden layers and the number of hidden cells in advance,
and there is an advantage of global convergence. The autocorrelation
function (ACF), partial autocorrelation function (PACF) and grey cor-
relation analysis (GCA) are candidate predictors screening methods. We
develop hybrid models of SVR and GRNN for monthly streamflow
forecast that couples with seasonal and trend decomposition. The error
correction approaches are used to enhance the performance of the
proposed hybrid models. The following article structure is organized as
follows. Section 2 is the theory and methods. Section 3 is a description
of the study area and data. Section 4 presents a case study. Section 5
concludes this paper with a summary.

2. Methods

The proposed streamflow forecasting framework consists of forecast
factors selection, time series decomposition, model learning, and real-
time error correction. Correlation coefficients between the current
streamflow and the streamflow with N-month lag are analyzed using
ACF, PACF, and GCA. The antecedent streamflow with a greater cor-
relation is included in the input sets. Support vector regression (SVR)
and generalized regression neural network models are integrated with
seasonal and trend decomposition STL to forecast the monthly
streamflow.

2.1. Support vector machine

Support vector machine (SVM), which is known as classification and
then extended for regression, was proposed by (Vapnik, 1995). SVM is
built based on the principle of the structural risk minimization rather
than the empirical risk minimization. Support vector regression (SVR) is
used to solve the problem of regression with SVM. The following is a
brief description of SVR.

Suppose N samples data for training are X d{( , )}i i i
N , Xi is the input

vector, and di means desired output. SVR results in

Wy X b( )= + (1)

where φ(X) is a non-linear mapping, W is a hyperplane, and b is offset.
A penalty function is used in SVR:

d y not allocating a penalty
d y allocating a penalty

| | ,
| | ,
i i

i i > (2)

When the estimated value is within the ε- insensitive tube, the loss
value will be zero. Parameters of the regression function can be ac-
quired by minimizing the following objective function:
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+

= (3)

L y d y d( , ) max(0, | | )i i i i= (4)

where C represents the regularized constant that weighing the model
complexity and the empirical error. A relative importance of the em-
pirical risk will increase when the value of C increases.

The slack variables + and are introduced in Eq. (3) for the ex-
istence of fitting errors, the optimization problem of SVR will be as:

W Cmin 1
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Subject to: W X b d( ( ) )i i i+ + +
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Then use Lagrange multipliers to solve the above optimization
problem in its dual form:
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j= (7)

K X X( , )i j is a nonlinear kernel function, which can map the lower
dimension input into a higher dimension linear space. Radial basis
kernel function is used in this study.

2.2. Generalized regression neural network

Generalized regression neural network (Zaknich, 2013) is a special
radial basis function neural network. Compared with the widely used
BP neural network, GRNN has the following advantages: 1. Structure of
GRNN neural network is relatively simple. In addition to the input and
output layers, there are only two hidden layers, the pattern layer, and
the summation layer, and the number of hidden neurons in the pattern
layer is the same as the number of training samples. 2. Training of
network is simple, the network training is completed once the training
sample through the hidden layer. 3. There is no need to estimate the
number of hidden layers and the number of hidden cells in advance. 4.
Global convergence of GRNN.

The theoretical basis of the GRNN neural network is nonlinear re-
gression analysis. Let the joint probability density function of the
random variable x and y be f (x, y) when the observed value of x is X,
the conditional expectation of y for X is:

y E y X
yf X y dy
f X y dy

( | )
( , )
( , )

= =
+

+
(8)

Set the sample data set is X y\{ , }i i , i n1, 2, ,= , the dimension of
Xi is m, the nonparametric estimates of probability density function
f X y( , ) are as follows:
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Combining Eqs. (9) and (8) to get
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Hence, the estimation becomes
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When the observed value of x is X, the conditional expectation

estimate of y for X is the weighted average of all sample observations yi,
the weight of yi is exp X X X X( ) ( )

2
i T i

2 . The smoothing factor needs to
be optimized, for which we adopt cross-validation.

2.3. Grey correlation analysis

Grey system theory was proposed in the 1980s based on the math-
ematical theory of systems engineering (Ju-Long, 1982). Since then, the
theory has become quite popular with its ability to deal with the sys-
tems that have partially unknown parameters. As a superiority to
conventional statistical models, grey models require only a limited
amount of data to estimate the behavior of unknown systems.

