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a b s t r a c t 

In medical diagnosis, e.g. bowel cancer detection, a large number of examples of normal cases exists with 

a much smaller number of positive cases. Such data imbalance usually complicates the learning process, 

especially for the classes with fewer representative examples, and results in miss detection. In this article, 

we introduce a regularized ensemble framework of deep learning to address the imbalanced, multi-class 

learning problems. Our method employs regularization that accommodates multi-class data sets and au- 

tomatically determines the error bound. The regularization penalizes the classifier when it misclassifies 

examples that were correctly classified in the previous learning phase. Experiments are conducted us- 

ing capsule endoscopy videos of bowel cancer symptoms and synthetic data sets with moderate to high 

imbalance ratios. The results demonstrate the superior performance of our method compared to several 

state-of-the-art algorithms for imbalanced, multi-class classification problems. More importantly, the sen- 

sitivity gain of the minority classes is accompanied by the improvement of the overall accuracy for all 

classes. With regularization, a diverse group of classifiers is created and the maximum accuracy improve- 

ment is at 24.7%. The reduction in computational cost is also noticeable and as the volume of training 

data increase, the gain of efficiency by our method becomes more significant. 

© 2017 Elsevier Ltd. All rights reserved. 
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1. Introduction 

In many real-world applications, data annotation is expensive

and the target of interest occurs much less frequently compared

to the normal cases. In bowel cancer diagnosis, capsule endoscopy

has been used as a screening method, which provides over 55,0 0 0

frames in a video. The majority of the frames in a video depict nor-

mal tissues and the cancer symptom is under-represented in the

training frames. Such uneven distribution creates a difficult learn-

ing process for finding unbiased decision boundaries. In addition,

multi-class problems complicate the learning process. Many meth-

ods have been developed to handle the learning from imbalanced

data, which leverage One vs. One (OvO) or One vs. All (OvA) strate-

gies. These conversions mostly result in degraded performance and

elongated training time as the number of class increases. 

The existing methods can be classified as data-level approaches

or algorithmic-level approaches [1–3] . In data level approaches,

undersampling or oversampling is applied to balance the minor-

ity and majority classes. The oversampling process differs in the

way how synthetic examples are created. Some techniques ran-
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omly create synthetic examples while others create synthetic ex-

mples based on density distribution [4] or distance to the decision

oundary [5] . Algorithmic-level approaches such as cost-sensitive

earning methods assign higher costs to the minority class [6] . 

Hybrid methods were developed by integrating both sampling

nd algorithmic approaches to handle the imbalanced data sets

uch as boosting methods. AdaBoost [7] was originally introduced

o sequentially train an ensemble of classifiers to achieve im-

roved accuracy through an error minimization function. With

he success of this method, AdaBoost was extended to multi-class

lassification. 

The indirect conversion of AdaBoost transforms the multi-class

nto multiple binary classifications using the binarization methods

uch as AdaBoost.M2 [7] and AdaBoost.MH [8] . These methods re-

uire extended training time with many training iterations and the

mprovement of accuracy is limited to a large number of classes.

he direct conversion applies the boosting method to the multi-

lass data sets by changing the loss function. AdaBoost.M1 [7] was

ntroduced to train multi-class data sets in which the error bound

s too strict compared to random guessing error for multi-class

roblems. Stage-wise Additive Modeling using Multi-class Expo-

ential (SAMME) loss function [9] was developed to ease the er-

or bound of AdaBoost.M1 by transforming it to that of random

https://doi.org/10.1016/j.patcog.2017.12.017
http://www.ScienceDirect.com
http://www.elsevier.com/locate/patcog
http://crossmark.crossref.org/dialog/?doi=10.1016/j.patcog.2017.12.017&domain=pdf
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uessing of C classes, i.e., C−1 
C . Mukherjee and Schapire [10] devel-

ped a theoretical approach to identify the optimal requirements

f the trained weak classifiers and introduced a general framework

or multi-class boosting. Saberian and Vasconcelos [11] introduced

wo multi-class boosting algorithms using multi-dimensional code-

ords and predictors based on coordinate and gradient descents.

he algorithms vary in the types of weak classifiers they support.

owever, these more recent multi-class boosting methods did not

onsider the deterioration in the classification performance when

rained on multi-class imbalanced data sets. 

Ensemble methods in the deep learning framework have been

eveloped to address the imbalance problem [12,13] . Some algo-

ithms either applied sequential oversampling [14] or undersam-

ling [15] within the framework of AdaBoost to balance the classes.

ther boosting algorithms modified the updating rule to assign

igher weights for misclassified minority instances [16] . Recently,

oosting methods have been extended to address the more severe

ase of multi-class imbalance in certain applications, where several

inority and majority classes are present [17,18] . 

In this article, we introduce a regularized ensemble framework

f deep learning to address the problem of learning from imbal-

nced, multi-class data set for cancer detection. The new algorithm

ncorporates a regularization parameter that accommodates imbal-

nced multi-class data sets and automatically regulates the error

ound of each classifier in accordance with its performance. The

arameter penalizes the classifier when it misclassifies examples

hat were correctly classified in the previous iteration. This strat-

gy aims at reducing volume-induced bias by pushing the classifier

o preserve correctly classified minority examples. Additionally, the

lgorithm applies a weighted stratified sampling technique where

ach class represents a stratum. The sampling procedure is per-

ormed on each class separately based on weighted data distribu-

ion to balance the classes and avoid bias towards certain classes. 

The rest of this article is organized as follows.

ection 2 presents the existing methods that deal with learning

rom imbalanced training data. Section 3 describes our proposed

nsemble framework of deep learning. Section 4 presents the

xperimental results and discussion. Section 5 concludes the paper

ith a summary. 

. Related work 

The imbalance problem is defined based on the ratio of the

izes of different classes in a given data set [19] . Algorithms are de-

eloped to learn from imbalanced data sets, which aim to suppress

he bias towards the majority class. Kubat and Matwin [19] se-

ected a number of majority examples close to the boundary using

ne-sided selection to handle the imbalance problem. Chawla de-

eloped SMOTE [14] that randomly creates synthetic minority ex-

mples to balance the minority and majority classes. Han et al.

roposed Borderline-SMOTE [5] that extends the SMOTE idea to

versample the minority examples close to the decision bound-

ry. Barua et al. [20] developed Majority Weighted Minority Over-

ampling Technique (MWMOTE), to efficiently handle imbalanced

ata by specifying weights for selected hard-to-classify minority

xamples based on the Euclidean distance from the nearest ma-

ority example. A clustering method is then used to generate syn-

hetic minority examples based on their respective weights. Wang

t al. [4] introduced an oversampling method that is based on data

ensity. The technique adaptively creates a different number of ex-

mples around each minority example based on its difficulty. Cao

t al. [21] introduced a structure-preserving oversampling method

ombined with interpolation-based oversampling to create syn-

hetic minority examples using multivariate Gaussian distribution.

his method expands the minority examples in the empty area of

he example space by keeping the covariance structure of the mi-
ority class and creating protective variances in the Eigen dimen-

ions. Lopez et al. [22] conducted a comparative study of the data

evel approaches such as SMOTE with algorithmic level approaches

hat assign greater weights to the minority examples. Additionally,

he study compared a hybrid approach that combines both meth-

ds. The comparison concluded that both techniques are equivalent

n effectiveness while the hybrid approach has better performance

n some cases. 

