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a b s t r a c t

Emotion renders the behavior and decision-makingmore autonomous, intelligent and diversified. How to
deal with the cooperation of affective robots is a new research field and is explored in the applications for
healthcare and education This paper studies the interaction of affective robots in a cooperative system.
We build a model of personality and emotion, and map the personality to behavior and devise emotional
interactions. For personalized multi-robot systems, we propose an algorithm of pursuit task allocation
based on emotional contagion (PTA-EC). Our experimental results based on simulations demonstrate that
the greatest contribution among all types of robots to a group is the frank type, while the sympathetic and
the indifferent robots have little effect to the group progress. In addition, it is shown that the emotional
contagion positively impacts task allocation and the efficiency of the proposed algorithm is competitive
with the state-of-the-art methods.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

Interconnected robots have been developed to collaboratively
complete complex tasks such as search and rescue post disasters.
The promising technologies inspired exploring multi-robot col-
laboration in healthcare via Internet-of-things [1], especially for
elderly care. However, a challenge exists in the field of emotional
artificial intelligence, i.e., how human emotions are recognized,
processed, and handled in human–robot and robot–robot interac-
tions.

Emotion is an important symbol of human intelligence. The
research and applications of emotion have gradually become a
focus of realizing artificial intelligence. Emotion renders intelligent
behaviors and influences decision-making towards autonomous,
intelligent and diversified. Researchers abstract human emotion
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according to psychological knowledge and construct computable
mathematical models, which have been applied to robots. Emo-
tional models have now become commonplace in the domain
of human–robot interaction, which is applied in fields such as
healthcare and education [2–4]. However, the emotional model is
mostly formulated for a single entity in a temporal space without
considering interactions amongmultiple entities including human
beings and robots.

In multi-robot systems (MRS), task allocation has attracted
great attention and been studied towards the applications of
healthcare, space exploration, rescue simulation, military, etc. [5–
9]. Multi-robot task allocation (MRTA) assigns tasks to robots for
efficiency and reward. In healthcare, for instance, robots with dif-
ferent functionalities are used to serve senior citizens with various
needs. How to allocate robots to assist elderly that maximizes
the utilities of the robots and provide quick responses as needed
is a pressing issue in autonomous human–computer interactions
systems for healthcare. Das [10] proposed a distributed algorithm
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for task allocation in a system of multiple heterogeneous au-
tonomous robots deployed in a healthcare facility, based on auc-
tion and consensus principles. But those studies of conventional
multi-robot task allocation mainly aimed at the optimal allocation
strategy to maximize benefit and minimize cost, there may be
irreconcilable interest conflict among rational robots because of
their self-interests. Emotion is, hence, considered to balance the
conflicts.

There are a few types of research on affective robots task alloca-
tion. Banik [11] proposed an emotion-based MRTA algorithm and
considered four emotions (namely, joy, anger, fear, and sadness)
and described emotional changes using a Markov model. Fang
et al. [12,13] introduced emotions of joy, fear, and anger, described
emotional decay, and stimulation and proposed the cooperation
intention for the cooperative affective robot in task allocation. But
those abovemethods did not take the emotional interaction among
robots into the account.

In a group, each individualwith its unique personality and emo-
tional state will subconsciously imitate other individual’s emo-
tional expression in communication, which will affect the emo-
tional experience of itself ultimately, in the field of psychology
this process is referred to as emotional contagion [14]. Ta [15]
presented an emotional contagion model but focuses on fear-
related emotions and their positive impact on the survival capa-
bilities of human beings in case of crisis situations. Most contagion
models [16,17] in social networks draw on the experience of the
epidemic model [18]. However, the epidemic model requires no
knowledge of the personality of individuals and hence it excludes
the consideration of personality in the process of emotional inter-
action. The personality [19–22] is an important factor in human
interactions, e.g. an apathetic individual is less willing to express
emotion than a frank individual and is less easily affected by the
emotion of others than a sympathetic individual.

In respect of the aforementioned issues, this paper proposes a
multi-robot task allocation algorithm based on emotional conta-
gion with consideration of personality. Based on the definitions of
personality, emotion, and the mapping of personality to behavior,
we present an emotional contagion model to realize emotional
interaction among cooperative robots. Our method takes into ac-
count the effect of personality on the emotion change. It was in
the cooperative system that we construct affective model for the
robot, and the emotional contagion is a model for robot–robot
interaction. Thenwe propose a task allocation algorithm combined
with affective factors. The effectiveness of our model is evaluated
using simulation in the context of emotional multi-robot pursuit
for elder care.