Grey correlation analysis is an important part of grey system theory.
Grey correlation analysis method can evaluate the complex phenomena
affected by many factors from the overall concept. In this paper, we
introduce the grey correlation analysis to quantify the degree of asso-
ciation between the primary forecasting factor and the predicted runoff.
The calculation process of grey correlation analysis is as follows:

Let X x x n \{ (1), , ( )}0 0 0= be the system characteristic behavior
sequence, X x x n{ (1), , ( )}i i i= and i m1, 2, ,= is the relevant factor
sequence. First of all to perform dimensionless processing on time se-
quence, and the initial values of each sequence are as follows:

X X
x

x x x n
(1)

( (1), (2), ( ))i
i

i
i i i= =

(12)

where i m1, 2, ,= .
Let k x k x k( ) | ( ) ( )|i i0= , the difference sequence of the initial

value is:

n( (1), (2), , ( ))i i i i= (13)

Let M kmaxmax ( )
i k

i= , m kminmin ( )
i k

i= , the correlation coeffi-
cient between the target variable and related factors at each time is
calculated as follows:

k m M
k M

( )
( )i

i
0 = +

+ (14)

where (0, 1), k n1, 2, ,= and i m1, 2, ,= .
Average the correlation coefficients at each moment to system-

atically compare the degree of association between the target sequence
and the correlation factor sequence. The correlation formula is as fol-
lows:

n
k1 ( )i

k

n

i0
1

0=
= (15)

2.4. STL decomposition

Seasonal and Trend decomposition using Loess (STL) uses the robust
local weighted regression as a smoothing method to decompose the
time series into seasonal, trend and residual items.

Y Trend Seasonal Residualv v v v= + + (16)

where Yv is the time series observed value of the v period, the trend
component Trendv is considered low frequency, seasonal components.
Seasonalv is considered to be high-frequency changes caused by sea-
sonal interference, the remaining amount Residualv is a random com-
ponent.

Loess is a local polynomial regression, a common method for
smoothing two-dimensional scatterplots. The regression is done using
the weighted least squares method, that is, the closer the data is to the
estimated point, the greater the weight. Finally, the local regression
model is used to estimate the value of the response variable. In this way,
the whole fitting curve is obtained by the point-by-point operation.
Loess is a nonparametric learning method defined as follows:
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where f is the point to be estimated, fi is the sample point, wi is the

weight w ei
f i f

k
( )2

2 2= .

The core of the STL algorithm is the iterative process of Loess, the
iterative decomposition process is as follows:

(1) Set the initial value k=0, T 0v
k = .

(2) Remove trend items Y Tv v
k.

(3) The Loess smoothing is performed on the subsequence to obtain the
time series Cv

k 1+ .
(4) Perform three times moving average on Cv

k 1+ for lengths of np, np, 3,
perform a Loess process to get the time series Lv

k 1+ , remove periodic
differences.

(5) Remove trend items S C L-v
k

v
k

v
k1 1 1=+ + + .

(6) Remove season items Y Sv v
k 1+ .

(7) The Loess smoothing is performed on the subsequence Y Sv v
k 1+ to

obtain the time series Tv
k 1+ .

(8) Check whether Tv
k 1+ convergence. If convergence, S Sv v

k 1= + , Tv
k 1+ ,

R Y S Tv v v v= , if not, repeat the process (2)–(8).

2.5. Real-time error correction

2.5.1. AR error correction method
The discrepancy between the model-predicted discharge and the

actually observed past discharge is defined as an error which can be
used as information for correction. If this error signal has a correlation,
it can probably be used for improved prediction. With a time-series
model of the error signal, an improved discharge forecast can be made
by adding the error term to the previous model results. In this study, the
error term was estimated using an autoregressive (AR) model which can
be expressed as:

e et
k

p

i t k
1

= +
= (18)

where e is the streamflow forecasting error time series; p represents the
order of the autoregressive model; i are the parameters of the auto-
regressive model, and is a pure white noise sequence having variance

2. Order selection criteria were used to determine the appropriate
order.

2.5.2. Multi-model composition method
Estimates of N streamflow forecast models for the t-th period of time

is Qiti N1, 2, ,= , a combined estimate Qct is defined

Q w Qct
i

N

i it t
1

= +
= (19)

where wi is the weight assigned to the i-th model, w 1i
N

i1 == ; and t
is the combination error term.