In addition to creating synthetic examples for the minority

lass, selecting a subset of examples from the majority class to

alance the training data set is also being practiced. Yen and

ee [23] introduced a cluster-based undersampling approach us-

ng back-propagation neural networks and investigated the ef-

ect of undersampling on the class distribution. Batuwita and

alade [24] proposed a method that resamples data by first se-

ecting the most informative examples using Support Vector Ma-

hines (SVM) on the original data, then using these examples to

e-sample the data and balance the classes. Zhou [25] studied

he effect of different oversampling and undersampling methods

or bankruptcy prediction. The experiments concluded that proper

ampling method depends on the number of examples in the mi-

ority class. 

Besides sampling in the data space, feature space and sophis-

icated methods are explored to aid balancing the data set. Piras

nd Giacinto [26] utilized the nearest neighbor paradigm to arti-

cially create examples in the feature space of the minority class

ccording to its local distribution. Wasikowski and Chen [27] used

eature selection to reduce the dimensionality of imbalanced data

ets as well as to gain higher accuracy for the minority class.

rown et al. [28] developed a genetic algorithm-based data sam-

ling method to improve the software quality modeling and ad-

ress the imbalance problem in high-assurance systems. Garcia

t al. [29] used evolutionary algorithms to propose a method

hat handles the imbalance by storing objects in the Euclidean

pace. New examples are classified by measuring their distances to

he closest generalized exemplary. The algorithm selects the best-

eneralized exemplars for optimization. Yu et al. [30] applied the

nt colony optimization algorithm to exclude majority examples

hat are less informative to balance the classes. 

Boosting methods became popular to deal with imbalanced

ata sets in conjunction with many aforementioned data balancing

trategies. Karakoulas and Taylor [31] proposed AdaUBoost where

he weights updating rule and the loss function were modified

o assign higher weights to minority examples within a boosting

ramework. Chawla et al. [14] integrated SMOTE with the boosting

rocedure which iteratively trains the balanced data after adding

he randomly created synthetic examples. Chen et al. [32] intro-

uced RAMOBoost, an oversampling procedure for the minority ex-

mples. The technique ranks the minority examples at each train-

ng iteration based on a sampling probability distribution. Seiffert

t al. [15] alleviated class imbalance using random undersampling

n RUSBoost. E-Adsampling [16] algorithm created synthetic exam-

les and updated the example weight to improve the accuracy of

mbalanced data sets. Liu et al. [33] incorporated an ensemble of

VMs with oversampling and undersampling techniques combined

o improve the accuracy of the minority class with highly skewed

ata. Saadi et al. [34] developed a method that employs SVM to

alance the minority and majority classes for highly imbalanced

ata sets in the biomedical field. He et al. [35] proposed ADASYN, a

ethod that utilizes the weights of minority examples to generate

ore synthetic examples towards harder-to-classify minority ex-

mples compared to easier examples. Yuan and Ma [36] proposed

 sampling-reweighing strategy to tune AdaBoost. The method ini-

ially oversamples the data and applies AdaBoost followed by ad-

usting the weights using genetic algorithms. 
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Recently, attention is drawn to the more challenging

case of learning from imbalanced, multi-class data. Murphey

et al. [37] proposed OAHO algorithm using neural networks to

learn from multi-class imbalanced data sets. Experiments con-

ducted on highly imbalanced UCI data sets showed an improved

performance of minority classes compared to the OvO and OvA

classification methods. Ghanem et al. [38] developed Multi-IM

that extends a probabilistic relational technique, PRMs-IM [39] ,

by embedding the balancing method to multi-class data. Jeatrakul

and Wong [40] developed One-Against-All with Data Balancing

(OAA-DB) that combines undersampling technique using comple-

mentary neural networks with the oversampling technique SMOTE

using OvA approach. Fernandez et al. [6] compared the classi-

fication performance of multi-class imbalanced data sets using

binarization techniques such as OvO and OvA to the performance

of preprocessing the data samples and cost-sensitive learning with

ad hoc approaches. Codella et al. [12] combined deep learning

method with established machine learning approaches, creating

ensembles of methods for segmenting skin lesions, as well as

analyzing the detected area and surrounding tissue for melanoma

detection. Xiao et al. [13] applied deep learning to an ensemble

that incorporates multiple different machine learning models.

Data were selected by differential gene expression analysis and

a deep learning method was employed to ensemble the outputs

of the classifiers. Qi et al. [41] integrated Adaboost with deep

support vector machine. Adaboost is applied to select SVMs with

the minimal error rate and the highest diversity. By stacking SVMs

into layers, the method acquires a new set of deep features. The

training data represented by these new features is regarded as the

input for a SVM classifier. Rasti et al. [42] employed a mixture

ensemble of convolutional neural networks for breast detection.

Each convolutional neural network is a modular and image-based

ensemble, which stochastically partition the image space through

simultaneous and competitive learning. 

Clearly, how to balance training data is a key issue in multi-

class problems. Bae et al. [43] proposed a mix-ratio sampling

method that uses an SVM to determine oversampling sizes for dif-

ferent minority classes. Navarro et al. [44] proposed a dynamic

oversampling procedure in a memetic algorithm that uses neural

networks. The method re-samples data in two steps. First, the ex-

amples of the minority classes are oversampled to partially balance

the classes. Second, the memetic algorithm is applied to oversam-

ple the data and generate new patterns for the class with the least

sensitivity. Tong et al. [45] proposed an analytical method to de-

termine the re-sampling scheme by utilizing response surface and

design of experiments methods. Areibi and Tempelman [46] pro-

posed a dynamic sampling framework that automatically tunes the

training set distribution by combining sampling techniques such as

SMOTE, random undersampling, and random oversampling meth-

ods. Yuan and Abouelenien [47] proposed a boosting framework

using sampling with a constant error parameter to deal with im-

balanced face recognition. Wang and Yao [17] studied the effect of

multi-minority and multi-majority classes on the learning process.

The paper concluded that multi-majority classes pose increased

harm to the learning process. The study additionally explored Ad-

aBoost.Nc [48] with imbalanced, multi-class data sets. The method

used a negative correlation learning algorithm that utilizes an am-

biguity term to add explicit diversity. 