The main contributions of this paper are (1) proposed a novel
method for scheduling collaborative robots to maximize outcomes
and efficiency; (2) leveraged emotion and personality of intercon-
nected robots for better communicate and synergy; (3) improved
performance in comparison to the state-of-the-art methods and
demonstrated promising results for healthcare applications.

The rest of this article is organized as follows. Section 2 presents
our emotionalmodel of collaborative robots. Section 3 gives details
of our proposed method for task allocation. Section 4 discusses
our experimental results. Section 5 concludes this work with a
summary and future work.

2. Emotion model of cooperative robot

2.1. Emotion and personality

An emotional space can be described as a collection of four basic
emotions as follows:

E = {calm, happy, sad, angry}. (1)

Table 1
The personality components in the OCEAN model.
Personality component Description

Openness Open, imaginative
Conscientiousness Responsibility, cautious
Extroversion Outgoing, social
Agreeableness Amiable, gentle
Neuroticism Anxious, anger, impulse

Positive emotions, i.e., happy and calm, enhance the motivation
and initiative of an individual; and negative emotions, i.e., sad and
angry, reduce the willingness of an individual to get involved in
a task. Hence, positive emotions should be cultivated [23]; yet, in
the communication with human beings, mood needs to be in sync
to better conveymessages and provide assistance.We can use PAD
space [24] as a transition space to get the emotional state as defined
in the following.

The emotion of a robot can be in two distinct states: positive
and negative states. Let fs denote the state factor and the emotional
state is expressed as follows

fs =

{
1, Emo ≥ ξ

0, Emo < ξ
(2)

where ξ is the boundary value between the two states, Emo is the
value of the emotional state of robots. If the emotional state is
greater than ξ , a robot ri is in a positive emotional state and it is
qualified to be allocated a task; whereas if emotional state is less
than ξ , a robot ri is in a negative emotional state and it is excluded
from participating task allocation.

In contrast to emotion, personality is the relatively stable social
tendencies of an individual. There are many personality models
describe character traits and the most common one is the OCEAN
model [20]. The OCEAN model describes personality through five
dimensions as listed in Table 1. Based on the OCEAN model, we
derive personality, expressiveness, and susceptibility.

The personality of a robot gives the probabilistic state of all five
possible personalities in the OCEAN model:

Pers = ⟨PO, PC , PE, PA, PN⟩ (3)

where each component follows the Gaussian distribution, i.e., Pi =

N
(
µi, σ

2
i

)
, µ ∈ [0, 1] , σ ∈ [−0.1, 0.1]. Given the personality, the

expressiveness is the ability of an individual expressing its emo-
tions to others, which is mainly determined by the extroversion of
personality,

Exp = wEE • PE (4)

where Exp denotes the expressiveness, PE is the extroversion com-
ponent of personality, wEE is the weight.

Susceptibility is the ability of an individual capturing the emo-
tions of others, which depends on the openness component of
personality,

Sus = wOS · PO (5)

where Sus denotes susceptibility, PO is the openness of personality,
wOS is the weight.

The expressiveness and susceptibility are the key factors of
influencing on emotional contagion. Robots can be classified into
four types: incentive, sympathetic, frank, indifferent. The incentive
robot is of both stronger expressiveness and susceptibility; the
sympathetic robot is of both weaker expressiveness and stronger
susceptibility; the frank robot is of both stronger expressiveness
and weaker susceptibility; the indifferent robot is of both weaker
expressiveness and susceptibility.
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Table 2
Behaviors and influencing personality factors.
Behavior Description Influence Factor

Emotional expression Sociable, Active PE
Emotional acceptance Perceptual, Introverted PO
Emotional contagion Interact PE , PO
Emotional attenuation Decrease, Spontaneous Ktype, T
Leadership Dominating, Confident, Independent Emo, PE , PO

2.2. Mapping personality to behavior

The behavior of an affective robot is determined by its personal-
ity. For an affective robot, its behaviors are functions of personality:

BH = {bh1, bh2, . . . , bhn} (6)

where each behavior bhi is a function of personality:

bhi = fi (Pers) , i = 1, . . . , n (7)

Table 2 lists the behaviors in task allocation and the most
influencing factors of personality component. In this table, Ktype is
the coefficient of personality and fs is emotional a state factor.