In order to obtain the weights wi, an objective function is described
as follows:

MinE Q Q MinE w Q Q( ) ( )ct obs t
i

N

i it obs t,
2

1
,

2=
= (20)

and the Lagrange multiplier is used to solve the above problem.

3. Study area and data

Our study takes the Jinsha River as the study area. The Jinsha River
is located in the upper reaches of the Yangtze River (China), with the
basin area of 473,200 km2, accounting for 26% of the Yangtze River
Basin area. It has a total length of 3479 km, a natural drop of 5100m. It
is rich in hydropower resources and plays a vital role in economic de-
velopment and ecological environmental conservation of China.
Twenty-five hydropower dams in the Jinsha watershed are and will be
constructed, which take the responsibility of flood control, agricultural
hydroelectric power generation, and municipal and industrial water
supply. With the completion of these hydropower dams, the Jinsha
River hydropower resources are effectively developed and utilized.
Discharge forecasting is significant to the optimal operation of these
dams. This study focuses on the Shigu and Xiangjiaba gauging stations,
which are hydrological control station of the upper reach and the lower
reach of Jinsha River, respectively. A schematic of the Jinsha River and
the gauging stations is given in Fig. 1.

We obtained the available quality-controlled and partially infilled
daily streamflow (m3/s) data at the Xiangjiaba (1961–2008) and Shigu
(1970–2009) hydrologic stations, provided by the Yangtze River
Waterway Bureau, China. Monthly streamflow data needed in this re-
search were aggregated from daily data.

Fig. 1. The schematic of the Jinsha River and the gauging stations.
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4. Case study

4.1. Frameworks of proposed models

The steps of our proposed streamflow forecast framework are listed
as follows:

Step 1) ACF, PACF and GCA are used to select forecast factors.
The correlation coefficients between the current streamflow and the

streamflow with N-month lag is calculated using ACF, PACF, and GCA.
Each antecedent monthly streamflow has three correlation coefficient
values. The antecedent streamflow with the higher ACF correlation
value is included to get an ACF input set. Similarly, we get PACF input
set and GCA input set with the higher PACF and GCA value. Support
vector machine (SVR) and generalized regression neural network are
used as regression models. The statistical indicators evaluating the ac-
curacy of prediction are mean average percentage error (MAPE), a
proportion that errors less than 5%, 10%, 20%, 30% and deterministic
coefficient (DC). Continuous monthly streamflow data from 1970 to
2009 are used in Shigu case study. Then the better input set can be
determined by their forecast performances. Then the better input set
can be determined by their forecast performances.

Step 2) On the basis of Step 1, we developed hybrid SVR and GRNN
monthly streamflow forecast models coupling with seasonal and trend
decomposition methods STL.

SVR and GRNN are used as the model, the better method proved in
Step 1 is used to make forecast factors selection. The original sequences
are decomposed into multiple sub-series by time series pre-processing
techniques STL decomposition. Four models, SVR, STL-SVR and GRNN,
STL-GRNN are built to forecast monthly streamflow of Xiangjiaba. The
performances of the models are compared using the root-mean-square

error (RMSE) and deterministic coefficient (DC).
Step 3) Two real-time error correction methods (the AR model and

multi-model combination method) are used to enhance the perfor-
mance.

A 3-order AR model is used for error correction. The parameters of
the AR model are optimized according to the least-square method. As a
comparison, the multi-model composition method is also used for the
error correction. We train SVR and GRNN models. The framework is
illustrated in Fig. 2.

4.2. Performance metrics

The statistical indicators evaluating the accuracy of prediction are
mean average percentage error (MARE), the proportion that errors less
than 5%, 10%, 20%, 30% and deterministic coefficient (DC), and the
root-mean-square error (RMSE). MAPE is calculated according to Eq.
(21). An accurate model has the MAPE metric value close to 0. RMSE is
a frequently used measure of the differences between values predicted
and the values actually observed. RMSE represents the sample standard
deviation of the differences between predicted values and observed
values. RMSE is calculated according to Eq. (22). DC is the proportion
of the variance in the dependent variable that is predictable from the
independent variables. It provides a measure of the quality of outcomes
replicated by the model, based on the proportion of total variation of
outcomes explained by the model DC is calculated according to Eq. (23)

MAPE
N

Y Y
Y

1 | | 100%
i

N
i
obs

i
est

i
obs

1
= ×

= (21)

Fig. 2. Streamflow forecast framework.
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4.3. Forecast factor selection

Forecasting factor and regression models are essential for devel-
oping a streamflow forecast framework. In this part, the SVR model and
GRNN model, two machine learning method are built for data simula-
tion. The autocorrelation function, the partial autocorrelation function,
and grey correlation analysis are introduced to quantify the correlation
degree between the streamflow and potential forecasting factors.