3. Regularized ensemble framework of deep learning 

In AdaBoost.M1 [7] , the weak classifier is assigned a weight

based on evaluation, which is computed as follows: 

αt = 

1 

2 

log 

(
1 − εt 

εt 

)
, (1)
here εt is the error of the resulted classifier in training iteration

 , which calculated as the weighted sum of the misclassified in-

tances. This weight decides the contribution of the classifier to

he prediction on an unseen instance. The weighted error is the

ontrolling factor of α. To avoid negative weights, the following

ondition must hold 

 − εt > εt . 

ence, the weighted error bound is 

t < 0 . 5 . (2)

Following SAMME algorithm [9] , the loss function is extended

y adding a constant term to the weight function. This term is

resented by the logarithm of the constant C − 1 , where C is the

otal number of classes in the data set. The weight to the classifier

ecomes 

t = 

1 

2 

log 

(
1 − εt 

εt 

)
+ 

1 

2 

log (C − 1) . (3)

ollowing the same rationale as AdaBoost.M1, the following rela-

ion must hold 

(1 − εt )(C − 1) > εt . 

ence, the weighted error bound becomes 

t < 

C − 1 

C 
. (4)

.1. Unpredictability regularization 

There are possibilities that some examples are misclassified af-

er being correctly classified by the previous classifier. This can be

ttributed to the uneven class distribution. That is, a classifier can

orrectly classify most majority examples at the expense of minor-

ty examples that were correctly classified in the previous iteration.

ence, the decision boundary is adjusted in the directions that fa-

or majority examples. 

To address these issues and accommodate imbalanced multi-

lass data sets, we introduce a regularization parameter to the con-

ex loss function in the classifier weight calculation. The parame-

er penalizes the weight of the classifier if it misclassifies exam-

les that were correctly classified in the previous iteration. The

agnitude of the penalty is determined by the weights of these

isclassified examples and the regularization varies according to

he evaluation of each classifier. Our target is to keep the correct

lassification of the minority examples, push the decision bound-

ry towards the minority classes, and avoid the bias introduced by

he larger number of majority examples. 

After each training iteration, the classifier is evaluated and the

eight function is calculated according to Eq. (3) . The regulariza-

ion parameter δ is initialized to 1. We start with the weight func-

ion of SAMME in the first iteration and develop our parameter to

ddress the multi-class imbalance problem from there. 

t = 

1 

2 

log 

(
1 − εt 

εt 

)
+ 

1 

2 

log (δt (C − 1)) . (5)

The loss function adjusts the examples’ weights to increase

eights of misclassified examples and reduce weights of correctly

lassified ones as 

 t = 

{
w t−1 (i ) e −αt , ∀ x i , f t (x i ) = y i 
w t−1 (i ) e αt , ∀ x i , f t (x i ) � = y i . 

he weights are then normalized. 

In a boosting process, if an example is repeatedly misclassi-

ed, it is considered a hard example and additional learners need

o learn from it with higher priority. That is, the base learner

hat consistently misclassifies an example of a few examples is
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enalized by adjusting its weight. In the following iterations, the

eighted error is decomposed into two parts, which differentiate

he examples that are consistently misclassified from those that

re correctly classified by the previous classifiers but misclassified

n the current training round. 

t = εc + εm 

. (6) 

he first term εc is the sum of weighed error of the examples

hat are misclassified by the current classifier and are correctly

lassified by the previous one. Such examples are named second-

ound-misclassified examples X c = { x i ; f t (x i ) � = y i and f t−1 (x i ) = y i }
nd the error is computed as follows: 

c = 

∑ 

i ∈ X c 
w t−1 (i ) 

= 

∑ 

i ∈ X c 
w t−2 (i ) 

(
δt−1 (C − 1)(1 − εt−1 ) 

εt−1 

)− 1 
2 

. (7) 

he second term in Eq. (6) εm 

is the sum of weighed error of

he examples that are misclassified by two consecutive classifiers,

.e., X m 

= { x i ; f t (x i ) � = y i and f t−1 (x i ) � = y i } . The error is computed

s follows: 

m 

= 

∑ 

i ∈ X m 
w t−1 (i ) 

= 

∑ 

i ∈ X m 
w t−2 (i ) 

(
δt−1 (C − 1)(1 − εt−1 ) 

εt−1 

) 1 
2 

. (8) 

The goal of the iterative boosting method is to adjust the de-

ision boundary to correctly classify hard examples. However, al-

ernately treating an example differently results in fluctuation in

he weighted data distribution and, hence, unpredictability of clas-

ifier. The regularization term δt adjusts the classifier’s weight to

enalize the one that misclassifies the second-round-misclassified

xamples. It measures the difference in the weighted error if all

urrently misclassified examples were also misclassified in the pre-

ious iteration. In this case, to derive the explicit expression for

t , we assume that all currently misclassified examples are mis-

lassified by the previous classifier, i.e., the exponent of the right-

and term in Eq. (7) is positive to increase the weights of the

econd-round-misclassified examples expressed by εc . Using this

ssumption of two consecutive classifiers, the maximum possible

eighted error ε′ 
t is 

′ 
t = 

∑ 

i ∈ (X c ∪ X m ) 
w t−2 (i ) 

(
δt−1 (C − 1)(1 − εt−1 ) 

εt−1 

) 1 
2 

. (9)

The examples weights are re-normalized accordingly. The actual

eighted error is equivalent to the maximum possible weighted

rror ε′ 
t altered by the parameter δ

1 
2 . The regularization provides a

easurement for the deterioration caused from the second-round-

isclassified examples. The value of the parameter is hence pro-

ortional to these examples’ weights 

t = ε′ 
t δ

1 
2 

t . (10) 

ince εt ≤ ε′ 
t , the parameter is less than or equal to 1, i.e., δ ≤ 1. 

By substituting Eq. (10) in Eq. (9) , we can derive the explicit

ormula for the regularization term δt as follows: 

t = 

ε2 
t εt−1 

Z 2 (1 − εt−1 ) δt−1 (C − 1) 
. (11) 

here Z is the sum of examples’ weights 

 = 

∑ 

i 

w t−2 (i ) . 
The classifier weight α is adjusted by integrating the logarithm

f δt , which penalizes the classifiers that result in second-round-

isclassification as shown in Eq. (5) . δt varies during each iteration

ased on the performance of the two consecutive classifiers. 