2.3. Emotion contagion

Robots form groups to meet the requirements of a task. We
assume that the robot is permitted to perform the task only under
the positive emotional state. Robots in the group are bound to be
influenced by emotional contagion from others but vary in degree
because of their different traits, e.g. expressiveness and suscepti-
bility. In the same situation, robots’ emotional experience type is
the same but vary in the degree of recognition and evaluation. The
formalized definition of emotional contagion is given as follow.

In a group G = {r1, r2, . . . , rn}, for the robot ri, Emoi denotes its
value of the emotional state, Expi is its expressiveness, Susi is its
susceptibility. The connection strength between the robot ri and rj
is represented with conij, conij ∈ [0, 1].

The behavior of robots’ emotional expression through inter-
action depends on the robot’s expressiveness which is further
determined mainly by the extroversion of personality:

bhexp ∝ Exp,
bhexp ∝ PE

(8)

The behavior of robots accepting emotions of other robots de-
pends on its susceptibility, which is further determined mainly by
the openness of personality:

bhsus ∝ Sus,
bhsus ∝ Po

(9)

Emotional contagion represents the emotional interaction be-
tween robots in the group. After ∆t time emotional contagion, the
emotional state of the robot rj has been changed to:

Emot+∆t
j = SusjEmogroupk∆t + Emotj (10)

where Groupk is the group where the robot rj belongs to. Emogroupk
is the group emotion which is the weighted summation of the
emotions of all members of the group:

Emogroupk =

∑
i̸=j,ri∈groupk

Expiconijωij∆Emoij (11)

where

ωij =
Expiconij∑

ri∈groupk
Expiconij

, ∆Emoij =

{
Emoi − Emoj , i ̸= j
0 , others.

whereωij is theweight of the robot rj in the groupwhich represents
its influence.

Without the stimulus, our emotion tends to decay to calm.
Similarly, the emotion intensity of a robot decays over time and
the attenuation rate is determined by personalities:

bhAtt = e−
Ktype•T

size (12)

where Ktype is the coefficient of personality, T is the detection
period of attenuation.

The emotional state is influenced by the external emotional
contagion and the internal emotional attenuation:

Emot+1
= Emot + EmotAtt + EmotEC (13)

In a task environment, robots play different roles in a team, and
there is a leader that takes on the responsibility of building a team.
A leader is usually more confident, of excellent communication
ability and able to better motivate other members.

A leader is selected based on the leadership property, which
depends on the individual’s emotional state, expressiveness, and
susceptibility:

bhleadership = Emo • Exp−Sus,

bhleadership ∝ Emo,
bhleadership ∝ Exp,
bhleadership ∝

−1 Sus

(14)

In task allocation, the robot with strong cooperative intention
has stronger team consciousness and is more willing to team up to
perform a task together.

3. Task allocation based on emotional contagion

3.1. Pursuit task

In a multi-robot collaborative system, there are two roles: af-
fective robot (pursuer)1 and target (patient). A pursuer is an entity
that has four properties, i.e., Ri =

⟨
Posti , Emoti , Persi, Capi

⟩
where

Posti is the position of pursuer i at the time t, Posti =
(
xti , y

t
i

)
;

Emoti is the emotional state of pursuer i;
Persi is the personality of pursuer i;
Capi is the capability of the pursuer i.
The pursuers form teams and are assigned to complete a task.

Without loss of generality, we use the pursuit of a target in the rest
of this article to explain our idea. A target is described as an entity
with three properties, i.e., Tj =

⟨
Postj , Capj, Rewardj

⟩
, where

Postj is the position of the target j at the time t, Postj =
(
xtj , y

t
j

)
;

Capj is the required capability of the target j;
Rewardj is the reward of the target j.
The cost of each pursuer performing each task is represented

with a matrix Costn∗m, where an element cij ∈ Costn∗m is a distance
between the pursuer i and target j, where

cij =

√(
xi − xj

)2
+

(
yi − yj

)2 (15)

The gain of a team that fulfills a task Tj is computed by the
difference between the rewards and costs:

Gainj = Rewardj − Costj (16)

where Rewardj means the rewards brought by completing the task
Tj and Costj =

∑
Ri∈teamj

cij is the total cost of the team j that is

assigned to complete the task Tj.