It is an effective forecast method by using the variable’s own his-
torical records to make an estimation. If Q t( ) is the streamflow to be
forecasted, select antecedent streamflow Q
t Q t Q t i Q t( 1), ( 2), ( ), , ( 12) as alternative factors, where

Q t i( ) means streamflow i month ahead of forecast month. The grey
correlation degree between the alternative factors Q t i( ) and Q t( ) is
calculated, results are as follows:

0.88, 0.70, 0.64, 0.66, 0.74, 0.69
0.55, 0.68, 0.74, 0.81, 0.87, 0.83

t t t t t t

t t t t t t

1 2 3 4 5 6

7 8 9 10 11 12

= = = = = =
= = = = = =

Therefore
Q t Q t Q t Q t Q t Q t( 1), ( 5), ( 9), ( 10), ( 11), ( 12) are
adopted as forecast factors, and SVR and GRNN models are used to
describe the following function Q t f Q( ) (=
t Q t Q t Q t Q t Q t( 1), ( 5), ( 9), ( 10), ( 11), ( 12)). The high
correlation between the flow with 11 and 12-month lag and the current
flow implies the annual streamflow variation; whereas the flow with 1-
month lag usually has a relatively similar value to the current flow.
Flows with a shorter lag such as 5, 6, and 7months imply seasonal
fluctuations as well as long-term changes from atmospheric circulation.

Pearson correlation coefficient (PCC), autocorrelation function, and
partial autocorrelation function are used to analyze the streamflow time
series. The autocorrelation and partial autocorrelation patterns of the
Shigu streamflow are presented in Fig. 3. Fig. 3(a) shows ACF with
respect to different lag numbers. It is clear that the streamflow fluc-
tuates and our results demonstrate significant autocorrelations at the
time lags 1, 5, 6, 7, 11, and 12months. Fig. 3(b) shows the PACF with
respect to the lag number. The time series exhibits significant partial
autocorrelations at times lags 1, 2, 3, and 10months. The results from
PCC analysis suggest that streamflow has a high correlation with
streamflow at time lags 1, 5, 6, 7, 11, and 12months, which is highly
similar to the results of ACF.

Four models GCA-SVR, GCA-GRNN, PCC/ACF-SVR, and PACF-SVR
are devised to determine the forecast factors. The inputs of GCA-SVR
and GCA-GRNN are streamflow with a lag of 1, 5, 9, 10, 11, 12months.
The inputs of the PCC/ACF-SVR model are streamflow with a lag of 1, 5,
6, 7, 11, 12months. The inputs of PACF-SVR model are streamflow with
a lag of 1, 2, 3, and 10months.

Continuous monthly streamflow data from 1970 to 2009 are used in
Shigu case study. In supervised learning, data sets are often divided into
three sets, namely the training set, the testing set, and the validation
set. When the sample size is small, it is common to divide data into
training and testing set, and the cross-validation method is used. In our
study, data from1970 to 1999 are used for training the model, which
accounts for 75% of the total dataset. A 4-fold cross-validation method
is applied. The remaining 25% of data (i.e., data from 2000 to 2009) are
used for model validation.

The mean average percentage error (MAPE) of forecasting, the
proportion of errors that are less than 5%, 10%, 20%, and 30%, and the
deterministic coefficient (DC) are shown in Table 1. An accurate model
has the MAPE metric value close to 0, DC value close to 1, and the
dynamic range of error is small. The MAPEs of GCA-SVR and GCA-
GRNN are 13% and 17%, respectively, which indicates that GCA-SVR
performs better. For proportion that error less than 5%, 10%, 20% and
30%, GCA-SVR is 24%, 52%, 76% and 91%, GCA-GRNN is 14%, 38%,
71% and 84%. A large proportion of smaller error range implies that the
errors are small. The DC of GCA-SVR and GCA-GRNN are 0.86 and 0.82,
respectively. It demonstrates that learning model SVR is superior to
GRNN in forecasting the streamflow of Jinsha River. When comparing
GCA-SVR with PCC/ACF-SVR and PACF-SVR, SVR model coupled with
different input factors, it is found that the forecast performance of GCA-
SVR is better than that of PCC/ACF-SVR and PACF-SVR.