In this scheme, the weighted error must satisfy 

(1 − εt ) δt (C − 1) > εt . 

ence, the error bound for classifier t becomes 

t < 

1 

1 + δ−1 
t (C − 1) −1 

. (12) 

.2. Regularized ensemble framework 

Given a training data set D = { (x 1 , y 1 ) , . . . , (x M 

, y M 

) } , where an

xample x i ∈ R 

N and its label y i ∈ { 1 , . . . , C} , C is the number of

lasses in the data set and M is the total number of examples in

 . In our data sampling, we follow the spirit of stratified sampling

nd treat each class as a stratum. Clearly, not all classes need to be

esampled and the class sampling rate is inversely proportional to

ts imbalance rate. The sampling of a stratum is random following

he data distribution. That is, the weight of each example repre-

ents its probability of being included in the training set. The se-

ection process deals separately with each class to recover the bal-

nce and ensure that all the classes are represented in the sampled

ata. This stratified sampling is different from random undersam-

ling in that the hard examples are more likely to be kept in the

raining set as their weights are greater. Let | c i | denote the size of

lass c i . The smallest minority class is | c ∗| = min i ∈{ 1 , 2 , ... ,C} (c i ) . For

ach class in the data set D , stratified sampling selects a subset of

xamples, denoted with d i , from each class c i such that number of

elected examples from a majority class equals to the size of the

mallest minority class, i.e., | d i | = | c ∗| . The balanced training set

ecomes collection of sampled majority classes and the minority

lasses: 

 t = ∪ i d i ⊂ D. (13)

Algorithm 1 presents our method. The weight of examples is

nitialized to be equal at 1 
M 

and the regularization parameter δ is

nitialized with 1. Function 1 1 0 [ ·] is an indicator function that re-

urns 1 if true and 0 otherwise in order to calculate the weighted

rror, and function 1 1 −1 
[ ·] denotes an indicator function that re-

urns 1 if true and −1 otherwise in order to increase or decrease

he weights of the examples. 

With a balanced training set D t , a classifier f t is trained that

inimizes the weighted error of D t . Since data distribution plays

 key role in both error minimization (as shown in Eq. (14)) and

ata sampling, we need to have a complete view of the classifier’s

mpirical performance. Therefore, despite that f t is trained with D t ,

hich is a subset of D , the classifier is evaluated using the entire

ata set such that the weight of each example is updated, i.e., 

t = 

∑ 

i ∈ D 
w t−1 (i ) 1 1 0 [ y i � = f t (x i )] . 

xcept in the first iteration, the regularization parameter δ is com-

uted according to the errors of two consecutive classifiers, which

s used in both calculation of error bound and classifier weight. 

. Experimental results and discussion 

.1. Data sets and experiment setup 

In our experiments, we used both synthetic and real-world data

ets including numerical data and imagery. Our Capsule Endoscopy

CE) video set consists of data from eight different patients. The

mbalance ratio of the CE data set is much higher than the other
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Algorithm 1 Regularized ensemble framework. 

1: Input: D = { (x 1 , y 1 ) , . . . , (x M 

, y M 

) } 
2: Output: f t and αt 

Training 

3: Initialize example weight w 0 (i ) = 

1 
M 

and δ1 = 1 

4: for t = 1 , . . . , T do 

5: Select a subset of examples D t using stratified sampling and 

data distribution w t . 

6: Form a training set following Eq. (13). 

7: Train a classifier f t with D t 

f t ⇐ arg min 

∑ 

i ∈ D t 
w t−1 (i ) 1 1 0 [ y i � = f t (x i )] (14) 

8: if t > 1 then 

9: Calculate δt following Eq. (11). 

10: end if 

11: if εt > 

1 

1+ δ−1 
t (C−1) −1 

then 

12: return αt ⇐ 0 

13: else 

14: Compute weight αt for classifier f t 

αt ⇐ 

1 

2 

log ( 
1 − εt 

εt 
) + 

1 

2 

log (δt (C − 1)) (15) 

15: Calculate example weight: 

w t (i ) ⇐ w t−1 (i ) e (αt 1 1 −1 [ y i � = f t (x i )]) 

16: Normalize w t (i ) : 

w t (i ) ⇐ 

w t (i ) ∑ M 

j=1 w t ( j) 

17: end if 

18: end for 

Testing 

19: Integrate classifiers f t with weighted sum: 

F (x ) ⇐ arg max 
y 

T ∑ 

t=1 

αt f t (x ) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 1 

Data sets and properties. 

Data No. of Set No. of Min. Maj. Imb. 

sets classes size features size size ratio 

CE 2 4200 36,864 25 2075 1:83 

SYN1 50 50 0 0 2 5 50 1:10 

SYN2 50 50 0 0 2 5 50 1:10 

Image 7 2310 18 15 165 1:11 

Letter 26 18,200 16 50 350 1:7 

Pen 10 10,540 16 31 527 1:17 

Statlog 6 3744 36 24 312 1:13 

AT&T 40 400 10,304 2 9 1:4.5 

AR 50 550 13,200 2 10 1:5 

CD 2 40 0 0 2 50 10 0 0 1:20 

Banana 2 40 0 0 2 50 10 0 0 1:20 
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data sets, which is common in real-world applications. To com-

pare with the state-of-the-art methods, two multi-modal Gaussian

data sets, namely SYN1 and SYN2, are generated by randomly vary-

ing the means and variances, which changes the overlaps among

classes. Classes in SYN2 are closer to each other on average com-

pared to that of the classes in SYN1. Both synthetic data sets are

two dimensional. Other real-world data sets include four from

UCI repository [49] Image Segmentation (Image), Letter Recogni-

tion (Letter), Pen-Based Recognition of Handwritten Digits (Pen),

and Statlog Landsat Satellite (Statlog) and two popular face data

sets (AT&T and AR). Images in the AR data set were converted into

grayscale and manually cropped and aligned. The cropped image

size is 120 × 110. Face images were preprocessed using principal

component analysis for dimensionality reduction before the train-

ing. Test images were projected on the Eigen-space before test-

ing. In addition, we used binary-class data sets, among which two

are popular synthetic data sets Circle-Disk (CD) and banana. The

Circle-Disk set is formed of a disk (one class) surrounded by a cir-

cle (the other class), and the banana set consists of two banana-

shaped classes protruding into each other. Including binary cases

is to demonstrate the efficacy of the methods, since it essentially

is a special case of the multi-class classification. Additional details
f the data sets are summarized in Table 1 . Note that image data

ets are high dimensional data sets. 

Without loss of generality, each data set was divided into a

inority group and a majority group. The size of classes in each

roup is the same except Image data set which has an odd num-

er of classes. In our experiments, two-fold cross-validation was

onducted and classes in both groups are then switched. That is,

ach class serves as the minority class and the majority class. Lim-

ted by the number of examples in each class in the AT&T and AR

ata sets, we used leave-one-out cross-validation instead. The two

lasses of the CE data were not switched since the data set is natu-

ally imbalanced and the minority class (diseased images) has very

ew examples compared to the majority class (normal images). 

In constructing ensembles, we used both decision trees and

eep neural network as base classifiers. Early pruningc was em-

loyed in the decision tree implementation to avoid overfitting.

ach ensemble is trained with 100 iterations, i.e., 100 classifiers are

reated. The results of our proposed method are compared against

he state-of-the-art algorithms for multi-class, imbalanced classi-

cation including AdaBoost.M1, SAMME, RUSBoost, and SMOTE-

oost. To extend RUSBoost for multi-class problems, we followed

daBoost.M1 strategy. Our preliminary experiments of SMOTE-

oost using AdaBoost.M1 and AdaBoost.M2 for multi-class problem

howed that results with AdaBoost.M1 had higher sensitivity, ac-

uracy, and efficiency, and was hence adopted in our multi-class

xtension for RUSBoost and SMOTEBoost. 