1 Affective robot and pursuer refer to the same meaning in the following.
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Fig. 1. The flow chart of affective multi-robot task allocation algorithm.

The task allocation is presentedwith an allocationmatrixQ N∗M ,
each element of this matrix is a binary value that indicates if a
target is assigned to a robot:

Qij =

{
1, target j is allocated to pursuer i
0, others (17)

3.2. Task allocation

Since robots may be not meet task requirements, their emo-
tional state need be improved through emotional contagion. Thus
emotional contagion throughout the process of task allocation.
Task allocation algorithm includes two stages: selecting team lead-
ers and selecting team collaborators. Leaders are selected based on
their leadership and assigned task by Hungarian algorithm [25].
Collaborators join the team and are selected by leader based on
their emotional state (see Fig. 1).

(1) Selection of the team leader See Fig. 2.

(2) Selection of collaborators

Table 3
The type of affective robot.

Incentive Frank Empathetic Indifferent

Po 0.8 0.2 0.8 0.2
PE 0.9 0.7 0.3 0.2

See Fig. 3.

3.3. Pursuit strategy

After the formation of the teams, teams adopt an appropriate
strategy to pursue the targets. To simplify our discussion, we
assume that the pursuers and targets’ motion is in a virtual force
field. Pursuers generate repulsive forces for targets, but the targets
generate attractive forces for pursuers. Definition of repulsive and
attractive force as follows:

Fatt = γ
1

Edisi
(18)

Frep = γ
∑

i∈group

1
Pdisi

(19)

where γ is the scale factor, Edisi is the Euclidean distance between
target and pursuer, Pdisi is the Euclidean distance between the
target and pursuer of corresponding pursuit team. Around the
target position as the center draw a unit circle and divide the circle
into h parts equally. The target calculates the repulsive force on
each division point and chooses the point withminimum repulsive
force as the next position. The pursuer adopts the similar strategy
that is taking the maximum attractive force direction as pursuit
direction.

Task complete determining factor fcapture is defined as follow:

fcapture =

{
1, ∃Edisi ≤ ε

0, ∀Edisi > ε
(20)

where fcapture = 1 denotes task success, fcapture = 0 denotes task
failure, Edisi is the distance between pursuer and target, ε is the
radius of success captured.

4. Experimental results

4.1. Emotional change of robots within a group

Various personalities of robots effect differently on the emotion
of itself and others. The research of personality and emotion is use-
ful to find amore efficient and agreeable combination of healthcare
affective robots.

The affective robot is classified into four types based on the
expressiveness and susceptibility: incentive, empathetic, frank and
indifferent. It can be further expanded on this basis in view of the
complexity and emphasis of different problems. In this paper, the
parameters of each personality type are as follows (see Table 3).

(1) Effect of emotional attenuation on robots of different personality
The robot is divided into four different types according to the

personality. The initial emotion of different type of robots is 0.9.
When there is no emotional contagion between robots, the inten-
sity of emotion changes respectively to 0.21, 0.08, 0.02 and 0.01
after 50 unit times in Fig. 4.

In this experiment, the change in emotion is mainly caused
by emotional attenuation, which is mainly related to the extro-
version component of personality. The weaker the extroversion
is, the lower the degree of emotion catharsis and the slower the
emotional attenuation. Among them, the indifferent robot with
the minimum extroversion has the longest duration of emotional
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Fig. 2. The flow chart of the selection of the team leader.

intensity, while the incentive robot with the largest extroversion
has the shortest duration.

(2) Effect of emotional contagion to robots of different personalities
The emotions of robots in the group are mainly influenced by

the emotional contagion when there is emotional contagion. The

initial value of emotional states of the four types of robots is 0.5.
Given a special robot which personality components PO = 0.1,
PE = 0.9 its emotional state is increased from 0.1 to 1. We study
the influence degree of emotional contagion on the robots with
different personalities through those four robots.
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Fig. 3. The flow chart of the selection of collaborators.

When there is emotional contagion among robots, the changes
in emotion is decided by emotional contagion. As shown in Fig. 5,
the emotional changes of indifferent and frank robots are relatively
stable, while the fluctuation of incentive and sympathetic robots’
emotion are relatively large, the reason is that the sympathetic
robot is better at capture emotion of others and incentive robot
is more likely to motivate others.