4.4. Hybrid models based on STL decomposition

As time series pre-processing techniques are effective to improve the
performance, STL is used to decompose the original streamflow data
into multiple sub-series due to its advantages of being allowed to
change over time and having the better robustness to the anomaly.
Fig. 4 shows that the observed streamflow time series contains a

Fig. 3. Correlation analysis using ACF and PACF. (a) ACF with respect to the lag number. (b) PACF with respect to the lag number.

Table 1
Forecast error statistics of GCA-SVR, GCA-GRNN, PCC/ACF-SVR, and PACF-
SVR.

MAPE ≤5% ≤10% ≤20% ≤30% DC

GCA-SVR 13% 24% 52% 76% 91% 0.86
GCA-GRNN 17% 14% 38% 71% 84% 0.82
PCC/ACF-SVR 16% 23% 45% 72% 88% 0.83
PACF-SVR 16% 22% 41% 71% 87% 0.82
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stationary seasonal component with a period of 12months, trend
component increased significantly in the 1990s and decreased in 2000s
under the combined effects of climate change and human activities.
Four models, GCA-SVR, GCA-STL-SVR and GCA-GRNN, GCA-STL-
GRNN are proposed in this paper to forecast monthly streamflow of
Xiangjiaba. For Xiangjiaba hydrologic station, monthly streamflow data
from 1961 to 2008, the first 36 years are used to model calibration, the
rest 12 years are used to model evaluation.

Hybrid models and corresponding input and output are shown in
Table 2. Qt−1, Qt−11, Qt−12 represent original streamflow at 1, 11 and
12months ahead forecasting month, Q(STL)t−1, Q(STL)t−11, and Q
(STL)t−12 represent sub-sequence of streamflow decomposed by STL.
Model inputs are selected using GCA.

Forecast results of GRNN, STL-GRNN, SVR, and STL-SVR in test
period are shown in Figs. 5 and 6. It can be seen that all models fit the
observed streamflow well. Fig. 7 provides the forecast ability

comparison between a single model and the hybrid model, it can be
observed that hybrid models coupled with STL decomposition are better
than models without decomposition. However, it is also obvious that
models have better forecasts at conventional runoff samples, for flood
caused by heavy rain, the above models are not so satisfying as more
uncertainty exists in these extreme value. Table 3 gives error statistic
results in both training period and test period. An analysis shows that
SVR has a better streamflow forecast results than GRNN. STL decom-
position methods improve the accuracy of prediction compared with
the results of SVR and GRNN model. STL-SVR is the best model for
monthly streamflow forecast on Jinsha River.

4.5. Real-time error correction analysis

We use the 3rd order AR model and its parameters are determined
by minimizing the least square error function. The order of the AR
model is determined using the Bayesian information criterion (BIC). For
STL-SVR forecast errors, BICs are 15.99, 14.08, 14.01, 15.04 and 16.06
for orders of 1, 2, 3, 4, and 5, respectively. Hence, the 3rd order is used
in our experiments.

Errors of AR corrected SVR, STL-SVR, GRNN, and STL-GRNN model
are depicted in Fig. 8.

As a comparison, the multi-model composition method is also used
for the error correction. Weight parameters of SVR and GRNN model

Fig. 4. Seasonal, trend and remainder components decomposed by STL.

Table 2
Hybrid streamflow forecast models, inputs, and output.

Model Input Output

SVR/ANN Qt−1, Qt−11, Qt−12 Qt

STL-SVR/STL-ANN Q(STL)t−1, Q(STL)t−11, Q(STL)t−12 Qt

Fig. 5. Forecasted streamflow in the test period by using GRNN and STL-GRNN. Fig. 6. Forecasted streamflow in the test period by using SVR and STL-SVR.
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are 0.78 and 0.24, respectively. Results of the AR error correction
method and multi-model composition method in the test period are
given in Table 4. DC and RMSE value indicate that the AR corrected
models are better than the original SVR and STL-SVR model. For the
GRNN model and STL-GRNN model, consistency measured with DC is a
little decreased but whole errors measured with RMSE are improved
obviously. AR corrected GCA-STL-SVR exhibits the best performance,
multi-model composition method has no significant contribution in our
study.