.2. Classification of the minority classes 

Analysis of classification performance of the minority classes in

 multi-class problem is complicated because the impact of imbal-

nce to the discriminant among classes is usually heterogeneous.

or instance, if a large margin exists between two classes the im-

act of imbalance is much less than the case where two classes

re heavily overlapped. In addition, it is not trivial to characterize

he class layout especially for high dimensional scenarios. Hence,

e report the statistical performance of classification using aver-

ge sensitivity ε̄ and accuracy ρ̄ as follows: 

¯ = 

∑ 

i 

∑ 

k ∈ c i 1 
1 
0 [ y k = F (x k )] 

| c i | (16)

¯ = 

∑ 

j 

∑ 

k ∈ c j 1 
1 
0 [ y k = F (x k )] 

| c j | (17)

here | c l | denotes the size of class l, c i denotes the minority

lasses, and c j denotes any class in the data set. Again, 1 1 
0 
[ ·] is an

ndicator function that gives one if the condition is true and zero

therwise. 
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Table 2 

The average sensitivity (in percentage %) of minority classes and accuracy in multi-class problems. The numbers in parenthesis are the standard deviation. 

The underlined results are the best among all learner and method combinations. The dash lines denote unsuccessful training. The methods included are 

AdaBoost.M1 (Ada), SAMME, RUSBoost (RUS), SMOTEBoost (SMT), and our method (REFDL). 

Data Decision trees Deep networks 

sets Ada SAMME RUS SMT REFDL Ada SAMME RUS SMT REFDL 

Sensitivity 

SYN1 20.6 20.3 53.94 55.6 58.3 1.7 0.9 55.0 63.5 63.6 

(5.0) (4.9) (11.3) (5.8) (12.7) (3.4) (1.7) (9.9) (9.9) (3.2) 

SYN2 13.2 13.1 14.9 39.7 43.1 1.04 0.9 – 12.3 45.6 

(4.8) (4.8) (12.8) (2.0) (6.1) (1.4) (1.1) – (22.0) (2.7) 

Image 38.1 38.1 78.1 71.3 82.9 80.8 80.7 91.9 88.4 88.5 

(7.4) (7.0) (3.9) (3.9) (3.7) (6.9) (5.7) (2.4) (3.6) (2.3) 

Letter 18.9 19.0 – 35.4 59.5 2.4 3.4 61.1 63.8 67.7 

(7.5) (7.5) – (4.1) (5.8) (1.8) (3.8) (3.0) (2.4) (2.1) 

Pen 43.4 43.1 81.0 74.7 86.6 68.2 76.9 93.0 89.0 94.2 

(8.8) (8.3) (3.1) (4.7) (3.1) (11.2) (1.4) (2.8) (6.0) (2.0) 

Statlog 45.8 46.0 72.2 64.2 73.5 61.6 58.8 75.1 72.5 75.3 

(9.4) (9.5) (10.9) (12.8) (14.9) (10.9) (9.3) (14.7) (12.2) (14.2) 

AT&T 18.7 18.6 – 42.5 40 1.2 0.5 – 37.5 60.0 

(8.1) (8.0) – (13.3) (10.9) (2.9) (3.1) – (15.5) (16.3) 

AR 20.0 20.5 – 34.0 46.0 1.0 0.0 – 2.0 29.0 

(9.6) (9.4) – (11.6) (13.5) (2.0) (0.0) – (3.5) (10.0) 

Accuracy 

SYN1 47.8 47.9 58.9 61.6 57.3 41.4 41.6 61.5 64.0 63.0 

(3.4) (3.4) (4.1) (0.7) (3.8) (2.0) (2.0) (3.5) (1.7) (1.1) 

SYN2 37.5 37.8 19.3 43.5 35.7 35.5 35.5 – 12.5 40.8 

(2.8) (2.6) (12.1) (1.2) (5.9) (1.2) (0.7) – (21.1) (0.9) 

Image 61.9 62.0 76.3 74.2 83.3 88.3 87.8 89.1 89.5 90.8 

(8.4) (8.5) (5.2) (6.6) (3.1) (4.1) (3.6) (3.6) (3.2) (1.6) 

Letter 41.2 41.1 – 48.3 55.9 40.8 41.4 63.3 63.2 57.6 

(3.5) (3.6) – (2.7) (5.9) (1.6) (2.6) (1.7) (1.4) (1.7) 

Pen 66.3 66.5 83.5 80.8 88.1 83.3 87.7 94.2 92.6 96.5 

Pen (3.6) (3.5) (0.9) (2.6) (1.9) (5.4) (0.8) (1.6) (3.4) (1.4) 

Statlog 63.8 63.8 75.2 72.1 76.1 (1.0) 75.8 74.1 80.0 79.8 78.5 

(2.8) (2.8) (1.4) (3.8) (1.0) (4.5) (5.2) (2.3) (2.6) (4.4) 

AT&T 35.6 35.5 – 40 35.8 11.8 40.2 – 56.2 48.7 

(8.2) (8.4) – (8.6) (9.0) (15.2) (6.2) – (14.9) (11.0) 

AR 28.5 28.5 – 35.5 29.0 8.0 19.0 – 2.0 22.0 

(9.5) (9.5) – (10.6) (8.9) (5.1) (6.6) – (5.1) (6.7) 
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Table 2 summarizes the average sensitivity and accuracy, and

he standard deviation is reported in parenthesis. The best val-

es achieved are highlighted with bold font face. In general, the

ampling-based methods consistently exhibit greater performance

n both sensitivity and overall accuracy. The average improvement

s 2 to 3 folds with respect to both metrics. However, there are

our cases that RUSBoost was unsuccessful to create an ensemble.

he cause of these failures is rooted in the random under-sampling

cheme and is also a result of joint factors including problem com-

lexity and base learner. Further discussion will be given in the

ext section. 

Our method achieves the best minority class sensitivity in most

ases and is the second best in the rest cases. It is important

o note that despite large average sensitivity is achieved by our

ethod, its overall accuracy remains very competitive. Using de-

ision trees as the base learner, our method yielded the best sen-

itivity and accuracy for four cases; using neural networks, it re-

ulted in the best performance in terms of both metrics for three

ases. In addition, the standard deviations of our method are small,

hich demonstrate the consistency of its performance. The un-

erlined results in Table 2 highlight the best performance among

ll learner and method combinations. It is evidential that our

ethod presents the superior sensitivity (7 out of 8 cases) and still

chieves competitive accuracy (2 out of 8). 