(3) Effect of different personality robots on the group
There is a group of 100 random robots. The value of emotional

states was random and obey normal distribution N (0.5, 0.1). The
expectations of expressiveness and susceptibility are 0.5. The ini-
tial number of positive robots in the group is 44. After joining

different personality robots, the number of positive robots in the
group is changed as shown in Fig. 6.

When the same number of different personality robots joins
into the group, we can see that the most important contribution of
robots to the group is the frank type and followed by the incentive
robots, while the sympathetic robots and the indifferent robots
almost have no effect on the group.

This phenomenon has become more obvious since the number
of robots joined group reached 10. The number of positive robots
respectively change to 62, 76, 45, and 41 when 10 incentive, frank,
sympathetic and indifferent robots respectively join the group. Be-
cause the incentive and frank robots with stronger expressiveness
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can influence other robots more greatly, while the sympathetic
and indifferent robots with weaker expressiveness less influence
other robots so that the number of positive robots in the group
is almost no change. Therefore, the number of incentive or frank
robots should be increased in order to lead the group to more
positive.

4.2. The process of task allocation

In this experiment, the process of the proposed task allocation
algorithm will be detailed. Set the number of pursuers N = 4, the
number of targets M = 2. The radius of success captured ε is set as
0.8. The velocity of the target is 0.9, the basic velocity of pursuer is
1.2 and velocity will slow down under negative emotional state,

v = vbas − λ · v · Emo/ξ,

where vbas is the basic velocity; λ = 0.2 is the proportionality
constant, which represent the proportional relation between the
velocity increment and basic velocity; Emo is current emotion
state; ξ = 0.5 is a threshold of emotional state. We simulate the
pursuit-evasion scenarios by MATLAB, and as shown in Tables 4
and 5, the attributes of robots and targets are generated with
randomness which assures the universality of results.

The allocation of the pursuit task using the Task Allocation
Based Auction Algorithm (TA_A) in [11] and PTA-EC is shown in
Fig. 7.

In the task allocation phase, pursuit teams of the TA-A algorithm
are G1 = {r1, r2} and G2 = {r3, r4}, the pursuit time is 15.66,
and the total gain is 128. The PTA-EC algorithm in this paper gets
pursuer teams are G1 = {r1, r3} and G2 = {r2, r4}, the pursuit time
is 11.48, and the total gain is 161.



248 B. Fang et al. / Future Generation Computer Systems 92 (2019) 241–251

Fig. 4. Emotional attenuation of robots with different personalities.

Fig. 5. Emotional contagion to robots with different personalities.

Fig. 6. The effect on the group of robots with different personalities.

The TA-A algorithm considers only the cost but no emotional
mechanism, and recruits pursuers according to the principle of
minimal cost. Thus the members of the team G1 are r1 and r2
because theymaximize the gain ofG1. The teamG2 can only choose
r3 and r4 so that the team G2 pursuit process is prolonged because
of theirweak cooperationwillingness. The PTA-EC algorithm in this

Table 4
Initial information of the pursuers.
Pid Posx Posy Emo PO PE PA Cap

r1 10 10 0.8 0.4 0.5 0.5 5
r2 20 18 0.7 0.5 0.5 0.5 5
r3 15 30 0.4 0.4 0.4 0.5 5
r4 45 35 0.35 0.5 0.4 0.5 5

Table 5
Initial information on the targets.
Eid Pos Cap

e1 10 9
e2 30 8

Table 6
Comparison of time and gain.

Time (s) Gain

Max Min Average Max Min Average

PTA-EC 117.8 65.79 81.86 351.8 233.7 287.3
TA-A 122.7 67.49 90.83 341.6 211.1 268.9

paper is different from the TA-A algorithm, this algorithm adds an
emotion mechanism and determines team members through two
stages. The first stage is selecting the team leader, that is r1 and
r2, and respectively assign r1 and r2 to the team G1 and team G2
in view of maximizing the overall gain of the leader. The second
stage is for the team leaders to select collaborators. Assign r3to
the team G1 and after emotional contagion, the emotional state
becomes Emo1 = 0.6095, Emo3 = 0.5524; assign r4 to the team
G2 and, after an emotional contagion, the emotional state becomes
Emo2 = 0.5078, Emo4 = 0.5038. The emotional state of the
two teams are both positive, so they achieve better experimental
results. The results show that the proposed algorithm is better in
the experimental scenario.