4.6. Comparison between AR-corrected GCA-STL-SVR model and stochastic
ARIMA forecast model

AR-corrected GCA-STL-SVR model is compared with a stochastic
autoregressive integrated moving average (ARIMA) streamflow forecast
model. Table 5 gives the average error, standard deviation (SD), per-
centiles of 25 (Q1), 50 (Q2) and 75 (Q3). The average error of AR cor-
rected GCA-STL-SVR model is -47 with an SD of 1196; whereas the
average error of Autoregressive integrated moving average (ARIMA) is
-510 with an SD of 1753. It is clear that the error of our proposed
method is much smaller and the spread of the error range is also small.
For the ARIMA model, the negative errors account for a large amount,
which means that the ARIMA forecast tends to underestimate the true

runoff. It demonstrates that the AR corrected GCA-STL-SVR model ex-
hibits a better performance for monthly streamflow forecast of Jinsha
River.

5. Conclusions

The monthly runoff forecast in the Jinsha River Basin has received
much attention in recent years. Due to the impact of the subtropical
monsoon, inner-annual alterations of runoff are extremely complex and
hard to be accurately forecasted. Most of the existing researches used
machine learning model combined with time series decomposition to

Fig. 7. Streamflow forecast error analysis in the training and test period. (a), (b) training period. (c), (d) test period.

Table 3
Forecast error statistics of models coupled with STL in both training and test
period.

Model Training period Testing Period

DC RMSE DC RMSE

SVR 0.86 1354 0.82 1694
STL-SVR 0.87 1299 0.87 1433
GRNN 0.88 1277 0.83 1665
STL-GRNN 0.89 1221 0.82 1713
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improve forecasting accuracy. In this paper, a more systematic fore-
casting method was researched. We analyzed ACF, PACF, and GCA
correlation coefficients to determine the forecast factors STL decom-
position used to divide the original sequence into trends, periodic items
to understand the underlying trend of streamflow. Error real-time cor-
rection post-processing techniques were introduced to form a complete
forecasting framework. Fourteen models were finally developed in this
paper and AR corrected GCA-STL-SVR was regarded as the best model
for streamflow forecast of Jinsha River.

First, four models GCA-SVR, ACF-SVR, PACF-SVR and GCA-GRNN
were proposed. Experiments with continuous monthly streamflow data
in Shigu shows that GCA-SVR is superior to ACF-SVR, PACF-SVR, and
GCA-GRNN. The result proves the advantage of GCA, as widely used
forecast factors selection approaches ACF and PACF measure the linear
correlation of variables, with the drawback of ignoring the non-linear
relation.

STL was used to decompose the original streamflow data into
multiple sub-series due to its advantages of being allowed to change
over time and having the better robustness to the anomaly. The

observed streamflow time series contains a stationary seasonal com-
ponent with a period of 12months, an increased trend in the 1990s and
a decreased trend in 2000s under the combined effect of climate change
and human activities. Then another four models, GCA-SVR, GCA-STL-
SVR and GCA-GRNN, GCA-STL-GRNN were proposed to forecast
monthly streamflow in the lower reach of the Jinsha River. Forecast
results show that hybrid models coupled with STL decomposition pro-
vide better forecasts than models without decomposition. GCA-STL-SVR
is more effective for the purpose of improving the precision of monthly
streamflow forecast.

Then the AR model and multi-model composition were applied to
correct the forecast error of GCA-SVR, GCA-STL-SVR, GCA-GRNN, and
GCA-STL-GRNN models. DC and RMSE value indicate that the AR
corrected models are better than the original models without correc-
tion. For the GRNN model and STL-GRNN model, consistency measured
with DC is a little decreased but whole errors measured with RMSE are
improved obviously. Multi-model composition method has no sig-
nificant contribution in our study. AR corrected GCA-STL-SVR model
was developed as the streamflow forecast framework of Jinsha River.

A stochastic autoregressive integrated moving average (ARIMA)
streamflow forecast model was implemented to evaluate the perfor-
mance of the proposed AR corrected GCA-STL-SVR model. It is clear
that the error of our proposed method is much smaller and the spread of
the error range is also small. ARIMA forecast tends to underestimate the
true runoff. It demonstrates that the AR corrected GCA-STL-SVR model
exhibits a better performance for monthly streamflow forecast of Jinsha
River.
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