It is interesting to note that using neural networks as the base

earner AdaBoost.M1 and SAMME resulted in extremely low sensi-

ivity but relatively larger standard deviation. This is because there

re a small number of cases that yield very low performance but

he majority is relatively higher. That is the performance is skewed

nd the median is greater than the mean. 
Although our focus is on the multi-class problem, we also con-

ucted some experiments with binary classification problems. Our

esults are reported in Table 3 . With binary problems, both RUS-

oost and SMOTEBoost achieved much greater performance in con-

rast to AdaBoost.M1 and SAMME. Among three cases, SMOTEBoost

ields the best sensitivity and accuracy in both synthetic data sets.

t is appropriate to say that with small to moderate amount of

raining data SMOTEBoost is very competitive. However, with large

ata and dimensionality as in CE data set, SMOTEBoost failed train-

ng due to a large number of synthetic samples created. In han-

ling large data sets, our method exhibited both robustness and

he best performance. Although RUSBoost gives the highest sensi-

ivity using the neural network, the result of our method is ex-

remely close with a smaller standard deviation. It is plausible to

ay that our method is a competitive method in dealing with bi-

ary classification problems and has a great advantage in handling

arge data sets. 

.3. Effective classifiers in ensemble 

An ensemble relies on the diversity of its classifiers to model

he data distribution closely. To deal with multi-class problems

ur method, as well as many other state-of-the-art methods, in-

roduces a lower error bound to the learning process. This ensures

ore training iterations to be conducted but also allows classifiers

o have very low weights. When the weight of a classifier is close

o zero, it essentially has little contribution to the final decision

espite the time for training as well as the time taken to process

 new instance. The number of effective classifiers (NEC) is hence

n important property of an ensemble. 
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Table 3 

The average sensitivity (in percentage %) of minority classes and accuracy in binary classification problems. The numbers in parenthesis are the standard 

deviation. 

Data Decision trees Deep networks 

sets Ada SAMME RUS SMT REFDL Ada SAMME RUS SMT REFDL 

Sensitivity 

CE 8.0 8.1 42.0 – 50.0 16.0 16.5 82.8 – 82.0 

(11.3) (10.9) (8.4) – (19.7) (16.9) (15.8) (5.6) – (2.8) 

CD 2.3 2.5 56.0 52.4 54.5 53.0 53.3 51.7 94.8 66.3 

(4.7) (4.8) (43.7) (51.4) (39.6) (19.1) (18.8) (34.1) (6.3) (19.9) 

Banana 16.9 16.9 54.3 96 53.9 51.6 52.0 81.1 91.0 69.6 

(13.1) (13.2) (13.3) (2.7) (15.9) (5.7) (6.0) (3.5) (1.1) (3.7) 

Accuracy 

CE 53.6 53.6 68.9 – 72.7 57.8 57.9 73.5 – 73.8 

(5.7) (5.9) (3.8) – (7.5) (8.4) (8.2) (2.2) – (1.2) 

CD 51.1 51.3 72.5 60.5 72.0 75.6 75.9 74.3 91.4 81.9 

(2.2) (2.1) (16.7) (14.4) (14.8) (9.2) (8.9) (17.2) (1.5) (9.7) 

Banana 58.4 58.4 75.2 71.9 75.4 75.6 74.9 88.6 89.7 84.0 

(6.5) (6.5) (5.5) (2.5) (6.1) (2.7) (2.6) (1.4) (0.9) (1.8) 

Table 4 

Average number of effective classifiers. 

Data Decision trees Deep networks 

set Ada SAMME RUS SMT REFDL Ada SAMME RUS SMT REFDL 

CE 10.5 10 45.5 – 14 2.5 2 13.5 – 7.5 

SYN1 1.75 1 13.5 2.5 76.75 10 26.5 7.5 9.5 68.25 

SYN2 2.75 1.25 1 1.75 74.75 6.75 35.75 0 1 76.5 

Image 1.5 2.5 24.5 1.5 83 7.5 9.75 17.25 12.25 30 

Letter 1.75 2.25 0 2 80.5 7.5 28.5 8.25 7.75 63.75 

Pen 2.25 2 23.25 2.75 81.25 9.75 20.25 15 12 31.75 

Statlog 1.75 1 16.5 1.75 71.75 10 14.5 14.75 6 36.75 

AT&T 1.4 1.4 0 1.35 54.65 1.6 37.8 0 3.8 79.85 

AR 1.68 1.72 0 1.9 66 1 59.5 0 1 73.8 

CD 1.25 1.5 27.75 2 3.5 6.5 7 22.75 6.75 25.75 

Banana 1.5 1.5 15.25 1.75 9.25 5.75 6 22 6.75 13 
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Table 4 summarizes the average number of effective classifiers

in the ensemble out of 100 training iterations. Recall that there is

no value reported for the sensitivity or accuracy of some experi-

ment cases. This is explainable with NEC values. For example, by

cross-referencing Tables 2 and 4 it is easy to see that when NEC is

zero the ensemble yields no results. When NEC is one, that is there

is one classifier that has a non-zero weight, the ensemble reduces

to a single classifier and its performance is very low in most cases.

On the other hand, large NEC values could be an indicator of

overfitting as well, especially for the under-sampling based meth-

ods. For instance, in learning from CD data set RUSBoost resulted

in an average of 22.75 effective classifiers using neural network;

however, its sensitivity and accuracy are not proportional to its

NEC. The possible cause of this inconsistency is that random under-

sampling has great potential of missing key instances when a small

number of examples are selected each time. Clearly, this random

process diversifies the classifier, yet it generates a misrepresenta-

tion of the underlying model. Our proposed method, on the other

hand, acts consistently in all cases. A large number of effective

classifiers helps our method achieves the best or very competitive

performance. 

4.4. Training efficiency 

The computational cost is a major consideration in the employ-

ment of ensemble learning algorithms. With the iterative train-

ing scheme, it usually takes longer time than any single clas-

sifier, which becomes an issue when dealing with large, high-

dimensional data sets. Our programs are implemented with MAT-

LAB in a 64-bit Windows system with Intel Core 2 Duo processor

at 3 GHz. The system has 4GB memory and 6.6GB virtual memory.
Table 5 summarizes the average time used for training ensem-

le classifiers. The second column lists the data volume in the

raining phase, which is the product of the number of examples

sed for training and the number of features per example. The data

ets are put in descending order according to the training data vol-

me. The shortest time is highlighted in bold font face. 

Since RUSBoost, SMOTEBoost and our proposed method require

 data resampling step, intuitively they take a longer time to com-

lete training. This is true when the problem is relatively simple;

oth Adaboost.M1 and SAMME took much less time to process the

ynthetic data sets using decision trees as the base classifier. How-

ver, as the problem complexity grows, especially as the training

ata volume increases, the advantage of the under-sampling based

ethods reveals. RUSBoost and our method took the least amount

f time to process all eight real-world data sets. RUSBoost failed to

chieve an effective ensemble for Letter, AT&T, and AR data sets.

ence the time used to generate RUSBoost ensemble is omitted.

MOTEBoost, on the other hand, suffers from processing the ad-

itional synthetic examples; the extended time cost is significant

ith high training data volume. In particular, when training with

E data SMOTEBoost was unsuccessful to complete due to the ex-

remely large amount of data generated for training. As shown in

able 1 , the imbalance ratio of CE is 1:83. So the SMOTEBoost

ethod has to handle almost 80 times more data than any other

ethods, which causes it to fail given the limited amount of mem-

ry in our computer system. 