4.3. Comparison study

In this experiment, we will show the efficiency of the proposed
method with compared to other methods. We conducted experi-
ments using a large number of stochastic scenarios under the same
conditions to evaluate the pursuit time and gain of each algorithm.

(1) Comparison of PTA-EC and TA-A algorithms
We generate 100 stochastic scenarios under the same condi-

tions to evaluate the pursuit time and gain of TA-A algorithm and
PTA-EC algorithm. Ten pursuers collaborate to serve four targets.
The initial positions of robots are generated randomly in the range
of 200 by 200. The total pursuit time and gain are shown in Fig. 8
and Table 6.

Fig. 8 illustrates the comparison of the time and gain used in
the execution of a task. The x-axis is the number of experiment
cases. The time and gain of PTA-EC are sorted and those of TA-
A correspond to each scenario of PTA-EC. The maximum time of
PTA-EC is less than 120 s; whereas the maximum time used by
TA-A is about 124 s. The Fig. 8(a) clearly shows that our proposed
method used much less time on average to complete the tasks.
The time used by the PTA-EC algorithm is less than that of the TA-
A algorithm in 81% of the experiments. Fig. 8(b) depicts the total
gain of the task executors and the gain of the PTA-EC is greater
than the gain of the TA-A in 74% experiments. One of the reasons
that poor performance of PTA-EC in some experiments is that the
experiments scenarios are extreme cases, e.g. each target is very
close to a pursuer, our method considers affective factors so that
the weight of the distance factor is less than TA-A which only
considers distance and future gain.

(2) Comparison of PTA-EC and TA-GOA algorithm
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Fig. 7. Task allocation and performing of (a) TA-A Algorithm; (b) PTA-EC Algorithm.

Fig. 8. Total capture time and gain of the PTA-EC and TA-A.

Fig. 9. Total capture time of the PTA-EC and TA_GOA.

To further evaluate the effectiveness of the PTA-EC algorithm,
we conducted 1000 experiment with random scenarios using our
PTA-EC algorithm and instantaneous greedy optimal auction al-
gorithm (TA-GOA). We evaluate the total pursuit time and gain,
which are shown in Figs. 9 and 10, respectively (see Table 7).

In comparison with TA-GOA, PTA-EC spends less time in 75.4%
of the testing cases and gets a higher gain in 80.3% of the testing
cases, PTA-EC gets a greater gain. Because in the task allocationpro-
cess, each pursuer of TA-GOA is self-interested and they choose the
team with maximum gain, which could lead to a team formation

Table 7
Comparison of time and gain.

Time (s) Gain

Max Min Average Max Min Average

PTA-EC 176.4 66.85 102.7 359.3 253.8 309
TA-GOA 178.8 69.56 110 348.1 239 301

that some teams are formed with members that collectively pos-
sess abilities exceeding the minimum requirement whereas other
teams fail to get capable members. In addition, PTA-EC allocates
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Fig. 10. The total gain of the PTA-EC and TA_GOA.

tasks to leaders following the Hungarian algorithm that ensures
that the allocation result is better than that of the TA-GOAmethod.

5. Conclusions

The paper presents a multi-robot task allocation algorithm for
affective robots, defines emotion robot’s personality, behaviors in
task environment and the mapping from personality to behavior,
and describes emotional contagion for robots’ emotional interac-
tion which is combined with MRTA. The paper then analyzes the
impact of expressiveness and susceptibility of robots in the group.
This paper proposed a novel method for scheduling collaborative
robots to maximize outcomes and efficiency. The interconnected
robots leverage emotion and personality to better communicate
and synergy. We improved performance in comparison to the
state-of-the-art methods and demonstrated promising results for
healthcare applications.

This emotional multi-robot cooperative model can be applied
to virtual or physical robots for healthcare and can further applied
to other robotics interactions that involve a higher level of intelli-
gence. The affective model in this work is simple relatively, and
affective factors, such as personality, emotional state, and emo-
tional attenuation, can be future optimized to better orient to the
tasks. The type of personality can be extended from researches of
human–human interaction and explore more combinatorial possi-
bilities for better performance of task allocation.
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