Using neural network as the base classifier requires longer

raining time to train an ensemble. It is evident that our pro-

osed method is very predictable in its superior efficiency among

ll methods. The training time consumed by RUSBoost and our

ethod is close, although our method yielded the shortest aver-

ge time for 8 cases among the 11 data sets. RUSBoost again failed
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Table 5 

Time (in second) used in training ensemble classifiers. 

Data Training Decision trees Deep networks 

sets Volume Ada SAMME RUS SMT REFDL Ada SAMME RUS SMT REFDL 

CE 77,414,400 1012 1012 29.2 – 27.6 10,892 10,902 314 – 293 

Banana 2100 1.42 1.41 1.7 2.6 2.5 859 854 510 910 426 

CD 2100 1.21 1.22 1.8 2.5 2.7 1029 1030 424 1072 475 

SYN2 2750 50.6 50.6 41.6 88.7 47.4 3027 3159 – 4856 1511 

SYN1 2750 38.4 38.3 38.7 50.2 41.8 3558 3595 1809 5136 1679 

Image 11,340 6.7 6.5 5.3 13.7 6.3 1400 1032 708 1494 785 

Statlog 36,288 12.3 12.3 5.1 28.9 7.2 1171 1196 619 1514 746 

Pen 44,640 31.8 30.3 12.4 76.1 16.4 3142 2318 1283 4033 993 

Letter 83,200 213 221 – 409 108 6587 6701 2108 11,373 1718 

AT&T 2,266,880 27.2 27.1 – 551 26.1 917 936 – 1597 727 

AR 3,960,0 0 0 62.2 62.8 – 1059 40.6 1198 1144 – 2421 832 

Fig. 1. Average relative time used in training. The discontinued or incomplete 

curves indicate failure of generating an ensemble. 
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o generate effective ensemble for three data sets. Compared to Ad-

Boost.M1 and SAMME methods, our proposed method reduces the

raining time by more than 50%. In particular, in the CE case our

ethod used a fraction of the time needed for either AdaBoost.M1

r SAMME. 

Fig. 1 illustrates scatter plots of the relative average time used

n training with respect to the training data volume. The plots

how the ratio of time used by each method with respect to the

inimum time in each case. To reveal the difference, the verti-

al axis is in logarithm scale. Although the time is probably af-

ected by the hardness of the problem and hence curves are not in-

reasing functions, the relative computational cost among methods

s clearly depicted where our method exhibits the best efficiency

mong all cases especially when dealing with a large amount of

ata as shown in the plot. Despite the absolute amount of time

sed with a different base classifier, this trend remains consistent. 
.5. Regularization parameter 

In our method, the regularization parameter δ plays a vital role

n the algorithm’s capability and performance. In this section, we

tudied its properties as well as its behavior with respect to the

erformance to gain a deep insight into this strategy. 

In general, an increase of δ between two consecutive training

terations indicates that the number of second-round-misclassified

nstances decreases. However, the amplitude of the change of δ is

lso determined by the example weights. That is, an “easy” ex-

mple that has been correctly classified by several previous con-

ecutive classifiers and is labeled incorrectly makes a small incre-

ent to the δ compared to those borderline examples that are re-

eatedly correctly and incorrectly classified. The weight associated

ith such an easy example is clearly less than the weight of a bor-

erline example, which in turn limits its contribution to the change

f δ. In addition, the employment of different training examples

njects variations into the regularization parameter. It is hence an-

icipated that δ fluctuates during the training process, which is ev-

dential from Fig. 2 . 

Fig. 2 illustrates the changes of regularization parameter with

espect to the training iteration. The horizontal axis gives the iter-

tion number (up to 100) and the vertical axis shows the δ values

n the range of (0, 1]. The solid line and dash line depict δ with the

ecision tree and neural network as a base learner, respectively.

espite some disparities in fluctuation between two base learners,

he overall behaviors mostly coincide. 

Recall that δ is initialized with one in the first training iter-

tion. Hence, its value tends to drop sharply at the very begin-

ing because there are surely many examples that are misclas-

ified. The weight of these classifiers, i.e., α, then relies mostly

n the performance-based evaluation term log (1 − εt ) /εt as shown

n Eq. (3) . As training continues, δ tends to increase, which al-

ows more contribution from the multi-class regularization term

og (C − 1) to the classifier weight and shows that the method was

uccessful in reducing the number of second-round-misclassified

xamples. 

Since we successfully applied our method to binary class prob-

ems, it is also interesting to see how δ modifies the learning be-

avior. Fig. 3 illustrates the changes of regularization parameter

ith respect to the training iteration in three binary class prob-

ems. In contrast to the multi-class cases shown in Fig. 2 , the reg-

larization parameter depicts no consistent increasing trend but

ecomes rather steady in a range. This is mostly due to the fact

hat δ exclusively dominates the multi-class regularization term. As

≤ 1, the classifier weight α is slightly suppressed, which makes

ur method performs closely to RUSBoost in binary classification

roblems as shown in Table 3 . 

To study the effect of regularization term on performance im-

rovement, we incorporated stratified sampling into AdaBoost.M1
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Fig. 2. Regularization parameter δ changes along the training iterations. δ is initialized to one. The solid line depicts the δ of using decision tree as base classifier and the 

dash line depicts the δ of using neural network as base classifier. 
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1 The choice of CD data set is simply to minimize the complexity of visualization 
and SAMME. Hence, the difference between these methods and

our method mostly results from the regularization term. Table 6

lists the average performance of the three methods with two base

learners. The column “imp” gives the improvement of performance

in percentage. It is computed by comparing the best results from

AdaBoost.M1 and SAMME (with stratified sampling). 

As shown in Table 6 , the average improvements of our method

in sensitivity with the decision tree and neural network as base

learners are 5.92% and 3.38%, respectively. More importantly, such

improvement is not a result of sacrificing the performance of the

majority classes. This is evidential from the improvement in ac-

curacy as shown in Table 6 . While the sensitivity of the minor-

ity classes improves, the overall accuracy also increases. The av-

erage improvements of our method in accuracy with the decision

tree and neural network as base learners are 3.94% and 1.91%, re-

spectively. The underlined results are the best performance among

all ensemble and learner combinations. Out of 11 test cases, our

method results in 9 best sensitivities and 9 best accuracies. Even in

the very few cases where our method gives a lower performance,
he difference is mostly less than one percent. Clearly, the regu-

arization parameter brings positive impact to the performance of

ulti-class ensemble. 

Cross-referencing with Table 2 we can see that stratified sam-

ling also improves the performance of AdaBoost.M1 and SAMME

nd in some cases the improvement is great. Note that Ad-

Boost.M1 produces no results in some cases. Clearly, integrating

tratified sampling adds no help to AdaBoost.M1. However, the in-

ate constraint is the stringent error bound that halts the learning

rocess from creating effective classifiers. 

Fig. 4 depicts the decision boundaries of three intermediate

lassifiers using CD data set 1 and the decision tree as base learner.

ig. 4 (a) shows the results of AdaBoost.M1 with stratified sampling

nd Fig. 4 (b) shows the results of our method. The minority and

ajority examples are visualized with circles and asterisks, respec-
and focus on the propagation of the learning process. 



X. Yuan et al. / Pattern Recognition 77 (2018) 160–172 169 

Fig. 3. Regularization parameter δ in binary class problems. The solid line depicts 

the δ of using decision tree and the dash line depicts the δ of using deep network. 

Table 6 

Average performance of AdaBoost.M1 and SAMME with stratified sampling and our 

method. Column “Imp” gives the percentage of improvement using our method. 

Parenthesis indicates negative number. 

Data Decision trees Deep networks 

sets Ada SAM REFDL Imp Ada SAM REFDL Imp 

Sensitivity 

CE 40.0 39.3 50.0 25 80.0 80.0 82.0 2.5 

SYN1 57.1 60.1 58.3 (3) 53.2 63.1 63.6 0.8 

SYN2 18.2 42.1 43.1 2.4 – 45.1 45.6 1.1 

Image 79.8 82.0 82.9 1.1 88.1 89.0 88.5 (0.6) 

Letter – 57.8 59.5 2.9 60.3 67.0 67.7 1 

Pen 84.0 86.5 86.6 0.1 93.2 94.0 94.2 0.2 

Statlog 71.5 71.6 73.5 2.7 67.8 64.1 75.3 11.1 

AT&T – 36.2 40.0 10.5 – 58.7 60.0 2.2 

AR – 45.0 46.0 2.2 – 24.0 29.0 20.8 

CD 46.7 46.6 54.5 16.7 67.3 67.8 66.3 (2.2) 

Banana 51.1 51.6 53.9 4.5 69.2 69.4 69.6 0.3 

Accuracy 

CE 69.6 69.8 72.7 4.2 70.3 70.3 73.8 5 

SYN1 61.5 57.1 57.3 (0.4) 60.8 61.6 63.0 2.3 

SYN2 20.2 34.4 35.7 3.8 – 41.1 40.8 (0.7) 

Image 82.3 83.2 83.3 0.1 90.0 90.4 90.8 0.4 

Letter – 54.3 55.9 3 61.7 56.4 57.6 (6.6) 

Pen 87.3 87.9 88.1 0.2 96.1 96.1 96.5 0.4 

Statlog 77.1 74.8 76.1 (1.3) 78.0 74.9 78.5 0.6 

AT&T – 28.7 35.8 24.7 – 48.1 48.7 1.2 

AR – 27.5 29.0 5.5 – 18.5 22.0 18.9 

CD 68.2 68.1 72.0 2.6 82.5 82.3 81.9 (0.7) 

Banana 74.2 74.7 75.4 0.9 83.8 83.8 84.0 0.2 

Fig. 4. Decision boundaries of three consecutive classifiers using (a) stratified sam- 

pling with AdaBoost.M1 and (b) our method. Solid line draws the decision boundary 

for the first classifier; dash line draws the decision boundary for the second classi- 

fier; and dotted line draws the decision boundary for the third classifier. 
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ively. Using a subset of examples for training, AdaBoost.M1 starts

ith a good model that missed only one minority example. How-

ver, the dominating majority examples quickly migrate the follow-

ng classifiers to minimize the count of misclassification by sacri-

cing the much less number of minority examples. 

In contrast, our method demonstrates great robustness using

he regularization parameter. As classifiers are developed, each of

hem attends part of the data distribution and the aggregation of

hem clearly shows the non-linear margin between classes. The

ias of an overwhelmingly large number of majority examples is

reatly suppressed. 

. Conclusion 

It is common for real-world applications to have an uneven

umber of examples among multiple classes. The data imbalance,

owever, usually complicates the learning process, especially for

he minority classes, and results in deteriorated performance. In

his article, we propose a regularized ensemble framework of deep

earning method to handle the imbalanced, multi-class learning

roblems. This method uses stratified undersampling to recover

he balance among classes and addresses the unpredictability of

ase learners with regularization. The sampling procedure ran-

omly selects examples for the majority classes based on their data

istribution and the regularization modifies the loss function to

enalize the classifiers with second-round-misclassified examples. 

his regularization parameter also adjusts the error bound in ac-

ordance with classifier’s performance. 

Experiments are conducted using 11 diverse synthetic and real-

orld data sets with moderate to high imbalance ratio. Our exper-

ments aim to evaluate the capability and stability of the proposed

ethod. The results demonstrate the superior performance of our
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method compared to several state-of-the-art algorithms for imbal-

anced, multi-class classification problems. It is evident that the

proposed method achieved the highest sensitivity for the minor-

ity classes in most cases (the best sensitivity in 7 out of 8 multi-

class cases). More importantly, our sensitivity gain of the minority

classes is accompanied with the improvement of the overall accu-

racy for all classes. The standard deviation of the results illustrates

the consistency of our method. It is worth noting that although

our proposed method uses undersampling strategy the ensemble

stability is retained. Despite the failure of training by other meth-

ods, our method successfully devises ensembles in all cases. In ad-

dition to multi-class problems, our experiments with binary-class

problems also reveal the applicability of our method and its per-

formance is highly competitive. 

Another unique facet of our evaluation is looking at the number

of effective classifiers resulted from the training of ensemble. Our

experiments show that the proposed method yielded the largest

number of effective classifiers in most cases, which indicates the

diversity of the base classifiers in the ensemble. In undersampling-

based methods, the number of the effective classifier is also an in-

dicator of overfitting, which could be caused by random undersam-

pling that misses important examples when a fairly small number

of examples are needed to balance the training data set. 

A major concern of applying boosting method to large data set

is the computational cost. With a step of forming training set, our

method, as well as RUSBoost and SMOTEBoost, requires extra time.

However, the time used to select a subset of examples is out-

weighed by the training time. It turns out that the sampling pro-

cess allows our method to gain the best efficiency. The reduction in

computational cost is significant and in some cases, the improve-

ment is more than 50%. As the volume of training data increase,

the gain of efficiency with our method becomes more significant. 

The regularization parameter plays a vital role in the algo-

rithm’s capability of handling multi-class data sets and improves

performance. The regularization penalizes the weights of the base

classifiers when they exhibit second-round-misclassified examples

especially those with increased weights near the borderline. With

different training examples, the regularization term fluctuates in

the training process. As training continues, the regularization term

enlarges asymptotically towards one. By integrating stratified sam-

pling with AdaBoost.M1 and SAMME, we examined the perfor-

mance impact from regularization only. The improvements with

different base learners differ and the average accuracy enhance-

ment is in the order of 1.91% to 3.94% with maximum improve-

ment at 24.7%. 
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